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SHIFT INVARIANT PROBABILISTC LATENT 
COMPONENT ANALYSIS 

FIELD OF THE INVENTION 

0001. This invention relates generally to analyzing data 
acquired of real world Systems and phenomena, and more 
particularly to methods for determining low-dimensional 
components of complex, high-dimensional data structures, 
Such as acoustic signals and images, or any arbitrary data set. 

BACKGROUND OF THE INVENTION 

0002 Many practical applications in the fields of signal 
processing often preprocess input data using component 
analysis. Component analysis can reduce dimensionality, 
extract features, or discover underlying structures of the 
data. 

0003 Principal component analysis (PCA) and indepen 
dent component analysis (ICA) are frequently employed for 
various tasks, such as feature discovery or object extraction. 
The statistical properties of PCA and ICA make them 
indispensable tools for machine learning applications. 
0004 Non-negative matrix factorization (NMF) can also 
be used for component analysis, Lee D. D., and Seung H. S., 
“Learning the parts of objects by non-negative matrix fac 
torization.” Nature, Vol. 401, No. 6755, 21 Oct. 1999, pp. 
788-791. Non-negativity is a valuable property for working 
only with positive data. Because a large majority of acoustic, 
image and text data operations deal with positive only data, 
NMF presents an appropriate alternative to PCA and ICA. A 
particular reason for the success of NMF is that using 
non-negative components, in combination with non-nega 
tive weights, often translates to a meaningful solution. 
0005. In contrast, methods that do not use non-negativity 
yield a set of bases that contain negative elements. Then, 
cross-cancellation between the non-negative elements must 
be employed to approximate the input. Components with 
negative elements are hard to interpret in a positive only data 
framework and are often used for their statistical properties 
and not for the insight they provide of the underlying data 
structure. In contrast, NMF provides meaningful compo 
nents for variety of data types such as images, and acoustic 
magnitude spectra. 

0006) However, the downside of NMF is that it is defined 
in a purely non-statistical framework, which prohibits NMF 
to be applied to probabilistic applications. 

SUMMARY OF THE INVENTION 

0007. The embodiments of the invention provide a model 
and method for decomposing input data represented by 
probability distributions into a set of shift invariant compo 
nents. The model is a latent variable model, which can be 
extended to deal with shift invariance in a probability space 
in order to model more complex input data. The embodi 
ments of the invention also provide an expectation maximi 
Zation procedure for estimating the set of shift invariant 
components. 

0008 Shift-invariant probabilistic latent component 
analysis (PLCA) is applied to input data represented accord 
ing to the model. Shift invariance enables the method to 
discover components that appear in like the data at arbi 
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trarily shifted positions, either temporally, spatially, or both. 
This property is desirable when dealing with input data such 
as images and acoustic signals, where translation of the same 
feature, Such as objects or sounds, is often observed. 
0009. In contrast with a conventional linear decomposi 
tion, the invention decomposes in the probability density 
space. This provides an interesting statistical interpretation, 
and also helps to enforce implicitly non-negativity, while 
using probabilistic optimization techniques. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0010 FIG. 1 is a flow diagram of a method for decom 
posing input data into a set of shift invariant components 
according to an embodiment of the invention; 
0011 FIG. 2A is a diagram of input data represented by 
three Gaussian functions according to an embodiment of the 
invention; 
0012 FIGS. 2B-2D are diagrams of components of the 
distributions of FIG. 2A obtained by the method according 
to an embodiment of the invention; 
0013 FIG. 3 is a diagram of output data approximated the 
input data by combing the components of FIGS. 2B-2C 
according to an embodiment of the invention; 
0014 FIG. 4 a diagram of input data represented by 
multiple Gaussian functions according to an embodiment of 
the invention; 
0.015 FIGS. 5A-5D are diagrams of components of the 
distributions of FIG. 4 according to an embodiment of the 
invention; 

0016 FIG. 6 is a diagram of output data approximated the 
input data by combing the components of FIGS. 5A-5D 
according to an embodiment of the invention; 
0017 FIG. 7 is a diagram of input data represented by 
three Gaussian functions according to an embodiment of the 
invention; 

0018 FIGS. 8A-8B are diagrams of components of the 
distributions of FIG. 7 according to an embodiment of the 
invention; 

0019 FIG. 9 is a diagram of output data approximated the 
input data by combing the components of FIGS. 8A-8B 
according to an embodiment of the invention; 
0020 FIG. 10 is a diagram of musical notes represented 
by distributions according to an embodiment of the inven 
tion; 

0021 FIGS. 11A-11B are diagrams of components of the 
distributions of FIG. 10 according to an embodiment of the 
invention; 

0022 FIG. 12 is a diagram of output data approximated 
the input data by combing the components of FIGS. 11A 
11B according to an embodiment of the invention; 
0023 FIG. 13 is a diagram of kernel distributions of 
magnitude spectrogram of speech according to an embodi 
ment of the invention; 

