The present invention includes as an active ingredient at least one biosurfactant, in particular mannosyl alditol lipid (such as MEL and MML) or triacylated mannosyl alditol lipid. This allows providing an activator and anti-aging agent that is excellent in activating and anti-aging effects on cells and that is safe enough to be used for a long time, and also providing cosmetics, quasi-drugs, drugs, and foods including the activator and the anti-aging agent as active ingredients. Further, the present invention provides MEL whose mannosyl erythritol skeleton in a molecular structure is 1-O-β-D-mannopyranosyl-meso-erythritol and a method for producing the MEL with use of a microorganism.
Soybean Oil

MEL-A, MEL-B, MEL-C - glycolipid

--- fatty acid

P. tsukubaensis product

FIG. 4
FIG. 5

MEL standard

P. tsukubaensis product

7.25 (MEL-A)

7.72 (MEL-B)

8.17 (MEL-C)

0 5 10 15 20

holding time (minute)

7.72 soybean oil fatty acid
MEL produced by P. tsukubaensis

liquid crystal (lamellar phase)

water

MEL produced by P. antarctica

MFI liquid crystal water (inverted hexagonal phase)
FIG. 11

MEL produced by P. tsukubaensis

MEL liquid crystal (lamellar phase) water

MEL produced by P. antarctica

MEL water
FIG. 13

![Diagram with ppm values](image-url)
FIG. 15

Time [min]

6-10
6+10
6+14(1)
6+14(2)
6+16(1)
6+16(2)
6+12
6+12(1)
8(1)+12
6-8
14
16
20
22
24
10
8
6

Int

10^8
5
2.5
1

0.5
0.0

4+12
6+13
6+11 6+10
6+16(2)
ACTIVATOR INCLUDING BIOSURFACTANT AS ACTIVE INGREDIENT, MANNOSYL ERYTHRITOL LIPID, AND PRODUCTION METHOD THEREOF

TECHNICAL FIELD

[0001] The present invention relates to an activator including a biosurfactant as an active ingredient. In particular, the present invention relates to cosmetics, quasi-drugs, drugs, drinks and foods, each including a biosurfactant which activates various cells and is effective for anti-aging, hair growth, and prevention of loss of hair.

[0002] Further, the present invention relates to a new mannosylerythritol lipid (which may be hereinafter referred to as MEL) and a production method thereof. To be specific, the present invention relates to: an MEL which is one of glycolipids produced by microorganism and whose mannosylerythritol skeleton in a molecular structure is 1-O-β-D-mannopyranosyl-meso-erythritol; and a production method of the MEL by microorganism.

BACKGROUND ART

[0003] Aging of individuals and various diseases due to the aging are greatly involved with aging of all dividing cells (drop of dividing speed, drop of cell function). For example, skin includes epidermic cells, fibroblasts, and extracellular matrixes for supporting skin structures other than these cells, such as elastin and collagen. In young skin, interactivities between these skin tissues maintain homeostasis, which keeps moisture, flexibility, and resiliency. Consequently, skin appears to have tension and smoothness, and is kept fresh. However, aging, ultraviolet ray, dryness, stress etc. decrease functions of extracellular matrixes and fibroblasts in particular. Consequently, flexibility of skin and moisture-keeping function of skin drop, skin loses tension and smoothness, and senile symptoms such as chaps, wrinkles, and somberness appear.

[0004] In order to stop or prevent aging in cell level, activators and anti-aging agents have been searched. Known examples of activators derived from animals include hydrolysate of connective tissue (Patent Document 1), water-soluble protein derived from thymus gland and spleen (Patent Document 2), and essence of bovine placenta (Patent Document 3). Known examples of activators derived from plants include sesame, Chinese yam, pepper, angelica acutiloba, houttuynia, mondo grass (Patent Document 4), almond, taraxacum officinale, elder, cridium officinale, swertia japonica, morus ibou, inner core of seed of peach, ginseng, hop, althaea, and Job’s tears. A part of these is used as an activator and an anti-aging agent in quasi-drugs and cosmetics. However, an activator and an anti-aging agent that show satisfactory working effects are not yet obtained.

[0005] Mannosylerythritol lipid (MEL) is a natural surfactant produced by yeast, and it is reported that MEL has various physiological functions (Non-patent Document 1). Further, recently, mannosylmannitol lipid (MLM) in which erythritol is replaced with manitol has been found (Patent Document 9). As for usage as external medicines and cosmetics, effectiveness as an anti-inflammatory agent and an anti-allergy agent (Patent Document 10) and baldness remedy and hair growth (Patent Document 11), an anti-bacterial effect (Patent Document 12), and surface-tension-reduction function (Patent Document 13) are known.

[0006] However, activating function of MEL for cells has been completely unknown. Further, hair growth function described in Patent Document 11 was confirmed through animal experiments, and it has not been reported that MEL activates human head hair-papilla cells.

[0007] As described above, it is reported that a biosurfactant such as glycolipid has environment-friendly features such as high biodegradability and low toxicity, and has new physiological functions. In view of these features, widely applying a biosurfactant to food industry, cosmetic industry, medicine industry, chemical industry, and field of environment attains a sustainable society and providing high-function products, and therefore very significant.

[0008] One of representative glycolipid biosurfactants is MEL. MEL is a material found from Ustilago nuda and Shizentella melanogromma (see Non-patent Documents 2 and 3). Later, it is reported that MEL can be produced by yeasts such as Candida yeast that is a mutated strain producing itaconic acid (see Patent Document 14 and Non-patent Document 4), Candida antarctica (currently called as Pseudozyma antarctica) (see Non-patent Documents 5 and 6), and Kurzmannomyces yeast (see Non-patent Document 7). Nowadays, long-time continuous cultivation and production allows producing 300 g/L or more of MEL.

[0009] [Patent Document 1]
[0013] [Patent Document 3]
[0017] [Patent Document 5]
[0019] [Patent Document 6]
[0021] [Patent Document 7]
[0023] [Patent Document 8]
[0025] [Patent Document 9]
[0027] [Patent Document 10]
[0031] [Patent Document 12]
[0033] [Patent Document 13]
It is an extremely important object to carry out activation and anti-aging of mammals, in particular, humans. Although various activating materials and anti-aging agents derived from animals and plants have been discovered, there has not been yielded an effect that is so sufficient and stable as to allow industrial use of the activating materials and the anti-aging agents, and new activating materials and anti-aging agents have been searched.

