77004837 A1 I 10 0 00O D O 0 0

=
—

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization A
International Bureau :

(43) International Publication Date
11 January 2007 (11.01.2007)

) IO O OO OO

(10) International Publication Number

WO 2007/004837 Al

(51) International Patent Classification:
GO6T 15/00 (2006.01)

(21) International Application Number:
PCT/KR2006/002592
(22) International Filing Date: 3 July 2006 (03.07.2006)
(25) Filing Language: Korean
(26) Publication Language: English

(30) Priority Data:

10-2005-0059231 1 July 2005 (01.07.2005) KR
10-2005-0059232 1 July 2005 (01.07.2005) KR
(71) Applicant (for all designated States except US):

NHN CORPORATION [KR/KR]; Bundang Venture
Town, 25-1, Jeongja-dong, Bundang-gu, Seongnam-si,
Kyunggi-do 463-844 (KR).

(72) Inventor; and

(75) Inventor/Applicant (for US only): KIM, Jeong Ju
[KR/KR]; No. 104-304, Sangnoksu Apt., Irwon-dong,
Gangnam-gu, Seoul 135-230 (KR).

(74) Agent: CHUN, Sung Jin; MUHANN Patent & Law Firm,
5th Fl., Youngpoong Building, 142 Nonhyun-dong, Kang-
nam-gu, Seoul 135-749 (KR).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KZ, LA, LC, LK, LR, LS, LT, LU,
LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG,
NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: METHOD FOR RENDERING OBJECTS IN GAME ENGINE AND RECORDABLE MEDIA RECORDING PRO-
GRAMS FOR ENABLING THE METHOD

i GoView ‘ ’ VISUAL |
301 T
I 302
305 g 8 GoCommand
: 303
304
307 308
I~ 306 209
m! 8
8 310 311

31

(57) Abstract: A method of rendering objects in a game engine, in which at least one view requests at least one visual for Ren-
derContext information, and the view registers the RenderContext information which has been received from the visual, sorts the
registered RenderContext information according to a predetermined sorting algorithm, and renders the objects according to the sorted
RenderContext information, is provided. Also, a method of rendering objects according to the present invention may display a mul-
tiview via a plurality of independent views and visuals corresponding to the independent views in a game engine. Accordingly, a
method of rendering objects according to the present invention sorts and renders predetermined RenderContext information which
is included in a visual according to a sorting rule which is provided in a game application in a view, and thereby may perform dif-
ferentiated rendering according to a feature of a game which is provided in a respective game application.

WO 2007/004837 A1 | NI DA 000 00 000 0 000

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

METHOD FOR RENDERING OBJECTS IN GAME ENGINE AND
RECORDABLE MEDIA RECORDING PROGRAMS FOR ENABLING THE
METHOD

Technical Field

The present invention relates to a method of rendering of objects, which are
provided in a game engine, to various types of game applications, and more particularly,
to a method of rendering objects in a game engine, in which at least one view requests at
least one visual for RenderContext information, and the view registers the
RenderContext information which has been received from the visual, sorts the
registered RenderContext information according to a predetermined sorting algorithm,

and renders the objects according to the sorted RenderContext information.

Background Art

Currently, a computer terminal provides a user various types of three-
dimensional (3D) games. In order to provide a realistic image to be displayed in a 3D
game on a two-dimensional monitor, various types of rendering skills are required. A
method of rendering which is currently performed in a game engine will be described in
detail in FIG. 1.

FIG. 1 illustrates a configuration of a view 101 and a visual 102 performing
rendering when receiving a rendering command from a game application according to a
conventional art.

In order to depict a predetermined object, a game application 100 transfers the
rendering command, with respect to the object, to a view 101. Also, the view 101
determines information of the object such as texture information, brightness level
information, perspective information, and type of the object. The view 101 calls a
visual 102 and transfers the rendering command according to the information of the
object.

The visual 102 includes at least one RenderContext information 103. The
RenderContext information 103 is a function to display the information of the object
such as the texture, the brightness level, the perspective, and the type of the object.

The RenderContext information 103 is included and maintained in the visual 102. The

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

visual 102 which has received the rendering command from the view 101 renders the
object from the fixed RenderContext information 103. As an example, the view 101 for
depicting a scene where 1) nature is set as a background, 2) the sun exists as a light
source on a left side, and 3) a viewpoint is a first-person view in the game application
100, transfers a rendering command with respect to the 1), 2), and 3) described above.
The visual 102 calls the RenderContext information 103 corresponding to the 1), 2), and
3) described above of the RenderContext information 103, and performs the rendering
of the scene. The RenderContext information includes a pointer of a visual, state
information including a light source and a rendering state, quality information, and
transform information of a visual.

