20047001555 A2 || VA0 0 YO0 O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
31 December 2003 (31.12.2003)

PCT

(10) International Publication Number

WO 2004/001555 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2003/020109

(22) International Filing Date: 25 June 2003 (25.06.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/392,022 25 June 2002 (25.06.2002) US

(71) Applicant: CYANEA SYSTEMS CORP. [US/US]; 2001
Broadway, 3rd Floor, Oakland, CA 94612 (US).

(72) Inventors: CHONG, James, C.; 153 Lombary Lane,
Orinda, CA 94563 (US). CHAN, Joseph, L.; 3984 El Nido
Ranch Road, Lafayette, CA 94596 (US). PATEL, Tushar,

(74)

(81)

M.; 658 40th Avenue, San Francisco, CA 94618 (US).
HELER, Jean-Jacques; 4192 Rincon Circle, Palo Alto,
CA 94583 (US). SO, Chi Hong; 150 Cleaveland Road,
Apartment 104, Pleasant Hill, CA 94595 (US). TSANG,
Arthur; 1473 Treat Boulevard, Apartment 1618, Walnut
Creek, CA 94596 (US). LAM, Robert, S.; 320 Caldecott
Lane, #306, Oakland, CA 94618 (US). CHOW, Ray-
mond; 143 Minerva Way, San Ramon, CA 94583 (US).
TANG, Henry; 1751 Magnolia Way, Walnut Creek, CA
94595 (US). BANKS, Jerome, D.; 888 O’Farrell Street,
#211, San Francisco, CA 94109 (US). ZYCHOWSKI,
Christopher, M.; 4172 Twentieth Street, San Francisco,
CA 94114 (US).

Agent: ROSENTHAL, Robert, E.; Duane Morris LLP,
One Liberty Place, Philadelphia, PA 19103 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR MONITORING PERFORMANCE OF APPLICATION IN A DISTRIBUTED ENVI-

RONMENT

PROMPT USER TO
SUPPLY L~ 105
INFORMATION FOR
MONITORING
RECEIVE
IDENTIFICATION 1o ”
OF INFORMATION
FROM USER
MONITOR AVAILABILITY
LevELL MANAGEMENT, SYSTEM
RESOURCES AND
115; —————— DISTRIBUTED
\ PLATFORMS, AND BASIC
DEFERMINE REQUEST DATA.
MONITORING
LEVEL
LEVEL2 MONITOR ADVANCED
REQUEST DATA PLUS LEVEL D
1DATA f———# INFORMATION
TO USER
125 ——od] e—
MONITOR LEVEL 2 DATA,
LEVEL3 PLUS METHOD AND SQL
— { LEVELDATA
130 —1
140
PROMPT USER TO
DEFINE MONITORING
SCHEDULE
l 145 150
RECEIVE SCHEDULE MONITOR IN
SELECTIONS FROM ACCORDANCE WITH
USER RECEIVED SCHEDULE

(57) Abstract: A method for management of performance
of computer systems and applications includes prompting
the user to select information for monitoring, monitoring
the performance of applications running on servers,
displaying data, and prompting users to input performance
adjustments. A user is prompted to select a server or
server group, a resource, and a threshold or condition for
notification, and in response a system compares the value
or quality of the parameter to the threshold or condition,
and provides a notification to the user in the event that the
parameter reaches the threshold or condition. A method
includes the steps of providing the user with performance
information, receiving from the user a request for more
specific performance information, and providing more
detailed performance information. A method according
to the invention includes the steps of receiving from the
user an identification of a server as an authoritative server,
another server as a comparison server, comparing runtime
environment data in the form of one or more of CPU data,
server data and Java data between the selected servers,
and displaying differences to a user. A method of the
invention includes the steps of receiving from the user
an identification of a server as an authoritative server, and
another server as a comparison server, and providing a
list of matching and differing file names. The method
may further include the step of receiving from the user a
selection of a file, conducting a comparison of the files,

O and providing a result to the user. A method of the invention includes the steps of assigning a role to each user, and mapping
between access to functions and each user role by an access control list, whereby access to functions is limited depending on the

assigned role of the user.

WO 2004/001555 A2 [N} 08000 0000 O 0 A

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

VN, YU, ZA, ZM, ZW.
Published:

— without international search report and to be republished

(84) Designated States (regional): ARIPO patent (GH, GM, upon receipt of that report

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ance Notes on Codes and Abbreviations” appearing at the begin-
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, ning of each regular issue of the PCT Gazette.

WO 2004/001555 PCT/US2003/020109

METHOD AND SYSTEM FOR MONITORING PERFORMANCE OF
APPLICATIONS IN A DISTRIBUTED ENVIRONMENT

FIELD OF THE INVENTION
[0001] This invention relates to computer software, and in particular to distributed
computing.
BACKGROUND OF THE INVENTION
[0002] Business-critical applications are currently hosted on distributed servers using
Sun Microsystems Java 2 Enterprise Edition (J2EE) technologies. Such applications
include servers providing key business operations directly to customers running
browser clients. A variety of tools and techniques are available to monitor the
performance of various components of such systems, including databases, platforms,
and hardware. However, the performance experienced by the customer is not the
performance of such underlying components, but the performance of the application.
The inventors have identified a key failure in the prior art to provide information on
the performance of the application.
[0003] As a result of the inability of prior art products to measure performance of the
application, decisions about selections of hardware and software may be ill-informed.
For example, if an application is responding slowly, one option available to managers
is to purchase or lease additional servers on which the application runs. Such
purchases are expensive, and the installation of new hardware employs information
technology personnel who are necessarily diverted from other tasks. Other responses
to an application responding slowly include changing of configurations of various
hardware. However, numerous different combinations of various hardware and
software configurations may need to be tried in order to improve application
performance.
SUMMARY OF THE INVENTION
[0004] A method in accordance with the invention for monitoring the performance of
applications running on a server in a distributed computing environment comprises
the step of prompting the user to select information for monitoring, monitoring
application performance in accordance with the selected information, and making the
monitored performance information available to the user.
[0005] A method in accordance with the invention includes the steps of prompting a

user to select a server or server group, a resource, and a threshold or condition for

WO 2004/001555 PCT/US2003/020109

notification, comparing the value or quality of the parameter to the threshold or
condition, and providing a notification to the user in the event that the parameter
reaches the threshold or condition.

[0006] A method according to the invention comprises the steps of providing the user
with performance information relating to applications running on a server in a
distributed computing environment, receiving from the user a request for more
specific performance information, and providing more detailed performance
information in response to the request.

[0007] A method according to the invention includes the steps of receiving from the
user an identification of a server as an authoritative server, another server as a
comparison server, comparing runtime environment data in the form of one or more
of CPU data, server data and Java data between the selected servers, and displaying
differences to a user.

[0008] A method of the invention includes the steps of receiving from the user an
identification of a server as an authoritative server, and another server as a
comparison server, and providing a list of matching and differing file names. The
method may further include the step of receiving from the user a selection of a file,
conducting a comparison of the files, and providing a result to the user.

[0009] A method of the invention includes the steps of receiving a request string, and
mapping the received request string to a distinguishable request string and a
collapsible request string. The received request string may be in the form of a JSP, a
servlet, and remote Enterprise Java Bean calls. A method of the invention may
prompt a user to create rules for mapping of a received request string to a
distinguishable request string and a collapsible request string.

[0010] A method of the invention includes the steps of providing, in a system running
at least one application, a management application having various components for
monitoring and management, and monitoring and providing to a user in real-time
information concerning configuration of the components and the relationships
between the components.

[0011] A method of the invention includes the steps of assigning a role to each user,
and mapping between access to functions and each user role by an access control list,
whereby access to functions is limited depending on the assigned role of the user.
[0012] A system in accordance with the invention for monitoring the performance of

applications running on a server in a distributed computing environment includes

WO 2004/001555 PCT/US2003/020109

computer hardware and software for prompting the user to select information for
monitoring, computer hardware and software for monitoring application performance
in accordance with the selected information received from the user, and computer
hardware and software for making the monitored performance information available
to the user.

[0013] A system in accordance with the invention includes computer hardware and
software for prompting a user to select a server or server group, a resource, and a
threshold or condition for notification, computer software and hardware for
comparing a value or quality of a monitored parameter of the resource on the server or
server group to the threshold or condition, and computer software and hardware for
providing a notification to the user in the event that the parameter reaches the
threshold or condition.

[0014] A system according to the invention includes computer hardware and software
for providing the user with performance information relating to one or more
applications running on a server in a distributed computing environment, computer
hardware and software for receiving from the user a request for more specific
performance information, and computer hardware and software for providing more
detailed performance information in response to the request.

[0015] A system according to the invention includes computer hardware and software
for receiving from a user an identification of a first server as an authoritative server
and a second server as a comparison server, computer hardware and software for
comparing runtime environment data from the authoritative server and the comparison
server in the form of one or more of CPU data, server data and Java data between the
selected servers, and computer hardware and software for displaying differences in
such data between the selected servers to a user.

[0016] A system according to the invention includes computer hardware and software
for receiving from the user an identification of a first server as an authoritative server
and a second server as a comparison server, and computer hardware and software for
providing a list of matching and differing file names. The system may further include
computer hardware for receiving from the user a selection of a file on both the
authoritative server and the comparison server, computer hardware and software for
conducting a comparison of the files, and for providing a result to the user.

[0017] A system of the invention includes computer hardware and software for

receiving a request string, and computer hardware and software for mapping the

WO 2004/001555 PCT/US2003/020109

received request string to a distinguishable request string and a collapsible request
string. The received request string may be in the form of a JSP, a servlet, and remote
Enterprise Java Bean calls. A system of the invention may include computer
hardware and software for prompting a user to create rules for mapping of a received
request string to a distinguishable request string and a collapsible request string.
[0018] A system of the invention includes computer hardware and software for
providing, in a system running at least one application, a management application
having various components for monitoring and management, and for monitoring and
providing to a user in real-time information concerning configuration of the
components and the relationships between the components.