Therefore, an object of the present invention is to provide an activator and anti-aging agent that are excellent in an activating effect and an anti-aging effect on cells and are safe enough to be used for a long time. The other object of the present invention is to provide cosmetics, quasi-drugs, drugs, and foods each including the activator and the anti-aging agent as active ingredients.

Further, as described above, in order that a biosurfactant that has environment-friendly features such as high biodegradability and low toxicity and that has new physiological functions is used in food industry, cosmetic industry, medicine industry, chemical industry, field of environment etc., it is necessary to increase production efficiency of the biosurfactant and to widen the variety of a structure and a function of the biosurfactant. In particular, MEL is excellent not only in productivity and surface properties but also in specific self-assembling property and bioactivity, and various applications of MEL have been developed by taking advantage of the specific self-assembling property and bioactivity.

However, microorganism-derived MEL having been reported so far has a sugar skeleton that is 4-O-β-D-mannopyranosyl-meso-erythritol structure. Therefore, widening the variety of a structure and a function of MEL has been strongly requested.

In particular, chirality of molecule of an organic compound having bioactivities is very important point. It has been reported that MEL has various bioactivities such as antibacterial activity, anti-tumor property, and glycoprotein binding ability (Non-patent Document 9). Further, MEL shows a very unique self-assembly property, and application of MEL to a liposome material and a liquid crystal technique is tried by taking advantage of the self-assembly property. It is reported that a slight difference in a molecular structure has a great influence on formation of a self-assembly body (Non-patent Documents 9 and 10).

In view of the above, it is expected that producing a large amount of optical isomers of 1-conventionally known MEL and comparing properties of the optical isomers and evaluating functions of the optical isomers would greatly contribute to development of applications of MEL.

Non-patent Document 8 describes that MEL having 1-O-β-D-mannopyranosyl-meso-erythritol structure was chemically synthesized. According to the description, only one MEL is synthesized through a very complex process and therefore the synthesis lacks versatility and is difficult to use.

In another aspect, the present invention was made in view of the foregoing problem, and an object of the present invention is to provide: MEL having 1-O-β-D-mannopyranosyl-meso-erythritol structure, that is an optical isomer of conventional MEL having 4-O-β-D-mannopyranosyl-meso-erythritol structure; and a production method thereof.

The inventors of the present invention have diligently studied in order to achieve the foregoing objects, and found that MEL and tricarbonyl MEL are effective for activating cells, and thus completed the present invention. Further, the inventors of the present invention have diligently studied in order to achieve the foregoing objects, and found microorganism that produces MEL having 1-O-β-D-mannopyranosyl-meso-erythritol structure (which may hereinafter referred to as “MEL of the present invention” or “1-O-MEL”), which is an optical isomer of conventional MEL having 4-O-β-D-mannopyranosyl-meso-erythritol structure (which may be hereinafter referred to as “conventional MEL” or “4-O-MEL”), and thus completed the present invention. That is, the present invention includes the following subject matters.

1. An activator, including a biosurfactant as an active ingredient.

2. The activator as set forth in (1), wherein the biosurfactant is mannosylalditol lipid or a triacyl derivative of mannosylalditol lipid.

3. The activator as set forth in (2), wherein the mannosylalditol lipid is mannosylerythritol lipid (MEL) or mannosylmannitol lipid (MML).

4. An anti-aging agent, including as an active ingredient an activator as set forth in any one of (1) to (3).

5. A hair growth agent, including as an active ingredient an activator as set forth in any one of (1) to (3).

6. An external agent, including as an active ingredient one of an activator as set forth in any one of (1) to (3), an anti-aging agent as set forth in (4), and a hair growth agent as set forth in (5).

7. A cosmetic, including as an active ingredient one of an activator as set forth in any one of (1) to (3), an anti-aging agent as set forth in (4), and a hair growth agent as set forth (5).
(8) A quasi-drug, including as an active ingredient one of an activator as set forth in any one of (1) to (3), an anti-aging agent as set forth in (4), and a hair growth agent as set forth in (5).

(9) A drug, including as an active ingredient one of an activator as set forth in any one of (1) to (3), an anti-aging agent as set forth in (4), and a hair growth agent as set forth in (5).

(10) Food and drink, including as an active ingredient one of an activator as set forth in any one of (1) to (3), an anti-aging agent as set forth in (4), and a hair growth agent as set forth in (5).

(11) Mannosylylerythritol lipid, including a structure represented by formula (1)

$$\text{H}_2\text{C}\text{OR}_1\text{OR}_2\text{O}\text{OR}_3\text{H}$$

wherein substituents R^1 may be the same as each other or different from each other and represent fatty series acyl groups having 4-24 carbon atoms, substituents R^2 may be the same as each other or different from each other and represent fatty series acyl groups, and a substituent R^3 represents hydrogen or a fatty series acyl group having 12 carbon atoms, and a substituent R^3 represents a fatty series acyl group having 12 carbon atoms, the substituents R^2 are acyl groups, and the substituent R^3 is hydrogen.

(12) The mannosylylerythritol lipid as set forth in (11), wherein in the formula (1), one of the substituents R^3 is an acetyl group and the other of the substituents R^3 is hydrogen.

(13) The mannosylylerythritol lipid as set forth in (11) or (12), wherein in the formula (1), the substituent R^3 is a fatty series acyl group having 2-24 carbon atoms.

(14) The mannosylylerythritol lipid as set forth in any one of (11)-(13), the mannosylylerythritol lipid being produced by microorganism.

(15) A method for producing mannosylylerythritol lipid, comprising the steps of cultivating microorganism that belongs to Pseudomyxa genus and that is capable of producing mannosylylerythritol lipid, so as to produce mannosylylerythritol lipid including a structure represented by formula (1).

same as each other or different from each other and represent hydrogen or acetyl groups, and a substituent R^3 represents hydrogen or a fatty series acyl group having 2-24 carbon atoms.

(16) The method as set forth in (15), wherein the microorganism is one of Pseudomyxa tsukubaensis and Pseudomyxa crassa.