However, according to the conventional art, the view 101 calls the visual 102
and performs the rendering in a conventional game engine. Also, in the conventional
method, the RenderContext information 103 included in the visual 102 is included to
display a particular object. Accordingly, various types of game applications may not
be supported by using a single game engine. Specifically, in order to interoperate with
a particular game application, development of a specified game engine for a
corresponding game is required. Also, a game engine which may be generally used in
various types of games is required.

Also, when the visual 102 does not include the RenderContext information 103
for performing rendering of the view 101 which has been requested by the game
application 100, a complex coding is needed. The complex coding is for performing
operations such as adding, deleting, and modifying the RenderContext information 103
which is fixed (*and included?) in the visual 102. In this instance, the operations
described above may cause an increase in maintenance and repair costs which are the
largest part of a production cost for a program. Accordingly, a negative effect on a
multimedia industry, including a game industry, may be caused.

Also, according to the conventional art, a configuration that a single view 101 is
displayed by performing rendering via RenderContext information included in the
visual 102 may not depict a plurality of scenes in a single screen. In the conventional
art, it is possible to display the view 101 which is facing forward in a car running
forward. However, it may be very difficult to simultaneously display another scene

(*another view?) in a rear view mirror which displays a rear. In order to

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

simultaneously display the view 101 and another view 101 in a particular game engine,
a subroutine of a complex coding, which calls the view 101, should be newly added.
Also, when the game engine is used in another game, the subroutine is no longer used.
Specifically, a method to display a plurality of views according to the conventional art
may not provide a generalized game engine. Also, the method according to the
conventional art may cause a decrease in game speed due to an addition of unnecessary
subroutines.

Accordingly, development of a generalized game engine which can reflect
features of various types of game applications is required. Also, a method of rendering
which can reduce coding process which is added when adding, deleting, and modifying

the RenderContext information 103, and provide a flexible multiview is highly required.

Disclosure of Invention
Technical Goals

The present invention provides a method of rendering objects, in which a view

sorts and renders predetermined RenderContext information included in a visual
according to a predetermined sorting algorithm which is provided in a game application,
and thereby, the view can perform various rendering according to a feature of a game
which is provided in each of various types of game applications.

The present invention also provides a method of rendering objects, which can
change RenderContext information included in a visual by referring to a
BaseRenderContext, and thereby can change the RenderContext information more
flexibly.

The present invention also provides a generalized multiview in which a view
does not refer to another view via a subroutine to display a multiview, and a plurality of
views are maintained in parallel, and a visual and BaseRenderContext associated with

each of the plurality of views are also maintained.

Technical solutions

According to an aspect of the present invention, there is provided a method of
rendering an object in a game engine, the method including: transmitting a

RenderContext (RC) query signal which requests a RenderContext information

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

registration which is necessary for rendering the object to a visual in a view; receiving a
response signal with respect to the RC query signal from the visual and registering
RenderContext information corresponding to the response signal in the view; requesting
a predetermined game application to sort the registered RenderContext information in
the view; receiving a result of the sorting of the registered RenderContext information
from the game application in the view; and calling a predetermined rendering command
and controlling the view to render the object according to the sorted RenderContext
information in the view, wherein the game application comprises a predetermined
sorting algorithm for sorting the RenderContext information.

According to another aspect of the present invention, there is provided a
method of rendering an object in a plurality of views in a game engine, the method
comprising: transmitting a first RC query signal which requests a RenderContext
information registration which is necessary for rendering the object to a first visual in a
first view; transmitting a second RC query signal which requests a RenderContext
information registration which is necessary for rendering the object to a second visual in
a second view; receiving a response signal with respect to the first RC query signal from
the first visual in the first view, receiving a response signal with respect to the second
RC query signal from the second visual in the second view, and registering the
RenderContext information corresponding to each of the response signal in the first
view and the second view; and calling a predetermined rendering command in the first
view and the second view, and controlling the first view and the second view to render
the object according to the RenderContext information, wherein the game application

comprises a predetermined sorting algorithm for sorting the RenderContext information.

Brief Description of Drawings

FIG. 1 illustrates a configuration of a view and a visual performing rendering
when receiving a rendering command from a game application according to a
conventional art;

FIG. 2 illustrates a class diagram of RenderContext information in a game
engine according to an embodiment of the present invention;

FIG. 3 is illustrates a sequence diagram in which a view receives

RenderContext information from a visual, and sorts and renders the RenderContext

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

information according to an embodiment of the present invention;

FIG. 4 illustrates an example of sorting RenderContext information according to
an embodiment of the present invention;

FIG. 5 illustrates a class diagram of RenderContext information in a game
engine which supports a multiview according to an embodiment of the present
invention; and

FIGS. 6 and 7 illustrate examples of scenes which are embodied in a multiview

according to an embodiment of the present invention.