[0019] A system of the invention includes computer hardware and software for
assigning a role to each user, and computer hardware and software for mapping
between access to functions and each user role by an access control list, whereby
access to functions is limited depending on the assigned role of the user.

[0020] A computer program in accordance with the invention for monitoring the
performance of applications running on a server in a distributed computing
environment, consists of instructions stored on a medium, which instructions, when
executed on a processor, cause the processor to execute the steps of prompting the
user to select information for monitoring, monitoring application performance in
accordance with the selected information, and making the monitored performance
information available to the user.

[0021] A computer program in accordance with the invention consists of instructions
stored on a medium, which instructions, when executed on a processor, cause the
processor to execute the steps of prompting a user to select a server or server group, a
resource, and a threshold or condition for notification, comparing a detected value or
quality of a parameter of the resource on the server or server group to the threshold or
condition, and providing a notification to the user in the event that the parameter
reaches the threshold or condition.

[0022] A computer program according to the invention consists of instructions stored
on a medium, which instructions, when executed on a processor, cause the processor
to execute the steps of providing the user with performance information relating to
applications running on a server in a distributed computing environment, receiving
from the user a request for more specific performance information, and providing

more detailed performance information in response to the request.

WO 2004/001555 PCT/US2003/020109

[0023] A computer program according to the invention consists of instructions stored
on a medium, which instructions, when executed on a processor, cause the processor
to execute the steps of receiving from the user an identification of a first server as an
authoritative server, a second server as a comparison server, comparing runtime
environment data in the form of one or more of CPU data, server data and Java data
between the selected servers, and displaying differences to a user.

[0024] A computer program according to the invention consists of instructions stored
on a medium, which instructions, when executed on a processor, cause the processor
to execute the steps of receiving from a user an identification of a first server as an
authoritative server, and a second server as a comparison server, and providing a list
of matching and differing file names between the first and second servers. The
program may further include instructions which, when executed on a processor, cause
the processor to execute the steps of receiving from the user a selection of a file found
on both the first and second servers, conducting a comparison of the files, and
providing a result to the user.

[0025] A computer program of the invention consists of instructions stored on a
medium, which instructions, when executed on a processor, cause the processor to
execute the steps of receiving a request string, and mapping the received request
string to a distinguishable request string and a collapsible request string. The received
request string may be in the form of a JSP, a servlet, and remote Enterprise Java Bean
calls.

[0026] A computer program of the invention consists of instructions stored on a
medium, which instructions, when executed on a processor, causing the processor to
execute the steps of providing, in a system running at least one application, a
management application having various components for monitoring and management,
and monitoring and providing to a user in real-time information concerning
configuration of the components and the relationships between the components.
[0027] A computer program of the invention consists of instructions stored on a
medium, which instructions, when executed on a processor, cause the processor to
execute the steps of assigning a role to each user, and mapping between access to
functions and each user role by an access control list, whereby access to functions is

limited depending on the assigned role of the user.

WO 2004/001555 PCT/US2003/020109

BRIEF DESCRIPTION OF THE FIGURES
[0028] Fig. 1 is a flow diagram illustrating a method in accordance with the
invention.
[0029] Fig. 2A and 2B is a flow diagram illustrating a method in accordance with the
invention.
[0030] Fig. 3 is a schematic illustration of a method in accordance with the invention.
[0031] Fig. 4 is a flow diagram illustrating a method in accordance with the
invention.
[0032] Fig. 5 is a flow diagram illustrating a method in accordance with the
invention.
[0033] Fig. 6 is a schematic diagram illustrating a feature of the invention.
[0034] Fig. 7 is a schematic diagram illustrating a feature of the invention.
[0035] Fig. 8 is a schematic diagram illustrating an exemplary architecture.
[0036] Fig. 9 is a schematic diagram illustrating features of an exemplary
architecture.
[0037] Fig. 10 is a diagram illustrating features of an exemplary architecture.
[0038] Fig. 11 is a schematic diagram illustrating features of an exemplary
architecture.
[0039] Fig. 12 is a schematic diagram illustrating features of an exemplary
architecture.
[0040] Fig. 13 is flow diagram illustrating an exemplary architecture.

DETAILED DESCRIPTION

[0041] The invention includes a process for monitoring and providing information
about the performance of certain aspects of computer systems, and computer
programs and systems for accomplishing these purposes. The method and system will
be described with reference to a computer program for accomplishing these purposes
and for use in a system of the invention. The computer program of the invention is
particularly useful for applications running on application servers. The computer
program of the invention includes a user interface providing a variety of information
and options to the user. Probes installed on application servers obtain information
related to the operation of the applications and servers and furnish that information to

other program elements for analysis and reporting to the user.

WO 2004/001555 PCT/US2003/020109

Monitoring Levels and Schedule

[0042] In a method, system and computer program in accordance with the invention,
there is provided a capability for providing selected levels of detail about the
operation of applications running on a server. A user is prompted to identify
information for monitoring, as indicated in Fig. 1 at 105. A user is preferably
provided with at least two choices as to the level of detail of monitoring. The term
level of detail of monitoring refers to the amount and nature of information that is
obtained about the running of the applications. The level of detail of monitoring may
refer to the amount of data or information that is being obtained. The level of detail
may also refer to the nature of the information that is being obtained. For example,
some types of information, such as server availability information, are at a relatively
high level of detail. Other types of information, such as method trace information, are
at a relatively low level of detail.

[0043] The user may be prompted to select a level of monitoring. The user may
select particular features to monitor. Alternatively, preselected monitoring levels may
be provided. Each preselected monitoring level has associated therewith particular
information that is monitored and reported. Upon receiving from a user a selection of
a monitoring level or particular features, as indicated at block 110 of Fig. 1, the
program of the invention monitors application performance, as indicated, and makes
the monitored performance information available to the user. In one example,
illustrated in Fig. 1, three levels of monitoring may be provided. Upon receipt of the
request from the user, the system determines the monitoring level, as indicated by
decision block 115. At Level 1, the highest level, and therefore the level providing
the least information, the information may be in the nature of request level data and
server level data. For example, the associated information may be availability
management, system resources and distributed platforms, and basic request data, as
indicated at block 120. Availability management includes information as to whether a
particular application is running on a particular server. System resources indicates
such information as the amount of available memory and number of available
connections. Basic request data indicates the number of requests being made, the
number of requests being completed, and the like.

[0044] In the same example, the user may be provided with a selection of Level 2
monitoring. A Level 2 monitoring selection ordinarily include all of the information

provided by Level 1 monitoring, with additional information, as indicated at block

WO 2004/001555 PCT/US2003/020109

125. The additional information may be API level data, such as SQL data, JMS data
and EJB call data. Such data may include data regarding the throughput of a
particular CPU. The functionality to permit the user to provide a soft cancel of a
request may be provided. No method data or SQL level data is provided. In order to
provide the additional data, the JVMPI is enabled on the corresponding JVMs. This
level is directed at problem determination, and may be used for servers with a high
volume of transactions, with occasional instability. The complexity of the
transactions may vary. Because the JVMPI is enabled on the corresponding JVM, the
user may be provided with the option of changing dynamically to a more detailed
level of monitoring, such as Level 3 described below.

[0045] In the same example, the user may be provided with a selection of Level 3
monitoring. Level 3 monitoring provides the information furnished in connection
with Level 2 monitoring, plus method level data. Level 3 may include advanced
problem determination and reporting, including, for example, method and SQL level
data, as indicated by block 130. The JVMPI is enabled on the corresponding JVMs.
JVMPI function calls are possible, and method entry and exit events are selected.
This level is typically used for servers which have been selected for diagnostics,
detailed workload characterization and profiling. Since this level requires enabling of
the JVMPIL, as noted above, it is possible to dynamically change between this level
and other levels in which the JVMPI has been enabled, such as the exemplary Level 2
described above. In all cases, as noted above, and as indicated by block 135,
monitored information is presented to the user.

[0046] In a preferred embodiment, the user is prompted to define a schedule for
monitoring, as indicated by block 140. The schedule is received from the user, as
indicated by block 145, and monitoring proceeds in accordance with the schedule as
indicated by block 150. A schedule defines at least a start time, preferably defined by
calendar date and time, a monitoring level, and a server or group of servers. Rather
than a monitoring level, the program of the invention could permit the user to select
individual data items for monitoring. The schedule may define times for the
monitoring level to change, which may also be in terms of a calendar date and time.
The schedule may be selected to cycle on an appropriate basis, such as each month,
each week, or each day. In a preferred embodiment, a schedule consists of a group of
schedule records, each of which is a combination of a start date and time and a

monitoring level. The program of the invention causes monitoring to commence with

WO 2004/001555 PCT/US2003/020109

the first schedule record, and monitoring to change when the current time is the start
time and date of another schedule record. This process continues through successive
schedule records. A default monitoring level may be provided for use at a time when
no monitoring is specified in the schedule. The program may be furnished with a
default, which may be changed by the user. The user is prompted to apply a
completed schedule to one or more servers or server groups. The user may be
provided the option to duplicate an existing schedule, and then be prompted for
servers and server groups to which to apply the schedule. The user may be provided
the option of modifying the fields of a schedule. Preferably, if a schedule is modified
by removal of a server or server group, the user will be prompted to apply another
schedule to that server or server group. The program may be configured to prevent
the user from removing all schedules from a given server. Alternatively, upon
removal of all schedules from a given server or group, monitoring of the affected
Sserver or server groups may return to a default monitoring level. The user may be
provided the option of deleting a schedule, and monitoring may take place at a default
level for the time and server or server groups corresponding to the deleted schedule.
[0047] While a programmed monitoring level, with the items to be monitored pre-
selected, may be used, a system of the invention may permit a user with proper
authorization to manually change the items to be monitored. Such a manual change
would preferably only be available on a temporary basis, and may be limited to a
particular server or server group.