The biosurfactant used as an active ingredient in the activator of the present invention has a notable activating function on various cells. Therefore, the activator of the present invention yields an excellent effect as an anti-aging agent and a hair-growth agent. Further, the biosurfactant is a natural surfactant derived from living organism and therefore has highly safe, which yields an effect that the activator of the present invention can be sufficiently used for a long time. Further, the biosurfactant can be produced by culturing microorganism. Therefore, the costs for the raw material of the biosurfactant is low and a large number of the biosurfactant can be produced. This yields an effect that the activator of the present invention can be provided in a low price.

Further, with the production method of MEL of the present invention, it is possible to easily produce a large number of an optical isomer of conventionally known MEL.

Additional objects, features, and strengths of the present invention will be made clear by the description below. Further, the advantages of the present invention will be evident from the following explanation in reference to the drawings.

BRIEF DESCRIPTION OF DRAWINGS

(10085) FIG. 1 is a graph showing the result of examining a cell-activating function of MEL (MEL-A produced from soybean oil) on normal human skin fibroblasts.

(10086) FIG. 2 is a graph showing the result of examining a cell-activating function of MEL (MEL-A produced from soybean oil) on human head hair papilla cells.

(10087) FIG. 3 is a graph showing the result of examining a cell-activating function of triacyl MEL (triacyl MEL-A obtained by adding oleic acid to a hydroxide group of an erythritol part of MEL-A produced from soybean oil) on normal human skin fibroblasts.

(10088) FIG. 4 is a drawing showing the result of thin layer chromatography on a culture of Pseudomyxa tsukubaensis JCM 10324 strain.

(10089) FIG. 5 is a drawing showing the result of analyzing high-performance liquid chromatography on a culture of Pseudomyxa tsukubaensis JCM 10324 strain.

(10090) FIG. 6 is a drawing showing the result of thin layer chromatography on a culture of Pseudomyxa crassa CBS 9959 strain.

(10091) FIG. 7 is an enlarged drawing (3.4-5.7 ppm) of a sugar skeleton part in 1H-NMR spectrum of MEL produced by Pseudomyxa tsukubaensis JCM 10324 strain and Pseudomyxa antarctica KM-34 (FERMP-20730) strain.

(10092) FIG. 8 is an enlarged drawing (3.5-4.2 ppm) of a sugar skeleton part in 1H-NMR spectrum of mannosylerythritol synthesized from a starting material that is MEL produced by Pseudomyxa tsukubaensis JCM 10324 strain and Pseudomyxa antarctica KM-34 (FERMP-20730) strain.

(10093) FIG. 9 is an enlarged drawing (3.4-5.5 ppm) of a sugar skeleton part in 1H-NMR spectrum of MEL produced by Pseudomyxa crassa CBS 9959 strain.

(10094) FIG. 10 is a drawing showing the result of polarization microscope observation of liquid crystal forming ability.
of MEL produced by \textit{Pseudozyma tsukubaensis} JCM 10324 strain and \textit{Pseudozyma antarctica} KM-34 (FERMP-20730) strain, the liquid crystal forming ability being evaluated by a water-in invading method.

0095 Figs. 11 is a drawing showing the result of polarization microscopy observation of liquid crystal forming ability of MEL produced by \textit{Pseudozyma tsukubaensis} JCM 10324 strain and \textit{Pseudozyma antarctica} KM-34 (FERMP-20730) strain, the liquid crystal forming ability being evaluated by a water-in invading method.

0096 Fig. 12 shows graphs that illustrate \(^1\)H-NMR spectrum of triacyl MEL produced by \textit{Pseudozyma tsukubaensis} JCM 10324 strain and an enlarged drawing (3.4-5.7 ppm) of a sugar skeleton part in the \(^1\)H-NMR spectrum, respectively.

0097 Fig. 13 shows graphs that illustrate \(^1\)H-NMR spectrum of triacyl MEL produced by \textit{Pseudozyma hubeiensis} and an enlarged drawing (3.0-5.7 ppm) of a sugar skeleton part in the \(^1\)H-NMR spectrum, respectively.

0098 Fig. 14 is a drawing illustrating the result of lipid domain analysis by HPLC (ODS)-MS analysis of MEL produced by \textit{Pseudozyma tsukubaensis} JCM 10324 strain.

0099 Fig. 15 is a drawing illustrating the result of lipid domain analysis by HPLC (ODS)-MS analysis of triacyl MEL produced by \textit{Pseudozyma hubeiensis}.

BEST MODE FOR CARRYING OUT THE INVENTION

1. Activator

0100 “Activating” in the present specification indicates maintaining or prompting cell functions or cell activities. Consequently, it is possible to prevent the drops of the cell functions or cell activities, i.e., it is possible to prevent aging of cells. Therefore, “activator” is synonymous to “cell activator”, and is effective as “anti-aging agent”.

0101 For example, “activating” and “anti-aging” in skin cells indicate reducing drop of functions of the skin cells due to accumulation of structural change of basement membrane derived from aging and photoaging, thereby preventing or improving wrinkles, sags, hardening etc. of skins, so as to maintain resilient, young, and healthy skins. Further, in a case of hair-papilla cells or hair matrix cells, “activating” and “anti-aging” indicates reducing drop of function of hair-papilla cells or hair matrix cells due to aging, stress, and hormone balance, thereby keeping hair cycle so as to prevent loss of hair.

0102 “Biosurfactant” is a general term for a substance that is produced by living organisms and that has a surfactant property and an emulsification property. The biosurfactant not only includes an excellent surfactant property and a high emulsification property, but also includes various physiological functions, which may attain behaviors and functions other than those of a synthesized surfactant. The biosurfactant can be mass-produced through cultivation of microorganism, and may be used as a premixed product.

0103 “Premixed product” is a product obtained by adding a dispersing agent to a functional material or by diluting the functional material with use of a solvent so as to be usable when producing cosmetics.

0104 Examples of the bio surfactant include mannosylerythritol lipid (MEL), mannosylmannitol lipid (MML), trehalose lipid, rhamnolipid, sophorose lipid, surfactin, spiculisporic acid, and emulsin. These examples can be used in the activator of the present invention. Among them, it is preferable to use a biosurfactant having a lamellar structure, and it is particularly preferable to use MEL and MML.

