

US 20050108994A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2005/0108994 A1**

Jacobs et al.

(43) **Pub. Date:** **May 26, 2005**

(54) **FILLING DEVICE WITH HOUSING HAVING
A CENTRAL GAS DISCHARGE**

(76) Inventors: **Thomas Gerardus Maria Jacobs,**
Hoog Keppel (NL); **Louwrens**
Johannes Van Eijk, Nieuw-Vennep
(NL)

Correspondence Address:
HOFFMANN & BARON, LLP
6900 JERICHO TURNPIKE
SYOSSET, NY 11791 (US)

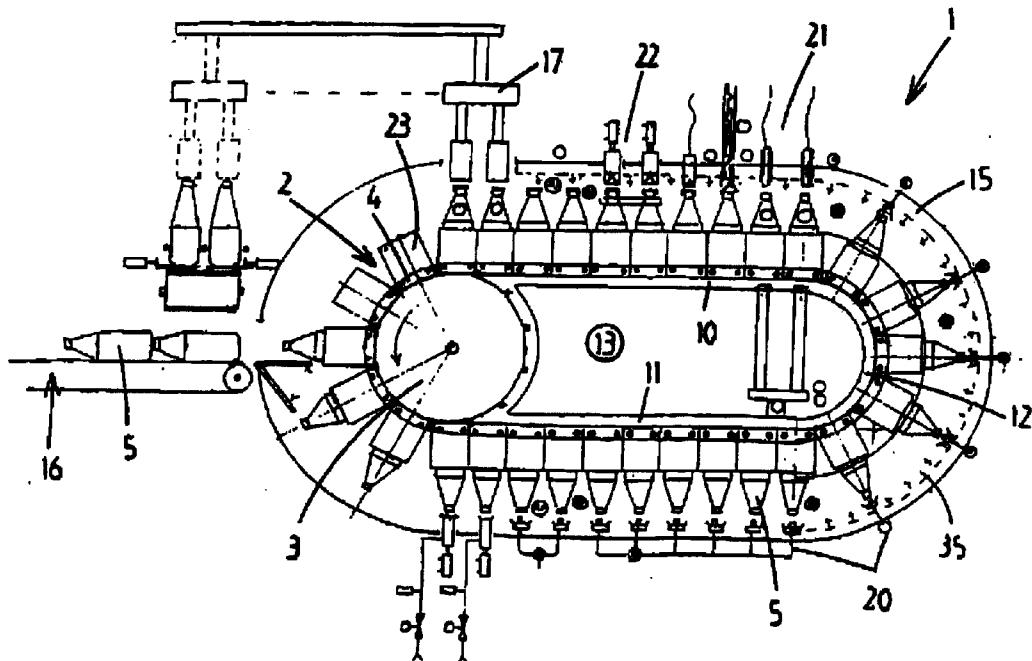
(21) Appl. No.: **10/498,436**

(22) PCT Filed: **Dec. 10, 2002**

(86) PCT No.: **PCT/NL02/00808**

(30) **Foreign Application Priority Data**

Dec. 14, 2001 (NL)..... 1019569
Dec. 14, 2001 (NL)..... 1019570


Publication Classification

(51) **Int. Cl.⁷** **B65B 31/00**

(52) **U.S. Cl.** **53/510; 53/282**

(57) **ABSTRACT**

Filing device (1) for filling containers (5, 54, 56) with foods and closing said containers, comprising an endless conveyor system (2) with drive means (3), for conveying container holders (4, 55) along an imaginary looped conveyor track with bottom and top track sections (11, 12) that are connected to each other by means of bend sections (12), a container infeed mechanism (17, 52, 53), at least one processing line provided along the conveyor track, a housing (15, 61) that at least partially encloses the processing line, and gas supply means (25, 65) for feeding conditioned gasses into the housing. The workstations are disposed along the conveyor track. A central area (13, 67) is defined between the top and bottom track sections and the bend sections of the at least one processing line situated along the conveyor track, and gas discharge means (66) are provided for discharging by way of the central area at least part of the gases conveyed into the housing.

