

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2012-169625

(P2012-169625A)

(43) 公開日 平成24年9月6日(2012.9.6)

(51) Int.Cl.

H01L 33/00 (2010.01)

F 1

H01L 33/00

J

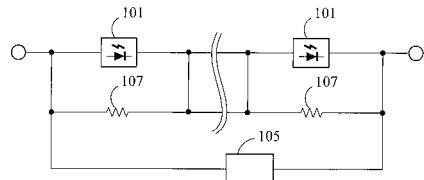
テーマコード(参考)

5 F 1 4 1

審査請求 未請求 請求項の数 10 O L 外国語出願 (全 30 頁)

(21) 出願番号 特願2012-27982 (P2012-27982)
 (22) 出願日 平成24年2月13日 (2012.2.13)
 (31) 優先権主張番号 13/025, 284
 (32) 優先日 平成23年2月11日 (2011.2.11)
 (33) 優先権主張国 米国 (US)
 (31) 優先権主張番号 13/025, 320
 (32) 優先日 平成23年2月11日 (2011.2.11)
 (33) 優先権主張国 米国 (US)

(71) 出願人 599075531
 楊 泰和
 台湾 彰化県溪湖鎮▲汁▼頭里中興8街5
 9号
 (74) 代理人 100093779
 弁理士 服部 雅紀
 (72) 発明者 楊 泰和
 台湾彰化県溪湖鎮▲汁▼頭里中興8街5 9
 号
 F ターム(参考) 5F141 AA23 BB22 BB25


(54) 【発明の名称】 LED装置

(57) 【要約】

【課題】 壊れにくいLED装置を提供する。

【解決手段】 本発明は、複数個の同極性直列接続式LED(101)のセットの両端に電圧制限素子(105)を並列接続することによって、電圧制限素子(105)を共用する。また、各LED(101)の両端に別々に均圧抵抗(107)を並列接続することによりLED(101)を過電圧から保護し、電源から来るサージ電圧が現れるとき共用の電圧制限素子(105)を通して吸収することによって、各LED(101)が瞬間的な過電圧及び過電流により壊れることを防ぐ。

【選択図】図3

【特許請求の範囲】

【請求項 1】

2個以上の同極性直列接続式LEDセットの両端に共用の電圧制限素子を並列接続するとともに、各LEDの両端に均圧抵抗を並列接続することによって構成される発光素子ユニットを有するLED装置であって、

前記LED(101)は発光ダイオードによって構成され、

前記電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子によって構成され、

前記均圧抵抗(107)は、電阻性素子によって構成され、各前記LEDの両端に並列接続され、

前記発光素子ユニットは、2個以上の前記LED(101)を同極になるように直列接続した両端に、1個の共用の前記電圧制限素子(105)を並列接続するとともに、各前記LED(101)の両端に前記均圧抵抗(107)を並列接続することによって構成されていることを特徴とするLED装置。

【請求項 2】

前記LED(101)は発光ダイオードによって構成され、

前記電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子によって構成され、

前記均圧抵抗(107)は、電阻性素子によって構成され、各前記LEDの両端に並列接続され、

前記発光素子ユニットは、2個以上の前記LED(101)を同極になるように直列接続した両端に、1個の共用の前記電圧制限素子(105)を並列接続するとともに、各前記LED(101)の両端に前記均圧抵抗(107)を並列接続することによって構成され、

複数個の前記発光素子ユニットを同極になるように直列接続または直列・並列接続することによって構成された発光素子セットを有することを特徴とする請求項1に記載のLED装置。

【請求項 3】

前記LED(101)は発光ダイオードによって構成され、

前記電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子によって構成され、

前記均圧抵抗(107)は、電阻性素子によって構成され、各前記LEDの両端に並列接続され、

前記発光素子ユニットは、2個以上の前記LED(101)を同極になるように直列接続した両端に、1個の共用の前記電圧制限素子(105)を並列接続するとともに、各前記LED(101)の両端に前記均圧抵抗(107)を並列接続することによって構成され、

2個の前記発光素子ユニットは、互いに逆極になるように直列接続されていることを特徴とする請求項1に記載のLED装置。

【請求項 4】

前記LED(101)は発光ダイオードによって構成され、

前記電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子によって構成され、

前記均圧抵抗(107)は、電阻性素子によって構成され、各前記LEDの両端に並列接続され、

前記発光素子ユニットは、2個以上の前記LED(101)を同極になるように直列接続した両端に、1個の共用の前記電圧制限素子(105)を並列接続するとともに、各前記LED(101)の両端に前記均圧抵抗(107)を並列接続することによって構成され、

前記発光素子セットは、複数個の前記発光素子ユニットを同極になるように直列接続ま

10

20

30

40

50

たは直列・並列接続することによって構成され、

2個以上の前記発光素子セットは、互いに逆極になるように直列接続されていることを特徴とする請求項2に記載のLED装置。

【請求項5】

前記LED(101)は発光ダイオードによって構成され、

前記電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子によって構成され、

前記均圧抵抗(107)は、電阻性素子によって構成され、各前記LEDの両端に並列接続され、

前記発光素子ユニットは、2個以上の前記LED(101)を同極になるように直列接続した両端に、1個の共用の前記電圧制限素子(105)を並列接続するとともに、各前記LED(101)の両端に前記均圧抵抗(107)を並列接続することによって構成され、

2個の前記発光素子ユニットは、互いに逆極になるように直列接続され、

2個の前記発光素子ユニットの両端に別々に接続する逆極性並列接続式ダイオード(106)をさらに備えていることを特徴とする請求項3に記載のLED装置。

【請求項6】

前記LED(101)は発光ダイオードによって構成され、

前記電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子によって構成され、

前記均圧抵抗(107)は、電阻性素子によって構成され、各前記LEDの両端に並列接続され、

前記発光素子ユニットは、2個以上の前記LED(101)を同極になるように直列接続した両端に、1個の共用の前記電圧制限素子(105)を並列接続するとともに、各前記LED(101)の両端に前記均圧抵抗(107)を並列接続することによって構成され、

前記発光素子セットは、複数個の前記発光素子ユニットを同極になるように直列接続または直列・並列接続することによって構成され、

2個以上の前記発光素子セットは、互いに逆極になるように直列接続され、

逆極になるように直列接続された2個以上の前記発光素子セットのうち、同極になるように直列接続または直列・並列接続された1個または複数個の前記発光素子セットの両端に別々に接続する逆極性並列接続式ダイオード(106)をさらに備えていることを特徴とする請求項4に記載のLED装置。