0105 Four kinds of MEL are known according to whether an acetyl group at 4- and 6-positions of mannose exists or not. The four kinds include MEL-A, MEL-B, MEL-C, and MEL-D. Chemical formula (2) shows a structure of MEL-A. In chemical formula (2), R1 and R2 indicate carbon hydrize groups. That is, MEL-A includes alklynyl groups having 5-19 carbon atoms at 2- and 3-positions of mannose and acetyl groups at 4- and 6-positions of mannose in chemical formula (2). MEL-B includes H instead of an acetyl group (CH\(_3\)CO) at the 4-position of mannose in chemical formula (2). MEL-C includes H instead of an acetyl group (CH\(_3\)CO) at the 6-position of mannose in chemical formula (2). MEL-D includes H instead of acetyl groups (CH\(_3\)CO) at the 4- and 6-positions of mannose in chemical formula (2).

![Chemical formula 2](image2)

0106 Chemical formula (3) indicates a structure of MML. In chemical formula (3), R1 and R2 indicate carbon hydrize groups. Further, in chemical formula (3), at least one of or both of acetyl groups (CH\(_3\)CO) at the 4- and 6-positions of mannose may be replaced with H.

![Chemical formula 3](image3)

0107 The biosurfactant used in the activator of the present invention may be a tryacyl derivative of MEL or a tryacyl derivative of MML. The tryacyl derivative of biosurfactant is a biosurfactant having a new structure with higher hydrophobicity than that of MEL or MML. For example, in a case of obtaining a large amount of the bio surfactant from other than a culture solution of MEL-producing bacteria, it is possible to produce the biosurfactant by reacting MEL with various plant oils with use of enzymes.
Triacyl derivative of MEL, i.e. triacylmannosylerythritol lipid (which may be referred to as triacyl MEL) includes a structure shown by chemical formula (4).

In chemical formula (4), R1, R2, and R3 independently indicate a carbon hydroxide group or a carbon hydroxide group including an oxygen atom. At least one of or both of hydroxyl groups at the 4- and 6-positions of mannose may be replaced with an acetyl group. A carbon hydroxide group may include only a saturation bond or may include an unsaturation bond. When including an unsaturation bond, the unsaturation bond may include a plurality of double bonds. A carbon chain may be a straight chain or a branched chain. Further, in a case of the carbon hydroxide group including an oxygen atom, the number and the position of an oxygen atom included in the carbon hydroxide group are limited.

In chemical formula (4), it is preferable that R1 and R2 include 6-20 carbon atoms. R1 and R2 make, as fatty series acyl groups (RCO —), ester bonds with hydroxyl groups at 2- and 3-positions of mannose. An acetyl group may make ester bond with other hydroxyl group. It is preferable that R3 has 6-20 carbon atoms. R3 makes, as a fatty series acyl group (RCO —), ester bond with a primary hydroxyl group of erythritol.

A triacyl derivative of MEL has a structure to which fatty acid ester is added and has high hydrophobicity. Therefore, the triacyl derivative of MEL is excellent as emollient since it is more familiar with various oil components, compared with conventional MEL.

These biosurfactants may be used singularly or two or more of the biosurfactants may be used in combination. Any one of fermentation methods with use of well known biosurfactant-producing-microorganism may be selected. For example, culturd production of MEL can be carried out by culturing Pseudosyma antarctica NBRC 10736 through common procedures. Examples of MEL-producing-microorganism include Candida antarctica, Candida sp., etc. in addition to the above. It is well known to a person skilled in the art that cultivation of the microorganism easily provides MEL. The biosurfactant-producing-microorganism is not particularly limited and may be suitably selected according to purposes.

A fermentation medium for producing biosurfactants may be a medium with a general composition, made of N source such as yeast essence and peptone, C source such as glucose and fructose, and inorganic salts such as sodium nitrate, dibasic potassium phosphate, and magnesium heptahydrate. Fats and oils such as olive oil, soybean oil, sunflower oil, corn oil, canola oil, and coconut oil, and water-soluble bases of carbon hydride such as liquid paraffin and tetradecane may be added singularly to the medium or two or more of them may be added in combination.

Fermentation conditions such as pH and temperature and culture time etc. may be freely set. A culture solution after the fermentation may be used as the biosurfactant of the present invention. Further, the culture solution after the fermentation may be subjected to any operation such as filtering, centrifugal separation, extraction, purification, and sterilization. The obtained essence may be diluted, condensed, and dried.

The fat and oil used as a raw material is preferably plant fat and oil. The plant fat and oil is not particularly limited and may be suitably selected according to necessity. Examples of the plant fat and oil include soybean oil, colza oil, corn oil, peanut oil, cotton seed oil, safflower oil, sesame oil, olive oil, and palm oil. Among them, soybean oil is particularly preferable since it allows increasing production efficiency (production amount, production speed, and yield) of a biosurfactant (MEL in particular). These may be used singularly or two or more of them may be used in combination.

An inorganic nitrogen source is not particularly limited and may be suitably selected according to purposes. Examples of the inorganic nitrogen source include ammonium nitrate, urea, sodium nitrate, ammonium chloride, and ammonium sulfate.

Recovery and purification of a biosurfactant are not particularly limited and may be suitably selected according to purposes. For example, a culture solution is subjected to centrifugal separation so as to recover oil, and a biosurfactant is recovered by extraction and condensation with use of an organic solvent such as acetate ether.

As an extraction solvent, water, alcohols (lower alcohol such as methanol, absolute ethanol, and ethanol, or polyvalent alcohol such as propylene glycol and 1,3-butyleneglycol), ketones such as acetone, esters such as diethyl ether, dioxane, acetonitrile, and acetate ether, and organic solvents such as xylene, benzene, and chloroform may be used singularly or two or more of them may be used in any combination. Further, various extracts by solvent may be used in combination.