Best Mode for Carrying Out the Invention

Hereinafter, an indirect rendering method in a game engine according to the
present invention, and an indirect rendering method in a game engine which supports a
multiview according to the present invention will be described in detail with reference
to the accompanying drawings.

FIG. 2 illustrates a class diagram of RenderContext information in a game
engine according to an embodiment of the present invention.

Referring to FIG. 2, a view 202 receives a rendering command with respect to a
predetermined object from a game application. The object is depicted in the view 202.
For example, the object includes a description of objects such as an apple, a tree, a
person, the sun, a background, a shadow, a desk, and the like. Each of the objects has
its own features including texture information, brightness level information, perspective
information, and a type of an object. The view 202 confirms the features of the objects.
The view 202 requests the RenderContext information corresponding to the features of
the objects to the visual 203 in order to perform rendering of the objects. As an
example, the view 202 requests the RenderContext information, which is "What kind of
RenderContext information is required, when an object having which type of particular
features should be rendered?" in operation 204.

The visual 203 confirms the RenderContext information which is currently
included in the visual 203, and provides the view 202 including predetermined
RenderContext information as a response signal with respect to operation 204 received
from the view 202 in operation 205. Also, the view 202 registers the RenderContext

information, and sorts the RenderContext information according to a sorting algorithm

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

of RenderContext information provided in the game application. The view 202 calls a
RenderCommand, and renders the objects according to the sorted RenderContext
information. The objects which have been rendered are displayed as a single scene.

When the visual 203 does not include the RenderContext information with
respect to operation 204, the visual 203 may update the RenderContext information
from BaseRenderContext. Specifically, the visual 203 searches the RenderContext
information which has been requested from the view 202. Also, when the
RenderContext information is not currently included in the visual 203, the visual 203
requests a BaseRenderContext 201 to send the RenderContext information, and updates
the RenderContext information.

The BaseRenderContext 201 includes a rendering state information, shading, a
RenderCommand, quality information, or a transform information. Also, the
BaseRenderContext 201 discloses information of rendering to a view. The rendering
state includes values corresponding to each state for rendering the objects, such as a
transparent state, an opaque state, a state of gradually changing from a transparent state
to an opaque state, or a state of gradually changing from an opaque state to a transparent
state. Specifically, the rendering state includes the opaque state for rendering the
objects such as the desk, the apple, the person, and the tree, the transparent state for
rendering the object such as a glass or water, and the opaque state or a translucent state
for rendering the objects such as fog or smoke. In this instance, the translucent state is
a state which the transparent state and the opaque state are suitably mixed.

The quality includes brightness level, texture, and the like. Specifically, the
quality specifying the brightness level of the object according to an irradiated amount of
light which is reflected on the object, and the texture of the object according to a state of
a surface of the object, surfaces of fabrics, clothes, skin, or a road.

The RenderCommand is a function which is called so that the view 202
executes a command to start rendering the objects by using the sorted RenderContext
information. The RenderCommand may be equally applied to most game applications.

The transform includes information for depicting perspective. For example,
scenes positioned in an order of nearest to farthest or of farthest to nearest may be
depicted through the transform. Accordingly, the BaseRenderContext 201 indicates

information associated with rendering of the visual 203. In this instance, the visual

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

203 is an object for depicting a scene. Also, the BaseRenderContext 201 participates
in processing the rendering of the view, and enables an indirect rendering process with
respect to the object.

The BaseRenderContext 201 may be previously generated by a predetermined
visual designer. The game engine according to the present invention may process
rendering with respect to the visual 203 by using RenderContext 206 which has been
first generated by the visual writer. Also, the RenderContext 206 includes
configuration information (T Type) 207 as a specified RenderContext. The
configuration information (T_Type) 207 enables an embodiment which is not influenced
by a specific configuration as a part of a template class of C++ language.

FIG. 3 is illustrates a sequence diagram in which a view receives
RenderContext information from a visual, and sorts and renders the RenderContext
information according to an embodiment of the present invention.

In operation 301, an initialization of a device is performed to use a visual
including RenderContext information. In operation 302, the visual initializes the
RenderContext information which is currently included in the visual. The
initialization includes a general initialization process such as an initialization declaration
of variables which are included in each of the objects.

The RenderContext information includes at least one of rendering level
information, rendering texture information, rendering brightness level information, and
rendering perspective information with respect to the visual. Specifically, the visual
maintains the RenderContext information to render a predetermined object.

