Title: ILLUMINATION FOR MOUNTAIN BICYCLES

Abstract

An illumination system for a mountain bicycle is disclosed. The disclosed system comprises a long-term, high power battery pack (20) encapsulated in an impervious jacket of compressible material (26), which combination is reliably and securely compression-fit into an open water bottle cage (40), and electrically connected to a source of artificial light (38).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>China</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central Africa Republic</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SA</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LV</td>
<td>Latvia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ILLUMINATION FOR MOUNTAIN BICYCLES

Technical Field

The present invention relates generally to provision of illumination for a mountain bicycle and, more particularly, to a novel high power, long-term energy system for reliable and safe illumination in conjunction with night use of a mountain and other bicycle.

Background Art

In recent years, it has been common place to market and thereafter use various forms of bicycles without inclusion of a source of light to accommodate night time use. Sometimes reflectors are provided at the time of purchase. From an early point in time light assemblies have been available for bicycles. These have comprised two types. One comprised a low power flashlight-type unit mounted to the handle bars or the like of a bicycle, which may provide some warning to others, but provides very little illumination to the biker independent of the terrain. The battery life of this unit has been very limited. The second light system comprised a generator, turned by contact with a tire and connected to a light bulb carried by a housing mounted to the handle bars. The amount of illumination available from this system was low. When movement of the bicycle stopped rotation of the tire also stopped; therefore, illumination was no longer available.

Recently it has been proposed that one or more batteries be manually inserted through a small diameter neck into an empty conventional water bottle, which bottle in turn is placed in a conventional water bottle cage mounted to the frame of a mountain
bicycle. This approach presents significant problems. The available power is limited, creating a significant likelihood of inadequate energy to provide illumination for a long night mountain ride. Such a loss of power either isolates the rider at a fixed location along the route until daybreak or, if the rider continues, he does so at risk of personal injury and damage to the bicycle. Further, the batteries in the water bottle are not stable per se, and, therefore, they rattle around creating a risk of electrical disconnection. Significantly, particularly in mountain biking in rough terrain, the battery-containing water bottle is insecurely held in its cage. When the battery-containing water bottle bounces or is jarred out of the cage, as the bicycle traverses rough terrain, the power cord may be severed from the battery. The power cord, severed or not, may become entangled in the pedals, sprockets, chain, spokes, controls, and/or other moving parts. Thus, a serious risk of property damage and personal injury arises with this proposed approach.
Disclosure of the Invention

In brief summary, the present invention overcomes or substantially alleviates the problems mentioned above and provides a high power, long-term, reliable and secure electrical power source comprising part of an illumination system for a mountain bicycle or the like. In one form of the invention, a high power battery pack is reliably and securely compression-fit directly into a water bottle cage, in lieu of the water bottle, or into a like cage or carriage. An impervious jacket of compressible material surrounds the battery pack. Accordingly, the risk of inadvertent separation of the power source from its easily attained frame-supported position is virtually impossible. More than ample long-term high power is so provided to sustain long bicycle night rides over rough mountainous terrain without risk that the supply of electrical energy will expire part way through the journey. Power supply systems according to this invention are relatively inexpensive, can be installed, removed, and replaced with ease and without specialized tools, ancillary equipment, or technical training. These novel power supply systems accommodate other applications.

With the foregoing in mind, it is a primary object of the present invention to overcome or substantially alleviate problems of the prior art.

Another important object is the provision of novel, long-term high power sources for mountain bicycles and other applications, and related methods.

A further paramount object is the provision of a novel long-term power source for a bicycle which is highly reliable and secure in its installed nature, and related methods.
It is also a significant object to provide a source of electrical power for energizing a source of substantial long-term illumination carried by a bicycle to accommodate long night rides or trips.

Another object of dominance is the provision of a battery pack comprising a pliant jacket for a bicycle which is force-fit into a water bottle cage in lieu of the water bottle itself.

A further object of value is the provision of a battery pack for compression fit reception in a cage or carriage.

Another germane object is the provision of a self-contained battery pack, useable with a mountain bike and in other applications, which is encapsulated imperviously in a jacket, which may comprise a layer of foam.

Another paramount object is the provision of a power source for intense illumination of an area adjacent to and from a position on a bicycle which presents little if any risk that the power source will become dislodged from the bicycle.

