发明名称 车辆悬架的电磁减振器

摘要

一种悬架系统包括：一个由两个圆筒件构成的空气弹簧，其中一个圆筒件在另一个中滑动；以及一个电磁装置，其在电气控制下向空气弹簧供应压力或从空气弹簧吸收压力。空气弹簧和电磁装置优选构成为单一的组合装置。悬架系统可以在完全主动模式下，例如用在车辆悬架系统中，或者也可以仅用作可变减振器。
权利要求书

1. 一种用于将一个部件相对基准表面维持在理想方向上的悬挂系统，该系统包括：一个表面贴合器具；一个悬挂装置，其连接在表面贴合器具与用于向表面贴合器具供应和/或从表面贴合器具吸收力的部件之间，该悬挂装置具有一种预定的基本特性；以及电气器具，其用于改动悬挂装置的基本特性。

2. 如权利要求1所述的悬挂系统，其特征在于，电气器具是一个电磁装置。

3. 如权利要求1或2所述的悬挂系统，其特征在于，悬挂装置由两个圆筒件构成，其中一个圆筒件在一个中滑动，以形成一个容积可变的内腔。

4. 如权利要求3所述的悬挂系统，其特征在于，电气器具包括用于沿着一个圆筒件的长度方向形成一系列交替磁极的器具和用于毗邻另一圆筒件的端部形成磁极的衔铁器具。

5. 如权利要求4所述的悬挂系统，其特征在于，悬挂装置的内腔中充满气体。

6. 如前面权利要求中任一一所述的悬挂系统，其特征在于，电气器具被控制器具控制，以实现一种预定的功能。

7. 如权利要求6所述的悬挂系统，其特征在于，电气控制器具改变悬挂装置的阻尼特性。
8. 如权利要求 6 或 7 所述的悬架系统，其特征在于，控制器具被安置得向悬架系统供应力，以扩张内腔的容积。

9. 如权利要求 6、7 或 8 所述的悬架系统，其特征在于，控制器具控制内腔中的气体压力。
说明 书

车辆悬架的电磁减振器

本发明涉及车辆悬架系统，特别是计算机控制的悬架系统。

用在机动车辆上的传统悬架系统有很多而且是各式各样的，但目前它们都是被动式的。它们的结构可能看上去差别很大，但都采用了两种基本元件，即弹簧和减振器，二者对悬架系统的动
力学性能有重要影响。大多数汽车悬架系统中使用了卷簧、扭杆
或片簧系列等形式的钢制弹簧，尽管将空气、橡胶和塑料复合材
料用作弹簧介质的情况在逐渐增多。减振器是一成不变的液压装
置。这些元件需要在广泛的运行状态下满足驾驶舒适性和车辆操
纵性能这两项相互冲突的性能要求，上述运行状态包括有效载荷
的大范围变化、道路类型和轮廓。在减振器的情况下，无法提供
单一的最佳设置，以满足所有这些要求。为了提供良好的驾驶舒
适性，需要采用低级别设置，除非车体质量受到激荡或位于其谐
振频率附近，而此时就需要采用高级别设置。为了在驾驶操作中
同时控制车体和车轮，还需要采用高级别设置。因此，传统的减
振器设置是一种折衷方案，并且通常被设置在大多数状态下高
于需要，以便充分应付相对不常出现的异常情况。这种折衷方案
的一个后果是，减振器有时会在错误的时间产生强大和不希望有
的力。

因此，为了提供更好的整体性能，一种具有至少两种设置的
可变减振器被提出，它能够在任何一种设置下操作。利用多级减
振器可以获得的益处是高度地取决于可以导致设置改变的车速,
而且不同设置之间是彼此分离的。

作为一种替代性结构，空气悬架系统被以纯粹气动的形式或以液压－气动系统的形式采用。这些空气悬架系统的优点是车辆可以维持在任何预定的高度，附带优点是总能获得大的弹簧偏移。此外，驱动器可以随意改变驾驶高度，这一点对于用于将平台高度带到例如装载码头处或者帮助进入车辆而言特别有益。