【請求項7】

前記LED(101)は発光ダイオードによって構成され、

前記電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子によって構成され、

前記均圧抵抗(107)は、電阻性素子によって構成され、各前記LEDの両端に並列接続され、

前記発光素子ユニットは、前記LEDの両端に前記電圧制限素子および前記均圧抵抗を並列接続することによって構成され、

2個以上の前記発光素子ユニットを同極になるように直列接続または直列・並列接続することによって構成された発光素子セットを有することを特徴とする請求項1に記載のLED装置。

【請求項8】

前記LED(101)は発光ダイオードによって構成され、

前記電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子によって構成され、

前記均圧抵抗(107)は、電阻性素子によって構成され、各前記LEDの両端に並列接続され、

10

20

30

40

50

前記発光素子ユニットは、前記LEDの両端に前記電圧制限素子および前記均圧抵抗を並列接続することによって構成され、

前記発光素子セットは、2個以上の前記発光素子ユニットを同極になるように直列接続または直列・並列接続することによって構成され、

2個以上の前記発光素子セットは、互いに逆極になるように直列接続されていることを特徴とする請求項7に記載のLED装置。

【請求項9】

前記LED(101)は、1個の発光ダイオードから構成されるか、或いは、互いに直列接続または並列接続または直列・並列接続された複数個の発光ダイオードからなるLEDユニットから構成されていることを特徴とする請求項1~8のいずれか一項に記載のLED装置。 10

【請求項10】

前記電圧制限素子(105)は、ツェナーダイオード、バリスタ、順方向電圧降下を持つダイオード、および、逆極性順方向電圧降下を持つツェナーダイオードのうち1個から構成されるか、或いは、ツェナーダイオード、バリスタ、順方向電圧降下を持つダイオード、および、逆極性順方向電圧降下を持つツェナーダイオードのうち少なくとも一種以上であり且つ複数個の素子が互いに同極になるように直列接続または並列接続または直列・並列接続されてなる素子ユニットから構成されていることを特徴とする請求項1~8のいずれか一項に記載のLED装置。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、直列接続された複数個のLEDを備えているLED装置に関する。

【背景技術】

【0002】

従来のLED装置は、LEDの両端に例えばツェナーダイオード等の電圧制限素子を並列接続することによって構成した発光素子ユニットを有し、LEDにかかる電圧が異常に上昇するときツェナーダイオードにより異常電圧を吸収する。

【先行技術文献】

【特許文献】

【0003】

【特許文献1】特開2005-072432号公報

【発明の概要】

【発明が解決しようとする課題】

【0004】

LEDの両端にツェナーダイオードを並列接続することによって構成した複数個の発光素子ユニットを直列接続または直列・並列接続することによって発光素子セットを構成する場合、LEDまたはツェナーダイオードの特性が異なることに起因して電圧分布が不均一であるために異常高電圧になったとき、受け端の電圧が比較的高いLEDを通過する電流が大きくなるため、LED装置が壊れるという欠点がある。 40

本発明は、壊れにくいLED装置を提供することを目的とする。

【課題を解決するための手段】

【0005】

本発明は、複数個の同極性直列接続式LEDセットの両端に電圧制限素子を並列接続することによって、電圧制限素子を共用することを特徴としている。また、各LEDの両端に別々に均圧抵抗を並列接続することにより、LEDを過電圧から保護することを特徴としている。

【図面の簡単な説明】

【0006】

【図1】従来のLED装置であって、1個のLEDと1個の電圧制限素子とを並列接続す

10

20

30

40

50

ることによって発光素子ユニットを構成し、2個以上の発光素子ユニットを同極になるように直列接続することにより発光素子セットを構成するLED装置を示す模式図である。

【図2】従来のLED装置であって、2個の発光素子セットを逆極になるように直列接続することによって構成されたLED装置を示す模式図である。

【図3】本発明の第1実施形態によるLED装置であって、2個以上の同極性直列接続式LEDセットの両端に1個の共用の電圧制限素子を並列接続するとともに、各LEDの両端に均圧抵抗を並列接続することによって発光素子ユニットを構成するLED装置を示す模式図である。

【図4】本発明の第2実施形態によるLED装置であって、図3に示す発光素子ユニットの複数個を同極になるように直列接続または直列・並列接続することによって、発光素子セットを構成するLED装置を示す模式図である。

【図5】本発明の第3実施形態によるLED装置であって、図3に示す発光素子ユニットの複数個を逆極になるように直列接続するLED装置を示す模式図である。

【図6】本発明の第4実施形態によるLED装置であって、図4に示す発光素子セットの複数個を逆極になるように直列接続するLED装置を示す模式図である。

【図7】本発明の第5実施形態によるLED装置であって、図5に示す両発光素子ユニットの両端に別々に接続する逆極性並列接続式ダイオードを備えるLED装置を示す模式図である。

【図8】本発明の第6実施形態によるLED装置であって、図6に示す逆極になるように直列接続された2個以上の発光素子セットのうち、同極になるように直列接続された複数個の発光素子セットの両端に別々に接続された逆極性並列接続式ダイオードを備えるLED装置を示す模式図である。

【図9】本発明の第7実施形態によるLED装置であって、2個以上のLEDと電圧制限素子および均圧抵抗とを並列接続することにより構成された発光素子ユニットを、同極になるように直列接続または直列・並列接続することによって発光素子セットを構成するLED装置を示す模式図である。

【図10】本発明の第8実施形態によるLED装置であって、図9に示す発光素子セットの2個を逆極になるように直列接続するLED装置を示す模式図である。

【発明を実施するための形態】

【0007】

本発明におけるLEDは、発光ダイオード (light-emitting diode) の略称である。

従来のLED装置は、LEDの両端に例えばツェナーダイオード等の電圧制限素子を並列接続することによって発光素子ユニットを構成し、LEDにかかる電圧が異常に上昇するときツェナーダイオードにより異常電圧を吸収する。ところが、LEDの両端にツェナーダイオードを並列接続することによって構成した複数個の発光素子ユニットを直列接続または直列・並列接続することによって発光素子セットを構成する場合、LEDまたはツェナーダイオードの特性が異なることに起因して電圧分布が不均一であるために異常高電圧になったとき、受け端の電圧が比較的高いLEDを通過する電流が大きくなるために、LED装置が壊れるという欠点がある。