0024 FIG. 14 is an image of a choir with a multitude of 
heads at various locations in the image; 
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0.025 FIG. 15 is a diagram of a kernel distribution of an 
average head according to an embodiment of the invention; 
0026 FIG. 16 is a diagram of an impulse distribution of 
the locations of the heads in FIG. 14 according to an 
embodiment of the invention; 
0027 FIG. 17 is an image of handwriting characters: 
0028 FIG. 18A is a diagram of kernel distributions of the 
characters in FIG. 17, according to an embodiment of the 
invention; 
0029 FIG. 18B is a diagram of corresponding prior 
distributions for the kernel distributions of FIG. 18A, 
according to an embodiment of the invention; 
0030 FIG. 18C is a diagram of the impulse distribution 
corresponding to the characters in FIG. 17 according to an 
embodiment of the invention. 

0031 FIG. 19 is an image of results of approximation of 
the characters in FIG. 17 according to an embodiment of the 
invention. 

DETAILED DESCRIPTION OF THE 
EMBODIMENT 

0032. As shown in FIG. 1, one embodiment of our 
invention provides a method 100 for decomposing input 
signal 101 into a set of shift invariant components 131. 
0033) We sample an input signal 101 to acquire 110 input 
data 111. The signal can be an acoustic signal with tempo 
rally shifted magnitude spectra, or an image where pixel 
intensities are shifted spatially. Other forms of input data are 
described below. Typically, the input data has a high dimen 
sionality. It is desired to determine low-dimensional com 
ponents that can be used to approximate high dimensional 
input data. 
0034) We represent 120 the input data 111 by a model 
121. The model 121 is a mixture of probability distributions. 
The probability distributions can be continuous Gaussian 
functions or discrete histograms. 
0035. We apply iteratively an expectation-maximization 
procedure 130 to the 121 model to determine linearly 
components 131 of the probability distributions. 
0036) The components can be combined 140 to produce 
output data 141 that approximate the input data 111. 
0037 Probabilistic Latent Component Analysis 
0038. The embodiments of our invention provide the 
model 121 and method 100 for decomposing the input signal 
101 represented 110 by probability distributions into a set of 
shift invariant components 131. Our model is defined as: 

(1) 

& 

where P(x) is an N-dimensional distribution of the input 
signal 101, a random variable X=X, X2,..., XN, Z is a latent 
variable, and the P(x,z) are one dimensional marginal dis 
tributions. The latent variable is an index for the set of 
components that are extracted. The latent variable can take 
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values of e.g., {1,2,3}, in which case we are decomposing 
to three components. Alternatively, the latent variable can be 
a continuous variable and take any number of values, 
including fractional values. 

0039 Effectively, our model represents a product of a 
mixture of the marginal probability distributions to approxi 
mate the N-dimensional probability distribution represent 
ing the input signal 101. The marginal distributions them 
selves are dependent on the latent variable Z. The model can 
be used by our method to determine an underlying structure 
of the input signal 101. This is done by estimating 130 both 
P(x,z) and P(z) from the input data P(x). 
0040) The estimation of the marginal probabilities P(x,z) 
is performed using a variant of an expectation-maximization 
(EM) procedure, which is described in more detail in Appen 
dix A and Appendix B. The EM procedure includes an 
expectation step and a maximization step. We alternate 
between these two steps in an iterative manner until a 
termination condition is reached, for example, a predeter 
mined number of iterations, or a predetermined accuracy. 

0041. In the expectation step, we estimate a weight R of 
the latent variable Z: 

z 

0042. In the maximization step, we re-estimate the mar 
ginal probabilities using the above weight to obtain a new 
and more accurate estimate: 

P(x) = froRs. a)dy. (3) 

froR, a)dyk, w k + i. (4) 

0043) P(x,z) contains a latent marginal distribution, 
along the dimension of the variable X, relating to the latent 
variable Z, and P(Z) contains the prior probability of that 
latent variable. Repeating the above EM steps in an alter 
nating manner multiple times produces a converging solu 
tion for the marginal probabilities and the latent variable 
prior probabilities. 

0044) The above method can also be adapted to work for 
discrete variables X and Z, or all possible combinations, as 
described in Appendix B. The method also works when the 
input data are represented by un-normalized histograms as 
opposed to probability distributions. The only added mea 
Sure we need to take in the discrete case is to normalize each 
P(x,z) to integrate or sum to one, in every iteration to ensure 
that it corresponds to a true marginal distribution. 

0045 We describe the use of our decomposition model 
and method using an example problem. As shown in FIG. 
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2A, we represent a two dimensional random variable P(x) by 
three 2D-Gaussian functions with diagonal covariances: 

x-M" ...); (5) 

iN DEM" ...) 
0046) We sample P(x) and operate in the discrete domain 
using the discrete forms of the above equations as shown in 
equations (37,38, 38) in Appendix B. The latent variable z 
is also discretized so as to assume only three values, one for 
each component we desire to extract. 