A method for extracting a biosurfactant is not particularly limited. In general, extraction is carried out in a range from a room temperature to a boiling point of a solvent at a normal pressure. After the extraction, the biosurfactant is filtered or absorbed, decolorized, and purified with use of ion exchange resin so that the biosurfactant is in the shape of a solution, paste, gel, or powder. In many cases, the biosurfactant may be used as it is. If necessary, the biosurfactant may be subjected to a further purification process such as decolorization and decolorization in a range that does not influence the effect of the biosurfactant. Activated carbon column etc. may be used as purification process means for decolorization and decolorization. Normal means generally applied according to an extracted substance may be freely selected. If the biosurfactant is purified with use of a silica gel column according to necessity, it is possible to obtain a biosurfactant with higher purity.

A method for obtaining a triacyl derivative of a biosurfactant is explained below using a method for producing a triacyl derivative of MEL. The triacyl derivative of the bio surfactant used in the present invention is not limited to triacyl MEL.
For example, the triacyl MEL may be obtained by purifying a fraction of the triacyl MEL from a culture solution produced by fermenting a microorganism as described above. Further, in order to obtain a large amount of the triacyl MEL, MEL is dissolved in an organic solvent, a fatty acid derivative of plant oil etc. is added, and esterification reaction or ester exchange reaction is carried out in the presence of hydrolytic enzyme.

Fatty acid introduced to an erythritol part of MEL may be univalent carboxylic acid of a long-chain carbon hydride. Further, the fatty acid may be saturated fatty acid or unsaturated fatty acid. The unsaturated fatty acid may include a plurality of double bonds. A carbon chain may be straight chain or a branched chain. Further, a fatty acid derivative that is a derivative of fatty acid may be used in the present invention, and a mixture of fatty acid and fatty acid derivative may be used in the present invention. It is preferable that fatty acid or fatty acid derivative introduced to the erythritol part of MEL is derived from oils, higher fatty acid, or synthesized ester.

Examples of the oils include plant oil, animal oil, mineral oil, and hardened oil thereof. Specific examples of the oils include animal/plant oils such as avocado oil, olive oil, sesame oil, camellia oil, evening primrose oil, turtle oil, macadamia nut oil, corn oil, mink oil, colza oil, yolk oil, persic oil, wheat germ oil, safflower oil, castor oil, linseed oil, safflower oil, cotton seed oil, perilla oil, soybean oil, peanut oil, tea oil, Japanese torreya seed oil, rice oil, tung oil, jojoba oil, cashew oil, coconut oil, Horse oil, palm oil, palm kernel oil, beef tallow, sheep tallow, pig tallow, lanoline, whale wax, beeswax, carnauba wax, Japan wax, candellila wax, and squalan, and hardened oils thereof; mineral oils such as liquid paraffin and Vaselinol, and synthesized triglyceride such as tripalmitin acid glycerin. Preferable examples of the oils include avocado oil, olive oil, sesame oil, camellia oil, evening primrose oil, turtle oil, macadamia nut oil, corn oil, mink oil, colza oil, yolk oil, persic oil, wheat germ oil, sazanqua oil, castor oil, linseed oil, safflower oil, cotton seed oil, perilla oil, soybean oil, peanut oil, tea oil, Japanese torreya seed oil, rice oil. Further preferable examples of the oils include olive oil and soybean oil.

Examples of the higher fatty acid include caprylic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, steaeric acid, and undecylenic acid. Further preferable examples of the higher fatty acid include oleic acid, linoleic acid, and undecylenic acid.

Examples of the synthesized ester include methyl caprate, methyl caprylate, methyl caprate, methyl laurate, methyl myristate, methyl palmitate, methyl oleate, methyl linoleate, methyl linolenate, methyl stearate, methyl undecylenate, ethyl caproate, ethyl caprylate, ethyl caprate, ethyl laurate, ethyl myristate, ethyl palmitate, ethyl oleate, ethyl linoleate, ethyl linolenate, ethyl stearate, ethyl undecylenate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl oleate, vinyl linoleate, vinyl linolenate, vinyl stearate, vinyl undecylenate, cetyl octanoate, octyldodecyl myristate, isopropyl myristate, myristyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, decyl oleate, dimethyl octanoic acid, cetyl lactate, and myristyl lactate. Preferable examples of the synthesized ester include methyl laurate, methyl myristate, methyl palmitate, methyl oleate, methyl linoleate, methyl linolenate, methyl stearate, and methyl undecylenate. Further preferable examples of the synthesized ester include methyl oleate, methyl linoleate, and methyl undecylenate.

The triacyl MEL can be produced by dissolving MEL in an organic solvent and reacting the MEL. The organic solvent is not particularly limited as long as it can solubilize MEL. The organic solvent only has to solubilize a part of MEL, and does not necessarily have to solubilize the whole part of MEL. The organic solvent may be a mixture of a plurality of organic solvents. Specific examples of the organic solvent include methanol, ethanol, propanol, butanol, acetone, propanone, butanone, pentane-2-on, 1,2-ethanediol, 2,3-butanediol, dioxane, acetonitrile, 2-methyl-butan-2-ol, tertiary butanol, 2-methylpropanol, 4-hydroxy-2-methylpentanone, tetrahydrofuran, hexane, DMF, DMSO, pyridine, methyl ethyl ketone. Preferable examples of the organic solvent include acetone, tetrahydrofuran, tertiary butanol, acetonitrile, and dioxane. Further preferable example of the organic solvent is acetone.

Examples of the hydrolytic enzyme include lipase, protease, and esterase. It is preferable to use at least one selected from them. A plurality of the hydrolytic enzymes may be used. Lipase and esterase are preferable, and lipase is further preferable.

Specifically, MEL purified from a culture solution of MEL-producing microorganism is dissolved in an organic solvent (e.g. acetone) and a commercially available lipase (e.g. novozyme 435 (manufactured by Novozymes)) and plant fat and oil are added to the organic solvent.

In this method, the mixture is stirred for 1-7 days at a reaction temperature of 10-100°C, preferably 20-50°C, and more preferably 25-40°C. Further, molecular sieves may be added to the reaction solution. This method allows MEL added as a material to be a triacyl derivative substantially quantitatively.

Purification of the triacyl MEL may be carried out in accordance with the above purification of MEL.