【0008】

本発明は、複数個の同極性直列接続式LEDセットの両端に電圧制限素子を並列接続することによって、電圧制限素子を共用する。また、各LEDの両端に別々に均圧抵抗を並列接続することによりLEDを過電圧から保護し、電源から来るサージ電圧が現れるとき共用の電圧制限素子を通して吸収することによって、各LEDが瞬間的な過電圧及び過電流により壊れることを防ぐ。

【0009】

図1に、従来の回路であって、1個のLEDと1個の電圧制限素子を並列接続することにより発光素子ユニットを構成し、2個以上の発光素子ユニットを同極になるように直列接続することにより発光素子セットを構成する回路の模式図を示す。

10

20

30

40

50

【0010】

図1に、1個のLEDと1個のツェナーダイオードとを同極になるように並列接続することにより発光素子ユニットを構成し、2個以上の発光素子ユニットを同極になるように直列接続または直列・並列接続することにより従来の発光素子セットを構成することを示す。

【0011】

図2に、従来のLED装置であって、2個の発光素子セットを逆極になるように直列接続することによって構成されたLED装置の模式図を示す。

図2に、1個のLEDと1個のツェナーダイオードとを並列接続することにより発光素子ユニットを構成し、2個以上の発光素子ユニットを同極になるように直列接続することにより発光素子セットを構成し、2個以上の発光素子セットを逆方向に直列接続することにより従来のLED装置を構成することを示す。

10

【0012】

(第1実施形態)

図3に、本発明の第1実施形態によるLED装置であって、2個以上の同極性直列接続式LEDセットの両端に1個の共用の電圧制限素子を並列接続するとともに、各LEDの両端に均圧抵抗を並列接続することによって発光素子ユニットを構成するLED装置の模式図を示す。

図3の主な構成は下記を含む。

LED(101)は、発光ダイオードによって構成されている。

20

電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子、例えばツェナーダイオードまたはバリスタによって構成されている。

均圧抵抗(107)は、電阻性素子によって構成され、各LEDの両端と並列接続する。

2個以上のLED(101)を同極になるように直列接続した両端に、1個の共用の電圧制限素子(105)を並列接続するとともに、各LED(101)の両端に均圧抵抗(107)を並列接続することによって、発光素子ユニットを構成する。

【0013】

(第2実施形態)

図4に、本発明の第2実施形態によるLED装置であって、図3に示す発光素子ユニットの複数個を同極になるように直列接続または直列・並列接続することによって、発光素子セットを構成するLED装置の模式図を示す。

30

図4の主な構成は下記を含む。

LED(101)は、発光ダイオードによって構成されている。

電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子、例えばツェナーダイオードまたはバリスタによって構成されている。

均圧抵抗(107)は、電阻性素子によって構成され、各LEDの両端と並列接続する。

2個以上のLED(101)を同極になるように直列接続した両端に、1個の共用の電圧制限素子(105)を並列接続するとともに、各LED(101)の両端に均圧抵抗(107)を並列接続することによって、発光素子ユニットを構成する。

40

複数個の発光素子ユニットを同極になるように直列接続または直列・並列接続することによって、発光素子セットを構成する。

【0014】

(第3実施形態)

図5に、本発明の第3実施形態によるLED装置であって、図3に示す発光素子ユニットの複数個を逆極になるように直列接続するLED装置の模式図を示す。

図5の主な構成は下記を含む。

LED(101)は、発光ダイオードによって構成されている。

電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半

50

導体素子、例えばツェナーダイオードまたはパリスタによって構成されている。

均圧抵抗(107)は、電阻性素子によって構成され、各LEDの両端と並列接続する。

2個以上のLED(101)を同極になるように直列接続した両端に、1個の共用の電圧制限素子(105)を並列接続するとともに、各LED(101)の両端に均圧抵抗(107)を並列接続することによって、発光素子ユニットを構成する。

2個の発光素子ユニットは、逆極になるように直列接続されている。

【0015】

(第4実施形態)

図6に、本発明の第4実施形態によるLED装置であって、図4に示す発光素子セットの複数個を逆極になるように直列接続するLED装置の模式図を示す。

図6の主な構成は下記を含む。

LED(101)は、発光ダイオードによって構成されている。

電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子、例えばツェナーダイオードまたはパリスタによって構成されている。

均圧抵抗(107)は、電阻性素子によって構成され、各LEDの両端と並列接続する。

2個以上のLED(101)を同極になるように直列接続した両端に、1個の共用の電圧制限素子(105)を並列接続するとともに、各LED(101)の両端に均圧抵抗(107)を並列接続することによって、発光素子ユニットを構成する。

複数個の発光素子ユニットを同極になるように直列接続または直列・並列接続することによって、発光素子セットを構成する。

2個以上の発光素子セットは、逆極になるように直列接続されている。

【0016】

(第5実施形態)

図7に、本発明の第5実施形態によるLED装置であって、図5に示す両発光素子ユニットの両端に別々に接続する逆極性並列接続式ダイオードを備えるLED装置の模式図を示す。

図7の主な構成は下記を含む。

LED(101)は、発光ダイオードによって構成されている。

電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子、例えばツェナーダイオードまたはパリスタによって構成されている。

均圧抵抗(107)は、電阻性素子によって構成され、各LEDの両端と並列接続する。

2個以上のLED(101)を同極になるように直列接続した両端に、1個の共用の電圧制限素子(105)を並列接続するとともに、各LED(101)の両端に均圧抵抗(107)を並列接続することによって、発光素子ユニットを構成する。

2個の発光素子ユニットは、逆極になるように直列接続されている。

逆極性並列接続式ダイオード(106)は、発光素子ユニットの両端に別々に接続されている。

【0017】

(第6実施形態)

図8に、本発明の第6実施形態によるLED装置であって、図6に示す逆極になるように直列接続された2個以上の発光素子セットのうち、同極になるように直列接続された複数個の発光素子セットの両端に別々に接続された逆極性並列接続式ダイオードを備えるLED装置の模式図を示す。

図8の主な構成は下記を含む。

LED(101)は、発光ダイオードによって構成されている。

電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子、例えばツェナーダイオードまたはパリスタによって構成されている。