最近，液压式“主动悬架”被研制出来。它们被设计得能够通过快速改变每个车轴与车体之间的刚性支柱的长度而消除弹簧悬架的不可避免的俯仰和侧倾动作。（一种此类主动悬架被设想能够根据需要而在凸起处抬升每个车轮并且可将车轮向下推入凹坑中。）问题在于需要连续地实施精确控制的物理运动。显然，每个运动都需要一定的时间来完成，这就限制了在高速下应付小扰动的能力。一定数量的弹簧必须被约束住，以解决这一问题。峰值能量消耗问题和液压系统的复杂性也导致了装置昂贵并且不适合于大体积的应用场合。

本发明提出了一种悬架系统，其中气动悬架装置的动作可被一个电磁致动器改动，而这种改动被一个基于软件的控制器控制，以确定改动后的特性。

电磁致动器产生的力叠加在空气弹簧的力上，并且被快速和精确地控制，以产生理想的效果。电磁致动器可以与一个空气弹簧元件组合，从而形成两个分开的部件或一个整体组件。空气弹簧元件中的压力可以根据施加给悬架的命令而连续调节。

系统是一个非常高速的力调节器，它与其他任何类型的致动器都不相似。为了控制车轮传递到车辆上的力，不需要使任何部
件从它离开。它可以在几近之毫秒内作出反应，从而在车辆运动的每一英寸中使车轮的力能够瞬时选择性地与车辆隔离或与车辆耦合到任何所需程度，即使是在车辆满速行驶的状态下。事实上，这样可以使客车、卡车、越野车或军用车辆能够在及时电控下移动，从而变成一个高精度稳定化的平台。电控系统的机械结构很简单，并且具有内在的可靠性。系统被设计得还能够兼用作空气弹簧，从而根据道路状况、温度变化、车辆负载分布等等而实施自动调节。此外，在被反向驱动时，它可以将运动能量转换成电能。

系统可以在完全主动模式下使用，此时它从车辆直接吸取动力，以便在每个车轮支点处控制竖直力，从而可以实现最安全和最平稳的驾驶。它还可以在半被动模式下操作，此时它从车轮的竖直运动中吸取动力，并且利用这种动力控制车辆的姿势和位置，同时将任何多余的能量以电能的形式传输回中央动力源。

利用电磁致动器的一个优点是，它具有一个衔铁，衔铁相对于定子的位置或位置变化可以用于提供控制信号，该信号被供应到控制器中，以用于一种或多种目的，例如控制衔铁避免行程极限，或者控制空气弹簧的压力。

虽然参照的是空气弹簧和系统，但可以理解，任何气体或气体混合物均可以采用，而非仅限于空气。

悬架系统能够以多个不同的模式操作。它还被安置得能够退化而经过多个性能级别。

为了更容易理解本发明，下面参照附图而以示例的方式描述一个实施例，在附图中:
图 1 是适于用在本发明中的空气弹簧和电磁减振器的组合结构的示意性侧向剖视图；

图 2 是车辆的一个车轮上的悬架系统的示意性框图；

图 3 是车辆的一个车轮上的主动悬架系统的示意性框图。

在详细描述悬架系统之前，希望先描述一下基本弹簧/减振器装置。这可以根据空气弹簧和电磁减振器的整体组件进行描述，但可以理解，组件中的这两个元件可以单独制成，只要它们能够一起起作用即可。

现在转到图 1，图中示出了气动弹簧和电磁减振器的整体组件。该结构基于两个圆筒件，它们优选但不是必须具有圆形横截面。事实上，非圆形横截面在某些特定情况下具有一些优点。圆筒件具有这样的尺寸，即圆筒件 11 可以滑动装配在圆筒件 12 中。圆筒件 11 在其一端被端壁 11a 封闭，而圆筒件 12 被端壁 12a 封闭。在被装配到一起后，圆筒件 11 和 12 构成一个具有封闭内腔的大致圆筒形件，内腔的容积可以通过圆筒件 11 在圆筒件 12 中滑动而改变。