The biosurfactant obtained as described above may be used as an activator as it is. However, it is preferable to use the biosurfactant in such a manner that the biosurfactant is mixed in cosmetics, quasi-drugs, drugs, and drinks and foods. The concentration with which the biosurfactant is mixed is suitably determined according to the degree of absorption, the degree of operation, the form of a product, the frequency of usage etc., and is not particularly limited. The mixture concentration may be determined in a range that does not impair an operation for activating cells. In general, the mixture concentration is preferably 0.001-50% by mass, more preferably 0.1-20% by mass, and further preferably 1-15% by mass, and particularly preferably 3-10% by mass, with respect to the whole weight of the activator.

Here, the biosurfactant to be mixed in the activator may be used in any form. For example, the biosurfactant may be used as an extract from a culture solution, may be purified and presented as a highly purified product, may be used after being suspended in water, or may be used after being dissolved in an organic solvent such as ethanol.

Although the method of the present invention for producing an activator including a biosurfactant is not particularly limited,
Although the method of the present invention for producing an activator including a biosurfactant is not particularly limited, it is preferable to use the biosurfactant in such a manner that the biosurfactant is dissolved in a non-ionic surfactant, lower alcohol, polyvalent alcohol, or natural fat and oil such as olive oil, squalan, and fatty acid, since the biosurfactant is highly hydrophobic.

Examples of the non-ionic surfactant include sorbitan fatty acid esters (e.g. sorbitan monooleate, sorbitan monostearate, sorbitan monopalmitate, sorbitan monostearate, sorbitan sesquioleate, sorbitan trioleate, penta-2-ethyl hexyl acid diglycerol sorbitan, tetra-2-ethyl hexyl acid diglycerol sorbitan etc.); glycerin polyglycerin fatty acids (e.g. mono cotton seed oil fatty acid glycerin, glycerin mononertearate, glycerin sesquioleate, glycerin monostearate, α,ω-oleic acid pyrogulcin acid glycerin, glycerin monostearate malate etc.); propylene glycol fatty acid esters (e.g. propylene glycol monostearate); hardened castor oil derivative; glycerin alkyl ester etc.

Examples of POE hydrophilic non-ionic surfactant include POE-sorbitan fatty acid esters (e.g. POE-sorbitan mononoooleate, POE-sorbitan monostearate, POE-sorbitan monooleate, POE-sorbitan tetraoleate etc.); POE sorbit fatty acid esters (e.g. POE-sorbit mononoooleate, POE-sorbit monostearate, POE-sorbit pentaooleate, POE-sorbit monostearate etc.); POE-glycerin fatty acid esters (e.g. POE-monoooleate etc. such as POE-glycerin monostearate, POE-glycerin tristearate); POE-fatty acid esters (e.g. POE-diesterate, POE-monodiester, ethylene glycol distearate etc.); POE-alkyl ethers (e.g. POE-lauryl ether, POE-mycol ether, POE-stearyl ether, POE-behenyl ether, POE-2-octyldecyether, POE-cholestanoether etc.); Phronic type (such as Phronic); POE-POE-alkyl ethers (e.g. POE-POE-cety ether, POE-POE-2-decyldecyether, POE-POE-monoalcohol, POE-POE-monopolyalcohol, POE-POE-polyalcohol etc.); tetra POP-POE-ethylene diamine condensates (e.g. Tetronic); POE-castor oil hardened castor oil derivative (e.g. POE-castor oil, POE-hardened castor oil, POE-hardened castor oil monoolesoate, POE-hardened castor oil triostearate, POE-hardened castor oil monostearate, POE-hardened castor oil mono-polyglycerol acid mono-isostearic acid diester, POE-hardened castor oil maleic acid); POE-beeswax lanolin derivative (e.g. POE-sorbit beeswax etc.); alkanal, alkanamide (e.g. palm oil fatty acid diethanolamide, lauric acid monoethanolamide, fatty acid isopropanol amide etc.); POE-propylene glycol fatty acid ester; POE-alkylamine; POE-fatty acid amide; simple sugar fatty acid ester; alkyloxybenzimine ete.

Examples of lower alcohol include ethanol, propanol, isopropanol, isobutylalcohol, t-butylalcohol etc.

Examples of the polyvalent alcohol include bivalent alcohols (such as ethylene glycol, propylene glycol, trimethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, tetramethylene glycol, 2,3-butyleneglycol, pentamethyleneglycol, 2-buten-1,4-diol, hexylene glycol, octylene glycol); trivalent alcohols (such as glycerin and trimethylolpropene); quadrivalent alcohols (e.g. pentaerythritol etc. such as 1,2,6-hexane triol); pentavalent alcohols (such as xylitol); hexaavalent alcohols (such as sorbitol and mannitol; polyvalent alcohol polymers (such as diethylene glycol, dipropylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, diglycerin, polyethylene glycol, triglycerin, tetraglycerin, and polyglycerin); bivalent alcohol alkyl ethers (such as ethylene glycol monomethyl ether, ethylene glycol monooester, ethylene glycol monobuty ether, ethylene glycol monononyl ether, ethylene glycol monomethyl ether, ethylene glycol mononomethyl ether, ethylene glycol mono 2-methylhexyl ether, ethylene glycol isopropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibuty ether); bivalent alcohol alkyl ethers (such as diethylene glycol monomethyl ether, diethylene glycol monobuty ether, diethylene glycol monononyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibuty ether, diethylene glycol methyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monomethoxyether, propylene glycol monobuty ether, propylene glycol isopropyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether and dipropylene glycol butyl ether); bivalent alcohol ether ester (such as ethylene glycol monomethyl ether acetate, ethylene glycol monobuty ether acetate, ethylene glycol monononyl ether acetate, ethylene glycol diisostearate, ethylene glycol diisostearate ethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monobuty ether acetate, dipropylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monomethoxyether acetate, propylene glycol monobuty ether acetate, propylene glycol monononyl ether acetate, glycine monoalkyl ether (such as choleyl alcohol, salicyl alcohol, and butyl alcohol); sugar alcohol (such as sorbitol, malitol, maltit, and mannitol); simple sugar; erythritol, glucose, fructose, and arylalcoholic sugar (such as maltose, xylitol, and yximallactic sugar reducing alcohol); glycoside tetrahydrofurfuryle alcohol); POE-tetrahydrofurfuryl alcohol; POP-buty ether; POP-POE-buty ether; tripropylene glycol ether; POE-glycerin ether phosphoric acid; POP-POE-pentaythritol ether, and polyglycerin.