10

20

30

40

50

均圧抵抗(107)は、電阻性素子によって構成され、各LEDの両端と並列接続する。

2個以上のLED(101)を同極になるように直列接続する両端に、1個の共用の電圧制限素子(105)を並列接続するとともに、各LED(101)の両端に均圧抵抗(107)を並列接続することによって、発光素子ユニットを構成する。

複数個の発光素子ユニットを同極になるように直列接続または直列・並列接続することによって、発光素子セットを構成する。

2個以上の発光素子セットは、逆極になるように直列接続されている。

逆極性並列接続式ダイオード(106)は、逆極になるように直列接続された2個以上の発光素子セットのうち、同極になるように直列接続または直列・並列接続された複数個の発光素子セットの両端に別々に接続されている。

10

【0018】

(第7実施形態)

図9に、本発明の第7実施形態によるLED装置であって、2個以上のLEDと電圧制限素子および均圧抵抗とを並列接続することにより構成された発光素子ユニットを、同極になるように直列接続または直列・並列接続することによって発光素子セットを構成するLED装置の模式図を示す。

図9の主な構成は下記を含む。

LED(101)は、発光ダイオードによって構成されている。

電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子、例えばツェナーダイオードまたはバリスタによって構成されている。

均圧抵抗(107)は、電阻性素子によって構成され、LEDの両端に並列接続されている。

LEDと電圧制限素子および均圧抵抗とを並列接続することによって、発光素子ユニットを構成する。

2個以上の発光素子ユニットを同極になるように直列接続または直列・並列接続することによって、発光素子セットを構成する。

【0019】

(第8実施形態)

図10に、本発明の第8実施形態によるLED装置であって、図9に示す発光素子セットの2個を逆極になるように直列接続するLED装置の模式図を示す。

30

図10の主な構成は下記を含む。

LED(101)は、発光ダイオードによって構成されている。

電圧制限素子(105)は、過電圧となったときインピーダンスが速やかに下降する半導体素子、例えばツェナーダイオードまたはバリスタによって構成されている。

均圧抵抗(107)は、電阻性素子によって構成され、LEDの両端と並列接続している。

LEDと電圧制限素子および均圧抵抗とを並列接続することによって、発光素子ユニットを構成する。

2個以上の発光素子ユニットを同極になるように直列接続または直列・並列接続することによって、発光素子セットを構成する。

40

2個以上の発光素子セットは、逆極になるように直列接続されている。

【0020】

上述の実施形態によるLED装置の電源は、定電流電源、定電圧電源、電流電源制限、限圧電源または電流または電圧の制御が行われていない電源を用いることができる。ただし本発明の電圧制限素子の稼働に合わせて、電源出力側の本体の中にあるインピーダンス、または電源出力端と負荷との間にインピーダンス素子を連続設置することによって、電源や電圧が変動するとき、電圧制限素子を流れる電流を通して、インピーダンス素子の両端で電圧降下を変化させることにより、LED装置の両端の電圧を調節する。

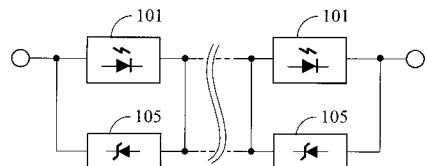
【0021】

50

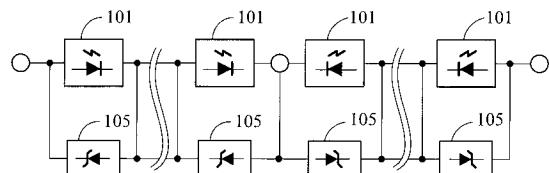
〔他の実施形態〕

本発明の他の実施形態では、LED(101)は、1個の発光ダイオードから構成される場合のみならず、互いに直列接続または並列接続または直列・並列接続された複数個の発光ダイオードからなるLEDユニットから構成されてもよい。

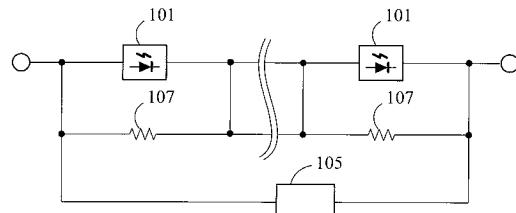
【0022】

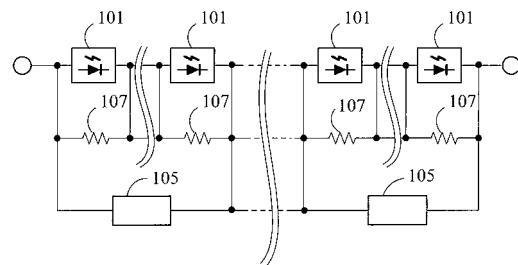

本発明の他の実施形態では、電圧制限素子(105)は、ツェナーダイオード、バリスタ、順方向電圧降下を持つダイオード、および、逆極性順方向電圧降下を持つツェナーダイオードのうち1個から構成されること、および、ツェナーダイオード、バリスタ、順方向電圧降下を持つダイオード、および、逆極性順方向電圧降下を持つツェナーダイオードのうち少なくとも一種以上であり且つ複数個の素子が互いに同極になるように直列接続または並列接続または直列・並列接続されてなる素子ユニットから構成されることを含む。
10

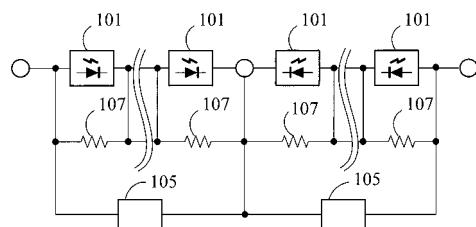
【符号の説明】

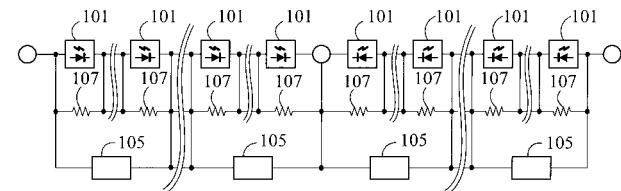

【0023】

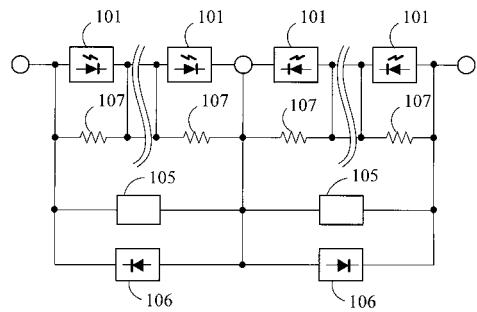
- 101・・・LED
- 105・・・電圧制限素子
- 106・・・ダイオード
- 107・・・均圧抵抗