In operation 303, the visual generates a RenderCommand (GoCommand) with
reference to a BaseRenderContext. In operation 304, the visual sets the generated
RenderCommand (GoCommand) in a RenderContext (GoRenderContext).
Accordingly, the RenderContext (GoRenderContext) is ready to perform rendering of an
object according to the RenderContext information.

Then, in operation 305, a view (GoView) transmits a RenderContext (RC)
query signal which requests the RenderContext information registration which is
necessary for rendering the object to a visual. The view (GoView) receives
information of the object which should be rendered from a game application, and

analyzes the information of the object. Then, the view (GoView) transmits the RC

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

query signal corresponding to the analyzed information of the object to the visual.
Also, the view awaits receipt of the RenderContext information as a response signal-
from the visual. As an example, when the game application transmits information on a
command that renders a person who throws a ball as an object to the view (GoView),
the view (GoView) provides the visual the information as the RC query signal, and
awaits the RenderContext information with respect to the RC query signal as the
response signal.

While receiving the response signal with respect to the RC query signal from
the visual in the view (GoView), when the RenderContext information, which has
received the request for registration from the view (GoView), is not included in the
visual, the visual collects the RenderContext information from the BaseRenderContext.
In this instance, the BaseRenderContext is recording at least one RenderContext
information. Accordingly, modification of coding may be simplified, when inputting
or modifying the RenderContext information. Also, when an update of the
RenderContext information in the BaseRenderContext is needed, the RenderContext
information may be updated by further registering additional RenderContext
information via the game application or a predetermined external device script.
Accordingly, a method of rendering according to the present invention may be flexibly
applied to various types of game applications.

In operation 306, the view (GoView) receives the response signal with respect
to the RC query signal from the visual, and registers the RenderContext information
corresponding to the response signal. As an example, when the visual receives a RC
query signal to describe a person who throws a ball from the view (GoView), the visual
transmits the RenderContext information for depicting a texture of the ball, a location of
a light source, a route of the ball including viewing perspective, and a background, as
the response signal with respect to the RC query signal. The view (GoView) which
has received the RenderContext information registers the RenderContext information,
and prepares for rendering of the object.

In operation 307, a predetermined game application is requested to sort the
registered RenderContext information in the view, and a result of the sorting of the
registered RenderContext information is received from the game application.

A game application maintains a rendering order of the RenderContext

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

information caused by a characteristic of a game. This characteristic is caused
(*generated?) by technicians associated with game production such as a game designer.
Since the rendering sequence highly affects depiction of a scene, a game engine is
mostly changed based on the game application.

However, through operation 307, the game engine may not be changed based
on the game application. Specifically, the game application determines an order of the
sorting, which is based on the operation of the RenderContext information, according to
the rendering sequence which has been previously generated. Also, the RenderContext
information is sorted according to the order of the sorting. The sorting of the
RenderContext information will be described in detail referring to FIG. 4.

FIG. 4 illustrates an example of sorting RenderContext information according to
an embodiment of the present invention.

Referring to FIG. 4, the RenderContext information 401, which has been
registered from a visual, has a fixed order of RC1, RC2, ..., RCn. The RenderContext
information 401 is loaded in a stack or a queue, and is operated based on a loading
sequence such as first-in first-out (FIFO) or first-in last-out (FILO). However, the
RenderContext information 401 for a description should not be performed according to
the loading sequence. Also, the RenderContext information 401 should be newly
added to the stack or the queue according to a performing sequence of the
RenderContext information of the game application. For this, the game application
newly sorts the RenderContext information which was received from a view (GoView)
according to a predetermined sorting rule, and transfers the sorted RenderContext
information 402 to the view (GoView). The sorting rule is based on a rendering state,
a shade, or a transform. Also, the sorting rule may be determined by game producers
including game designers. As an example, a plurality of objects, which have a same
state, shade or transform, included in a single view, is distinguished from the objects,
which respectively have a different state, shade, or transform, included in the single
view, Then, the sorting rule may be determined.

The sorted RenderContext information 402 is loaded in an order of RC3, RC2,
RC7...as RenderContext information in the stack or the queue, and transferred to the
view (GoView). Specifically, an arrangement of the RenderContext information which

determines the rendering sequence is performed in the game application. Accordingly,

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

10

the game engine according to the present invention may be flexibly used in various
types of game applications. Also, a complex coding for rendering objects according to
a feature for each game may be simplified.

Referring again to FIG. 3, a predetermined rendering command is called in the
view (GoView) in operation 308, the RenderCommand (GoCommand) is performed to
render the object according to the sorted RenderContext information in operation 309.
In operation 310, the RenderCommand (GoCommand) calls the sorted RenderContext
information, and performs rendering of the object. Specifically, through the operations
described above in FIG.3, coding which is added when adding, deleting, and modifying
the RenderContext information may be reduced. In this instance, the RenderContext
information is for rendering the object in the game engine according to the game
application. Also, the rendering sequence of the RenderContext information may be
determined for individual features of each of the game applications. Accordingly, a
differentiated description may be available according to the game application, without
separately modifying coding. Thus, various effects may be embodied.