0047 FIGS. 2B-2D show the expected result after forty 
iterations of our EM-like training. FIG. 2B shows the prior 
probabilities P(Z). FIG. 2C shows the marginal probabilities 
from an up-down dimension P(x,z). FIG. 2D shows the 
marginal probabilities from a left-right dimension P(x,z). 
0.048 FIG. 3 shows an approximation to P(x) using our 
PLCA model. By combining, e.g., multiplying, pairs of 
marginal probabilities that are associated with the same 
latent variable, we can describe all of the Gaussian functions 
that originally were used to represent P(x). The latent prior 
probabilities reflect the proper mixing weights, and the 
relative presence of each Gaussian function. The prior 
probabilities properly describe a ratio in the mixture, albeit 
normalized to Sum to one. 

0049 Shift Invariant Probabilistic Latent Component 
Analysis 

0050. The above model is extended to deal with shift 
invariance in real-world data. We discover Surprisingly a 
fundamental relationship with a seemingly unrelated family 
of processes as described below. 

0051 Shift Invariance Along One Dimension 

0.052 First, we consider the problem where we have a 
Somewhat more complex description for each component 
than just a product of marginal distributions. We approxi 
mate a two-dimensional distribution using a set of left-right 
shifting two-dimensional kernel distributions: 

P(x, y) = X. Pors, 3)P(y – t z)dt. (6) 

0053 Instead of multiplying marginal probabilities, we 
now convolve a "kernel” distribution P(x, tz) with an 
impulse distribution P(y-tz) along a left-right dimension. 
The variables y and r are cardinal numbers to make the 
imposed shifting by the convolution operation a meaningful 
operation. 

0054 The kernel distributions extend over both dimen 
sions, whereas the impulse distributions exist only in the 
dimension on which the convolution takes place. An optimal 
estimate for the kernel and impulse distributions is 
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0055. This solution returns the original distribution P(x, 
y), without providing any further insight into its structure. To 
obtain more useful decompositions, we constrain the kernel 
to be Zero outside T.T., i.e., we impose the constraint that 

If P(tz)= (y), then Equation (6) reduces to the PLCA form 
in equation (1). 

0056 We still estimate all three distributions, i.e., prior 
probabilities, kernels and impulse, in Equation (6) given 
P(x, y). In order to perform the estimation using this model, 
we extend the PLCA method to deal with a convolution 
operation. The extensions are described in detail in Appen 
dix C. 

0057 We apply 130 the EM procedure as described 
above. A weight of each latent variable in the expectation 
step is now defined over the parameter t, as well as the latent 
variable Z, and the weight is: 

and the new estimates for P(z), P(x, tz) and P(yz) are 
defined by the proper integrations over the input P(x, y) 
weighted by the contribution R(x, y, t, z): 

0058 Just as before, the above equations are iteratively 
applied until the estimates for P(Z), P(x, tz) and P(yz) 
converge to a desired solution. In the above equations, the 
variables X, y and t are continuous. However, the same 
method can be applied to discrete variables as described in 
Appendix C. 

0059) As shown in FIG. 4, this enables us to deal with 
more complex input data. In this example, we have two 
repeating and shifted patterns that compose the input distri 
bution P(x, y). One pattern 401 is a Gaussian function 
oriented from bottom right to top left, and the other pattern 
402 is a set of two Gaussian functions that form a wedge 
oriented towards the top right. Both of these patterns are not 
easily approximated by products of marginal probabilities as 
in the above described model. However, the patterns can be 
modeled by the convolutive model because the patterns 
exhibit repetition along the left-right axis. 

0060 We analyze this distribution using the discrete form 
as described in Equations (58, 59, 60 and 60) in Appendix 
C. In this particular example, we limited the kernel distri 
butions so that P(x, tz)=0, wit<0, and Te2. The latent 
variable Z is also discretized and assumes only two values 
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(Z and Z). The results of the decomposition of the con 
verged convolutive model are shown in FIGS. 5A-D. 

0061 FIG. 5A shows the left the latent variable prior 
probabilities P(z), FIGS. 5B-C show the two kernel distri 
butions P(x, tz) and P(x, tz), and FIG. 5D shows the 
impulse distributions P(yz). 
0062 FIG. 6 shows a diagram of output data approxi 
mated the input data by combing the components of FIGS. 
SA-SD. 

0063) We see that by convolving the pairs P(x, tz) with 
P(yz), we can model the input very well and also discover 
useful information about its structure. We set the kernel 
distribution P(x, tz) to be non-zero for only a limited 
interval of t. If P(x, tz) are unconstrained, then a variety of 
other solutions, e.g., P(x, tz)=P(x, y), P(yz)=t(y), can be 
obtained that may model P(x) better than the solutions 
obtained in the example. Other forms of partitioning P(x, y) 
in P(x, TZ) and setting P(y Z) to be an appropriate assortment 
of delta functions also provide an adequate solution. There 
fore, like many dimensionality reduction schemes, the lim 
iting of the extent of P(x, tz) forces the kernels to be 
informative. 