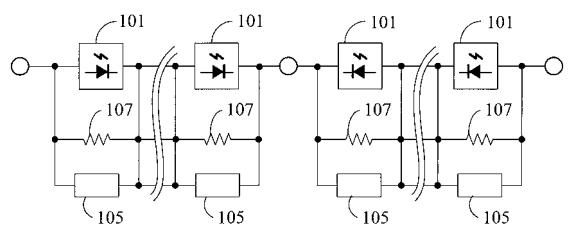

【図1】

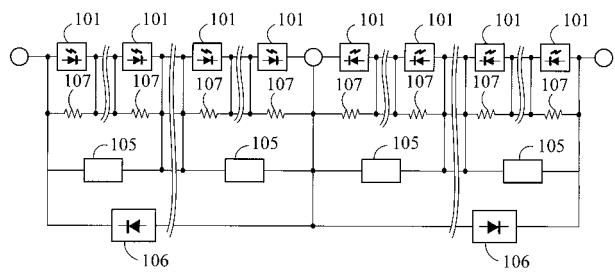

【図2】

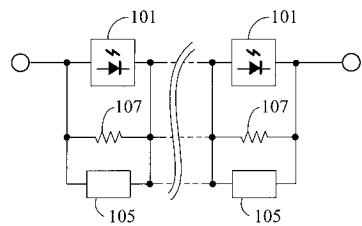

【図3】


【図4】


【図5】


【図6】


【図7】


【図10】

【図8】

【図9】

【外国語明細書】

**TITLE : LED DEVICE WITH SHARED VOLTAGE-LIMITING
UNIT AND INDIVIDUAL VOLTAGE-EQUALIZING
RESISTANCE**

5

BACKGROUND OF THE INVENTION

(a) Field of the Invention

According to the present invention, hereinafter the term “LED” is the abbreviation of the light-emitting diode;

The present invention relates to a LED device with shared voltage-limiting unit and individual voltage-equalizing resistance, wherein two ends of a LED set constituted by a plurality of same-polarity series LEDs are in parallel connected with a shared voltage-limiting unit, and two ends of individual LED are respectively in parallel connected with an voltage-equalizing resistance for providing an overvoltage protection to the LEDs, so when surge voltage from a power source is generated, the surge voltage can be absorbed by the shared voltage-limiting unit, so that individual LED is protected from being damaged due to instant overvoltage or overcurrent.

(b) Description of the Prior Art

Conventional LEDs usually parallel connect with the voltage-limiting units at two ends of each LED, such as the zener diode, to constitute the light-emitting unit, thereby when the end voltage of LED is abnormally increased, the abnormal voltage is absorbed by the zener diode; however, when the light-emitting units being parallel connected by the above mentioned LED and the zener diode are series connected (including series-parallel connected) in plural sets to constitute the light-emitting unit, the voltage is not able to be evenly distributed due to the different properties of the LED and the zener diode, so that when subject to abnormal high voltage, the LED loaded with higher end voltage is passed by the higher current therefore the LED is often damaged.

SUMMARY OF THE INVENTION

The present invention provides a LED device with shared voltage-limiting unit and individual voltage-equalizing resistance, wherein
5 two ends of a LED set constituted by a plurality of normal-polarity series LEDs are in parallel connected with a shared voltage-limiting unit, and two ends of individual LED are respectively in parallel connected with an voltage-equalizing resistance for providing an overvoltage protection to the LEDs

10

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a circuit schematic diagram showing that a conventional light-emitting unit is constituted by a LED being in parallel connected with a voltage-limiting unit, and two or more than two of the
15 light-emitting units are series connected in same-polarity to constitute the light-emitting unit set.

FIG. 2 is a schematic view showing a conventional LED device constituted by two light-emitting unit sets being series connected in the reverse polarity.

20 FIG. 3 is a circuit schematic diagram of the present invention showing that two or more than two series-connected LED sets in the same polarity are parallel connected with a shared voltage-limiting unit at two ends thereof, and two ends of individual LED are respectively in parallel connected with a voltage-equalizing resistance and thereby constitute the
25 light-emitting unit.

FIG. 4 is a circuit schematic diagram showing that the plural light-emitting units as shown in FIG. 3 are series connected or series-parallel connected in the same polarity to constitute the light-emitting unit set.

30 FIG. 5 is an applied circuit schematic diagram of present invention

showing that two light-emitting units as shown in FIG. 3 are series connected in reverse polarity.

5 FIG. 6 is an applied circuit schematic diagram of present invention showing that two or more than two light-emitting unit sets as shown in FIG. 4 are series connected in the reverse polarity.

FIG. 7 is an applied circuit schematic diagram of present invention showing that the two ends of the two series-connected light-emitting units in the reverse polarity as shown in FIG. 5 are respectively parallel connected with the diodes in the reverse polarity.

10 FIG. 8 is an applied circuit schematic diagram of present invention showing that the two ends of same-polarity series light-emitting unit sets of different polarity sides, which are series connected in the reverse polarity, as shown in FIG. 6 are respectively parallel connected with the diode in the reverse polarity.

15 FIG. 9 is a circuit schematic diagram showing that two or more than two of the light-emitting units, which are constituted by a LED being connected in parallel with a voltage-limiting unit then connected in parallel with a voltage-equalizing resistance, are connected in series or in series-parallel in the same polarity to constitute the light-emitting unit set.

20 FIG. 10 is an applied circuit schematic diagram wherein two or more than two of the light-emitting unit sets as shown in FIG. 9 are in reverse-polarity series connection

DESCRIPTION OF MAIN COMPONENT SYMBOLS

25 101 : LED Light-emitting diode

105 : Voltage-limiting unit

106 : Diode

107 : Voltage-equalizing resistance

30 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Conventional LEDs usually parallel connect with the voltage-limiting units at two ends of each LED, such as the zener diode, to constitute the light-emitting unit, thereby when the end voltage of LED is abnormally increased, the abnormal voltage is absorbed by the zener diode; however, when the light-emitting units being parallel connected by the above mentioned LED and the zener diode are series connected (including series-parallel connected) in plural sets to constitute the light-emitting unit, the voltage is not able to be evenly distributed due to the different properties of the LED and the zener diode, so that when 10 subject to abnormal high voltage, the LED loaded with higher end voltage is passed by the higher current therefore the LED is often damaged.