In operation 311, when the rendering the object is completed, a temporary
pause command of a device object is generated from the view (GoView). An
establishment among the view (GoView), the visual, and BaseRenderContext
(GoRenderCommand, GoCommand) stops, and a standby status is maintained.

The method of rendering according to another embodiment of the present
invention may be used in a game engine which supports a multiview. The method of
rendering with respect to the game engine which supports the multiview will be
described in detail below.

FIG. 5 illustrates a class diagram of RenderContext information in a game
engine which supports a multiview according to an embodiment of the present invention.

Referring to FIG. 5, views 520 receives a rendering command with respect to a
predetermined object from a game application. The view 520 according to the present
invention includes a plurality of views including a first view 521, a second view 522
through an n™ view 523. Each of the views refers to a visual 530. Accordingly, the
first view 521, the second view 522 through the n™ view 523 may respectively describe
an independent scene.

In order to render a particular object, the first view 521 requests the visual 203

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

11

to send the RenderContext information corresponding to a feature of the object. The
visual 530 includes a first visual through an n® visual corresponding to each of the
views 520. Also, each of the views 520 may maintain an independent visual. The
first visual through the n'" visual is called the visual 530 in this specification.

As an example of the request for the RenderContext information, the first view
521 transmits a first RC query signal 540 to the visual 530. In this instance, the first
RC query signal 540 requests the RenderContext information, which indicates that
"What kind of RenderContext information is required, when an object having which
type of particular features should be rendered?". The visual 530 confirms the
RenderContext information which is currently included in the visual 530, and provides
the first view 521 with RenderContext information as a response signal with respect to
the first RC query signal 540 received from the first view 521 in operation 550. Also,
the first view 521 registers the RenderContext information, and sorts the RenderContext
information according to a sorting algorithm of RenderContext information provided in
the game application. Then, the first view 521 calls a RenderCommand, and renders
the object according to the sorted RenderContext information. In order to describe the
object, the second view 522, which has received a command of rendering a particular
object from the game application, performs an operation in the same way as the first
view 521. Specifically, the second view 522 transmits a second RC query signal 540
to the visual 530. In this instance, the first RC query signal 540 requests the
RenderContext information. The visual 530 provides the second view 522
predetermined RenderContext information as a response signal with respect to the
second RC query signal 550. Accordingly, a plurality of views 202 may be included in
a single scene. As an example of the view 520, in a battle scene, an image in which a
soldier wearing night vision goggles looks around and an image in which a background
of the soldier is depicted may be provided all together. Accordingly, the object which
has been rendered is displayed as a single scene.

When the RenderContext information is not included in the visual 530, with
respect to the request 540 which has been transmitted to the visual 530 in the first view
521 or the second view 522, the visual 530 may update the RenderContext information
from BaseRenderContext. The update of the RenderContext information with respect

to a plurality of visuals refers to a method of updating RenderContext information

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

12

which has been described with FIG. 2.

Accordingly, a user may reduce an additional amount of work of coding is
required for performing rendering in a particular game application. Also,
compatibility with the game application may be improved. A complex coding in order
to describe a plurality of views in a single scene, which adds views by increasing an
amount of subroutines, may be simplified.

As described above, the sequence diagram is based on FIG. 3. In this instance,
the sequence diagram illustrates the multiview receiving the RenderContext information
from the visual, and sorts and renders the RenderContext information. Specifically,
the first view and the second view respectively generate an individual RC query signal,
receive the response signals with respect to each of the RC query signals from the visual,
and register the RenderContext information corresponding to the response signals.

In this instance, the rendering of the first view and the second view may
sequentially proceed due to respective independence. Also, the rendering of the first
view and the second view may proceed in parallel.

As an example, when the first view (GoView) is a scene depicting a forward
view where a car moves forward, the first visual transmits the RenderContext
information for rendering the object depicting the forward view to the first view
(GoView). Also, when the second view (GoView) is a scene depicting a rear view of
the car in a rear view mirror, the second visual transmits the RenderContext information
for rendering the object depicting the rear view to the second view (GoView). An
embodiment of the multiview will be described in detail referring to FIGS. 6 and 7.

FIG. 6 illustrates examples of scenes which are embodied in a multiview
according to an embodiment of the present invention.