0064 Shift Invariance Along Multiple Dimensions 

0065 Having dealt with the case of shift invariance on 
one dimension, we now turn to shift invariance on multiple 
dimensions. Specifically, because we apply our model to 
two-dimensional real-world data, Such as images and spec 
trograms, we present the case of shift invariance on both 
dimensions of a two-dimensional distribution, whose two 
dimensions X and y we designate the “left-right' and “up 
down” dimensions respectively. Generalizations to an arbi 
trary number of dimensions are described in Appendix C. 

0.066 The kernel distributions we derive can be shifted in 
the left-right dimension, but also in the up-down dimension. 
The model for this case is defined using a two-dimensional 
convolution as: 

P(x, y) = X. Po? frt. ty | 2.)P(x - , , y - ty|3) did ty. (11) 

0067. We restrict the kernel distributions P(t, t, z), such 
that P(t, t, z)=0, W(t,T) fit, t, where 9 defines a 
convex region. ) is selected such that its extent is smaller 
than that of the input distribution P(x, y), while the domain 
of the impulse distributions P(x, y, z) is set to be as large as 
the input distribution, so that there is space to shift the kernel 
with respect to the impulse distribution in both dimensions. 

0068 A detailed derivation is described in Appendix C. 
The contribution of each latent variable is over the latent 
variables, and both the convolution parameters t, and ty: 
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0069. As described above, the estimation of the updated 
prior probabilities, kernel and impulse distributions can be 
done by the proper integrations: 

P(x) = III (r. y)R(x, y, t , y, z)d xdydd y (13) 

P(x, y z) = (15 

X + , y + III fretty Fr. ... addrdr. 
0070 The iterative procedure EM procedure is guaran 
teed to obtain a locally optimal estimate for the kernel and 
impulse distributions. However, it is advantageous to utilize 
a modification, whereby, at each iteration, we anneal the 
kernel by raising the kernel to an exponent: 

where 0<C.s 1, initially set to a value less than 1, and c is a 
normalizing constant. As the iterations proceed, it is gradu 
ally raised to 1. 
0071. This procedure can yield a locally optimal estimate 
of the kernel and impulse distributions, and the procedure is 
much more likely to result in meaningful decompositions, 
wherein the kernel captures most of the repetitive structure 
in the distribution, while the impulse distribution includes a 
mixture of impulse, such as peaks, identifying the location 
of the shifted structures, thereby producing a sparse code. 
0072 FIG. 7 shows an input distribution P(x, y). The 
latent variable prior probabilities, kernel and impulse dis 
tributions that are extracted are also shown in FIGS. 8A-8B. 
The kernel distributions have correctly converged to the two 
shifted forms, whereas the impulse distributions are placed 
to perform the proper decomposition. Convolving each pair 
of kernel and impulse distributions, and Summing the dis 
tributions results in a good approximation of the input 
distribution as shown in FIG. 9. 

0.073 Analyzing Real-World Data 
0074. We now describe our ability analyze and extract 
interesting features from complex real world input data. We 
apply our method to applications in two signaling domains, 
acoustic and visual. Instead of performing training directly 
on training data as in the prior art, we perform EM-like 
training on the distribution or the observed histogram. The 
reason this is done is to provide a way to analyze certain 
classes of highly complex distributions and obtain easily 
interpretable results. The class of distributions that we are 
most interested in deal with time-frequency distributions of 
acoustic data, and spatial-intensity distributions of image 
data. 

0075) Acoustic Data 
0076 We start with acoustic signals, where we operate on 
a time-frequency distribution representation. We represent 
an acoustic signal by a distribution of its energy in time and 
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frequency axes. It is effectively a scaled histogram of 
acoustic components that fall in each time and frequency 
grid point. 

0077. We start with an example where only one kernel 
distribution is sought, albeit in multiple shifted positions. 
Our example input data are recorded piano notes, e.g., C, D, 
E, F, D, E, C, G. 

0078. In a note, most of the signal energy is at a funda 
mental frequency, which also defines a pitch of the note. 
Then, decreasing amounts of energy are at higher frequen 
cies, which are integer multiples of the fundamental fre 
quency, the so called harmonics of the note. On a musical 
instrument, such as the piano. Neighboring notes have 
essentially the same energy distribution across frequencies, 
albeit shifted along the frequency axis, assuming a logarith 
mic frequency spacing representation. 
0079. In a time-frequency representation, by playing dif 
ferent notes at different times, we effectively have shifting in 
both the time axis denoting when the note is played, and the 
frequency axis denoting which note is played. 
0080 FIG. 10 shows a constant-Q time-frequency distri 
bution of the piano note sequence, see Brown, J. C., "Cal 
culation of a Constant Q Spectral Transform,” Journal of the 
Acoustical Society of America vol. 89, pp. 425-434, 1991, 
incorporated herein by reference. 