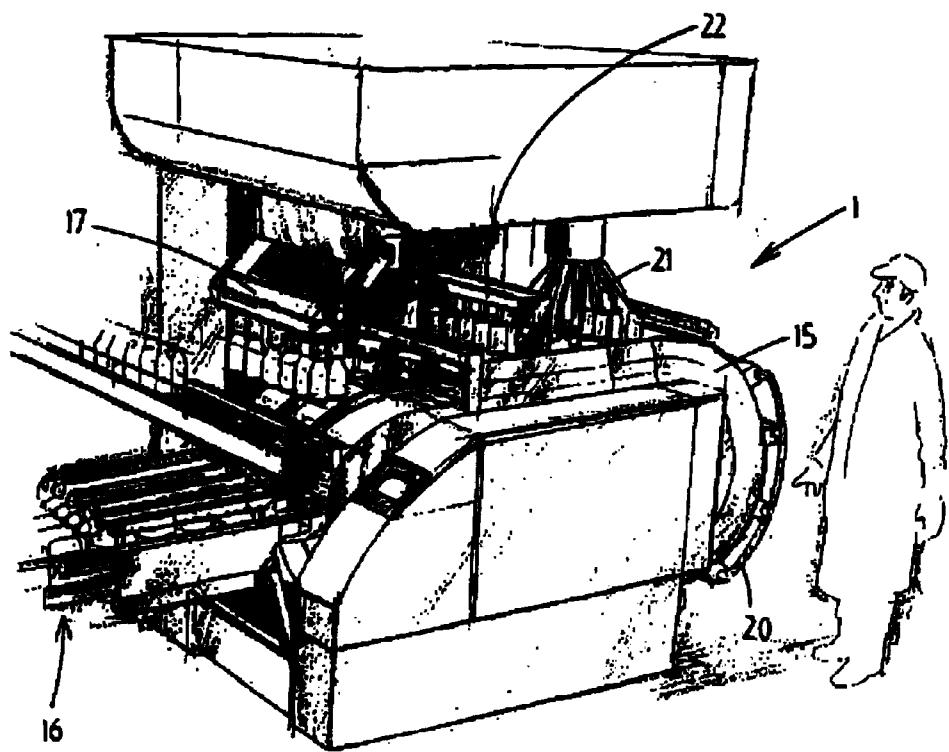


Fig. 1

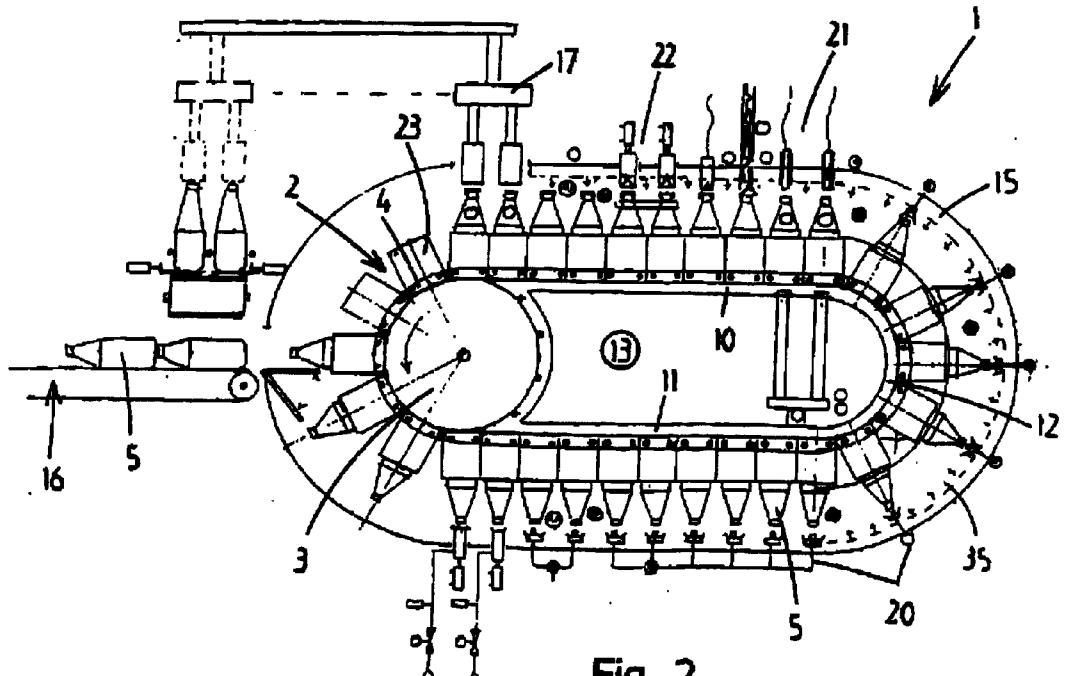
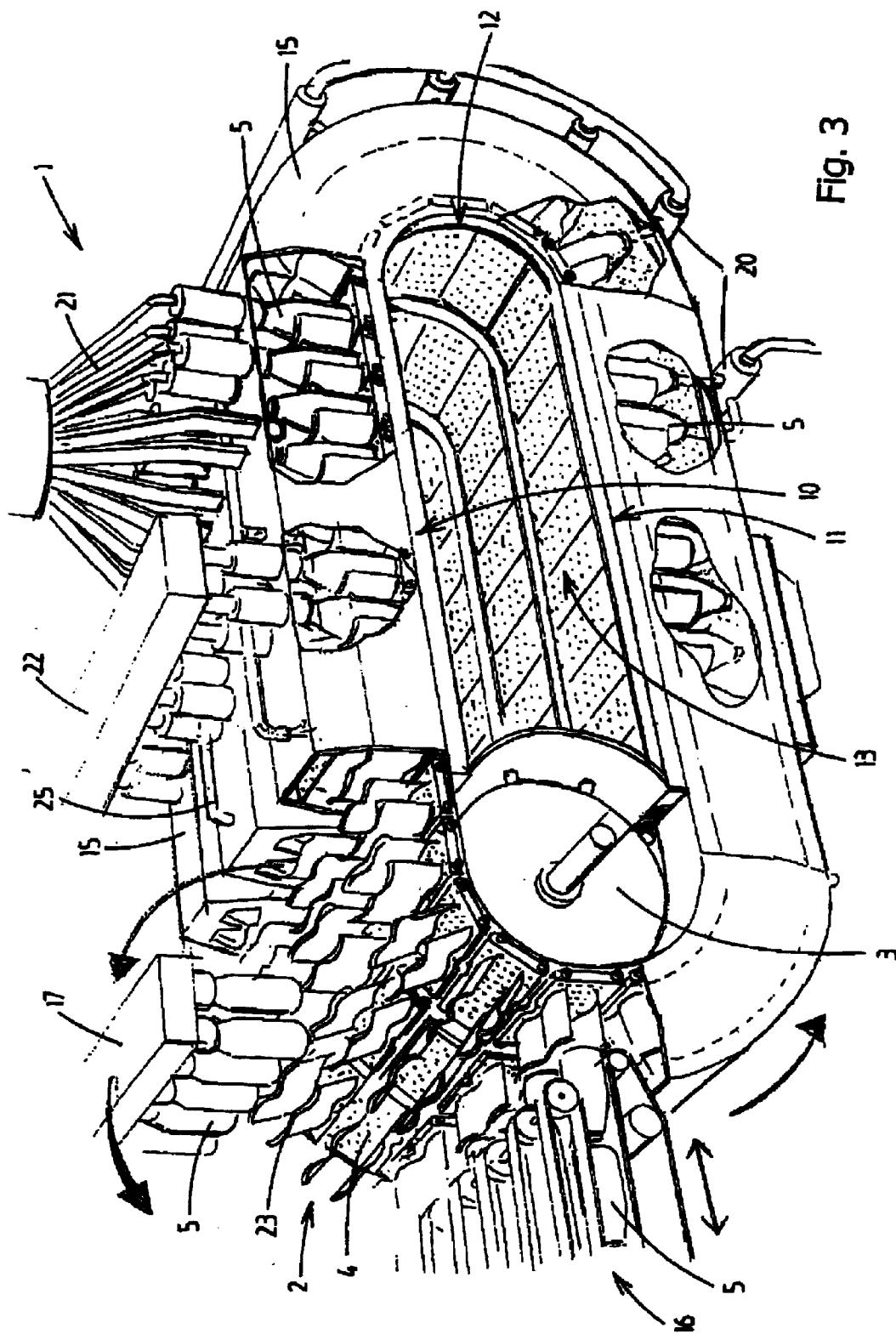