[0048] If a server is restarted, the system follows a hierarchical search path to
determine the proper level of monitoring. If it is possible to contact the scheduler, ask
for a temporary override, and then a scheduled monitoring level, then the system-wide
monitoring level is used. When the scheduler cannot be contacted, then the default
monitoring level is used.

Monitoring Traps and Alerts

[0049] In a method, system and computer program according to the invention, while
monitoring of a server is taking place, alerts are provided to the user. Alerts are
provided as a result of a parameter of a monitored resource on a selected server or
server group reaching a selected matching condition or threshold value for that
condition. The software that is capable of providing a notification or alert to the user
is referred to here as a software trap. The user may select the option of creating or

modifying a software trap from a menu in a program according to the invention.

WO 2004/001555 PCT/US2003/020109

There are a number of selections which a user is prompted to make in order to create
anew software trap. These selections include the servers or server groups on which
the trap will be applied, the resource to be measured, and the condition. As indicated
in the example of Fig. 2, the first step may be to prompt the user to select a server or
server group, as indicated at block 205. The selection is received, as indicated by
block 210.

[0050] The information required varies with the type of trap, and the user is prompted
for the type of trap, as indicated at block 215.

[0051] For a first type of trap, as indicated in decision block 220 and block 225, a
resource and a condition in the form of a threshold value must be selected. Resources
may include occurrence, CPU time, resident time, wait time, and SQL resident time.
Threshold values would depend on the particular type of resource. Upon selection of
the resource, as at 230, the system may provide the units to the user for selection of
the threshold value. The trap can be applied to any request, to a specific request
name, or to a specific method name. The trap then proceeds to monitor the selected
resource, as indicated by block 235. If a threshold is met, then the system evaluates
whether an alert condition has been triggered, as indicated at blocks 236 and 237. If
not, then the event may be logged, as indicated at block 238. If an alert condition is
met, then an alert is communicated to a user and recorded, as at 239.

[0052] For a second type of software trap, as indicated in blocks 240 and 242, a
resource and condition with a number of hits must be selected. To set this type of
software trap, the user is prompted to specify a resource and a condition, as at 242.
The resource may be, for example, an HTTP request parameter, or an SQL
statements. For an HTTP or SQL request, a condition is a specified string contained
in the HTTP/SPL request. The condition may also be in the form of a Boolean
expression applied to strings. When the user provides the requested resource and
condition, at 244, the software trap performs monitoring, as at 246 of Fig. 2B.
Whenever a request or statement is identified meeting the condition, a hit counter is
incremented, as indicated by blocks 248, 250 and 252 in Fig. 2B. If sufficient hits are
counted, then an alert condition is reached, and an alert is communicated and
recorded, as at 254.

[0053] A third type of trap applies to the condition of the resource consumption of the
application server. The user is required to select an application server or group. The

user is prompted to specify, for resource and threshold values, a resource, and a

10

WO 2004/001555 PCT/US2003/020109

threshold, as indicated by blocks 260, 262 and 264 in Fig. 2B. The resources may
inciude information relating to application server availability, database connection
pools, and JVM runtime memory. Server availability is measured as a simple positive
or negative. As to database connection pools, a number of different thresholds may
be set, including: number of connections allocated to number of connections; average
number of threads waiting for a connection; average time that a client waits to be
granted a connection; number of connection pool timeouts; and average percent of the
pool in use. For JVM runtime memory, resources may be the amount of free memory
in the JVM runtime and the amount of memory used in the JVM runtime. The user is
prompted to provide a number and to indicate whether that number is a maximum or
minimum. Suitable units may be provided to the user, e.g., Mbytes for free memory
and memory used. The user is also prompted to select the number of times that a
condition is met before an alert message is created. The resource is monitored, as
indicated at 266, and if an alert condition is met, an alert is communicated and

- recorded, as shown at 268 and 270.

[0054] Alert conditions, which determine under what circumstances an operator is
notified of data identified by a trap, will now be described. In operation, when a
threshold condition set in a software trap is met, depending on the conditions set by
the user, either an alert is sent, or a counter is incremented. If the counter is
incremented, then the new count is checked against the threshold. The alert action
may take several forms. The alert is preferably logged for audit purposes, including
the trap condition, the offending monitored resource, the offending values, and a
date/time stamp. A local dump of the offending request, method or thread can be
produced, as can access to a display. A stack trace and method trace may be
provided. One or more individuals may be notified, such as by e-mail or other
message such as an SNMP alert. Escalation of the alerts may be included, for
example, by sending an e-mail only after the third occurrence of a threshold. Other
examples of multiple actions taken on multiple conditions may readily be envisioned.
When a threshold number of hits is detected, the counter is reset to zero. If a Boolean
condition has been specified, the condition is reevaluated each time a boundary is
met. If a method has been specified, the condition is reevaluated after the method is
detected.

[0055] A trap/alert log is maintained identifying the entries by date/time stamp, and

other information obtained from the alerts. Users may monitor traps while running to

11

WO 2004/001555 PCT/US2003/020109

view the log and counter. The user may be provided with the capacity to toggle traps
between active and inactive status.

Application Performance Analysis

[0056] In a method, system and computer program of the invention, the program
provides the capacity to obtain performance analysis. Information is provided at a
relatively high level, and the user has the option of requesting and receiving more
detailed information. Information is provided in a format which will be referred to as
areport. In general, the user is prompted to select a type of report, as indicated at
305 in Fig. 3, and a high level report, or trend report, is presented to the user, as
indicated at 310. From the trend report, the user is provided with the option of
selecting a variety of more detailed reports. The user is given the option to obtain
successively more detailed reports. The user has the option of comparing
performance data in the report against baseline data from a previous time period.
Reports include such information as server availability, server resources, business
performance, application performance, and database performance from the
perspective of the application.

[0057] From the application programmer interface (API) and services provided by a
specific application server (e.g., PMI in WebSphere) and the user’s applications on
which data collectors are operating, data are obtained. The obtained data will be a
working set of data. A trend report, which is a selected type of report, may be
obtained. Reports are stored on a server group level. Initially, data is obtained, such
as from the API and server and the user’s applications. The user may be able to
determine the amount of application data to be captured. This amount may be
expressed as a percentage of the total request samples that should be stored. The user
is prompted to select the application server from which the request samples are taken.
The user may be prompted to select the frequency, in terms of time periods, such as
minutes, that the user wants the system to take a snapshot of the data.

[0058] The use of redundant data should be limited. A sampling ratio is defined to
determine how much of the data is to be recorded in a performance history database.
The user is prompted to set the sampling ratio, thereby limiting the amount of data
required for storage in the database. Table 1 shows the metrics, a description of each

metric, and the resource from which the data is obtained.

Metric Description Resource

Response time The total amount of time, in Applications

12

WO 2004/001555

PCT/US2003/020109

seconds, required by the entire
system to complete a process.

CPU Time

The amount of time, in seconds,
required by the CPU to complete
a process.

Applications

Throughput

The number of requests. This
may be expressed in terms of
throughput or in a number of
requests.

Specific throughput metrics are
throughput per second, minute,
hour, day, and week.

Applications

Pool size

Number of available connections
in the database pool.

Application servers

Concurrent waiters

The number of threads waiting
for a database connection.

Application servers

Average wait time

The time a client waited to be
granted access to the database.

Application servers

Faults

The number of connect pool
time-outs.

Application servers

Percentage pool usage

The percent of the database pool
in use.

Application servers

Physical connections

The number of physical
connections in the J2C pool.

Application servers

Connection handles

The number of connection
handles in use by the application
server.

Application servers

JVM free memory

The amount of free memory in
the JVM.

Application servers

JVM memory used

The amount of used memory in
the JVM.

Application servers

Availabitity

The percentage of time a server
is available, per the kernel.
Where the metric is reporting on
a server group, this will be the
percentage of the group that is
available.

Application servers

[0059] Various types of reports may be provided, including a report type showing

trends, and a decompose/decomposition report type on a single data point.

[0060] In one embodiment, illustrated in Fig. 3, the user is prompted to provide

certain data for the working set, as indicated at 305, and then provides those data, as

indicated at 310. These data include the application server or group, the analysis type,

the data period, the data interval, the aggregation period, i.e., the way in which the

data is grouped, filtering criteria for selecting data points, the type of analysis, such as

request, method, SQL, server availability, and application server analysis, and

baseline. The user may then select a type of analysis, as indicated at 315.

13

WO 2004/001555 PCT/US2003/020109

[0061] If request analysis has been selected, as indicated at 320, users are prompted to
select a metric. Examples of metrics are throughput, response time, and CPU time, as
indicated at 321. Inresponse to the selection, a trend analysis is provided, with labels
indicating the time interval and application server, as indicated at 322. Users may
break down the request trend report by request type or request name, or by server
name if the report applies to a server group. The foregoing breakdown may be
referred to as a decomposition, as indicated at 323. Users may further break down
any one portion of the decomposition. Alternatively, from the trend report, users may
obtain details on any one data point. This further breakdown may be referred to as the
detail report, as indicated at 324. The detail report may further be broken down into a
trace report, indicated at 325, on one record of the detail report. The trace report
provides method entry and exit information, as well as selected metrics. Thus it can
be seen that the user can drill down to further levels of detail.

[0062] If a method analysis is selected, as at 330, the user is prompted to select a
metric, which may be one of throughput, response time, and CPU time, as indicated at
331. The user is provided the option of limiting the report to such items as a specific
request name, request type, or method name. Afier receiving the selection from the
user, the system of the invention generates a report with a trend analysis, as indicated
at 332. From the trend report, the user may select a breakdown of the trend analysis
by request name or request type. The resulting report will be referred to as a
decomposition report for method analysis, as indicated at 333. If applicable, users
may decompose a trend analysis report by server, if the report covers a server group.
Users may select any portion of the decomposition report for the method analysis for
breakdown to detail and view by individual record, or users may select a breakdown
of a single data point in the trend report into records. The resulting report is referred
to as the detail report, indicated at 334.