0081. The harmonic series repeat in various shifted posi 
tions to represent each note. We analyzed this time-fre 
quency distribution seeking a single latent variable. Analysis 
of this distribution results into a kernel function that is a 
harmonic series as shown in FIG. 11A, and an impulse 
function that places that series in the time frequency plane 
as shown in FIG. 11B. The approximation to the recon 
structed input is shown in FIG. 12. 
0082 The kernel distribution looks very much like a 
harmonic series, whereas the impulse distribution has 
energy only at the fundamental frequency. The impulse 
distribution indicates where the kernels need to be placed to 
reconstruct the input data. Thus, we have, in an unsupervised 
manner, discovered that the piano recording was constructed 
by single harmonic template shifted appropriately in time 
and frequency. From this analysis, we can define the timbre 
of a piano note, i.e., the kernel distribution, and also perform 
a transcription of the performance by noting a maxima of 
the impulse distribution. 

0083. The same results can be obtained when the piano 
notes overlap in time and are not recorded in relative 
isolation as in the above example. 
0084. In another example application, we extract multiple 
kernel distributions from a speech signal. We analyze a 
magnitude spectrogram representation of male speech and 
determine its kernel distributions. For this application, we 
use about thirty seconds of male speech obtained from the 
TIMIT speech database, Zue, “Speech database develop 
ment at MIT. TIMIT and beyond,” Speech Communication, 
9, 351-356, 1990, incorporated herein by reference. TIMIT 
is a standard database used for the development of signal 
processing and classification processes. We extract 513 
frequencies, which results in a discretized input distribution 
of 513 frequencies over 938 time intervals. We discover 20 
latent variables, and we define the kernel distribution size to 

Jan. 10, 2008 

extend throughout all frequencies but only for 8 time inter 
vals. This kernel size yields bases that are shifted only in 
time, but not in frequency. Because both the kernel and the 
input have the same frequency width, there is no space to 
shift along that dimension. 
0085 FIG. 13 shows the resulting kernel distributions 
from an analysis of the magnitude spectrogram of speech. 
The distributions are stacked from left to right, and separated 
by dotted lines. 
0086 Interestingly, the shape of the distributions corre 
spond to magnitude spectrograms of various speech pho 
nemes, and the time-frequency form of these kernels 
resemble the structure of various phonemes. One can see a 
harmonic structure in each kernel distribution, as well as a 
formant structure characteristic of a phoneme. 
0087. Due to the additivity in this model, qualitatively 
similar results can be obtained when using mixtures of 
speakers as an input. In effect, we find that the building 
blocks of speech are indeed phonemes shifted in various 
parts in time. Analyzing different speaker types results in a 
different set of kernel distributions, i.e., phonemes, which 
reflects the unique nature of each speaker. 
0088) 
0089. Image data (pixels) can be thought of as distribu 
tions, e.g., a probability or count of photons landing on a 
particular point on an optical sensor, i.e., pixel intensities. 
Image data can be decomposed by our method to yield 
interesting results. We start with an example application 
where we wish to extract a single kernel distribution from a 
complex image. 

0090. As shown in FIG. 14, the input data is a 136 by 511 
pixel image of a choir with a multitude of heads shifted at 
various locations in the image. We analyze the input data 
looking for a single latent variable and kernels of pixel 
height 32 and width 24. 

Image data 

0091 After analysis of the input image using our method, 
we obtained a kernel distribution as shown in FIG. 15, with 
color inversion. The kernel distribution corresponds to the 
shape and appearance of an average head. The impulse 
distribution is shown in FIG. 16. The impulse distribution 
indicates the appropriate shifted locations for each choir 
member in the input image. 
0092 FIG. 17 shows a more complex example, which is 
a 81 by 113 pixel image of handwriting. Three types 
characters, e.g., lamda, alpha and gamma, compose the 
image. The characters are located arbitrarily on an x, y grid. 
Analyzing the data according to our model and method, we 
can extract three 15 by 15 kernel distributions shown in FIG. 
18A. The three kernel distributions are actually the three 
characters in the input image. FIG. 18B shows the corre 
sponding prior distributions. The impulse distribution, as 
shown in FIG. 18C, includes spikes at the locations that 
correspond to each character in the input image. 
0093 FIG. 19 shows that an approximation that results 
using this decomposition has the Surprising property of 
streamlining the characters and making all instances of the 
same character look more alike than in the original image. 
The latent variable prior probabilities, shown in FIG. 18B, 
essentially indicate an amount of energy contained in each 
character. The alpha, due to a more elaborate stroke, 
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contains more energy from the gamma, which in turn 
contains somewhat more energy than the less elaborate 
lamda. As in the case of the acoustic data, we can obtain 
qualitatively the same results, even when the characters 
overlap. 
0094) Other Applications 
0.095 Our non-convolutive form of PLCA can essentially 
be characterized as a generalization of Hofmann's probabi 
listic latent semantic analysis (PLSA), Hofmann, T., “Proba 
bilistic Latent Semantic Analysis.” Proceedings of the Fif 
teenth Conference on Uncertainty in Artificial Intelligence, 
UAI'99, 1999, incorporated herein by reference. 
0096. In association with PLSA, our method relates and 
enriches well known data mining methods employing latent 
semantic analysis (LSA), singular value decomposition 
(SVD), and principal component analysis (PCA). 
0097 Our method also is related to PARAFAC, Bro, R., 
“PARAFAC. Tutorial and applications, in Chemometrics 
and Intelligent Laboratory Systems, Volume 38, Issue 2, pp. 
149-171, October 1997, incorporated herein by reference. A 
PARAFAC decompositions attempts to factor multi-linear 
data structures into vector components. That corresponds to 
PLCA for arbitrary dimensional distributions. A key differ 
ence is that PARAFAC processes are predominantly least 
squares approximations to arbitrary input data, whereas our 
method is explicitly approximating probability densities by 
marginal probabilities and has a probabilistic foundation. 
Versions of the PARAFAC process are known for non 
negative inputs. However, to our knowledge no probabilistic 
or convolutive framework has been described in the prior 
art. 