Fig. 2

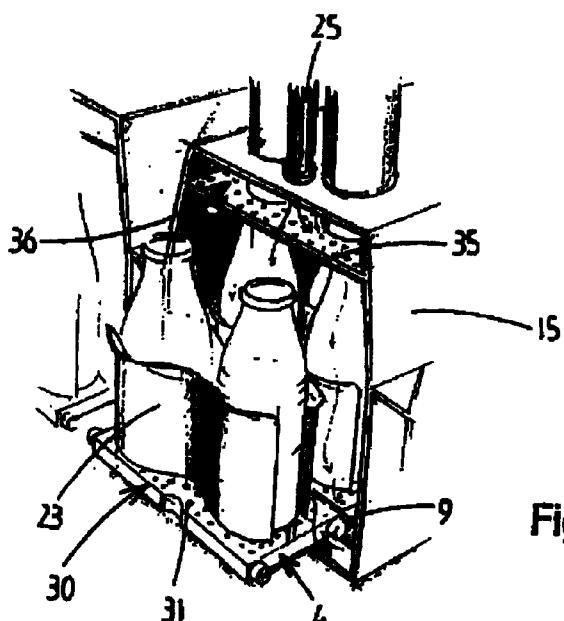


Fig. 4

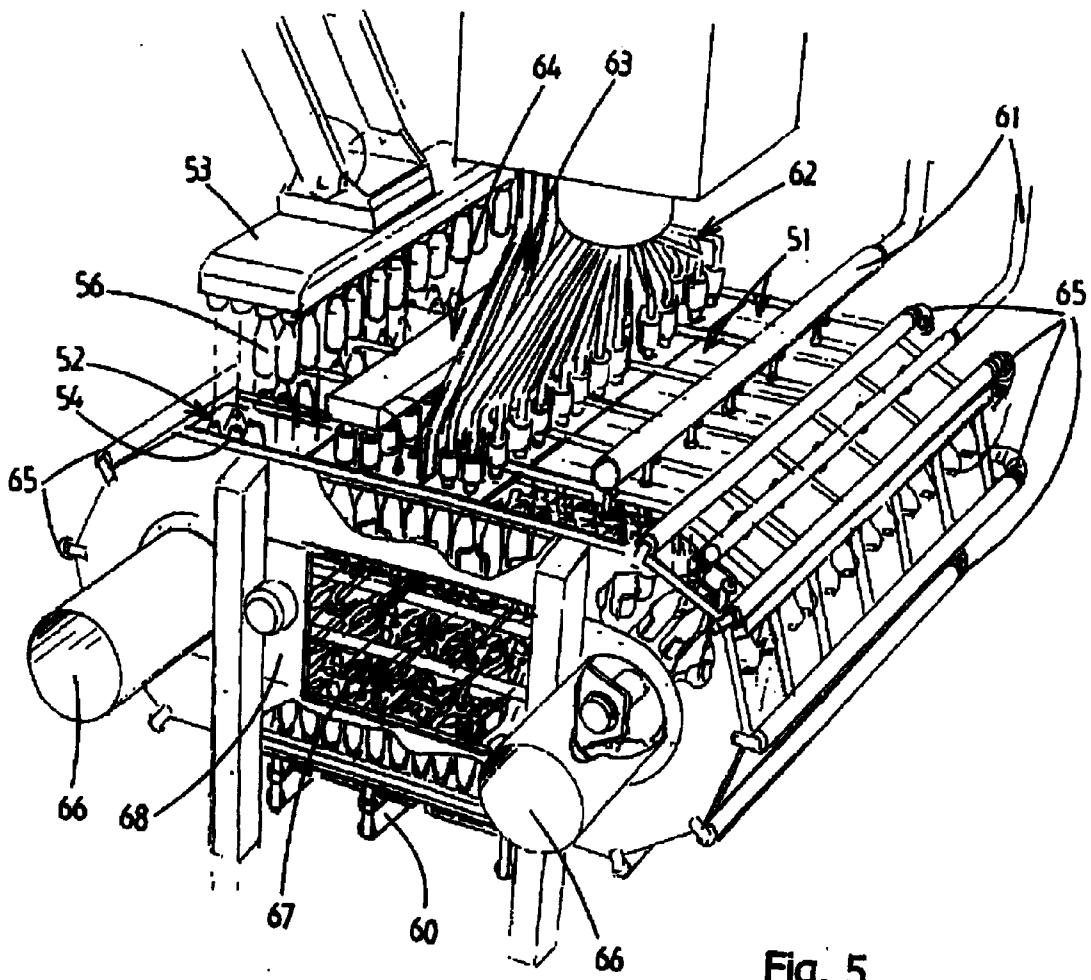


Fig. 5

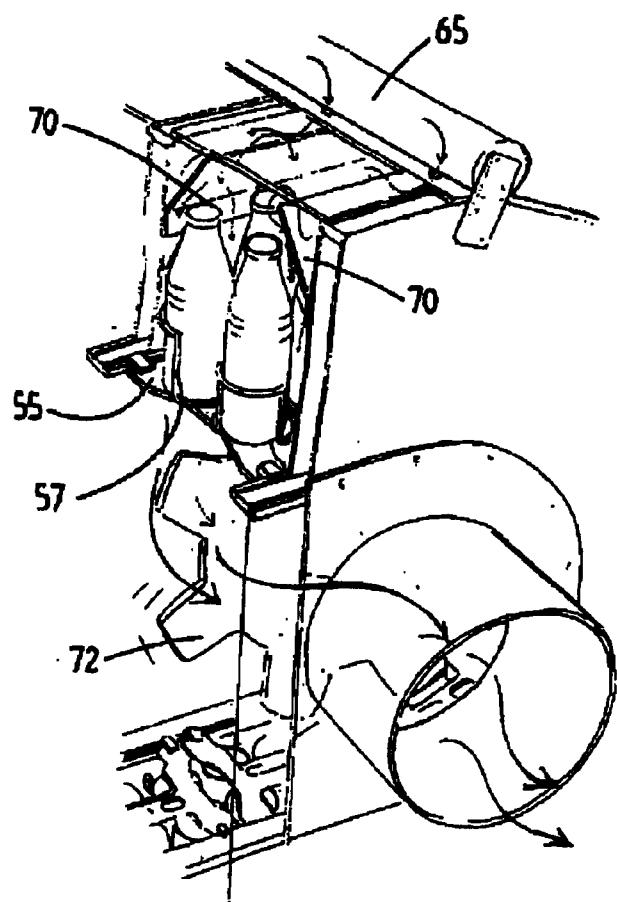


Fig. 6

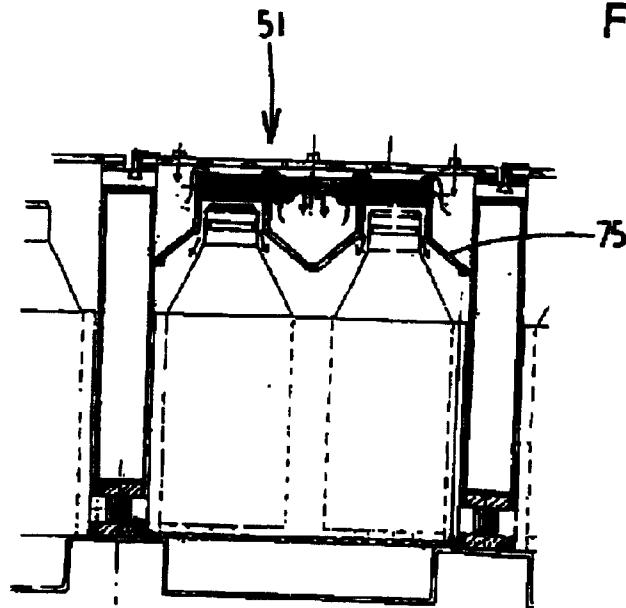


Fig. 7

FILLING DEVICE WITH HOUSING HAVING A CENTRAL GAS DISCHARGE

[0001] The invention relates to a filling device for filling containers with foods, in particular liquid foods. The device according to the invention here is of the type with an imaginary looped conveyor track having a bottom and a top track section, which sections are connected to each other by means of bend sections.

[0002] A filling device according to the preamble of claim 1 is known, and the applicant has already been constructing and selling it under the name Exact Volume CE 87 for a number of years now. The device comprises endless conveyor chains on which a plurality of container holders are fastened. The endless chains convey the container holders along an imaginary looped conveyor track with the above-mentioned bottom and top track sections. By driving the chains, the container holders are conveyed in succession along a container infeed mechanism, a decontamination station, a drying station, a filling station, a closing station and a container discharge mechanism. The infeed and discharge mechanisms and the plurality of workstations are all disposed along the top track section. The greater part of the filling device, including conveyor chains, drive unit with chain wheels and processing stations, is enclosed in a substantially sealing manner by a large housing, in other words with the exception of the container infeed mechanism and the container discharge mechanism. During operation, conditioned air is blown in at slightly positive pressure through a plurality of air infeed mechanisms in the top side of the housing. The slight positive pressure serves to prevent polluted ambient air from being able to flow inwards into the housing during the filling process, for example through the container infeed mechanism or container discharge mechanism.

[0003] A disadvantage in the case of this known device is that there is a risk of pollutants being released or finding their way inside the housing. Such pollutants in this case very soon extend over the entire processing line. Polluted particles may be released in particular in the case of the conveyor chains, the chain wheels and other moving parts of the conveyor system. If aseptic filling conditions are desired, the entire filling device inside the housing is treated with hydrogen peroxide before the actual filling process is started. During the filling process it is then difficult to keep all parts inside the housing sterile with sterile air. The shape and the size of the area around the processing line inside the housing do not permit this.

[0004] The object of the present invention is to overcome the abovementioned disadvantages at least partially, or to provide a useful alternative, and in particular to provide a compact filling device that is flexible in use, with an optimized processing functionality. More particularly, the object of the invention is to provide a compact, substantially aseptic filling device that is equipped with a minimized working area which can be kept substantially aseptic.