[0063] If the user selects an SQL analysis report, as at 340, the user is prompted to
select one of the metrics of throughput and response time, as at 341. Users may select
a specific request name or request type, method name, table name, or SQL call. In
response, the system provides a trend analysis, as at 342. The trend analysis may be
broken down by request name, request type, method name, and/or table name to
provide a decomposition report, as at 343. The report may include the number of
samples as a percentage of total. Users may break down any one portion of the

decomposition report to obtain detail by individual records, or break down the trend

14

WO 2004/001555 PCT/US2003/020109

report by a single data point to obtain individual records. The report with individual
records is known as the detail report, as at 344.

[0064] If the user selects a server availability analysis report, as at 350, a trend
analysis is provided, as at 351. No metrics are selected. In a trend report for
availability, the system may plot the percent up time of the group over a series of time
intervals. The user may break down a trend report for a group by application server,
as at 352.

[0065] An application server analysis report may be selected as at 360. The user may
be prompted to provide one of the following metrics: pool size, concurrent waiters,
average wait time, faults, percentage pool usage, physical connections, JVM free
memory, and JVM memory used, as at 361. A trend analysis report is provided, as at
362.

[0066] Reports may be provided in any suitable manner. Trend reports may be a line
graph, with a tablature view of all the data, for each data point. A comparative
baseline display may be provided, showing the same data at a selected time past time.
For example, baseline data may show the same data for the same time of day on a
prior day. For decomposition reports, a bar or pie graph may be furnished, with a
tablature view of all data, per type. The user is preferably able to select a portion of
the decomposition report to drill down to a detail report. Baseline data may be
provided in the detail report for comparison.

Software Consistency Check

[0067] In a method, system and program of the invention, comparisons of the
operation of applications on various servers may be conducted. Such comparisons are
valuable in identifying possible configuration problems in different servers.

[0068] An example of such a comparison is referred to as an n-way diff. As to each
server, the program of the invention obtains runtime environment data as to how a
system is set up and installed. These environments may be system, java, and
application server. For a system, the environment information may include CPU
speed, number of CPUs online, number of CPUs offline, memory, operating system
version, and physical disk space. Other information may be included. For Java, the
information may include JDK version, installation directory, Java policy, operating
system information, class path, and library path. For application servers, the
information may include the application server, startup directory, listening ports, SSL

listening ports, number of registered servlets, number of registered EJBs, number of

15

WO 2004/001555 PCT/US2003/020109

JDBC connection pools, and number of EARs. The program can prompt a user to
select a server as an authoritative server, as indicated in Fig. 4 at 405, receive a
selection, as indicated at 410, and then prompt the user to select a server for
comparison, as indicated at 415. Once the user selects the server for comparison, as
indicated at 420, the system then obtains and displays the comparison results, as
indicated at 425. The comparison results may include the runtime environment
information noted above. The comparison results may contain only the differing data,
and may be graphically represented. The system preferably permits a user to drill
down from the displayed results to a detail screen displaying all of the relevant
information for each application server, as indicated at 430, 435.

[0069] In another type of comparison, comparison of binary files with matching file
names can be performed. At a top level analysis, a user is prompted to select one
server from a group as an authoritative server, as indicated at 505 in Fig. 5. The user
provides a selection, as indicated at 510, and is then prompted to select one or more
servers as comparison servers, as indicated at 515. Upon receipt of the comparison
server(s) selection, at 520, the user is prompted to select the source of files, as at 525.
The user may select from a list of EAR folders, or the CLASSPATH that is deemed to
form the master file list of the authoritative server. The user provides the selection, as
at 530. The user is also prompted, as at 535, to select one of the file types for the
composition of the master file list. The file type is received, at 540. In response, the
system starts preparing the master file list from the selected source and file types from
the authoritative servers. The system then searches for files listed in the master file
list in the comparison servers, as indicated at 545. For each comparison, the results
are displayed, at 550. The results may be divided into found files and files not found.
For the found category, the list includes matched files, i.e., all files with matched file
name, size, and files system timestamp; like folders, i.e., files with matched file name
and size, but not timestamp, and unlike folders, i.e., files.with matched file name
only. For files not found, the files are divided into files in the authoritative server but
not the comparison server, and all the files in the comparison server but not the
authoritative server. ’fhese lists of files are displayed. This display permits the user
to readily compare the files in the authoritative and comparison servers.

[0070] From this display, the system permits the user to drill down to obtain
additional information about the files. The user may select one comparison Server,

and select one file from the authoritative file, for detailed comparison, as indicated at

16

WO 2004/001555 PCT/US2003/020109

555. The system will perform a comparison on the files, with the result being either
“same” or “different.” The comparison may use a checksum calculation, such as the
MDS5 algorithm. It should be noted that, in one embodiment, a further level is
required for JAR files before the comparison can be run. First, archive files are
extracted, and then name matching is performed. Then the comparison may be run.
As a result of these comparisons, both the names of the files and the contents of the
files are compared between servers, as indicated at 560. Such problems as variant
versions and corrupted code can readily be identified.

Request Rewrite.

[0071] In a method, system, and program of the invention, a method, system and
program may be provided for rewriting or mapping certain requests. In particular,
three different types of requests are received in a system of the invention. These are
JSPs, servlets, and remote Enterprise Java Bean calls. These requests are typically in
the form of strings, and are received from another application, such as a web server or
another application server. Such requests are employed in the system of the invention
for two different purposes. The requests may be used for identification purposes. The
requests may also be used to represent a business request or an application. In
general, the implicit dual meanings of a request string are not problematic. However,
there are situations in which these dual meanings can create conflicts. For example,
in a portal site, request strings in the form of an URL normally look exactly the same,
and therefore convenient for the end users to memorize; however, they are deemed to
be different types of request by the portal engine using the underlying data object,
such as a request or a session object. During problem determination, an operator or
administrator will be confused as he will see requests for different functions
represented by the same string, with no resolution between the strings. On the other
hand, a single application may involve multiple and different request strings and after
their successful executions, the resulting performance data is to be analyzed against
one application name or label. The problem here again is that there is a lack of a
group mechanism for the system to recognize that a group of request strings are
related to each other.

[0072] To overcome the foregoing problems, a module, which may be in the form of
Java based logic, may be provided to map requests. As indicated in Fig. 6, each
request, such as request 600, is mapped to two separate strings: a distinguishable

request string 605, and a collapsible request string 610. These separate strings are

17

WO 2004/001555 PCT/US2003/020109

used for distinct purposes. These strings may be a distinct URL, or a label string.
The mapping or rewriting operation preferably takes place at a point when both
problem determination and performance management functions may take advantage
of the operation. For example, performance management functions would perform
decomposition by request on the collapsible request string. An active request search,

used in problem determination, is conducted on distinguishable request strings.

Security.

[0073] Security is preferably maintained by providing that each user is assigned to a
user role. Each user role is mapped to particular functions of the software of the
invention. An access control list may be provided with the mapping between the
product functions and the user roles associated with them. An administrator may add
user roles and map those roles to functions. Referring to the schematic illustration in
Fig. 7, and administrator 700 has read and write access to all functions and
configurations, and access to log files. For example, creation, modification,
activation, deactivation, and deletion of software traps, and changing of monitoring
levels, may be for the administrator only. An operator 705 has display access to most
functions, and access to certain function configuration. A user 710 has display access

to functions and reports, but not to any function configuration.

Architecture

[0074] The system of the invention may have the architecture described below. The
architecture may be in the nature of an agent operating on each application server, and
the remaining components on a dedicated server, including a kernel providing central
control, a publish server for receiving data from the probe engine, an archive agent for
moving data from the cache to a database, a database, a visualization engine for
providing all end user applications, and an application server agent for collecting
certain application server specific data from an application server (such as
Websphere). An exemplary architecture is illustrated at Fig. 8. Application server
agents, such as one shown at 2510, are installed on application servers. Probe and
publish engine 2511 is the principal component of application server agent 2510. The
remaining components may be installed on dedicated server 2520. Kemel 2530
provides central control. Publish server 2540 receives data from application server

agent 2510 and moves data to archive agent 2550. Archive agent 2550 moves data to

18

WO 2004/001555 PCT/US2003/020109

database 2560. Visualization engine 2570 proves all end user applications, and
communicates with the database for historical information, and directly with the
application server agents 2510 to request and receive snapshot information.

[0075] In one embodiment, the source of the data provided to the user in the method
described above may be a probe and publish engine. The probe and publish engine
obtains all information pertaining to specific threads. In a preferred embodiment, the
standard Java profiling interface (JVMPI) may be employed for probe agents.

[0076] Referring to Fig. 9, probe and publish engine 2511 is shown in relation to the
java virtual machine 2610 with which it communicates, as well as the application
server 2615. Probe and publish engine 2511 preferably has five components: the
probe controller 2512, command agent 2513, event agent 2514, event handlers 2515,
and the publish engine 2516. Probe controller 2512 is a controller thread that controls
the life cycle of the other components. Event agent 2514 registers the event handlers
for JVMPI events of interest. When such events occur, the handlers are then invoked.
The handlers collect the relevant information and add it to an event queue. Publish
engine 2516 then obtains the data from the event queue and sends it to the publish
server 2540. The agents may be constructed using the standard Java profiling
interface provided with Java Development Kit 1.2.2 or above.