A game application transmits a rendering command to a game engine according
to the present invention. In this instance, the rendering command indicates that a
direction of a car is a first view 601. In this instance, the first view transmits a first RC
query signal to a first visual so as to render objects such as trees and a road with respect
to the direction of the car. The first visual transmits predetermined RenderContext
information to the first view 601 as a response signal with respect to the first RC query
signal. Also, the first view 601, which has received the RenderContext information,

requests the game application to sort the RenderContext information.

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

13

Also, the game application transmits a rendering command to a second view
602 so as to depict a rear view while the car moves forward. In this instance, the
rendering command is to render the objects such as trees and a road which are located in
a back area of the car. The second view 602 transmits a second RC query signal to a
second visual. Also, the second visual transmits predetermined RenderContext
information to the second view 602 as a response signal with respect to the second RC
query signal. The second view 602 requests the game application to sort the
RenderContext information. Accordingly, the first view 601 and the second view 602
are rendered, and the game engine displays scenes on a screen according to locations of
the first view 601 and the second view 602. Also, when the rendering is completed,
the first view 601 and the second view 602 stands by for depicting another scene.
Accordingly, various scenes may be flexibly depicted via a plurality of views.

FIG. 7 illustrates examples of scenes which are embodied in a multiview
according to an embodiment of the present invention.

The FIG. 7 illustrates a first view 701 depicting a scene where a gun is pointed
at a soldier 700 that is an object, and a multiview including a perspective view 702, a
top side view 703, and a front view 704 of a face of the soldier 700.

First, the game application transmits object information to describe the first
view 701, and commands a rendering. In this instance, the first view 701 is one of a
plurality of views which the game engine, according to the present invention, maintains.
Then, the first view 701 transfers the object information to a first visual, and receives
RenderContext information. Also, the game application transmits object information
to describe the second view 702, and issues a command to perform rendering. In this
instance, the second view 702 is one of the plurality of views except for the first view
701. Then, the second view 702 transfers the object information to a second visual,
and receives RenderContext information. In the same way described above, the first
view 701, the second view 702, a third view 703, and a fourth view 704 maintain
RenderContext information of object. Also, the first view 701, the second view 702,
the third view 703, and the fourth view 704 transmit the RenderContext information to
the game application, and request the game application to sort the RenderContext
information. The game application sorts the RenderContext information which has

been received by a sorting rule which has been previously set. Then, the game

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

14

application transmits the sorted RenderContext information to the first view 701, the
second view 702, the third view 703, and the fourth view 704. Then, the game engine
displays the first view 701, the second view 702, the third view 703, and the fourth view
704 on a screen. In this instance, the views are displayed at locations where the game
application designates. Thus, the game engine may provide a plurality of views more
impartially by using a plurality of multiviews which are currently maintained, without a
complex coding or a jump to subroutines.

In an embodiment of FIGS. 6 and 7, each view receives and uses the individual
RenderContext information from a predetermined visual to embody an independent
object. Conversely, a game engine according to another embodiment of the present
invention adds RenderContext information which is related to a predetermined effect
with respect to a first visual, and may generate a second visual. As an example, when
the first view describes an ordinary battle scene, and the second view describes a scene
where the battle scene is seen through night vision goggles, the second visual uses the
RenderContext information which is included in the first visual by copying the
RenderContext information. In this instance, the second visual may set a
predetermined effect in the RenderContext information. In order to depict the battle
scene, the second visual may set effects, such as brightness or a negative, in the
RenderContext information which is included in the first visual.

As illustrated in FIG. 7, multiview technique in a game screen may be used in
novel ways in order to display various effects. A multivew way according to the
present invention, which is specified for each game, may have a configurational limit.
Specifically, the multiview method may be used only in a corresponding game. Also,
in the present invention, an indirect rendering technique may be generalized via the
RenderContext information.

The above-described embodiment of the present invention may be recorded in
computer-readable media including program instructions to implement various
operations embodied by a computer. The media may also include, alone or in
combination with the program instructions, data files, data structures, and the like. The
media and program instructions may be those specially designed and constructed for the
purposes of the present invention, or they may be of the kind well known and available

to those having skill in the computer software arts. Examples of computer-readable

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

15

media include magnetic media such as hard disks, floppy disks, and magnetic tape;
optical media such as CD ROM disks and DVD; magneto-optical media such as optical
disks; and hardware devices that are specially configured to store and perform program
instructions, such as read-only memory (ROM), random access memory (RAM), flash
memory, and the like. The media may also be a transmission medium such as optical
or metallic lines, wave guides, etc. including a carrier wave transmitting signals
specifying the program instructions, data structures, etc. Examples of program
instructions include both machine code, such as produced by a compiler, and files
containing higher level code that may be executed by the computer using an interpreter.
The described hardware devices may be configured to act as one or more software
modules in order to perform the operations of the above-described embodiments of the
present invention.