[0005] This object is achieved by a filling device according to claim 1. In the case of this device provision is made for gas discharge means that connect to or, as regards the sphere of influence, at least partially extend into the heart of the conveyor system, in order to discharge laterally there at least part, in particular the greater part, of the gases introduced into the housing. A flow of conditioned gases can

therefore advantageously be achieved in a direction substantially perpendicular to the direction of conveyance of the conveyor system. The introduced gases flow in succession preferably first along the filling apertures of the containers to be filled, and only then along the outsides of the containers and parts of the conveyor system, and are then discharged by way of the gas discharge means from the central area between the top and bottom track sections of the conveyor system until they are outside the housing. This specific arrangement of the gas discharge means produces a direction of flow of the conditioned gases towards the heart of the conveyor system by means of which the spread of pollutants at the position of at least the filling apertures of individual containers can advantageously be prevented. Furthermore, it is ensured that the most critical points during the filling process, i.e. the environment around the filling apertures of the containers, will not undesirably become polluted by dirt coming from the remainder of the outside of the container, or dirt coming from moving parts of the conveyor system. This advantageously also means that less high standards need be set for the cleanliness of the outsides of the containers. For example, these outsides need no longer be made fully sterile, which produces both a gain in time and a cost saving.

[0006] The housing advantageously here extends at least along the filling station, the closing station and, if desired along a drying station disposed upstream of the above stations. This means that along a critical part of a processing line, i.e. from the moment the container has been cleaned, is to be filled with perishable foods and subsequently closed, a desired direction of flow of conditioned gases along the containers can be achieved in the direction of the gas discharge means connecting in the heart of the conveyor system.

[0007] In a special embodiment, gas supply means that are designed for supplying conditioned gases in a direction substantially perpendicular to the direction of conveyance are connected to the housing. This gives a further guarantee of the desired flow of conditioned gases along the containers in the direction of the gas discharge means.

[0008] In particular, the housing is made at least partially tunnel-shaped, at least the part of the processing line that faces outwards being covered over. The covering leaves free a tunnel through which the containers to be filled can be conveyed along the stations. This gives the advantage that the area that has to be kept under certain processing conditions during operation, in particular the environment surrounding the filling apertures of the containers, is minimized. The number of parts, and also the surface area of these parts that is situated inside the housing segments, can also advantageously be minimized. The quantity of conditioned gases required is advantageously small.

[0009] In a further embodiment, the device comprises a conveyor system with container holders for conveying containers in a plurality of adjacent rows along workstations, the device being designed with a plurality of housing segments disposed adjacent to each other. Each housing segment individually encloses at least partially one or more of the rows of containers to be processed. Each at least partially individually enclosed row or number of rows of containers to be processed is defined as a processing line. The plurality of processing lines thus defined extend adjacent to each

other along a common imaginary conveyor track. The plurality of processing lines and housing segments situated adjacent to each other in this case bound a common central area in the heart of the conveyor track. Each housing segment is individually connected to gas supply means. The gas discharge means can advantageously be effective here as common gas discharge means for the conditioned gases fed individually into the plurality of housing segments.

[0010] According to the invention, individual processing conditions can advantageously prevail within each housing segment, for example the supply of different gases, the temperature, sterility, humidity etc. If one of the processing lines becomes polluted, this advantageously does not directly have the consequence that the other processing lines become polluted. If there is a fault in one of the processing lines, the device may, if desired, continue to operate for the other processing lines. The individual housing segments also make it possible expediently further to reduce the working area in which the filling operations have to be carried out, so that the desired processing conditions can be achieved and maintained in a simpler manner.

[0011] Further preferred embodiments of the invention are set out in the subclaims.

[0012] The invention will be explained in greater detail with reference to the appended drawing, in which:

[0013] FIG. 1 is a view in perspective of a preferred embodiment of the filling device according to the invention;

[0014] FIG. 2 is a diagrammatic view in cross section of FIG. 1;

[0015] FIG. 3 is a partially cut-away partial view of FIG. 1;

[0016] FIG. 4 is a cut-away view in perspective of the tunnel-shaped housing segment in FIG. 1, with container holder in use;

[0017] FIG. 5 is a partially cut-away view in perspective of a variant of an embodiment;

[0018] FIG. 6 is a cut-away partial view of FIG. 5; and

[0019] FIG. 7 is a view in cross section of the tunnel-shaped housing segment in FIG. 6, with in the top of the housing segment a variant of a profiled insert element for guiding gases.

[0020] The filling device is indicated in its entirety by the reference numeral 1 in FIGS. 1-4. The device 1 comprises an endless conveyor system 2, for conveying container holders 4 along an imaginary looped conveyor track by means of a drive 3. Each container holder 4 comprises means for positioning and supporting containers 5 that are to be filled. The container holders 4 are guided here along guide profiles 9, which extend along the conveyor track on either side.

[0021] The endless conveyor system 2 is of the type in which a top and a bottom track section 10 and 11 respectively can be distinguished. The top and bottom track sections 10 and 11 respectively merge into each other by way of bend sections 12. Inside the conveyor system 2 a central area 13 is bounded by the top and bottom track sections 10 and 11 respectively, the bend sections 12 and the drive 3.

[0022] In particular for substantially aseptic applications, the conveyor system 2 is at least partially enclosed by a plurality of adjacent housing segments 15. Each housing segment 15 encloses its own processing line, and leaves a container infeed mechanism 16 and a container discharge mechanism 17 clear. The processing lines extend along the imaginary conveyor track, and are each designed to process containers in a conditioned environment. To this end, a number of workstations are disposed along the conveyor track. For instance, a decontamination station 20 for decontamination of the insides of infed containers 5, a filling station 21 for filling the containers 5 with liquid foods, and a closing station 22 for closing the containers 5, for example with a cap, after filling are provided.