An object also of substantial significance is the provision of a source of illumination for a mountain bicycle powered by a battery pack to accommodate a long trip of many hours over mountain terrain without risk that the energy from the battery pack will expire part way through the trip.

A further primary object is the provision of an electrical power supply system for a bicycle which is inexpensive and can be installed, removed, and replaced with ease and without specialized tools, ancillary equipment, or technical training.

These and other objects and features of the present invention will be apparent from the detailed
description taken with reference to the accompanying drawings.
Description of the Drawings

Figure 1 is a perspective representation of one form of battery pack embodying the principles of the present invention, illustrated with a portion thereof broken away for clarity of illustration;

Figure 2 is a cross-sectional view taken along lines 2-2 of Figure 1;

Figure 3 is an exploded perspective illustrated manner in which a battery pack, embodying the principles of the present invention, is inserted into a water bottle cage, in lieu of the water bottle; and

Figure 4 is a perspective, similar to Figure 3, but showing a battery pack, embodying the principles of the present invention, compressively, force-fit into the water bottle cage mounted to the frame of a bicycle.
Modes for Carrying Out the Invention

Reference is now made to the drawings wherein like numerals are used to identify like parts throughout. With reference to Figure 1, a battery pack, generally designated 10, embodying the principles of the present invention, is there illustrated. The battery pack 20 comprises a two-layer array of six batteries 22 of commercially available type, which are, when operable, electrically interconnected so as to constitute a single power source. It is preferred that the power be on the order of 20 watts. The CYCLON sealed rechargeable battery available from Gates Energy Products (two volts, 2.5 AH, and D-Cell) is satisfactory. The batteries 22 of the pack 20 are suitably held together in any desired fashion. The use of bonding material at sites 24 is satisfactory. However, other forms of packaging can be used, such as use of heat shrink plastic film.

The battery pack 20 is encapsulated on all sides, the bottom and the top by a jacket, generally designated 26, which is illustrated as comprising a layer of synthetic resinous foam 28 enclosed within the exterior layer or skin 30 of substantially solid, impervious synthetic resinous material. The jacket 26 may be formed using conventional molding techniques where the battery pack 20 is placed within the mold initially and a suitable synthetic resinous material introduced into the mold thereafter, using conventional techniques, so as to create the total encapsulation mentioned above.

As can be seen from Figures 3 and 4, jacket 26 comprises a bottom wall 32, a side wall 34, and a top wall 36, all formed of one piece so as to be impervious. An electrical cord 38 extends from the
top wall 36 and is adapted to be connected to a lamp or source of illumination of a bicycle.

As can best be seen in Figure 2, the external cross-sectional configuration of the jacket 26 is generally triangular, with the batteries encapsulated therein. Once the encapsulation occurs, as illustrated in Figure 2, the jacket 26 will thereafter hold the array or pack of batteries 24 in their contiguous, stacked relationship, independent of the bonding material 24.

It is a feature of the present invention that the source of illumination embodying the principles of the present invention, such as source 20 encapsulated in jacket 26, is compression fit or force-inserted into an open water bottle cage or other like carriage, one form of which is illustrated in Figure 3 and generally designated 40. Since cage 40 is a commercially available product, no further description is needed, except to say that it is mounted by set screws 42 to a frame member 44 comprising part of a mountain bike, for example.

When fully inserted, the jacketed battery pack is firmly and reliably held by a compression-fit within cage 40, as illustrated in Figure 4, against inadvertent removal or dislodgment as the bicycle traverses rough mountainous terrain for any length of time.

The illustrated and described power source, so compressively held, is relatively inexpensive, requires no specialized tools for installation or removal, does not require technically trained persons to facilitate use and accommodates not only ease of installation, but facile removal and replacement once the energy within the battery pack 20 is exhausted.

It is to be appreciated that the impervious nature and
the reliable way the energy pack described above is held in position for use that the utility thereof is not strictly confined to mountain bikes.

The invention may be embodied in other specific forms without departing from the spirit of essential characteristics thereof. The present embodiments therefore to be considered in all respects as illustrative and are not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Claims:

1. A combination comprising:
 a bicycle comprising a frame and a pathway illuminating light;
 an open skeletal cage mounted by fasteners to the frame;
 a portable source of electrical power comprising at least one exterior side surface removably force compression-fit into tight compressively contiguous relation with the skeletal cage so that the one side surface is substantially exposed to the atmosphere, the battery comprising terminals which are electrically connected to the pathway-illuminating light.