[0077] In this embodiment, a JVMPI library is loaded with the JVM, and
communicates with the JVM, the probe controller, the event agent, and the command
agent. JNI functions may be used to capture all event-based data, and date/time
stamp, wall clock and CPU clock. Events that are registered by the JVMPI library,
event agent, command agent, publish engine, and probe controller, are shown at Table

2:

TABLE 2

JNI/C Java Thread
JVMPI library Yes No No
Event Agent Yes No Yes
Command Agent Yes Yes Yes
Publish Engine No Yes No
Probe Controller Yes Yes Yes

Information obtained from the JVMPI library is stored in an queue, called the event
queue, and the event agent retrieves records from the queue, packs them in a packet,

and sends them to the publish server via the publish engine. The data collected from

19

WO 2004/001555

the queue by the Event Engine are shown at Table 3:

PCT/US2003/020109

TABLE 3
Server Id Component Id
Websphere Admin Node name
'Websphere Application Server Name
Thread Id JVMPI JNI Environment
Class Name JVMPI |Stored in class/method name list of
JVMPI Library
Method Name JVMPI |As above
Method Signatures JVMPI |As above
Type (Bean/Servlet/JSP/JDBC) JVMPI By checking if the class is inherit
from a special class
Data and Time Stamp (O]
all clock S
PU clock VMPI se JVMPI function
etCurrentThreadCpuTime. Only
upport for IBM Development Kit 1.3
nd AIX 5.1
Request [URL] or SQL call JVMPI |Require converting TVMPI object Id
to JVMDI object reference.

The Command Agent is an RMI service registered with the kernel. The Command

Agent receives commands from the visualization engine and other external

components and satisfies them using JVMPI or JNI calls. An exemplary list of

commands, and whether the commands are provided to the JVMPI or the JNI is

shown at Table 4.
TABLE 4

Stack Trace JVMPI
Session object JVMPI
Request object JVMPI
Suspend thread JNI
Hard kill thread INI
Soft kill thread JVMPI
Change thread priority JNI
Datasource Maximum Connection Pool JVMPI
ORB Pool Size JVMPI
Web Container Pool Size JVMPI

[0078] The probe controller is also preferably an RMI service registered to kernel

2530, and starts and stops other probe components gets the probe’s configuration.

New configurations of probes are sent from kernel 2530 to the probe controller. The

probe controller will determine if a probe should be started or stopped or a filter

WO 2004/001555 PCT/US2003/020109

changed upon receiving a new configuration. A logic diagram for the Probe/Publish
Engine is provided as Fig. 10. In accordance with this logic diagram, when the JVM
is loaded, at shown at 2702, events identifying thread starts, thread end and
completion of initialization of the JVM are registered through JVMPI to the kernel, as
shown at 2704. When initialization of the JVM is completed, as indicated at 2706,
then the system properties are set and a thread for initiating probes is created, as
indicated at 2708. The thread then enables the method entry and class load events, as
indicated at 2710, and waits until the application server has started, as shown at 2712.
A method entry starts a process flow in the JVM, at 2714, which checks to see if the
application server is started, at 2716. Ifit is started, the process flow is passed to the
InitProbe Thread, which disables method entry and class load events, at 2718, and
creates a probe controller thread, at 2720. The probe controller thread seeks a probe
configuration from the kernel, at 2722. If the probe configuration is not found, then
the flow ends, as indicated at 2724 and 2726. If the configuration is found, the
process flow proceeds to determination if the probe is enabled in the configuration, at
2728. If not, then the process flow ends. A process flow may also commence with a
new configuration in the form of an RMI call from the kernel, as indicated at 2730. If
the probe is enabled, then the process flow proceeds to start the event agent and
command agent, enable a class load events and a method entry events, as shown at
2732. The command agent awaits a command from the visualization engine, as
indicated at 2734 and 2736. The enabling of the method entry event starts a process
flow in the JVM, as indicated at 2750. Data, such as CPU clock, wall clock, method
identification, thread identification, and/or URL and SQL are obtained, as indicated at
2750, and passed to event queue 2760. The class load event initiates a process flow in
the JVM, as shown at 2754. A function of get class name, method name and
signature is initiated, as shown at 2756, and this information is passed to class hash
table 2762. The event agent retrieves records from the event queue 2760, as indicated
at 2780. The event agent will wait depending on the publishing frequency, as
indicated at 2782.

[0079] Visualization engine 2750 provides the front end user interface component
used in the method and system of the invention. Standard J2EE technologies may be
used for implementation of visualization engine 2750. The front-end framework of
visualization engine 2750 handles housekeeping such as session management and

security. The visualization engine 2750 preferably handles as many common tasks as

21

WO 2004/001555 PCT/US2003/020109

possible in order to provide an environment conducive to the development of front-
end application and business logic components. The visualization engine 2750 sits on
top of a database, which it accesses in response to user requests. The architecture is
illustrated at Fig. 28, and is shown to be browser-based, using a browser 2810,
communicating with a web server 2815, which may be an Apache web server, and an
application server 2820, such as IBM’s Websphere, interfacing between the database
and the web server. Servlets may be used to handle requests and manage application
flow. Servlets may also be employed to control front-end behavior by performing
form data-entry validation and sending java bean objects containing data to JSP
pages. JSP pages may handle most of the front-end presentation logic. Business logic
may be implemented using enterprise java beans Generally, stateless session beans
are used.

[0080] Servlets may be used for form-entry data validation, as noted above, and for
application logic flow. A base servlet may be provided that all servlet applications
must extend. The base servlet sets up global variables, handles authentication and
authorization, and performs redirects to login and access-denied pages as necessary.
Resource bundle, log message and audit trail message files are provided. The JSP’s
generate HTML code to render the web page to be displayed in the browser. Servlets
pass the desired data to the JSP’s using java bean objects.

[0081] The top layer of the stateless session beans makes up the API. There may be a
layer of enterprise java beans or java classes below the top layer that deals with access
to data from the database. Data from the database may be obtained through a
database access layer that is part of the DBAccess data access framework.

[0082] The application activity display function provides real-time access to data, as
noted above, and involves direct communication between the visualization engine and
the corresponding publish server and probes. A publish server interface and
command agent interface are provided for this direct communication. The stubs to
these interfaces are maintained by the kernel, and are retrieved by the visualization
engine by performing a lookup from the kernel using a lookup agent helper client.
Each server in which probes are running has a unique identification for the probe.
Once the probe identification has been obtained, the interface stub of the command
agent is obtained from the kernel. The identification of the publish server used by the
probe is then obtained from the probe. The corresponding interface stub of the

publish server is obtained from the kernel. The list of active requests and associated

22

WO 2004/001555 PCT/US2003/020109

data can then be obtained directly from the selected publish server. Additional
request data can be obtained from the probe directly. Communications between the
visualization engine and the command agent and publish server of the probe are real-
time and synchronous. \

[0083] The visualization engine includes the security functions discussed above. A
proprietary API was developed because the J2EE specification security features are
not sufficient to provide the security features described above. Security features
consist of authentication and authorization functions. Authentication is performed via
a proprietary Java API that wraps a third party authentication system. Authorization
is performed by maintaining access control lists by users or groups. A user is
associated with specific groups and can only access data for servers in those groups.
Servers are each associated with one or more groups.

[0084] The kernel will now be described in detail. The kernel enables various
services to discover each other on a network and provides a way for services to
interact in a dynamic, robust way. No user intervention is required when services are
brought on or off line. Services that join the kernel can adapt dynamically when any
of the other services go on or off line. Consumers of the services do not need prior
knowledge of the service’s implementation. Referring to Fig. , two instances of the
kernel, 2530 and 2530°, are shown. The architecture of the kernel features a core
2531, a lease administrator 2532, an RFS server 2533, a codebase server 2534, a
registration database 2535, an availability server 2536, and a configuration server
2537. Two instances of the kernel are preferably running on separate servers for
enhanced availability.

[0085]) The kernel core 2531 handles all join, renew, leave and lookup requests from a
service. The services are probe agents, the availability server 2536, and the
configuration server 2537. For a join request, the service passes a proxy object and its
associated service attributes to the kernel. The kernel fulfills the request by storing
the proxy object and service attributes in the registration database. When a client
needs a certain type of service to accomplish a task, it looks for the service by passing
a search template and issuing a lookup request to the kernel. Based on the search
template, the kernel will return the corresponding proxy object to the client. Each
service is required to renew its lease by issuing a renew request to the kernel
periodically. If the kernel does not receive a renew request when required, the kernel

removes the service’s proxy object and service attributes from the registration

23

WO 2004/001555 PCT/US2003/020109

database. This renewal requirement avoids requests being sent to services that are
unavailable. The probe and publish server preferably bundles the application and
system information, such as the volume of completed requests and CPU utilization,
when the lease is renewed. The lease concept thus serves to report the availability of
the server and high-level statistical information. A service may also issue a leave
request to the kernel.

[0086] The lease administrator component 2532 keeps track of the records in the
registration database. If any registration is expired, or a leave request is received, the
lease administrator 2532 causes the corresponding record to be removed so that the
kernel will not pass the corresponding proxy object to any clients. The RFS (request
for stub) server 2533 listens on a port for connections. When a connection is
identified, a serialized stub object of the kernel is sent out to the service or client to
use in interfacing with the kernel. The codebase server 2534 is similar to an HTTP
server, but provides a facility to allow clients of a service to download the class
definitions of the proxy object it obtains from the kernel. The registration database
2535 provides in-memory storage for proxy objects and associated service attributes.
Server availability and statistical information resides in the registration database 2535.
[0087] The availability server 2536 takes snapshots and stores the history of the
registration database 2535 in order to facilitate providing availability of servers and
statistical data to the visualization engine 2570.

[0088] The configuration server 2537 is a centralized place to store configuration data
for all components. Configuration data is in XML form and is kept in the database.
Users may change configuration through the visualization engine. When this is
accomplished, the configuration server 2537 retrieves from the kernel a list of proxy
objects that are adapting to the old configuration. The configuration server 2537
makes use of the proxy objects to broadcast the new configuration. This serves to
update the configuration of probes in response to user commands at the visualization
engine.

[0089] A helper utility, called JoinManager, requests the stub object of the kernel, and
joins the kernel with the proxy object as well as its service attributes. If the stub
object is not available, the utility will continue to retry until it succeeds. This utility
also maintains and renews the lease. A lookup manager utility may be used by a

client to look up a specific service.

24

WO 2004/001555 PCT/US2003/020109

[0090] The publish server 2540 manages data received from the various publish
engines. Multiple publish servers may be provided in a single installation. The
publish server provides query capabilities for the visualization engines. The publish
server also manages the incremental retrievals of performance management related
data and system resources related data. The publish server architecture is shown at
Fig. 13.