The present invention relates to a LED device with shared voltage-limiting unit and individual voltage-equalizing resistance, wherein two ends of a LED set constituted by a plurality of normal-polarity series 15 LEDs are in parallel connected with a shared voltage-limiting unit, and two ends of individual LED are respectively in parallel connected with an voltage-equalizing resistance for providing an overvoltage protection to the LEDs, so when surge voltage from a power source is generated, the surge voltage can be absorbed by the shared voltage-limiting unit, so that 20 individual LED is protected from being damaged due to instant overvoltage or overcurrent..

FIG. 1 is a circuit schematic diagram showing that a conventional light-emitting unit is constituted by a LED being in parallel connected with a voltage-limiting unit, and two or more than two of the 25 light-emitting units are series connected in same-polarity to constitute the light-emitting unit set.

As shown in FIG. 1, a light-emitting unit is constituted by a LED being in same-polarity parallel connected with a zener diode, and two or more than two of the light-emitting units are series connected or 30 series-parallel connected, in the same polarity to constitute the

light-emitting unit set.

FIG. 2 is a schematic view showing a conventional LED device constituted by two light-emitting unit sets being series connected in the reverse polarity.

5 As shown in FIG. 2, the main structure is that a light-emitting unit is constituted by a LED being in parallel connected with a zener diode, and two or more than two of the mentioned are series connected in the same polarity to constitute the light-emitting unit set, and two or more than two of the mentioned light-emitting unit sets are series connected in reverse 10 polarity to constitute the LED device.

FIG. 3 is a circuit schematic diagram of the present invention showing that two or more than two series-connected LED sets in the same polarity are parallel connected with a shared voltage-limiting unit at two ends thereof, and two ends of individual LED are respectively in parallel 15 connected with a voltage-equalizing resistance and thereby constitute the light-emitting unit.

As shown in FIG. 3, it mainly consists of:

--LED (101): constituted by the light emitting diodes;
--Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a 20 zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;
--Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

25 a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting with the voltage-equalizing resistance (107) at two ends of each individual LED (101);

FIG. 4 is a circuit schematic diagram showing that the plural 30 light-emitting units as shown in FIG. 3 are series connected or

series-parallel connected in the same polarity to constitute the light-emitting unit set.

As shown in FIG. 4, it mainly consists of:

- LED (101): constituted by the light emitting diodes;
- 5 --Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;
- Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;
- 10 a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting with the voltage-equalizing resistance (107) at two ends of each individual LED (101);
- 15 A light-emitting unit set is structured through series connecting or series-parallel connecting the plural mentioned light-emitting units in the same polarity.

20 FIG. 5 is an applied circuit schematic diagram of present invention showing that two light-emitting units as shown in FIG. 3 are series connected in reverse polarity.

As shown in FIG. 5, it mainly consists of:

- LED (101): constituted by the light emitting diodes;
- Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;
- 25 --Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;
- a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting

with the voltage-equalizing resistance (107) at two ends of each individual LED (101);

The application is structured through series connecting two mentioned light-emitting units in reverse polarity.

5 FIG. 6 is an applied circuit schematic diagram of present invention showing that two or more than two light-emitting unit sets as shown in FIG. 4 are series connected in the reverse polarity.

As shown in FIG. 6, it mainly consists of:

--LED (101): constituted by the light emitting diodes;

10 --Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;

--Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

15 a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting with the voltage-equalizing resistance (107) at two ends of each individual LED (101);

20 A light-emitting unit set is structured through series connecting or series-parallel connecting the plural mentioned light-emitting units in the same polarity;

The application is structured through series connecting two or more than two of the mentioned light-emitting unit in the reverse polarity.

25 FIG. 7 is an applied circuit schematic diagram of present invention showing that the two ends of the two series-connected light-emitting units in the reverse polarity as shown in FIG. 5 are respectively parallel connected with the diodes in the reverse polarity.

As shown in FIG. 7, it mainly consists of:

30 --LED (101): constituted by the light emitting diodes;

--Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;

5 --Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting with the voltage-equalizing resistance (107) at two ends of each individual 10 LED (101);

Two of the mentioned light-emitting units are series connected in the reverse polarity;

15 And two ends of the series-connected light-emitting units in the reverse polarity are respectively parallel connected with the diodes (6) in the reverse polarity.

20 FIG. 8 is an applied circuit schematic diagram of present invention showing that the two ends of same-polarity series light-emitting unit sets of different polarity sides, which are series connected in the reverse polarity, as shown in FIG. 6 are respectively parallel connected with the diode in the reverse polarity;

As shown in FIG. 8, it mainly consists of:

--LED (101): constituted by the light emitting diodes;

25 --Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;

--Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

30 a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting

with the voltage-equalizing resistance (107) at two ends of each individual LED (101);

The light-emitting unit sets is structure through series connecting or series-parallel connecting plural mentioned light-emitting units in the 5 same polarity;

Two or more than two sets of the mentioned light-emitting unit sets are series connected in the reverse polarity;

and in the two reverse-polarity series light-emitting unit sets that belong to different polarity sides, the two ends of the plural light-emitting 10 unit sets in same-polarity series (or series and parallel) connection are respectively parallel connected with the diode (106) in the reverse polarity.

FIG. 9 is a circuit schematic diagram showing that two or more than 15 two of the light-emitting units, which are constituted by a LED being connected in parallel with a voltage-limiting unit then connected in parallel with a voltage-equalizing resistance, are connected in series or in series-parallel in the same polarity to constitute the light-emitting unit set.

As shown in FIG. 9, it mainly consists of:

--LED (101): constituted by the light emitting diode;
20 --Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly dropped when subject to overvoltage;
--Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;
25 wherein a light-emitting unit is structured through connecting the LED (101) in parallel with the voltage-limiting unit (105) then further connecting in parallel with the voltage-equalizing resistance (107);

And a light-emitting unit set is structured through series-connecting or 30 series-parallel connecting two or more than two of the mentioned light-emitting units in the same polarity.