[0023] In the embodiment shown, an individual set of container holders 4 is conveyed along each processing line, each having room for a plurality of, preferably two, containers to be conveyed adjacent to each other. The plurality of housing segments 15 make it possible to operate the device very flexibly, and, for example, to fill containers in different conditions on the individual processing lines. In particular, it is possible in this way to maintain separate and substantially aseptic conditions more simply and reliably in the respective processing lines. Cross-contamination cannot occur between the processing lines, while a large number of parts such as drive, container infeed mechanism, container discharge mechanism, processing stations and/or gas supply and gas discharge means can be at least partially jointly used and driven.

[0024] The container infeed mechanisms 16 and the container discharge mechanisms 17 are situated substantially on the same side of the filling device. In the embodiment shown, the infeed mechanisms 16 are situated in the bend section 12 where the drive 3 is situated, and the discharge mechanisms 17 are situated in the end of the top track section 10 lying on the side of the drive 3. Automated infeed and discharge means are provided both at the infeed mechanisms 16 and at the discharge mechanisms 17. The automated infeed means comprise a supply conveyor belt. The automated discharge means comprise a drivable gripping arm.

[0025] The conveyor system 2 of the device is preferably driven intermittently, the conveyor system 2 each time advancing the container holders 4 one or more positions towards the next workstation. The intermittent drive leaves sufficient time free for carrying out the necessary operations at the workstations concerned.

[0026] The container holder 4 comprises retaining means 23, which here are formed by resilient clamping plates between which the containers 5 can be clamped. The clamping here is such that the containers 5 also remain reliably retained if they are conveyed along the bottom track section 11, in other words hanging upside down. This has the advantage that the bottom track section 11 can also be used effectively for carrying out a processing step on the containers 5. In the embodiment shown, the decontamination station 20 is disposed partially along the bottom track section 11 and partially in the bend section 12 situated downstream. The part along the bottom track section 11 comprises spray nozzles for introducing cleaning medium into the insides of the containers. The cleaning medium largely runs out of the containers 5 again by itself, as a result

of gravity. The part of the decontamination station **20** along the bend section **12** comprises blow nozzles for the removal of cleaning medium residue out of the insides of the containers. Through the use of the bottom track section **11** and the bend section **12** for carrying out on the containers or with the containers operations that are essential to the filling process, it is advantageously possible to construct the device in a very compact form. The conveyor system **2** with container holders **4** is designed for conveying the containers along the bend sections **12** with filling apertures of containers to be conveyed facing outwards in the radial direction. An operation to be carried out, here the removal of cleaning medium residue from the inside of the container, can be carried out efficiently as a result of this.

[0027] During operation, conditioned gases, in particular sterile air, are introduced by way of gas supply means **25** into each of the individual housing segments **15**. This is preferably carried out at slightly positive pressure, in order to ensure that no polluted air can flow in through parts left open, such as the infeed mechanisms **16** or discharge mechanisms **17**. The gas supply means **25** connect with separate nozzles to the respective outsides of the housing segments **15**, preferably by means of gas supply nozzles lying at a distance from each other, which in this case are preferably provided for each of the housing segments **15** along all sections of the conveyor track.

[0028] Common gas discharge means, which are designed to connect to the central area **13** in the heart of the conveyor system **2**, are further provided. Together with the supply of gases to the outsides of the individual housing segments **15**, this means that during operation conditioned gases advantageously first flow along the most critical parts of the containers in which the filling apertures are situated, then flow by way of the outsides of the containers **5** and along the container holders **4**, and ultimately arrive in the central area **13**, where for all processing lines they are discharged by way of the common gas discharge means until they are outside the central area **13**. The direction of flow of the gases achieved in this way inside each housing segment **15** is substantially perpendicular to the direction of conveyance of the containers holders **4**, or directed towards the central area **13** of the conveyor system **2**. The central area **13** according to the invention is advantageously compact, so that an efficient discharge to the side is possible with the aid of the abovementioned gas discharge means.

[0029] The embodiment of the container holder **4** shown is designed with an open construction. This is achieved here by providing the bottom plate **30** of the container holder **4** with a large number of passage apertures **31**. In a variant the bottom plate can be of an even more open-worked design.

[0030] The housing segments **15** are advantageously tunnel-shaped. The tunnel opening bounded by each housing segment, viewed in cross section, is selected here in such a way that two adjacent containers **5** at least with their filling aperture part can be conveyed through it in a close fit by means of the container holders **4**. The volume of the filling area to be kept conditioned is consequently minimal. Driving parts of the workstations are situated as far as possible on the outside of the housing segments **15**. This also makes it possible to keep to a minimum the filling area enclosed by the housing segments **15**. Moving parts of the workstations in this case can be passed movably through walls of the housing segments **15** by means of elastic membranes.

[0031] More particularly, the housing segments **15** are endless tunnel-shaped housing segments, each housing segment largely enclosing its own processing line that runs around the conveyor track, leaving the corresponding infeed mechanism **16** and discharge mechanism **17** clear. The top and bottom track sections **10** and **11** respectively and also the bend sections **12** are enclosed here over a great part of their length. The workstations situated largely outside the housing segments **15** connect to the above in a sealing manner. Thanks to the slim shape of the housing segments **15**, the desired direction of flow of conditioned gases inside each housing segment **15** can already be maintained with a slightly positive pressure.