Examples of the oils include animal and plant oils such as avocado oil, olive oil, camellia oil, evening primrose oil, turtle oil, macadamia nut oil, corn oil, mink oil, colza oil, yolk oil, persic oil, wheat germ oil, sasanqua oil, castor oil, linseed oil, safflower oil, cotton seed oil, Perilla oil, soybean oil, peanut oil, tea oil, Japanese torrey seed oil, rice oil, tung oil, jojoba oil, cacao oil, coco oil, horse oil, palm oil, palm kernel oil, beef tallow, hard, lanoline, whale tallow, beeswax, camanu wax, Japan wax, candellilla wax, squalan and hardened oil thereof, mineral oils such as liquid paraffin and vaseline, and synthesized triglycerin such as trimethyl ether glycerin.
As described above, it is preferable to embody the activator of the present invention as a composition by mixing a biosurfactant that is an active ingredient with cosmetics, quasi-drugs, drugs, and foods.

In a case of embodying the activator of the present invention in the form of cosmetics, quasi-drugs, and drugs, it is preferable that the activator is for external use. However, since the biosurfactant can be also taken orally, the activator is not limited to external use and may be used for internal use and for foods and drinks.

In a case of using the activator of the present invention as a drug, since it is verified that the biosurfactant has a function for activating human head hair papilla cells, it is possible to use the activator as drugs for promoting hair-growth and preventing progression of loss of hair.

The dosage form of the activator is not limited and may be various forms such as capsule, ampicule, powder, granulated powder, pill, tablet, a solid agent, a liquid agent, gel, foam, emulsion, cream, ointment, sheet, mouse, and bath agent.

Specifically, examples of the cosmetics, quasi-drugs, and drugs include: drug products for internal and external uses; basic skin care such as skin lotion, emulsion, cream, ointment, lotion, oil, pack; facial wash and skin cleansing agent, hair cosmetics such as shampoo, rinse, hair treatment, hair cream, pomade, hair spray, hair dressing, permanent reagent, hair tonic, hairdye, and hair growth drug and baldness remedy; makeup cosmetics such as foundation, face powder, ceruse, lipstick, blusher, eyeshadow, eyeliner, mascara, eyebrow pencil, and eyelash; make-up cosmetics such as manicure; perfumes; bath agents; tooth pastes; mouth deodorant; mouth wash; hircismus preventing agent/deodorant; sanitary goods; sanitary cottons; and wet tissues.

Specifically, examples of the foods and drinks include: drinks such as soft drink, carbonated drink, energy drink, juice, and lactic acid drink; frozen desserts such as ice cream, ice sherbet, and shaved ice; noodles such as soba, udon, bean-starch vermicelli, crust of potsticker, crust of dumpling, Chinese noodle, and instant noodle; sweets such as lozenge, candy, gum, chocolate, tablet candy, munch, biscuit, jelly, jam, cream, baked cake, and bread; marine products such as crab, salmon, clam, tuna, sardine, shrimp, bonito, mackerel, whale, oyster, saury, squid, ark shell, scallop, ear shell, sea urchin, salmon caviar, and sulteles diversicolor septempunctata; marine and animal processed foods such as boiled fish paste, ham, and sausage; dairy products such as processed milk and fermented milk; fats and oils and fat and oil processed foods such as salad oil, frying oil, margarine, mayonnaise, shortening, whip cream, and dressing; seasonings such as source and baste; reott pouch foods such as curry, stew, chicken and egg bowl, rice gruel, zosui, Chinese bowl, pork cutlet bowl, tempura bowl, spicy broiled eel bowl, hashed rice, oden, mapo tofu, beef bowl, meat source, egg soup, omelet rice, potsticker, dumpling, hambug steak; and meat ball; health and nutritieculent supplements in various forms; functional foods; tablets; capsules; health drinks; and troches.

The activator of the present invention is preferably applicable to human, but may be applied to animals other than human.

The activator of the present invention may include not only the biosurfactant that is an active ingredient but also, if necessary, components and additives that are used in cosmetics, quasi-drugs, drugs, and foods and drinks in a range that does not reduce the effect of the present invention.

Examples of the fats and oils include avocado oil, almond oil, fennel oil, perilla oil, olive oil, orange oil, orange roughy oil, sesame oil, cacao oil, chamomile oil, carrot oil, cucumber oil, beef tallow, beef tallow fatty acid, kukui nut oil, safflower oil, soybean oil, camellia oil, corn oil, colza oil, persic oil, castor oil, cotton seed oil, peanut oil, turtle oil, mink oil, yolk oil, cacao oil, palm oil, palm kernel oil, Japan wax, coco oil, beef tallow, lard, hardened oil, and hardened castor oil.

Examples of the tallow include beeswax, carnauba wax, whale wax, lanoline, liquid lanoline, reduced lanoline, hardened lanoline, candellilla wax, montan wax, and shellac wax.

Examples of the mineral oil include liquid paraffin, Vaseline, paraffin, ozokerite, ceresin, microcrystalline wax, polyethylene powder, squalene, squalan, and pristane.

Examples of the fatty acids include: natural fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, bhenic acid, oleic acid, 12-hydroxy stearic acid, undecyanoic acid, tall oil, and lanoline fatty acid; and synthesized fatty acids such as isononanoic acid, capric acid, 2-ethylbutane acid, isopentane acid, 2-ethylhexane acid, and isopentane acid.

Examples of the alcohols include: natural alcohols such as ethanol, isopropanol, lauric alcohol, cetanol, stearyl alcohol, oleyl alcohol, lanoline alcohol, cholesterol, and phytosterol; synthesized alcohols such as 2-hexyldecanol, isostearl alcohol, and 2-ocyldecanol; polyvalent alcohols such as ethylene oxide, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycolmonoethylether, ethylene glycolmonobutyl ether, diethylene glycolmonomethyl ether, diethylene glycolmonoethylether, polyethylene glycol, propylene oxide, propylene glycol, polypropylene glycol, 1,3-butylene glycol, glycerin, butyl alcohol, pentanethril, sorbitol, mannitol, glucose, and simple sugar.