Referring to FIG. 10, which is an applied circuit schematic diagram wherein two or more than two of the light-emitting unit sets as shown in FIG. 9 are in reverse-polarity series connection;

As shown in FIG. 10, it mainly consists of:

- 5 --LED (101): constituted by the light emitting diode;
- Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly dropped when subject to overvoltage;
- Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;
- 10 wherein a light-emitting unit is structured through connecting the LED (101) in parallel with the voltage-limiting unit (105) then further connecting in parallel with the voltage-equalizing resistance (107);

- 15 And a light-emitting unit set is structured through series-connecting or series-parallel connecting two or more than two of the mentioned light-emitting units in the same polarity;

Two or more than two of the mentioned light-emitting unit sets are connected in series in the reverse polarity.

- 20 According to the LED device with shared voltage-limiting unit and individual voltage-equalizing resistance of the present invention, the mentioned LED (101) can not only be structured with a single LED (101), but two or more than two LEDs (101) can be provided for structuring a LED unit through connecting the LEDs in series, in parallel or in series and parallel to replace the single LED (101).

- 25 According to the LED device with shared voltage-limiting unit and individual voltage-equalizing resistance of the present invention, the voltage-limiting protective unit consists one or more than more of the following units, wherein one or more than one units being in same-polarity series, parallel or series and parallel connection, which
- 30 include:

--zener diode;

--varistor;

--diode with property of forward voltage drop;

--zener diode with property of reverse-polarity forward voltage drop.

5 According to the present invention, the power source for the provided LED device can be a constant-current power source or constant-voltage power source, or a current-limiting power source or voltage-limiting power source, or a power source wherein voltage and current not being particularly controlled; for cooperating the operation of
10 the voltage-limiting unit of the present invention, an internal impedance at an output end of the power source or an impedance unit between the output end of the power source and the loading can be further provided, so when the voltage of the power source is altered, the current passing through the voltage-limiting unit generates a voltage drop at the two ends
15 of the impedance unit, and a voltage regulation effect is provided to the voltage at the two ends of the LED device of the present invention.

CLAIMS

1. A LED device with shared voltage-limiting unit and individual voltage-equalizing resistance, in which two or more than two series-connected LED sets in the same polarity are parallel connected with a shared voltage-limiting unit at two ends thereof, and two ends of individual LED are respectively in parallel connected with an voltage-equalizing resistance and thereby constitute the light-emitting unit, wherein it mainly consists of:
 - LED (101): constituted by the light emitting diodes;
 - Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;
 - Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

15 a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting with the voltage-equalizing resistance (107) at two ends of each individual LED (101).
2. The LED device with shared voltage-limiting unit and individual voltage-equalizing resistance as claimed in claim 1, wherein it includes the constitution that the plural light-emitting units are series connected or series-parallel connected in the same polarity to constitute the light-emitting unit set, and it mainly consists of:
 - LED (101): constituted by the light emitting diodes;
 - Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;
 - Voltage-equalizing resistance (107): constituted by the resistive

component and served to be parallel connected at two ends of each LED;

5 a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting with the voltage-equalizing resistance (107) at two ends of each individual LED (101);

10 A light-emitting unit set is structured through series connecting or series-parallel connecting the plural mentioned light-emitting units in the same polarity.

3. The LED device with shared voltage-limiting unit and individual voltage-equalizing resistance as claimed in claim 1, wherein it includes the constitution that two light-emitting units are series connected in reverse polarity, and it mainly consists of:

15 --LED (101): constituted by the light emitting diodes;
--Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;
--Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

20 25 a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting with the voltage-equalizing resistance (107) at two ends of each individual LED (101);

Two mentioned light-emitting units are series connected in reverse polarity.

30 4. The LED device with shared voltage-limiting unit and individual voltage-equalizing resistance as claimed in claim 2, wherein it

includes the constitution that two or more than two light-emitting unit sets are series connected in the reverse polarity, and it mainly consists of:

--LED (101): constituted by the light emitting diodes;

5 --Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;

--Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

10 a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting with the voltage-equalizing resistance (107) at two ends of each individual LED (101);

15 A light-emitting unit set is structured through series connecting or series-parallel connecting the plural mentioned light-emitting units in the same polarity;

The two or more than two of the mentioned light-emitting unit
20 are series connected in the reverse polarity.

5. The LED device with shared voltage-limiting unit and individual voltage-equalizing resistance as claimed in claim 3, wherein it includes the constitution that the two ends of the two series-connected light-emitting units in the reverse polarity are respectively parallel connected with the diodes in the reverse polarity, and it mainly consists of:

25 --LED (101): constituted by the light emitting diodes;

--Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;

30

--Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

5 a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel connecting with the voltage-equalizing resistance (107) at two ends of each individual LED (101);

10 Two of the mentioned light-emitting units are series connected in the reverse polarity;

15 And two ends of the series-connected light-emitting units in the reverse polarity are respectively parallel connected with the diodes (6) in the reverse polarity.

20 6. The LED device with shared voltage-limiting unit and individual voltage-equalizing resistance as claimed in claim 4, wherein it includes the constitution that the two ends of same-polarity series light-emitting unit sets of different polarity sides, which are series connected in the reverse polarity, are respectively parallel connected with the diode in the reverse polarity, and it mainly consists of:

25 --LED (101): constituted by the light emitting diodes;

--Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly reduced when subject to overvoltage;

30 --Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

a light-emitting unit is structured through parallel connecting a shared voltage-limiting unit (105) at two ends of two or more than two series-connected LEDs (101) in the same polarity, and parallel

connecting with the voltage-equalizing resistance (107) at two ends of each individual LED (101);

5 The light-emitting unit sets is structure through series connecting or series-parallel connecting plural mentioned light-emitting units in the same polarity;

Two or more than two sets of the mentioned light-emitting unit sets are series connected in the reverse polarity;

10 and in the two reverse-polarity series light-emitting unit sets of different polarity sides, the two ends of the plural light-emitting unit sets in same-polarity series (or series and parallel) connection are respectively parallel connected with the diode (106) in the reverse polarity.