[0032] The housing segments **15** are preferably of such a slim design that during operation they leave less than **25** centimetres, and more particularly less than **15** centimetres, clear above the filling apertures of the containers.

[0033] The housing segments **15** are preferably structurally connected to each other, in order to provide a strong complete unit.

[0034] Each housing segment **15** may be designed with inside housing walls that together bound the central area. The inside housing walls then have to be provided with gas outlets for connection to the gas discharge means. In the variant shown, such inside housing walls have been omitted, and the filling area of each processing line on the side facing the central area **13** is bounded by the open-work bottom plates **30** of the container holders **4**.

[0035] By providing a plurality of individual housing segments **15** situated adjacent to each other, together with the specific arrangement of the gas supply means **25** and the central gas discharge means, a conditioned gas supply that is easy to control is produced in the filling area. The quantity of conditioned gases required can advantageously be small for each processing line, thanks to the very compact design of conveyor system **2** and the compact enclosing housing segments **15**.

[0036] A gas distribution plate **35** is provided inside each housing segment **15**, at some distance from the outside housing wall. In this way a gas distribution chamber **36** is formed between the housing walls and the distribution plate **35**. The gas distribution plate **35** is provided with a large number of passage apertures, which ensure that the gases fed into the chamber **36** by way of the gas supply means **25** are equally distributed among the containers **5** situated below said plate. In this way it will advantageously suffice to have a small number of gas supply nozzles for the gas supply means **25** lying further outside the housing segments **15**.

[0037] The embodiment of the filling device illustrated is particularly suitable for modular construction. By making the housing segments **15** and the conveyor system **2** modular, it is ensured that the device can be constructed in a larger, smaller, broader or narrower design, as the customer wishes.

[0038] The conveyor system **2** is preferably in the form of a chainless conveyor system. In the embodiment shown, this is achieved by making the container holders **4** advance one another, in this case a drivable wheel provided with pushing elements acting intermittently or continuously on some of the container holders **4** to push them. The guide profiles **9** here ensure that the container holders **4** continue to follow

the imaginary looped conveyor track. The chainless conveyor system 2 designed in this way with guide profiles 9 provides for the guidance of the container holders 4 in the top and bottom track sections 10 and 11. The chainless conveyor system 2 has the advantage that it is cheaper and easier to clean and keep clean than, for example, a system with container holders advanced by chains. Furthermore, lubrication may be minimal or may even be dispensed with, and the chainless system is easy to make in a modular construction by the fact that the container holders need not be connected to each other. The invention can, however, also be used in conjunction with other types of conveyor systems, such as chain systems.

[0039] FIG. 5 shows a variant in the case of which the endless conveyor system of the filling device comprises a plurality of adjacent processing lines, each individually enclosed by a substantially endless tunnel-shaped housing segment 51. The housing segments 51 leave common container infeed mechanisms and discharge mechanisms 52 clear. The infeed mechanisms and discharge mechanisms 52 are situated close to the same bend section of the conveyor track. A common automated infeed and discharge mechanism 53 is advantageously provided, which device can both place empty containers 54 in container holders 55 and remove filled containers 56 from said holders. The container holders 55 are provided with retaining means 57, which here are designed with a resilient wire construction (see FIG. 6).

[0040] A number of common workstations are disposed along the processing lines, which workstations with their driving parts are situated at least partially outside the housing segments 51. A decontamination station 60 with residue-removing unit 61, a filling station 62, a closing element supply station 63 and a closing station 64 are therefore provided.

[0041] During operation, conditioned gases are introduced into the housing segments 51 by way of gas supply means 65. This is carried out at slightly positive pressure, in order to ensure that no polluted air can flow inwards through parts that have been left open, such as the infeed mechanisms and discharge mechanisms 52. The gas supply means 65 connect at several points to the outsides of the housing segments 51. Gas discharge means 66 are further provided, which discharge means connect to the central area 67 in the heart of the conveyor system. Between the laterally situated gas discharge means 66, the central area 67 is provided with a hatch 68 that can be slid open.

[0042] Profiled insert plates 70 are provided inside each housing segment 51, at some distance from the outside housing wall. The plates 70 reduce the filling area at the position of the filling apertures of the containers and ensure that the gases fed into the individual housing segments 51 by way of the gas supply means 65 are better distributed and directed towards the filling apertures of the containers.

[0043] FIG. 6 also shows an embodiment of a wheel provided with pushing elements 72. The pushing elements 72 are designed to act upon the container holders in front of them, in order to advance said container holders.

[0044] FIG. 7 shows a variant of a distribution plate 75, which is disposed in the housing segment 51 and is advantageously of a profiled design corresponding to the shape of the top side of the containers to be filled. This means, on the

one hand, that the filling space is further reduced and, on the other hand, that the desired gas flow direction can be achieved more quickly and more efficiently. In addition, the distribution plate is preferably of an exchangeable design, so that in the event of a different type of container having to be filled, an appropriate distribution plate can be fitted. Outside housing walls of the housing segments 51 may be made of transparent material, in order to be able to monitor the filling process better.

[0045] Providing an individual set of container holders for each processing line makes it advantageously possible to replace or exchange said container holders for a particular processing line, for example using a type that is suitable for a different size of container. This can then be carried out while filling proceeds on the other processing line. It is also possible to design the drive means in such a way here that each set of container holders is driven individually, if desired at different speeds.

[0046] The filling device may be designed with control means for supplying differing quantities and/or compositions of conditioned gases to the individual housing segments. Further flexibility can be achieved in this way, and the user can fill containers simultaneously as he wishes on the various processing lines under differing filling conditions that can be fully geared to the product for filling and/or the type of container to be filled.