2. A combination according to Claim 1 wherein the skeletal cage comprises a water bottle cage having no water bottle therein.

3. A combination according to Claim 1 wherein the source of electrical power comprises a pack of interconnected batteries.

4. A combination according to Claim 1 wherein the cross-sectional shape of at least part of the source of electrical power is triangular.
5. A combination comprising:
 a bicycle comprising a frame and a pathway-illuminating light;
 an open undersized receptacle mounted to the frame;
 an electrical power source comprising a pack of interconnected batteries surrounded by a compressible jacket formed of a material comprising memory removably force-fit into the open undersized receptacle so that external surface locations of the jacket are contiguously compressed counter to the memory, the battery comprising terminals;
 electrical conductors interposed between the battery terminals and the light.

6. A combination comprising:
 a bicycle comprising a frame and a source of pathway illumination;
 an open cradle mounted to the frame;
 a source of power comprising at least one battery contiguously encapsulated by a surrounding jacket removably press-fit contiguously, restrainingly and yet removably into the open cradle so that a substantial portion of an external surface of the jacket is atmospherically exposed and conductors electrically connecting the battery to the source of illumination.
7. A combination comprising:
a bicycle comprising a frame and a light;
a cage for but not containing a water bottle mounted to the frame;
a source of electrical power comprising a plurality of interconnected batteries grouped together and collectively electrically connected by conductors to the light and a substantially impervious sheath contiguously encapsulating the batteries, the sheath comprising a compressible synthetic resinous material removably force-fit contiguously, compressively, restrainingly, and removably into the cage so that a predetermined portion of an exterior surface of the jacket is atmospherically exposed.

8. A method of providing electrical power to a bicycle light comprising the steps of:
providing at least one portable battery;
encapsulating the battery in a jacket of compressible synthetic resinous material;
removably manually force-fitting the jacket and encapsulated battery contiguously and compressibly into an otherwise empty water bottle cage so that an exterior surface of the jacket is in large part atmospherically exposed with the remainder engaged and compressed by the cage;
electrically connecting the battery to the light.
9. A method according to Claim 8 further comprising the steps of:
 electrically disconnecting the portable battery from the light, when the energy level of the battery is depleted;
 manually removing the compressible jacket and battery from its force-fit substantially exposed relation with the water bottle cage;
 manually force-fit inserting a second fresh jacketed battery contiguously and compressibly into the otherwise empty water bottle cage so that a substantial portion of the jacket is atmospherically exposed with the remainder engaged and compressed by the cage;
 electrically connecting the second battery to the light.

10. A method of providing electrical power to a light mounted on a bicycle comprising the steps of placing a jacket of compressible synthetic resinous material around an array of electrically-interconnected batteries, removably manually force inserting the jacketed array of interconnected batteries contiguously into an open frame cage mounted to a frame of the bicycle so as to selectively compress exposed areas of the compressible synthetic resinous jacket whereby a preponderance of an external surface of the jacket is exposed to the atmosphere and electrically-connecting the array of batteries to the light.
11. A combination comprising:
 a bicycle comprising a frame and a light by which a bicycle pathway is illuminated;
 an undersized battery receptacle mounted to the frame;
 a portable source of electrical power encapsulated in a jacket of compressible material with memory removably force-fit counter to the memory contiguously and removably into the receptacle so that the receptacle engaged portions of the jacket are dimensionally compressed such that said compression comprises a restraining grip;
 conductors electrically connecting the source of power to the light.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : B62D 6/00, F21V 33/00
US CL. : 362/72, 190, 191, 202, 204; 224/ 32R, 39, 37, 30R; 280/288.4

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 362/72, 190, 191, 202, 204; 224/ 32R, 39, 37, 30R; 280/288.4

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US, A, 4,204,191 (DANIELS) 20 MAY 1980, WHOLE DOCUMENT</td>
<td>5</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4,339,060 (BRAIDA, JR.) 13 JULY 1982, WHOLE DOCUMENT</td>
<td>1 AND 6</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-5</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4,390,927 (VON FELDT) 28 JUNE 1983, WHOLE DOCUMENT</td>
<td>5</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search: 03 MAY 1995

Date of mailing of the international search report: 12 JUL 1995

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer: IRA LAZARUS
Telephone No. (703) 308-1935

Form PCT/ISA/210 (second sheet)(July 1992)