0.098 Also related is non-negative matrix factorization 
(NMF), Lee D. D., and Seung H. S., “Learning the parts of 
objects by non-negative matrix factorization.” Nature, Vol. 
401, No. 6755, pp. 788-791, 21 October, 1999, incorporated 
herein by reference. In NMF, the objective is to factor a 
non-negative matrix using two lower rank non-negative 
matrices. An interesting connection between our method and 
NMF comes through with the cost function, which is mini 
mized when performing NMF. That function is most often an 
adaptation of the Kullback-Leibler divergence for arbitrary 
non-negative functions. That divergence is minimized 
between the input and the product of the estimated factors. 
0099 Interestingly enough, the EM procedure we use for 
PLCA essentially minimize the KL divergence between the 
input probability density and the density specified product of 
marginal probabilities. In a way, the left and right factors in 
NMF correspond to P(x,z), and P(x,z) with P(z) already 
factored. Even though the estimation for NMF and our 
PLCA are radically different, we achieve qualitatively the 
same results for a wide variety of applications in signal 
processing. 

0100 Subsequent convolutive extensions to NMF 
directly correspond to convolutive PLCA. In fact all results, 
which use various forms of NMF, see Smaragdis, P., Brown, 
J. C., “Non-negative Matrix Factorization for Polyphonic 
Music Transcription.” IEEE Workshop on Applications of 
Signal Processing to Audio and Acoustics (WASPAA), pp. 
177-180, October 2003, Smaragdis, P., “Discovering Audi 
tory Objects Through Non-Negativity Constraints. Statis 
tical and Perceptual Audio Processing (SAPA), SAPA 2004, 

Jan. 10, 2008 

October 2004, and Smaragdis, P., “Non-negative Matrix 
Factor Deconvolution; Extraction of Multiple Sound 
Sources from Monophonic Inputs.” International Congress 
on Independent Component Analysis and Blind Signal Sepa 
ration, ISBN: 3-540-23056-4, Vol. 3195/2004, pp.494, Sep 
tember 2004 (Springer Lecture Notes in Computer Science, 
all incorporated herein by reference, can be replicated using 
the embodiments described herein. 

0101. In some way, our method can be related to positive 
deconvolution, Li, L., Speed, T., “Deconvolution of sparse 
positive spikes: is it ill-posed?.” University of California at 
Berkeley, Department of Statistics Technical Report 586, 
2000, incorporated herein by reference. This is a particularly 
desirable operation in the fields of astronomical imaging and 
bio-informatics. The objective is to obtain a non-negative 
deconvolution of both a convolved sequence and a filter 
applied to the sequence. Most prior art methods rely on 
least-squares formulation. 