15 7. The LED device with shared voltage-limiting unit and individual voltage-equalizing resistance as claimed in claim 1, wherein the constitution includes that two or more than two of the light-emitting units, which are constituted by a LED being connected in parallel with a voltage-limiting unit then connected in parallel with a voltage-equalizing resistance, are connected in series or in series-parallel in the same polarity to constitute the light-emitting unit set, and it mainly consists of:

20

--LED (101): constituted by the light emitting diode;

25 --Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly dropped when subject to overvoltage;

--Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

30 wherein a light-emitting unit is structured through connecting the LED (101) in parallel with the voltage-limiting unit (105) then

further connecting in parallel with the voltage-equalizing resistance (107);

And a light-emitting unit set is structured through series-connecting or series-parallel connecting two or more than two of the mentioned light-emitting units in the same polarity.

- 5 8. The LED device with shared voltage-limiting unit and individual voltage-equalizing resistance as claimed in claim 7, wherein the constitution includes that two or more than two of the light-emitting unit sets are in reverse-polarity series connection, and it mainly 10 consists of:

--LED (101): constituted by the light emitting diode;
--Voltage-limiting unit (105): constituted by a semiconductor unit, e.g. a zener diode or a varistor, with a property of the resistance thereof being rapidly dropped when subject to overvoltage;
15 --Voltage-equalizing resistance (107): constituted by the resistive component and served to be parallel connected at two ends of each LED;

20 wherein a light-emitting unit is structured through connecting the LED (101) in parallel with the voltage-limiting unit (105) then further connecting in parallel with the voltage-equalizing resistance (107);

And a light-emitting unit set is structured through series-connecting or series-parallel connecting two or more than two of the mentioned light-emitting units in the same polarity;

25 Two or more than two of the mentioned light-emitting unit sets are connected in series in the reverse polarity.

9. The LED device with shared voltage-limiting unit and individual voltage-equalizing resistance as claimed in claims 1, 2, 3, 4, 5, 6, 7 or 8, wherein the LED (101) is not only structured with a single 30 LED (101), two or more than two LEDs (101) are further provided

for structuring a LED unit through connecting the LEDs in series, in parallel or in series and parallel to replace the single LED (101).

10. The LED device with shared voltage-limiting unit and individual voltage-equalizing resistance as claimed in claims 1, 2, 3, 4, 5, 6, 7 or 8, wherein the voltage-limiting protective unit consists one or more than more of the following units, wherein one or more than one units being in same-polarity series, parallel or series and parallel connection, which include:

5
10
--zener diode;
--varistor;
--diode with property of forward voltage drop; and
--zener diode with property of reverse-polarity forward voltage drop.

ABSTRACT

The present invention relates to a LED device with shared voltage-limiting unit and individual voltage-equalizing resistance, wherein two ends of a LED set constituted by a plurality of same-polarity series 5 LEDs are in parallel connected with a shared voltage-limiting unit, and two ends of individual LED are respectively in parallel connected with an voltage-equalizing resistance for providing an overvoltage protection to the LEDs.

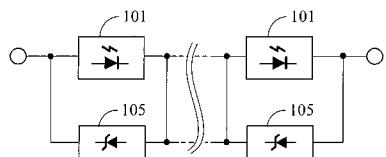


FIG. 1 (Prior Art)

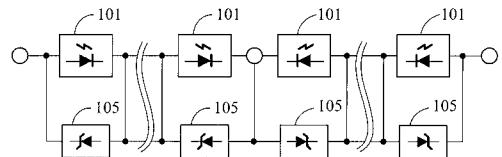


FIG. 2 (Prior Art)

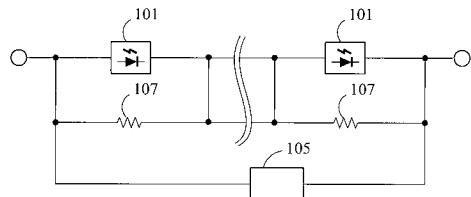


FIG. 3

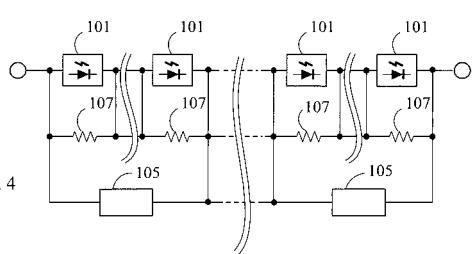


FIG. 4

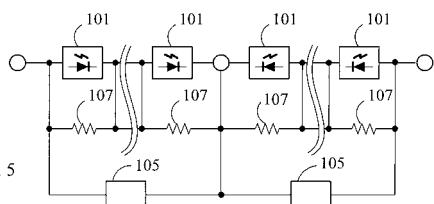


FIG. 5

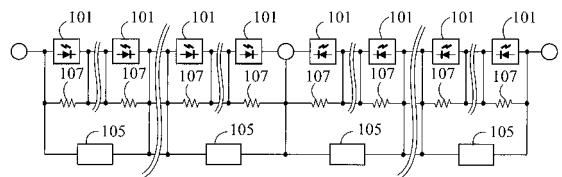


FIG. 6

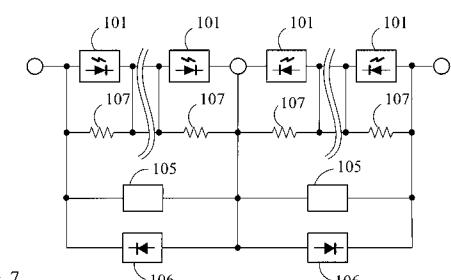


FIG. 7

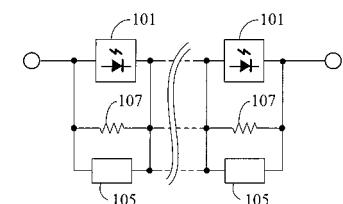


FIG. 9

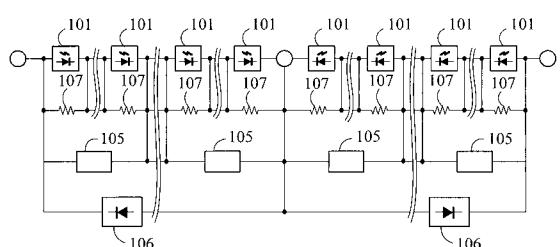


FIG. 8

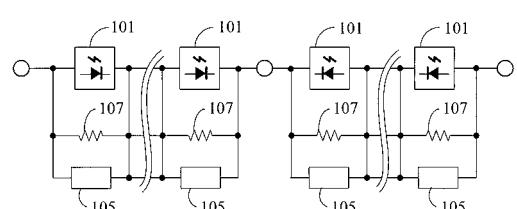


FIG. 10