[0091] Publish server 2540 may be implemented as a multithreaded process. Each
thread connects to a specific publish engine and receive data from it. It may also
contain additional threads to deal with startup, shutdown and communications to the
kernel.

[0092] Referring to Fig. 13, publish server 2540 spawns a thread to join the kemnel,
and regularly renews its contract, as shown at 3002. Publish server 2540 also spawns
a thread to accept socket connections, as indicated at 3004. As indicated by decision
block 3006, the next step depends on whether a query is received from the
corresponding publish engine. If, rather than a query, data is received, a persistent
socket connection is established, as indicated at 3008. The data is also associated
with arequest. Data is then obtained from the probe via the publish engine, as
indicated at 3010. If a server restart signal is received, as indicated at 3012 and 3014,
then the publish server resets the accumulated data for the restarted server before
proceeding. If the data is from a new probe, as indicated at 3016 and 3018, then the
server is registered so that the server’s performance management related data and
system resources related data will be retrieved periodically, such as every 5 minutes.
The process flow then proceeds to processing the records, such as method level
records, class load records, and GC records, received from the probe, as indicated at
3020. If arequest is completed or there is no activity on the request for a certain
amount of time, as indicated at 3022, then the request is removed from the active
request list, as indicated at 3024. The process flow then returns to accept more data
from the probe, as indicated by labeling leading from 3026.

[0093] If the data is determined to be a query, then a property may be used to
determine the appropriate type of information. Queries may ask for various
information, as illustrated at 3030, 3032 and 3034. The result is then serialized and
sent back to the publish engine. The publish server also receives certain
administration requests made by its clients, such as for status, as indicated at 3036,

and stop the service, as indicated at 3038. These tasks can be invoked by

25

WO 2004/001555 PCT/US2003/020109

administrators. The connection is closed when the information in response to the
query has been provided, as indicated at 3040, and the publish server becomes
available to accept socket connections again.

[0094] It will be understood that the foregoing architecture represents one system
having means for carrying out the steps of the method of the invention. The
visualization engine comprises means for presenting information to a user, means for
prompting a user, and means for receiving requests from a user. The probe engine
comprises means for obtaining information regarding distributed applications, and for
carrying out filtered monitoring of the distributed applications. It will be understood
that the functions of the publish engine, archive, database and kernel cooperate with
the visualization engine and the probe engine to provide one means for carrying out

the steps of the method.

Self-Diagnosis

[0095] In a method, system and computer program of the invention, a method and
system may be provided for conducting analysis of internal components of the
architecture, and for reporting the results of the analysis to an operator. In an
example, there may be provided views of the kernel, of the data collector component,
of the publish server, and of the archive agent.

[0096] The kernel view indicates all running instances of the kernel component of a
software system of the invention. For each instance, there is provided a kernel
runtime environment detail and a component overview for each. Exemplary values
in a kernel runtime environment detail include the platform, the IP address, various
port numbers, a codebase library path, contract renewal interval, the start time, the
file where the security policy is resident, driver names, and the URL of its
corresponding database. The component overview may include the service name, the
component identification, platform, IP address, the listen port number, the first join
time, and the last contract renewal time. Each component identification in the
component overview section may be a link to provide a corresponding view. For
example, if a user clicks a link on component ID X, and its service name is data
collector controller, the user is provided with the data collector component view.
[0097] A data collector component view displays data pertaining to all up and running
data collector controllers. There may be three sections in this view: Data collector

controller runtime environment detail, data collector runtime environment detail, and

26

WO 2004/001555 PCT/US2003/020109

publish server relationship. The first two sections provide configurations and
environment in which the data collector controllers are running. The publish server
relationship section displays the identity of the publish server to which the data
collector is connecting. For the data collector controller runtime environment detail,
the identities include component ID, the identity of the admin server, the identity of
the application server, the identity of the platform, the IP address, a port number, a
start time, the kernel codebase file location, the connected kernel, a configuration
profile, whether or not the kernel is configured, and a security policy file. For the
data collector runtime environment detail, the information is an identification number
of the component, a port number, and whether the component is enabled.

[0098] A publish server view provides information as to all up and running instances
of the publish server component. For each instance, there may be four sections:
publish server runtime environment detail, the data collector relationship, the PMI
agent relationship, and the archive agent relationship.

[0099] An archive agent view shows all up and running instances of archive agent
and for each instance of archive agent, there are two sections of information: the
archive agent runtime environment detail, and the publish server relationship. The
archive agent runtime environment detail lists the configuration and the environment
of the archive agent. The publish server relationship information identifies the
publish server that the archive agent is serving.

[00100] It will be understood that the foregoing provides real-time monitoring
of the system of the invention, so that performance may be monitored and problems
determined.

(00101} The system of the invention may be installed through installation of
certain probe software on a server to be monitored, and a separate server for the
remaining software of the invention. This configuration provides for relatively
straightforward installation of the system of the invention.

[00102] The present invention can be embodied in the form of methods and
apparatus for practicing those methods. The present invention can also be embodied
in the form of program code embodied in tangible media, such as floppy diskettes,
CD-ROMs, hard drives, or any other machine-readable storage medium, wherein,
when the program code is loaded into and executed by a machine, such as a computer,
the machine becomes an apparatus for practicing the invention. The present invention

can also be embodied in the form of program code, for example, whether stored in a

27

WO 2004/001555 PCT/US2003/020109

storage medium, loaded into and/or executed by a machine, or transmitted over some
transmission medium, such as over electrical wiring or cabling, through fiber optics,
or via electromagnetic radiation, wherein, when the program code is loaded into and
executed by a machine, such as a computer, the machine becomes an apparatus for
practicing the invention. When implemented on a general-purpose processor, the
program code segments combine with the processor to provide a unique device that
operates analogously to specific logic circuits.

[00103] While the exemplary embodiments have been described with respect to
enterprise applications using Java technologies, and specifically J2EE technologies,
the methods of the invention may be implemented in other technologies. For
example, the methods of the invention may be implemented in other platform-
independent technologies. The methods of the invention may also be implemented in

other technologies applicable to distributed enterprise applications.

[00104] While the invention has been described with reference to preferred
embodiments, the invention should not be regarded as limited to preferred

embodiments.

28

WO 2004/001555 PCT/US2003/020109

What is claimed is:

1.

9.

A method for monitoring the performance of applications running on a plurality of
servers in a distributed computing environment, comprising the steps of:
receiving from a user selected information for monitoring, monitoring application
performance in accordance with the selected information, and making monitored
performance information available to the user in accordance with the selected
information.

The method of claim 1, wherein the user is prompted to identify a scope of
information to be monitored, and wherein application server performance is
monitored in accordance with the selected scope.

The method of claim 2, wherein said scope comprises a first monitoring level
wherein the selected information comprises request level data and server level
data.

The method of claim 3, wherein said scope further comprises a second monitoring
level wherein the selected information further comprises API level data.

The method of claim 4, wherein said scope further comprises a third monitoring
level, wherein the selected information further comprises method level data.

The method of claim 1, wherein the user is prompted to identify a schedule for
monitoring of information, and wherein application server performance is

monitored in accordance with the identified schedule.

A method for monitoring the performance of applications running on a plurality of
servers in a distributed computing environment, comprising the steps of
prompting a user to select a server or server group, a resource, and a threshold or
condition for notification, comparing the value or quality of a parameter to the
threshold or condition, and, if the parameter reaches the threshold or condition,
logging information concerning the parameter.

The method of claim 7, further comprising the step of comparing the parameter to
criteria for notifying a user, and notifying a user if the criteria are met.

The method of claim 7, wherein the threshold or condition is a value of a resource.

10. The method of claim 9, wherein the resource is a property of a method.

11. The method of claim 10, wherein the resource is CPU time.

12. The method of claim 7, wherein the threshold or condition is a number of hits.

29

WO 2004/001555 PCT/US2003/020109

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

The method of claim 12, wherein the resource is a request, and the condition is a
string contained in the request.

The method of claim 7, wherein the resource relates to application server
performance, and the condition is percentage of CPU time.

A method for monitoring the performance of applications running on a plurality of
servers in a distributed computer system, comprising the steps of providing the
user with performance information, receiving from the user a request for more
specific performance information, and providing more detailed performance
information.

The method of claim 15, further comprising the step of providing the user a
selection of request analysis, method analysis, SQL analysis, server availability
analysis, and application server analysis, and receiving a selection from the user.
The method of claim 16, further comprising the step of providing a trend analysis
in accordance with the received selection.

The method of claim 17, further comprising the step of receiving a request for a
decomposition report on a portion of the trend analysis, and providing a
decomposition report.

The method of claim 18, further comprising the steps of receiving a request for a
detail report on portion of the decomposition report, and providing a detail report.
A method for monitoring the performance of applications running on a plurality of
servers in a distributed computer system, comprising the steps of receiving from
the user an identification of a server as an authoritative server, another server as a
comparison server, comparing runtime environment data and displaying a
comparison.

The method of claim 20, wherein said runtime environment data is in the form of
one or more of CPU data, server data and Java data between the selected servers.
The method of claim 21, wherein said CPU data comprises one or more of CPU
speed, number of CPUs online, number of CPUs offline, memory, operating
system version, and physical disk space.

The method of claim 21, wherein said server data comprises one or more of
application server, startup directory, listening ports, SSL listening ports, number
of registered servlets, number of registered EJBs, number of JDBC connection

pools, and number of EARs.

30

WO 2004/001555 PCT/US2003/020109

24.

25.

26.
27.
28.

29.

30.

31

32.

33.

34.

35.

The method of claim 21, wherein said Java data comprises one or more of JDK
version, installation directory, Java policy, operating system information, class
path, and library path.

A method for monitoring the performance of applications running on a plurality of
servers in a distributed computer system, comprising the steps of receiving from
the user an identification of a server as an authoritative server, and another server
as a comparison server, and providing a list of matching and differing file names.
The method of claim 25, further comprising the step of comparing file size.