0102) Our method can be adapted to that problem. If we 
define the filter to be a kernel distribution, then we can 
proceed by performing shift invariant PLCA. However, we 
only update the impulse distribution and keep the kernel 
distribution fixed to the filter we use for the deconvolution. 
Due to the lower number of variables to be estimated, 
convergence is much more rapid than when performing a 
complete shift invariant PLCA. 
0103) A point worthy of some discussion is the exponen 
tiation operation in Equation (16), which we use as a 
mechanism to ensure sparsity on the impulse distributions. 
Although we stopped short of a probabilistic explanation, 
we note that this operation corresponds to information 
theoretic manipulations. 
0.104) The flattening that the exponentiation produces 
causes the entropy of the kernel distributions to increase. 
Because the data we model have a fixed entropy, the 
increased kernel entropy is borrowed from the impulse 
distributions. This forces the entropy of the impulse distri 
butions to decrease, which, in turn, causes this form of 
sparse learning. Alternatively, we can raise the impulse 
distributions to a power greater than one to achieve similar 
results. However, because the kernel distributions are, in 
general Smaller it is more efficient to manipulate them 
instead. This way of forcing sparsity in Such a decomposi 
tion related to sparse NMF, Hoyer, P. O., “Non-negative 
Matrix Factorization with sparseness constraints.” Journal of 
Machine Learning Research 5:1457-1469, 2004, incorpo 
rated herein by reference. 
0105. One consideration is the number and size of com 
ponents that are desired. In most of the examples described 
above, the number and size are known a priori. A larger 
number of components usually has the effect of distributing 
the desired result to more components, thereby providing a 
more detailed description, or otherwise, allocating the com 
ponents to irrelevant information. Fewer components results 
in either non-detection of Some desired components or a 
consolidation of multiple desired components into one. 
0106 Large components can result in overfitting because 
there is little space to shift, whereas Small components end 
up being insufficient to model the input desirably. In general, 
as in many dimensionality reduction processes, it is hard to 
reliably estimate how many and how large components are 
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correct for an optimal result. However, our probabilistic 
enables the use of conventional techniques, such as the 
Schwarz-Bayesian information criterion and other similar 
CaSUS. 

0107. It should also be noted, that if some of the com 
ponents or their weights are known, then these can be used 
to find missing components or weights. That is, the method 
can be used to estimate missing items. This is useful in the 
case where it is known that there is a specific component that 
is, e.g., spatially shifted Such as an image of a face, and the 
amount of shift is unknown. 

Effect of the Invention 

0108. The embodiment of the invention is a method for 
decomposing probability distributions into shift invariant 
components. We presented our approach in gradually com 
plicating cases starting from a simple static model to an 
arbitrary dimensionality and shift invariance model. We also 
provide an EM procedure to perform the decomposition. The 
method can be applied to any arbitrary data set. 

0109) Although the invention has been described by way 
of examples of preferred embodiments, it is to be understood 
that various other adaptations and modifications may be 
made within the spirit and scope of the invention. Therefore, 
it is the object of the appended claims to cover all such 
variations and modifications as come within the true spirit 
and scope of the invention. 

Appendix A 

The Basic Update Rule 

0110. The update rules for PLCA are obtained through a 
variant of the expectation maximization alorithm. We 
attempt to estimate the parameters A of a model P(x; A) for 
the distribution (or density) of a random variable X, such that 
the KL diverence between P(x; A) and the true distribution 
of X, P(x) is minimized. The KL divergence between the two 
is defined by: 

Here E refers to the expectation operator with respect to 
P(x), the true distribution of X. H(X) is the entropy of X. 

0111 Introducing a second random variable Z, and by 
Bayes' rule 

Taking expectations on both side with respect to P(ZX; A). 
i.e. the conditional probability of Z obtained with any 
parameter A', and nothing that log P(X; A) does not depend 
On Z, 

log P(x; A)=Elsa (log P(x, z, A)}-Elsa (log P(zfx, 
A)} (18) 

Combining the above with Equation 17, 
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The KL divergence between two distributions is always 
non-negative (Theorem 2.6.3 in (11)), i.e., D(P(Zx: 
A")||P(ZX; A))20 WA. Hence, assuredly, 

E.E.A (log P(x, z, A)}}e E.E.A (log P(x, z, 
A")}}) D(P(x)|P(x; A))2D(P(x)|P(x; A')) (21) 

0112 I.e., the distance between P(xA) and P(x) is assur 
edly lesser than or equal to the distance between P(x) and 
P(xA) if A minimizes E{Exalog P(x, Z: A)}}. This 
leads to the following iterative update rule for the param 
eters of P(x; A): 

A"'-arg maxAQ(A, A") 
Q(A, A")=E.{EA(n){log P(x, z, A)}} (22) 

where A" is the estimate obtained for A in the n" update. 
Iterations of Equation 22 will result estimates of A that will 
monotonically decrease D(P(x)|P(x; A)). 

Appendix B 

Update Rules for Non-Convolutive Mixture Models 

0113) We define an “integral” operator I{f(x)} such that 
for a continuous variable XI. f(x)} = f(x).dx, while for 
a discrete random variable I {f(x)}=X f(x). By the definition 

0.114) A non-convolutive mixture model for the distribu 
tion of the data is 

(23) 

where x={x}. Note that the above formulation places no 
restriction on Z, which might be either continuous or dis 
crete. Similarly each x, can be continuous or discrete. The 
parameters of this distribution are P(z) and P(x,z), i.e. 
A={P(z), P(x,z): W(z,j)}. We will denote the estimates 
obtained in the n" update by the superscript (n). 
Let us define 

We can now write 

0115 The Update equations are easily derived from 
Equations 22 and 25, with the additional incorporation of 
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Lagrangian terms to enforce the constraints that the total 
probability masses under P(z) and P(x,z) are unity. 
0116 We can express the constrained form of the equa 
tion to be optimized as: 

A(i+1) argmax Q(A, A") (26) 

i 

0117 We note that in general the optimization of 
Ihg(x))} with respect to g(x) leads to 

both for discrete and continuous X, by direct differentiation 
in he former case and by the calculus of variations in the 
latter. 