Although a few embodiments of the present invention have been shown and
described, the present invention is not limited to the described embodiments. Instead,
it would be appreciated by those skilled in the art that changes may be made to these
embodiments without departing from the principles and spirit of the invention, the scope

of which is defined by the claims and their equivalents.

Industrial Applicability

According to the present invention, a method of rendering objects sorts and
renders predetermined RenderContext information included in a visual according to a
predetermined sorting algorithm which is provided in a game application, and thereby
may perform various rendering according to a feature of a game which is provided in
each of various types of game applications.
Also, according to the present invention, a method of rendering objects can
change RenderContext information included in a visual by referring to a
BaseRenderContext, and thereby can change the RenderContext information more
flexibly.
Also, according to the present invention, a generalized multiview may be
provided by maintaining a plurality of views in parallel, and a visual and
BaseRenderContext associated with each of the plurality of views in order to display a

multiview, without referring to another view via a subroutine in a single view.

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

16

CLAIMS

1. A method of rendering an object in a game engine, the method comprising:

transmitting a RenderContext (RC) query signal which requests a
RenderContext information registration which is necessary for rendering the object to a
visual in a view;

receiving a response signal with respect to the RC query signal from the visual
and registering RenderContext information corresponding to the response signal in the
view;

requesting a predetermined game application to sort the registered
RenderContext information in the view;

receiving a result of the sorting of the registered RenderContext information
from the game application in the view; and

calling a predetermined rendering command and controlling the view to render
the object according to the sorted RenderContext information in the view,

wherein the game application comprises a predetermined sorting algorithm for

sorting the RenderContext information.

2. The method of claim 1, wherein the RenderContext information comprises at
least one of rendering level information, rendering texture information, rendering
brightness level information, and rendering perspective information with respect to the

visual.

3. The method of claim 1, wherein, in the receiving of the response signal, the
visual collects the RenderContext information from a BaseRenderContext which is
recording at least one RenderContext information, when the RenderContext information

which has received the request for registration from the view is omitted from the visual.
4. The method of claim 3, wherein the BaseRenderContext further registers
additional RenderContext information via the game application or a predetermined

external script means.

5. A method of rendering an object in a plurality of views in a game engine, the

WO 2007/004837 PCT/KR2006/002592

10

15

20

25

30

17

method comprising:

transmitting a first RC query signal which requests a RenderContext
information registration which is necessary for rendering the object to a first visual in a
first view;

transmitting a second RC query signal which requests a RenderContext
information registration which is necessary for rendering the object to a second visual in
a second view;

receiving a response signal with respect to the first RC query signal from the
first visual in the first view, receiving a response signal with respect to the second RC
query signal from the second visual in the second view, and registering the
RenderContext information corresponding to each of the response signal in the first
view and the second view; and

calling a predetermined rendering command in the first view and the second
view, and controlling the first view and the second view to render the object according
to the RenderContext information,

wherein the game application comprises a predetermined sorting algorithm for

sorting the RenderContext information.

6. The method of claim 5, further comprising:

requesting a predetermined game application to sort the registered
RenderContext information in the first view and the second view; and

receiving a result of the sorting of the registered RenderContext information
from the game application in the first view and the second view,

wherein the controlling calls the predetermined rendering command in the first
view and the second view, and renders the object with reference to the sorted

RenderContext information.
7. The method of claim 5, wherein the game engine adds the RenderContext
information associated with a predetermined effect to the first visual, and thereby,

generates the second visual.

8. The method of claim 7, wherein the second visual copies and maintains the

WO 2007/004837 PCT/KR2006/002592

10

15

18

RenderContext information which is included in the first visual.

9. The method of claim 5, wherein the RenderContext information comprises at
least one of rendering level information, rendering texture information, rendering
brightness level information, and rendering perspective information with respect to the

first visual or the second visual.

10. The method of claim 5, wherein, in the receiving of the response signal with
respect to the first RC query signal, the first visual collects the RenderContext
information from a BaseRenderContext which records at least one RenderContext
information, when the RenderContext information which has received the request for

registration from the first view is omitted from the first visual

11. The method of claim 10, wherein the BaseRenderContext further registers
additional RenderContext information via the game application or a predetermined

external device script.

12. A computer-readable recording medium storing a program for implementing the

method according to any one of claims 1 through 11.