圆筒件 11 在其敞开端带有一个活塞状结构，该结构将圆筒件 11 局部封闭，但没有一个孔 18，用以将圆筒件 11 的内腔与圆筒件 12 的内腔连通。

在通过供气口 20 充入气体后，组件形成了一个弹簧，它的弹簧刚度是根据收缩或伸出时的装置封闭容积比率而选择的。气动力可以在任何时候通过改变组件中的气压而调节。

活塞衔铁使得精确控制的电磁力能够直接叠加到空气弹簧系
统的力上。在本实施例中，衔铁由活塞状元件 16 形成，该元件是由一个或多个磁体元件组件构成的，每个组件分别采用一个磁环 22 和两个低碳钢制环形磁极块 23 的形式。一个定子形成在件 12 的内壁上，而且在本例中定子由沿着件 11 的长度方向安置的多个线圈构成。通过来自衔铁元件的磁通与定子线圈中的电流的作用，可以直接产生电磁力。磁环 22 的实际长度优选与磁极块的实际长度相等，后者又与定子上的每个线圈组件的实际长度相等。

件 11 可以由任何材料制成，因为它没有磁性功能并且只用于将力从气缸传输出来。此外，实际上需要件 11 穿过一个毗邻轴承环 20 的滑动空气密封。不论减振器是沿垂直方向安置的，还是被支承在水平位置而不存在大的承载力，件 11 的外表面均必须是坚硬的并且具有高表面光洁度，以实现密封功能。

此外，现已发现，在件 12 中衬入一个衬管，以便向件 11 及其活塞状元件 16 提供坚硬、光滑的支承表面，是很有益的。

衬管应当尽可能薄，因为它构成了磁性气隙距离的一部分。此外，它应当具有高电阻阻尼，因为否则的话它会相对于件 12 上的电线圈形成短路。另外，在设计组件的整体结构时，必须考虑到热应力，因为线圈在猛烈受激时会出现突然的强烈温度变化。作为这些变化因素所要求的结果，建议衬管可以采用一薄层硬塑料或纤维材料，或许其内表面上可以镀上一层硬质金属膜。

现在转到定子的结构及其线圈控制，线圈被设计得能够被一个以三相电机的形式操作的电驱动装置激励。换言之，线圈被分为三组，每组中的线圈组件与相邻一组中的相位不同。
这一点可以通过下面的方式最方便地实现，即将一个输入电源转换成一个 DC（直流）干线电压（如果它不是已经是 DC 的话），再将其分流出其他三个 DC 电压。这些 DC 电压被这样分布，即它们相对于等于 DC 干线电压一半的电压值对称分布并且变化，但它们彼此之间的相位相差 120°。其结果是，装置中的绕组被三个准 DC 电流激励。这些电流的相位被锁定在活塞状元件 18 的位置处，从而使得推力总是被最优化。为了将定子电流的相位锁定在衔铁位置处，必须设有一个位置传感器，以探测衔铁的位置。该位置传感器可以安置在任何方便的位置上，既可以在定子本身中，也可以安置在系统外侧。

电流的量值（正弦函数的幅值或梯形函数的峰值）将决定推力值。电流量值是通过衔铁的命令位置周围的伺服控制回路的参数而设置的。一个辅助电路用于处理作为激励电流量值和方向的函数的输出信号。这样可以控制与致动器相关的空气弹簧中的压力，从而使系统能效最小化。

由于气动元件中必然存在的密封和支承摩擦以及它们的热动力损失，因此这些因素均会导致空气弹簧的隔离性能下降并将一些车轮力传递到车辆上。电磁致动器用于精确地补偿此产生的任何反作用力以及因车轮竖直运动而引起的任何回复力。