0118. The (n+1)" estimate of P(z) is obtained by opti 
mizing Q(A, A") with respect to P(z), which gives us 

Since L{P"'(z)}=1 and L{R(x,z)}=1, applying the L{} 
operator to both sides of Equation 28 we get was 1, leading to 
the update equation 

0119) To derive the (n+1)" estimate of P(x,z) we first 
note from reference (10) that 

E{R(x,z)log P(x,z)}=E, log P(x/z)E, R(x, z)}} (30) 
We can therefore rewrite Q(A, A") as 

i 

i 

A.P.A. | 3)}}} + C 
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where C represents all terms that are not a function of 
P(x,z). P(x,) is the true marginal density of x, Optimizing 
Q(A, A") with respect to P'(x,z), we obtain 

Since I (P'(x,z)}=1, we can apply the I,55} operator to 
both sides of the above equation to obtain 

where x/x = {x;izj} represent’s the set of all components of 
X excluding x, Equations 29 and 34 from the final update 
equations. 

0120 IfZ is a discrete random variable, the non-convo 
lutive mixture model is given by 

35 
P(x; A) = X. P(3) P(x,z) (35) 

i & 

The update equations are given by 

If X is a discrete random variable (i.e. every x is discrete), 
the specific form of the update rules (Equations 29 and 34) 
a. 

d xi 
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-continued 

If X is a continuous random variable (i.e. every x is con 
tinuous), the update equations become: 

P(n+1)(c) 

Appendix C 

Update Rules for Shift-Invariant Mixture Models 
0121 The shift-invariant mixture model models the dis 
tribution of some dimensions of a multi-variate random 
variable as a convolution of a density kernel and a shift 
invariant “impulse' density. As before, let X be the multi 
variate random variable. Let y represent the set of compo 
nents of X that are modelled in a shift-invariant manner, and 
w the rest of the components. i.e. X=w Uy and W ?y-p 
(where p represents the null set). 
0122) The shift-invariant model for the distribution of X 
models it as follows: 

where T is a random variable that is defined over the same 
domain as y. The terms to be estimated are P(z), P(w, tz) 
and P(yz). i.e. A={P(z) P(w, tz), P(yz)}. Note that Equa 
tion 43 assumes that the random variable y is cardinal, 
irrespective of whether it is discrete or continuous. Also, as 
before, Z may be either continuous or discrete. 
0123 Let us define 

I0124) The (n+1)" estimate of P(z) is derived identically 
as in Appendix B and is given by 

1. A computer-implemented method for decomposing 
input data acquired of a signal, comprising the steps of 

Sampling an input signal to acquire input data; 
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representing the input data as a probability distribution, in 
which the probability distribution is defined as 

where P(x) is an N-dimensional distribution of a random 
Variable X=X, X. . . . , XN Z is a latent variable, and 
P(x,z) are one-dimensional marginal distributions; and 

applying iteratively an expectation-maximization proce 
dure to the probability distribution to determine com 
ponents of the probability distributions; 

combining the components; and 
producing output data from the combined components, 

the output data approximating the input data; 
storing the output data in a computer-readable medium. 
2. (canceled) 
3. The method of claim 1, in which the signal is an 

acoustic signal. 
4. The method of claim 1, in which the signal is an image. 
5. The method of claim 1, in which the components have 

a reduced dimensionality than the input data. 
6. The method of claim 1, in which the probability 

distribution is represented by arbitrary functions. 
7. The method of claim 6, in which the arbitrary functions 

are continuous Gaussian functions. 
8. The method of claim 1, in which the probability 

distribution is represented by discrete histograms. 
9. The method of claim 1, in which the components are 

shift invariant. 
10. (canceled) 
11. The method of claim 10, in which the latent variable 

is discrete. 
12. The method of claim 10, in which the latent variable 

is continuous. 
13. The method of claim 1, in which the expectation 

maximization process includes an expectation step and a 
maximization step, and in which the steps are iterated until 
a termination condition is reached. 

14. The method of claim 13, in which the expectation 
maximization process produces a sparse code. 

(44) 

(45) 

15. The method of claim 10, further comprising: 
estimating a weight R of the latent variable Zaccording to 

. 
X. Pig II P(x,z) 

z 
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16. The method of claim 15, further comprising: in which P(x,z) contains the latent marginal distribution, 
re-estimating the marginal probabilities using the weight along a dimension of the variable X, relating to the 

to obtain a more accurate estimates latent variable Z, and P(Z) contains a prior probability 
of that latent variable. 

d P(x) ?P(x) R(x,z)dy, 17. The method of claim 1, in which the input data are 
continuous. 

d 
al 18. The method of claim 1, in which the input data are 

? PyRs. a)dyk, w k + i. discrete. 
P(x|a) = , , , , 