The method of claim 25, further comprising the step of comparing file time stamp.
The method of claim 25, further comprising the steps of receiving from the user a
selection of a file, conducting a comparison of the files, and providing a result to
the user.

The method of claim 28, wherein the step of conducting a comparison of the files
further comprises conducting a comparison of the files via MDS5 checksum
calculation.

A method for monitoring the performance of applications running on a plurality of
servers in a distributed computer system, comprising the steps of assigning a role
to each user, and mapping between access to functions and each user role by an
access control list, whereby access to functions is limited depending on the
assigned role of the user.

The method of claim 30, wherein one of said assigned roles is administrator, said
administrator having read/write access to each of the functions.

The method of claim 30, wherein one of said assigned roles is user, said user
having display access only to each of the functions.

A method for processing of requests, comprising the steps of receiving a request
string, and mapping the received request string to a distinguishable request string
and a collapsible request string.

The method of claim 33, wherein the received request string is in the form of one
of a JSP, a servlet, and remote Enterprise Java Bean calls.

The method of claim 33, further comprising the steps of prompting a user to create
rules for mapping of a received request string to a distinguishable request string
and a collapsible request string, receiving rules in response to the step of

prompting, and applying the received rules.

31

WO 2004/001555 PCT/US2003/020109

36. A method for monitoring of performance of applications in a distributed
environment, comprising the steps of providing, in a system running at least one
application, a management application having various components for monitoring
and management, and monitoring and providing to a user in real-time information
concerning configuration of the components and the relationships between the
components.

37. A system for monitoring the performance of applications running on a plurality of
servers in a distributed computing environment, comprising means for monitoring
application performance in accordance with the selected information received
from a user, and means for making monitored performance information available
to the user in accordance with the selected information.

38. The system of claim 37, further comprising means for prompting a user to identify
a scope of information to be monitored, and means for monitoring application
server performance in accordance with the selected scope.

39. The system of claim 38, wherein said scope comprises a first monitoring level
wherein the selected information comprises request level data and server level
data.

40. The system of claim 39, wherein said scope further comprises a second
monitoring level wherein the selected information further comprises API level
data.

41. The system of claim 40, wherein said scope further comprises a third monitoring
level, wherein the selected information further comprises method level data.

42. The system of claim 37, further comprising means for monitoring application
server performance in accordance with an identified schedule received from a

user.

43. A system for monitoring the performance of applications running on a plurality of
servers in a distributed computing environment, comprising means for prompting
a user to select a server or server group, a resource, and a threshold or condition
for notification, means for comparing a value or quality of a parameter on the
selected server or server group to the selected threshold or condition, and, means
for logging information concerning the selected parameter if the selected

parameter reaches the selected threshold or condition.

32

WO 2004/001555 PCT/US2003/020109

44. The system of claim 43, further comprising means for comparing the parameter to
criteria for notifying a user, and means for notifying a user if the criteria are met.

45. The system of claim 43, wherein the threshold or condition is a value of a
resource.

46. The system of claim 45, wherein the resource is a property of a method.

47. The system of claim 46, wherein the resource is CPU time.

48. The system of claim 43, wherein the threshold or condition is a number of hits.

49. The system of claim 48, wherein the resource is a request, and the condition is a
string contained in the request.

50. The system of claim 43, wherein the resource relates to application server
performance, and thé condition is percentage of CPU time.

51. A system for monitoring the performance of applications running on a plurality of
servers in a distributed computer system, comprising means for providing the user
with performance information, and means for providing more detailed
performance information in response to a user request for more detailed
performance information.

52. The system of claim 51, further comprising means for providing the user a
selection of request analysis, method analysis, SQL analysis, server availability
analysis, and application server analysis, and means for receiving a selection from
the user.

53. The system of claim 52, further comprising means for providing a trend analysis
in accordance with the received selection.

54. The system of claim 53, further comprising means for receiving a request for a
decomposition report on a portion of the trend analysis, and means for providing a
decomposition report.

55. The system of claim 53, further comprising means for receiving a request for a
detail report on portion of the decomposition report and means for providing a
detail report.

56. A system for monitoring the performance of applications running on a plurality of
servers in a distributed computer system, comprising means for receiving from the
user an identification of a server as an authoritative server, another server as a
comparison server, means for comparing runtime environment data and means for

displaying a comparison.

33

WO 2004/001555 PCT/US2003/020109

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

The system of claim 56, wherein said runtime environment data is in the form of
one or more of CPU data, server data and Java data between the selected servers.
The system of claim 57, wherein said CPU data comprises one or more of CPU
speed, number of CPUs online, number of CPUs offline, memory, operating
system version, and physical disk space.

The system of claim 57, wherein said server data comprises one or more of
application server, startup directory, listening ports, SSL listening ports, number
of registered servlets, number of registered EJBs, number of JDBC connection
pools, and number of EARs.

The system of claim 57, wherein said Java data comprises one or more of JDK
version, installation directory, Java policy, operating system information, class
path, and library path.

A system for monitoring the performance of applications running on a plurality of
servers in a distributed computer system, comprising means for, in response to a
received identification of a first server as an authoritative server and second server
as a comparison server, providing a list of matching and differing file names in
said authoritative and comparison servers.

The system of claim 61, further comprising means for comparing file size.

The system of claim 61, further comprising means for file time stamps.

The system of claim 61, further comprising means for conducting a comparison of
files selected by a user, and providing a result to the user.

The system of claim 64, wherein said means for conducting a comparison
comprises means for conducting a comparison of the files via MDS5 checksum
calculation.

A system for monitoring the performance of applications running on a plurality of
servers in a distributed computer system comprises means for assigning a role to
each user, and means for mapping between access to functions and each user role
by an access control list, whereby access to functions is limited depending on the
assigned role of the user.

The system of claim 66, wherein one of said assigned roles is administrator, said
administrator having read/write access to each of the functions.

The system of claim 66, wherein one of said assigned roles is user, said user

having display access only to each of the functions.

34

WO 2004/001555 PCT/US2003/020109

69. A system for handling requests, comprising means for receiving a request string,
and means for mapping the received request string to a distinguishable request
string and a collapsible request string.

70. The system of claim 69, wherein the received request string is in the form of one
of a JSP, a servlet, and a remote Enterprise Java Bean call.

71. The system claim 69, further comprising means for prompting a user to create
rules for mapping of a received request string to a distinguishable request string
and a collapsible request string, and means for applying rules received in response
to a prompt to a user to create rules for mapping of a received request string to a
distinguishable request string and a collapsible request string.

72. A system for monitoring of performance of applications in a distributed
environment, comprising means for providing, in a system running at least one
application, a management application having various components for monitoring
and management, and means for monitoring and providing to a user in real-time
information concerning configuration of the components and the relationships
between the components.

73. A computer program for monitoring the performance of applications running on a
plurality of servers in a distributed computing environment, said program
consisting of instructions stored on a medium, said instructions, when executed on
a processor causing the processor to execute the steps of: receiving from a user
selected information for monitoring, monitoring application performance in
accordance with the selected information, and making monitored performance
information available to the user in accordance with the selected information.

74. A computer program for monitoring the performance of applications running on a
plurality of servers in a distributed computing environment, said program
consisting of instructions stored on a medium, said instructions, when executed on
a processor causing the processor to execute the steps of: prompting a user to
select a server or server group, a resource, and a threshold or condition for
notification, comparing the value or quality of a parameter to the threshold or
condition, and, if the parameter reaches the threshold or condition, logging
information concerning the parameter.

75. A computer program for monitoring the performance of applications running on a
plurality of servers in a distributed computer system, said program consisting of

instructions stored on a medium, said instructions, when executed on a processor

35

WO 2004/001555 PCT/US2003/020109

76.

77.

78.

79.

80.

causing the processor to execute the steps of: providing the user with performance
information, receiving from the user a request for more specific performance
information, and providing more detailed performance information.

A computer program for monitoring the performance of applications running on a
plurality of servers in a distributed computer system, said program consisting of
instructions stored on a medium, said instructions, when executed on a processor
causing the processor to execute the steps of: receiving from the user an
identification of a first server as an authoritative server, of a second server as a
comparison server, comparing runtime environment data from said authoritative
and comparison servers and displaying a comparison.

A computer program for monitoring the performance of applications running on a
plurality of servers in a distributed computer system, said program consisting of
instructions stored on a medium, said instructions, when executed on a processor
causing the processor to execute the steps of: receiving from the user an
identification of a first server as an authoritative server, and a second server as a
comparison server, and providing a list of matching and differing file names on
said authoritative and comparison servers.

A computer program for monitoring the performance of applications running on a
plurality of servers in a distributed computer system, said program consisting of
instructions stored on a medium, said instructions, when executed on a processor
causing the processor to execute the steps of: assigning a role to each user, and
mapping between access to functions and each user role by an access control list,
whereby access to functions is limited depending on the assigned role of the user.
A computer program for processing of requests, said program consisting of
instructions stored on a medium, said instructions, when executed on a processor
causing the processor to execute the steps of: receiving a request string, and
mapping the received request string to a distinguishable request string and a
collapsible request string.

A computer program for monitoring of performance of applications in a
distributed environment, comprising the steps of providing, in a system running at
least one application, a management application having various components for
monitoring and management, and monitoring and providing to a user in real-time
information concerning configuration of the components and the relationships

between the components.