另外，由于车辆重心通常位于各车轮支点所在平面的上方，因此车辆在转弯时趋向于侧倾并在改变速度时趋向于前俯。传统的悬架系统被安置得具有非零弹簧刚度，以抵抗这些运动。本发明的系统能够随着运动的进行而在瞬间产生非常强有力的快速作用的电磁力，以保持车辆平面稳定。每个单独车轮支点处的加速度计可以被安置得能够控制力的瞬时值，从而产生非常强劲的抗
侧倾动作和抗驱动动作。由于四个车轮处的装置产生的向上的合力保持不变，因此车体可以维持在相同高度上。

应当指出，致动器不产生恒定的电磁力。电磁力被瞬时调节，以将车轮支点处的净力保持在这样的值，即车体高度和姿式不会变化。同电磁信号相比，理想的净力值只缓慢地变化（在几百毫秒内而非几分之一毫秒内）。尽管乘车人可能感觉到只是逐渐起反应的，但事实上并非如此。此外，每个车轮支点处的空气弹簧被连续最优化，从而利用一种简单的算法在几秒钟的时间内取平均值，以降低电能消耗。这样可以针对负载分布变化以及漏气、气门故障和温度变化而自动校正。在车辆的使用中，如果驾驶高度相对于粗糙地带而言设置得太低，则这种简单的算法能够自动修正驾驶高度。

一种替代性操作模式是动力学控制的减振器的操作。这种操作以框图的形式显示于图 2 中。在致动器活塞移动时，它将定子的控制线圈中产生电压，该电压与衔铁的瞬时速度成正比。如果线圈保持为开路，则不会有电流流过而且活塞中没有反作用力。然而，如果线圈中出现短路，则反作用力可以很大，这取决于活塞速度。因此，通过控制呈现在线圈上的负载的阻抗，可以控制致动器的速度（以控制它的运动抑制）。应当想起，我们所称的“减振”实际上指的是车轮的竖直运动与车辆自身竖直运动之间的耦合程度。通过改变一个有效连接在定子的相绕组之间的高频开关晶体管的脉冲间隔，图 1 中所示装置的阻尼系数可以在几分之一毫秒内改变。

可以通过调节每个车轮支点处的空气弹簧压力而使车辆的平均高度缓慢变化。然而，也可以通过改变每个悬架装置的阻尼系
数而快速且精确地控制车辆的姿势。例如，适宜的悬架装置可以在车轮向上运动时被加强，从而抵抗不希望有的俯仰和侧倾，但在车轮向下运动时被放松，以使车轮能够保持抓附在路面上。这种控制车轮运动的能力可以使向上运动的速率不必与向下运动相同，这是本发明的一项重要优点。

作为一个实际例子，在移动通过标准级别的地面时，车轮被其空气弹簧悬架支承着行驶。对于不会扰动车辆平均姿势的小量值运动，阻尼系数保持较低，以实现较为平稳的驾驶。然而，在车辆的平均高度或姿势开始变化超过预定极限后，阻尼将非对称地增加，以加强悬架系统，从而抵抗不希望有的运动。

通过与主动模式下利用悬架装置组中中的电流方向控制空气弹簧压力相同的方式，减振电流的平均方向也可以被探测到，并且通过相同方式用于修正每个车轮的平均弹簧设置。

可以理解，图 1 中所示的悬架系统应当包含一个位于其行程下限的柔性元件，例如橡胶端部挡块，以便在主动控制系统、减振器控制系统和空气弹簧控制系统同时失效时产生弹性回复力。

此外，传统的车辆减振器将运动能量转化成热量，而热量被滑动气流吸收。与此相反，图 1 中所示的装置的输出采用的是电能的形式，电能的大部分会通过变流器而反馈到一个中央储能器例如车辆电池中，并被储存在此。除了电能效率以外，这还可以提高车轮保持与路面接触的力，并且实现更平稳的驾驶。

现在转到图 3，图中示出了整个电磁气动悬架系统的功能框图。悬架部分 30（活塞和推力管、附加接头或附件）通过一个空气弹簧 31 而与定子体分开，但这种分离由于以块 32 表示的活塞
轴承和密封中的摩擦作用而退化。电磁力直接作用在活塞与定子之间，并且超过了其他力。这以块 33 表示。