PCT/KR2006/002592

WO 2007/004837

1/7

FIG. 1

| bbbttt

_[RC1] |

VISUAL

VISUAL
VISUAL

VIEW

(101)

GAME
APPLICATION
(100)

WO 2007/004837

PCT/KR2006/002592
217
FIG. 2
202
VIEW
oo 204
201 N\
8 NX 203
2057 ¢
BaseRenderContext \
VISUAL

-pState: State*

-pShade: Shade*

-pRender: RenderCommand
-pTransform: Transform

Y

pClient: T_Type

WO 2007/004837

GoView

PCT/KR2006/002592

GoCommand

3/7
FIG. 3
VISUAL
8 » GoRenderContext
301 T ;
| 302 |
305 s 8
g ! e o 303
T 304
""""""""""""" e‘ T !
:]/\,307 306 i 3g08
[

PCT/KR2006/002592

WO 2007/004837

4/7

FIG. 4

| 5lelg
| gz | &2 | &
@(7
S
N
9 Q| ©
- g | &

1

WO 2007/004837

PCT/KR2006/002592

5/7
FIG. 5
520
521 522 8 523
e G P
| | FIRST VIEW | |SECOND VIEW N™ VIEW
T
L
510 \\\\ \\\\ (___/ 540
N 530
550 8
BaseRenderContext v A

-pState: State*
-pShade: Shade*

-pTransform: Transform

-pRender: RenderCommand

VISUAL

Lo

RenderContext

pClient: T_Type

WO 2007/004837 PCT/KR2006/002592

602 601

23 Xl ~ Microsoft Internet

WO 2007/004837 PCT/KR2006/002592

7/7

FIG. 7

704 703 702

fﬁ}*ﬁ{ll -‘!\f"?‘is:{soﬁlnrnet_‘ Explorer

‘_L“’
/ T S & —
e
701~) 700+ \

]
=\
A
=
A
7/

INTERNATIONAL SEARCH REPORT International application No.
PCT/KR2006/002592

A. CLASSIFICATION OF SUBJECT MATTER

GO6T 15/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 GO6T 15/00, GO9G 5/00, GO6T 15/40, GO6T 13/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Patents and applications for inventions since 1975
Korean Utility models and applications for Utility Models since 1975

Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO internal) "rendering, object, sorting "

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 6570565 B1(Woo Chan Park et al.) 27 May 2003 1-12
See claim 3, Fig. 6

A US 2004/0189668 Al(Joseph S. Beda et al.) 30 September 2004 1-12
See claim 1, Fig. 3

A KR 2001-50769 A(Sega Corporation.) 25 June 2001 1-12
See claims 1-5, 10, Fig. 3

A KR 2005-59253 A(Nokia Corporation) 17 June 2005 1-12
See pages 1-2, Figs 1-3

A KR 2005-61249 A(NHN Corportion) 22 June 2005 1-12
See page 2, claim 1, Fig. 2

|:| Further documents are listed in the continuation of Box C. % See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international ~ "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
13 OCTOBER 2006 (13.10.2006) 13 OCTOBER 2006 (13.10.2006)
Name and mailing address of the ISA/KR Authorized officer

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, KIM, Sung Hee
: Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5728

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/KR2006/002592
Patent document Publication Patent family Publication
cited in search report date member(s) date
US06570565 B 27.05.2003 KR1020020001072 09.01.2002
KR2002001072A 09.01.2002
US6570565B 1 27.05.2003
US6570565BA 27.05.2003
US20040189668A 1 30.09.2004 AU2003204006A1 14.10.2004
AU2003204006AA 14.10.2004
AUZ2004279179A1 24.11.2005
AU2004279170AA 24.11.2005
BR200302161A 03.11.2004
CA2428814AA 27.09.2004
CA2428814A1 27.09.2004
CN1534511A 06.10.2004
EPO1462936A2 29.09.2004
EP1462936A2 29.09.2004
HR20030390A2 28.02.2006
HUZ200301191A0 28.07.2003
HU200301191AB 28.10.2004
[L155927A0 23.12.2003
JP16295858 21.10.2004
JP2004295858A2 21.10.2004
KR1020040086043 08.10.2004
MXPAO3004412A 29.09.2004
NO20032112A0 12.05.2003
NO20032112A 28.09.2004
NZ525666A 25.06.2004
TR200300695A2 21.12.2004
US2004189645A1 30.09.2004
US2004189645AA 30.09.2004
US2004189668AA 30.09.2004
ZA200303507A 22.04.2004
KR1020010050769 A 25.06.2001 JP13101440 13.04.2001
JP2001101440A2 13.04.2001
US06690376 10.02.2004
US6690376B 1 10.02.2004
US6690376BA 10.02.2004
KR1020050059253 A 17.06.2005 AU2002350540AA 04.05.2004
EP1559074A1 03.08.2005
JP18503355 26.01.2006
JP2006503355T2 26.01.2006
US20060146049A1 06.07.2006
US2006146049AA 06.07.2006
W02004036504A1 29.04.2004
KR1020050061249 A 22.06.2005 None

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report