[0047] The filling device according to the invention is particularly suitable for filling containers under substantially aseptic filling conditions. To this end, the gas supply means are, for example, designed for supplying substantially sterile air.

[0048] Many variants are possible in addition to the embodiments shown. For instance, a device may be designed with only one processing line and corresponding housing. The housing preferably extends uniformly along substantially the entire processing line. It is also possible for only part of the processing line to be covered by the housing, in which case this part preferably comprises at least the drying station, the filling station and the closing station. In addition, the container holders can be designed with other retaining means, such as magnets or suction cups. It is also possible for the workstations to be provided only along one of the two track sections. Upside down conveyance is then no longer necessary, and the container holders can be provided with positioning means that no longer need to retain the containers, but now only to position them reliably. Instead of providing a separate set of container holders for each processing line, it is also possible to design the conveyor system with container holders that extend along a plurality of processing lines.

[0049] Thus, according to the invention, a very compact construction of filling device is provided, by means of which filling can be carried out more cheaply and more efficiently, and by means of which conditioned filling conditions can be maintained reliably in the individual housing segments, in particular at the position of the filling apertures of the containers to be filled. Owing to the fact that the conditioned gas flows according to the invention do not flow along the conveyor system until after said gases have passed the critical environment at the container filling apertures, the invention can also already be used advantageously in conjunction with other types of conveyor systems, such as chain systems.

1. Filling device for filling containers with foods and closing said containers, comprising:

an endless conveyor system with drive means, for conveying container holders along an imaginary looped conveyor track with bottom and top track sections that are connected to each other by means of bend sections;

a container infeed mechanism, for supplying containers to the container holders;

workstations for carrying out operations on containers conveyed along, including a filling station and a closing station;

a container discharge mechanism, for removing containers from the container holders;

at least one processing line provided along the conveyor track, for containers to be processed;

a housing that at least partially encloses the processing line and which housing extends at least along the filling station and the closing station; and

gas supply means, for feeding conditioned gases into the housing;

the workstations being disposed along the conveyor track, wherein

a central area is defined between the top and bottom track sections and the bend sections of the at least one processing line situated along the conveyor track, and in that gas discharge means are provided for discharging by way of the central area at least part of the gases conveyed into the housing.

2. Filling device according to claim 1, in which the housing also extends along a drying station that is provided along the conveyor track upstream of the filling station.

3. Filling device according to claim 21 in which the housing extends substantially uniformly along a plurality of workstations.

4. Filling device according to claim 1, in which the gas supply means connecting to the housing are designed to supply the conditioned gases in a direction substantially perpendicular to the direction of conveyance.

5. Filling device according to claim 1, in which the housing is made at least partially tunnel-shaped, with housing walls that enclose at least a part of the corresponding processing line that faces outwards.

6. Filling device according to claim 5, in which the housing is designed as a substantially endless tunnel-shaped housing, leaving clear the infeed and the discharge mechanism.

7. Filling device according to claim 1, in which driving parts of the workstations are situated substantially on the outside of the housing.

8. Filling device according to claim 1, in which the housing is designed to leave clear between container filling apertures and the housing a space with a height of less than 25 centimetres, in particular less than 15 centimetres.

9. Filling device according to claim 1, in which a distribution plate provided with a plurality of passage apertures is provided in the housing, which distribution plate extends at least partially along the processing line and together with the housing walls forms a gas distribution chamber, and in which the gas supply means open into the gas distribution chamber.

10. Filling device according to claim 9, in which the distribution plate is of a profiled design corresponding to the shape of top parts of containers to be filled.

11. Filling device according to claim 1, in which the container discharge mechanism is provided downstream of the container infeed mechanism, viewed in the direction of conveyance, further past at least one of the two bend sections, and past at least a part of the bottom track section,

in which the container holders are provided with retaining means for also conveying containers held substantially upside down, and

in which the conveyor system is equipped with container holders for conveying containers substantially upright along at least part of the top track section, and for conveying the containers retained substantially upside down along at least part of the bottom track section.

12. Filling device according to claim 11, in which the container infeed mechanism and the container discharge mechanism are provided close to or along the same bend section of the conveyor track.

13. Filling device according to claim 1, in which the conveyor system with container holders is designed to convey the containers along at least one of the two bend sections with filling apertures of containers to be conveyed facing outwards.

14. Filling device according to claim 1, in which at least one of the workstations is at least partially disposed along at least part of one of the two bend sections and/or the bottom track section, and in which the processing line is at least partially enclosed by the housing at the position of this workstation.

15. Filling device according to claim 14, in which the abovementioned workstation is a decontamination station for decontaminating at least the insides of containers being conveyed along.

16. Filling device according to claim 1, in which the container infeed mechanism and the container discharge mechanism are provided close to each other along the conveyor track.

17. Filling device according to claim 1, in which a plurality of processing lines are provided adjacent to each other along the conveyor track, in which the housing comprises a plurality of housing segments disposed adjacent to each other and extending in the direction of conveyance, each housing segment at least partially enclosing one of the processing lines, in which gas supply means connect to each of the housing segments, in which the central area is defined in common between the top and bottom track sections and the bend sections of the plurality of processing lines lying adjacent to each other along the conveyor track, and in which the gas discharge means are provided for discharging by way of the common central area at least part of the gases introduced into the plurality of housing segments situated adjacent to each other.

18. Filling device according to claim 17, in which the individual housing segments are connected to one another, and in particular comprise common side wall parts.

19. Filling device according to claim 17, in which at least one of the workstations extends over the plurality of processing lines.

20. Filling device according to claim 17, in which control means for supplying differing quantities and/or compositions of conditioned gases to the individual housing segments in a controllable manner are provided.