在使用中，这个活塞装置在车辆的车轮支点与车轮的转向轴之间，以承担所有的竖直力。横向力被传统的悬臂例如叉杆承担。

可以认识到，在活塞行程的极限内，从车轮传递到车轮支点上的力可以通过电磁力而被精确地控制。一个力传感器 35 用于控制线圈系统中的电流，从而不论车轮的竖直运动如何，总能将向上的合力保持在恒定值。这个“恒定”力的量值反过来又可以通过车轮支点加速度计 36 的输出值而确定，从而保持车辆稳定，以抵抗俯仰和侧倾运动，例如，一个力控制回路系统 40 将来自加速度计 36 的输出信号、来自活塞位置传感器的输出信号以及其他必要的输入信号作为输入信号接收，以产生一个信号，该信号在经过处理后用于控制线圈系统电流，从而不论车轮的竖直运动如何，总能将合力保持在恒定值。作为示例，这个力的理想“恒定”值是变化的，从而可以保持车辆稳定，以抵抗俯仰和侧倾运动。如果需要电磁系统提供主要向下作用的力，则压力增大，反之亦然。这以块 41 表示。

在每个车轮支点处的车辆驾驶高度可以从活塞的平均伸出长度计算出来，因此可以通过从外界向每个活塞控制器输入信号而改动车辆的姿势或离地间隙。悬架活塞移动到其新的平均位置，而空气弹簧压力被自动调节到适合的值。这以驾驶高度控制块 42 表示，该控制块将来自活塞位置传感器的输出信号作为主要输入信号接收。

通过类似的方式，因车辆对粗糙地带作出反应而引起的作用
在所有车轮上的一系列的强劲向下作用（抬升车体）的电磁力可以自动导致空气弹簧压力升高，并且使驾驶高度增大。可以引入一个程序控制的偏压结构，以使车辆从位于平滑表面上的小离地间隙自动移动到位于粗糙地面上的大离地间隙。

从上面的描述可以清楚地看到，流过电枢活塞中的电流的量值和方向被连续探测，从而提供出用在相关空气弹簧控制系统中的信号。电流信号被连续积分（或者电流信号的平方，或他任何从电流信号或电流信号平方推导出来或相关的参数被积分），再与正或负的临界值进行比较，从而控制空气弹簧压力。通过探测竖直力矢并且改动各个车轮的高度命令，可以将特定的车辆方向强加在悬架系统上，以便车辆自动地“倾斜”变化一回。此外，这还可以用于使车辆“前屈”，以便接触到货物或者使得残疾人能够进入公共设施车辆和类似物中。

系统的另一个优点是，能够在同一电气和机械结构中采用不同程度的复杂性。利用预定阻尼率的减振器系统，可以从完全主动悬架系统变化到半被动式可变阻尼率减振器，最终变化到只有空气弹簧的模式。可以理解，完全主动系统中可以设有适宜的退回位置，从而可以在多个模式失误的情况下适度地最终停靠在橡胶端部挡块上。换言之，完全主动系统可以完全变成这样一个模式，即它被用作半被动式可变阻尼率减振器，此时用于产生力的能量可以从车轮沿竖直方向的运动得到，从而减轻中央储能器的负载，使之不必供应产生力所需的所有能量。接下来的一种退化模式是减振器系统不再受控，而仅仅具有跨过定子的固定就位减振功能，从而相当于一个液压减振器。然而，此时空气弹簧压力仍然根据每个减振器中的电流方向而变向。接下来的一种退化模
式是车辆只被仅具有内部摩擦减振功能的空气弹簧支承着。尽管如此，弹簧压力仍继续自动变向，以将车辆带到适合于行驶状态的最佳高度和姿势。接下来的模式是取消空气弹簧的变向功能并将它们设置在欠压力，最终使车辆只支承在止动挡块上而慢速行驶。

所有上述模式或其中的一种选择可以根据需要而设置。
图2

半被动式伺服活塞悬架的减振控制系统示意图
图3