摘要
本实用新型涉及一种斜沟成型铣刀，铣刀为杆式结构，带有锥柄，铣刀排屑槽制成斜槽，并且前刃面有前角，铣刀排屑槽为 5°～30°螺旋沟，前刃面前角为 2°～7°。其切削效率高，加工精度高，加工表面质量好。比较单片铣刀生产效率可提高 2～3 倍。
1. 一种斜沟成型铣刀，包括锥柄，其特征在于：铣刀为杆式结构，带有锥柄（1），铣刀排屑槽（2）呈斜槽，并且前刃面有前角。
2. 根据权利要求1所述的斜沟成型铣刀，其特征在于：铣刀排屑槽（2）为5～30°螺旋沟，前刀面前角为2～7°。
斜沟成型铣刀

技术领域

本实用新型涉及一种机械加工刀具，具体涉及一种斜沟成型铣刀。

背景技术

目前，随着我国加入世贸组织，我国的各行各业和世界接轨。不断的引进国外的新产品。以往加工特殊形状沟槽时，多采用单片铣刀。因单片铣刀一次只能加工一个沟槽，在加工多槽工件时需要反复对刀加工，造成加工工件精度低、加工成本高，过去，国外进口的特型铣刀为直沟、0°前角的杆式铣刀，这种铣刀在切削精度，切削性能以及效率和耐用度等各方面都不能满足高效加工的需要，这种铣刀加工工件时，刀具与工件为面接触，因工件形状均为特殊形状当走刀量较大时就会出现颤刀现象，不能加工出合格产品。所以加工效率低，经常换刀，费时费力，影响生产。

发明内容

本实用新型的目的在于克服上述技术中存在的不足之处，提供一种结构简单、设计合理，能提高工作效率、尺寸精度及表面加工质量的斜沟成型铣刀。

为了达到上述目的，本实用新型采用的技术方案是：铣刀为杆式结构，带有锥柄，铣刀排屑槽呈斜槽，并且前刃面有前角。

本实用新型的优点是：

1. 加工精度高：由于铣刀有三个保证齿距精度的刀齿，所以可同时加工三个刀槽，避免了单片铣刀加工时齿距不准的问题，提高了加工精度；

2. 提高了齿形精度：前刃面的斜角为 5°，实现斜角切削，减少切削变形和能量消耗，也有利于排屑，而且大幅提高齿轮精度及表面粗糙度；

3. 互换性好：刀具采用了整体杆式结构，并且是用了高精度的莫氏锥柄，可以保证刀具装卡在不同型号的数控机床上，避免了单片铣刀采用芯杆装卡，累计误差大的缺点，保证了装卡精度从而使保证了加工精度；

4. 切削效率高：由于刀具可以一次加工三个齿槽（单片铣刀一次只能加工一个齿槽），并且能够保证高精度齿距，所以生产效率可提高 2～3
附图说明

图 1 是本实用新型结构示意图；
图 2 是图 1 中刃部齿形的局部放大图。

具体实施方式

下面结合附图对本实用新型的实施例作进一步详细描述。

由图 1 图 2 可知，本实用新型铣刀为杆式结构，带有锥柄 1，铣刀排屑槽 2 呈斜槽，并且前刃面有前角。

铣刀排屑槽 2 为 5—30° 螺旋沟，前刀面前角为 2—7°。

本实用新型所述的斜沟成型铣刀，为杆式结构，带有锥柄 1，铣刀排屑槽 2 制成斜槽，并且前刃面有前角；铣刀排屑槽 2 为 5—30° 螺旋沟，前刀面前角为 2—7°，齿距公差为 ±0.005。由于该铣刀是安装在进口专用机床上的定装铣刀，所以锥柄 1 也有严格要求。锥柄 1 呈莫氏 3 号锥度，超出锥度偏差即为废品；刃部齿形 3 为由圆弧和直线连接的特殊齿形，由两侧对称的半径为 0.95mm 圆弧与一条同轴线成 45° 角的直线连接，连接处圆弧半径为 0.3mm，圆弧齿形圆度公差为 0.03，在全长上所有直径的跳动公差为 0.0127；齿形检查在 ZOLLER 检测仪上旋转检查，前刃面有 2—3° 前角，因铣刀齿形特殊，刀沟又是 5° 斜沟，所以加工时须在 SACKE 数控铲磨床上加工。