36

WO 2004/001555

PCT/US2003/020109

PROMPT USER TO
SUPPLY |~ 105
INFORMATION FOR
MONITORING
4
RECEIVE
IDENTIFICATION |/ 110 12
OF INFORMATION
FROM USER
MONITOR AVAILABILITY
LEVEL 1 MANAGEMENT, SYSTEM
RESOURCES AND
115 » DISTRIBUTED
T~ PLATFORMS, AND BASIC
DETERMINE REQUEST DATA.
MONITORING '
LEVEL / 135
LEVEL 2 MONITOR ADVANCED -
REQUEST DATA PLUS LEVEL PRI o
1 DATA INFORMATION
TO USER
125
MONITOR LEVEL 2 DATA,
LEVEL 3 PLUS METHOD AND SQL
| LEVELDATA
130
140
y /
PROMPT USER TO
DEFINE MONITORING
SCHEDULE
l / 145 / 150
RECEIVE SCHEDULE .| MONITOR IN
SELECTIONS FROM » ACCORDANCE WITH
USER RECEIVED SCHEDULE

FIG. 1

1/14

WO 2004/001555

TOFIG. 2B

PCT/US2003/020109

PROMPT USER TO SELECT
SERVER OR SERVER GROUP 205
ON WHICH SOFTWARE TRAP
WILL OPERATE
) 4
RECEIVE USER SELECTION 210
OF SERVER OR SERVER
GROUP
Y
PROMPT USER FOR 215
TYPE OF TRAP
230
225
PROMPT USER RECEIVE
THRESHOLD ves | FOR RESOURCE RESOURCE
CONDITION TYPE OF AND THRESHOLD AND TO FIG.
SOFTWARE TRAP? VALUE » THRESHOLD —> 7B
VALUE
242 244
PROMPT USER FOR RECEIVE RESOURCE
NUMBER OF HITS RESQURCE AND AND CONDITION
TYPE OF CONDITION
SOFTWARE TRAP? R TO FIG
» '_’ 2B

FIG. 2A

2/14

WO 2004/001555

FROMFIG. 2A

262

PCT/US2003/020109

264

TRAP TO MONITOR PROMPT USER
RESOURCE YES FOR RESOURCE
CONSUMPTION OF AND
APPLICATION THRESHOLD
SERVER?

A 4

RECEIVE
RESOURCE AND
THRESHOLD
FROM USER

270

<

- ALERT SEND
MONITOR CONDITION ———» ALERTTO
266 RESOURCE > MET? USER AND
i RECORD
A
236 237
235 239
THRESHOLD SEND
MONITOR CONDITION ALERT TO
RESOURCE MET? USER AND
RECORD
A
< RECORD 238
THRESHOLD
EVENT
254
248
246 250
SEND ALERT
MONITOR YES TO USER AND
RESOURCE THRESHOLD RECORD
REACHED?

NO

A

INCREMENT
COUNTER

252

FIG.2B

3/14

361

WO 2004/001555 PCT/US2003/020109
PROMPT USER TO SELECT 305
WORKING SET OF
REQUIREMENTS
\ 4
RECEIVE WORKING SET
OF REQUIREMENTS 310
h 4
PROMPT USER FOR 315
SUBJECT OF ANALYSIS
360
340
320 330 v 350
REQUEST METHOD SQL ANALYSIS SERVER APPLICATION
ANALYSIS ANALYSIS AVAILABILITY SERVER
ANALYSIS ANALYSIS
341 l
v 321 s 331 v 351 v
THROUGHPUT THROUGHPUT THROUGHPUT TREND POOL SIZE OR
OR OR RESPONSE OR RESPONSE ANALYSIS CONCURRENT
RESPONSE TIME TIME OR TIME WAITERS OR
OR CPU TIME AVERAGE
CPU TIME WAIT TIME OR
FAULTS OR
v 322 . 332 v 342 X 352 PERCENTAGE
POOL USAGE
TREND ANALYSIS TREND ANALYSIS TREND ANALYSIS DECOMPOSITION OR
REPORT (BY PHYSICAL
APPLICATION CONNECTIONS
SERVER) OR
323 : v 333 v 343 CONNECTION
HANDLES OR
DECOMPOSITION DECOMPOSITION DECOMPOSITION JVM FREE
REPORT REPORT REPORT MEMORY OR
JVM MEMORY
USED
324
A 4 y Y 334 h 4 344 y
DETAIL REPORT DETAIL REPORT DETAIL REPORT TREND
ANALYSIS
y
TRACE REPORT 325 362
FIG. 3

4/14

WO 2004/001555

PROMPT USER TO
SELECT
AUTHORITATIVE
SERVER

A 4

RECEIVE SELECTION OF
AUTHORITATIVE
SERVER -

Y

PROMPT USER TO
SELECT COMPARISON
SERVER

A 4

RECEIVE SELECTION OF
COMPARISON SERVER

A 4

DISPLAY COMPARISON
RESULTS FOR SYSTEM
RUNTIME
ENVIRONMENT, JAVA
RUNTIME
ENVIRONMENT, AND
APPLICATION SERVER
RUNTIME
ENVIRONMENT

A 4

RECEIVE REQUEST FOR
MORE DETAILED
INFORMATION

A 4

PROVIDE REQUESTED
DETAILED
INFORMATION

FIG. 4

5/14

405

410

415

420

425

430

435

PCT/US2003/020109

WO 2004/001555

PROMPT USER TO SELECT
AUTHORITATIVE SERVER

Y

RECEIVE SELECTION OF
AUTHORITATIVE SERVER

Y

PROMPT USER TO SELECT
COMPARISON SERVER(S)

y

RECEIVE SELECTION OF
COMPARISON SERVER(S)

A 4

PROMPT USER FOR
SELECTION OF SOURCE OF
FILES

Y

RECEIVE SELECTION OF
SOURCE OF FILES

A 4

PROMPT USER FOR
SELECTION OF FILE TYPE

y

RECEIVE SELECTION OF
FILE TYPE

y

SEARCH FOR FILES FROM
AUTHORITATIVE SERVER
IN COMPARISON

Y

DISPLAY COMPARISON
RESULTS

Y

RECEIVE REQUEST FOR
DETAILED FILE
COMPARISON

y

CONDUCT AND DISPLAY
RESULT OF DETAILED FILE
COMPARISON

FIG. 5

6/14

PCT/US2003/020109

505

510

515

520

525

530

535

540

545

550

555

560

WO 2004/001555 PCT/US2003/020109

600

REQUEST
COLLAPSIBLE REQUEST DISTINGUISHABLE
STRING REQUEST STRING
610 605
FIG. 6

7/14

WO 2004/001555

DISPLAY ACCESS
AND SELECTED
READ WRITE TO
CONFIGURATIONS

PCT/US2003/020109

700

ADMINISTRATOR

READ WRITE ACCESS

CREATION, MODIFICATION,
ACTIVATION, DEACTIVATION, AND
DELETION OF SOFTWARE TRAPS,
AND CHANGING OF MONITORING
LEVELS

SETTING OF USER ROLES
LOG FILES

CONFIGURATION OF FUNCTION

OPERATOR

705

DISPLAY
ACCESS ONLY

USER

710

FIG.7

8/14

WO 2004/001555 PCT/US2003/020109

APPLICATION SERVER, .

PHROBE AND,
PIRILISH ENGINE.

ot e e e e

2560

“PBLSH O\
SERVER

s e im0 B % % e b e b o oo e e 08 2

O 0 0 i o e e a9 A B e R

e e R Rl M W e e e e e e WO W e A e i o o

2540

FIG.8.

9/14

PCT/US2003/020109

RELEY

.

£
2

g

2 N

L fzist

| . AwHw SITIONINOD
- OS auvaen _mx%/ g 380U

N/

¥3ANIS HSMBNd

di/d

WO 2004/001555

T 0182 AT
/ Al oo WAAF
.awmmk‘ , INIHOYA IVOLHIA YAYT

it
- N

HIAUIS NOLLYOIIddV-

10/14

PCT/US2003/020109

WO 2004/001555

of "Old

NTTOMNGD w4 55VE) OWY JEIN3 3
luﬁﬂg ggﬂ

(17 2 Y =

11/14

WO 2004/001555 PCT/US2003/020109

BROWSER: [\

vz [,
I

APPLICATION: SERVER
SERVLETS |28
STATELESS. SESSION: €088
DEACCESS LAYER
DATASOURCE/JDBE. . .

DBZ DATABASE

FIG. 1l

12/14

PCT/US2003/020109

WO 2004/001555

N v

1 Nouvanauneo

7

cisz | dsvaviva
M| voilvaseay

gesz.

Tr

r
|

52 | 3svaviva
| inouwisions

914

13/14

WO 2004/001555 PCT/US2003/020109

PUBLISH SERVER ARCHITECTURE

3002\
B~ SPAWN_THREADS 70O
JOIN THE KERNEL JOIN PROCESS
SPAWN A THREAD TO__| PUBUSH [~ cp m s reean <o ALSO SEND SERVER
ACQUIRE PMI DATA SERVER WN A THREAD STANISTICS TO THE KERNEL
‘ SOCKET CONNECTIONS i
3004~ CONTRACT RENEW EVERY 15 SEC.
PMI
AGENT ACCEPTING SOCKET| _ ACCEPT MORE REQUESTS
CONNECTIONS
|
REGET THE PMI mroawmon_l
EVERY 5 MINUTES FOR ALL 3006

REGISTERED APP SERVERS

300 3030 303, 3034
3008 L 3032 I/
INFLIGHT TOP Pl
PERSISTENT SOCKET CALL PSHELPER TO ||| CALL PSHELPER To ||| CALL PSHELPER TO
CONNECTION GET DATA SEND BACK| || GET ACTIVE HTTP RETRIEVE ACTIVE
SERIALIZES RESULT REQUEST INFO PMI DATA FOR A
_ SERVER
o | A A |
GETTING DATA 308 /308
FROM THE PROBE PS_STATUS PS_STOP

CHECH THE STATUS STOP THE PS
OF THE PS SERVICE

f3040
3014 DONE
CeoMNECTON
ACCEPTING RESET THE
MORE DATA ACCUMULATED DATA
FROM THE FOR THE RESTARTED
PROBE SERVER

r3020 fSD‘l 8

CESS REGISTER THE SERVER
:gg.]op LETVHEIE. SO ITS PMI INFO WILL
RECORD BE RETRIEVED EVERY
5 MINUTES

KSOZJ

REMOVE FROM
ACTIVE
REQUEST LST

FIG. 13

14/14

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