Examples of the esters include isopropyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, myristyl myristate, oleyl oleate, deetyl oleate, octyl dodecylelyl myristate, hexyl decyl dimethylaminoante, cetyl lactate, myristyl lactate, diethyl phthalate, dibutyl phthalate, lanoline acetate, ethylenglycol monostearate, propylene glycolmonostearate, propylene glycol dioleate.

Examples of the metal soap include aluminum stearate, magnesium stearate, zinc stearate, calcium stearate, zinc palmitate, magnesium myristate, zinc laurate, and zinc undecylate.

Examples of gummy and water-soluble macromolecular compositions include gum Arabic, benzoin gum, dammar gum, guaiac, Irish moth, karaya gum, tragacanth gum, carob gum, quince seed, agar, casein, dextrin, gelatin, pectin, starch, caramgeenan, carboxyl alkyl chitin, chitosan, hydroxy alkyl chitin, low molecular chitosan, chitosan salt, sulfated chitin, phosphorlated chitin, alganic acid and salt thereof, hyaluronic acid and salt thereof, chondroitin sulfate, heparin, ethylcellulose, methylcellulose, carboxy methylcellulose, carboxy ethylcellulose, carboxyethyl cellulose sodium, hydroxyethylcellulose, hydroxypropylcellulose, nitrocellulose, crystallline cellulose, polyvinyl alcohol, polyvinyl methyl ether, polyvinyl pyridonone, polyvinyl methacrylate, polyacrylic acid salt, polyalkylene oxide such as polyethylene oxide and propylene oxide and crosslinking polymer thereof, carboxy vinyl polymer, polyethylene imine.
Examples of the surfactants include anionic surfactant (such as carboxylate, sulfonate, sulfate ester salt, and phosphoric ester salt), cationic surfactant (such as amine salt and quaternary ammonium salt), amphoteric surfactant (carboxylic acid amphoteric surfactant, sulfate ester amphoteric surfactant, sulfonic acid amphoteric surfactant, and phospholipid amphoteric surfactant), non-ionic surfactant (such as ethoxylated surfactant, ester non-ionic surfactant, block polymer non-ionic surfactant, and fluorine-containing non-ionic surfactant), and soaper surfactant (such as natural surfactant, derivative of protein hydrolysate, macromolecular surfactant, surfactant including titan and silicon, and carbon fluoride surfactant).

Examples of vitamin includes retinol, retinal (vitamin A1), dehydroretinol (vitamin A2), carotin, and lycopene (provitamin A) in vitamin A group; thiamine hydrochloride, thiamine hydro sulfate (vitamin B1), riboflavin (vitamin B2), pyridoxine (vitamin B6), cyanoaclobalamin (vitamin B12), folic acids, nicotinic acids, pantothenic acids, biotin, choline, inositol in vitamin B group; ascorbic acid and derivative thereof in vitamin C group; ergocalciferol (vitamin D2), cholecalciferol (vitamin D3), and dihydroxycholecalciferol (vitamin D group); tocopherol and derivative thereof and ubiquinone in vitamin E group; phytonadione (vitamin K1), menaquione (vitamin K2), menadione (vitamin K3), and menadione (vitamin K4) in vitamin K group.

Examples of amino acids include valine, leucine, isoleucine, threonine, methionine, phenylalanine, tryptophan, lysine, glycine, alanine, asparagine, glutamine, serine, cystine, cysteine, tyrosine, proline, hydroxyproline, asparagine acid, glutamic acid, hydroxylysine, arginine, ornithine, histidine, hydrolysulates thereof, phosphates thereof, nitrates thereof, citrates thereof, and amino acid derivatives such as pyrrolidone carboxylic acid.

Examples of whitening agents include ascorbic acid and derivative thereof, sulfur, hydrolysates of placenta, elagic acid and derivative thereof, kojic acid and derivative thereof, glucosamine and derivative thereof, arbutin and derivative thereof, hydroxyccinamic acid and derivative thereof, glutathione, arnica essence, essence of root of spactellaria baicalensis, essence of root of bupleurum scorzoneronifolium, essence of root of saponshikova seseloides, culture of mycelium of Ganoderma lucidum and extract thereof, essence of linseed, essence of peach leaves, essence of fruit of rosa multiflora, essence of root of sophora flavesens, essence of Sanguisorba officinalis, essence of angelica acutiloba, essence of seed of Job’s tears, essence of persimmon leaves, essence of pieplant, essence of root bark of peony, essence of hamamelis, essence of marronier, essence of hypericum erectum, essence of oil-soluble licorice.

Examples of moisture retention agents include hyaluronic acid, polyglycutamine acid, serin, glycine, threonine, alanine, collagen, hydrolyzed collagen, hydrenectin, fibronectin, keratin, elastin, royal jelly, chondroitin heparan sulfate, glycerophospholipid, glycerolglycolipid, sphingophospholipid, sphingoglycolipid, linoleic acid and esters thereof, eicosapentaenic acid and esters thereof, peptine, bifidobacteria fermentation product, lactic acid fermentation product, yeast extract, culture of mycelium of Ganoderma lucidum and extract thereof, wheat germ oil, avocado oil, rice oil, jojoba oil, soybean phospholipid, γ-oryzanol, essence of Althaea officinalis, essence of seed of Job’s tears, essence of root of Rehmannia glutinosa, essence of fruit of jujube, essence of seaweed, essence of aloe arborescens, essence of burdock, essence of rosemary, essence of arnica, and wheat bran.

Examples of the hair growth drug include pentadecaneic acid glyceride, essence of coleus, essence of gentiana lutea, essence of conifer conifer, essence of royal jelly, essence of sasa veitchii, 7-flavanone, 6-benzyl amino purine, essence of swertia japonica, carpcion chloride, minoxidil, finasteride, adenosine, nicotinic acid amide, essence of mulberry roots, essence of rehmannia glutinosa, and 5-aminoacalic acid.

Examples of extracts and essences of animals, plants, and galenicakes include Uncaria gambir, Angelica keiskei, acerola, Althaea, Arnica montana, avocado, Hydrangea macrophylla var. thunbergi, Aloe, Aloe vera, nettle, Ginkgo, fennel, turmeric, Asarum sieboldii, ume, Quercus salicina, Arctostaphylos uva-ursi, Rosa multiflora, Rabdosia japonica, membranous milk-vetch, Scutellaria baicalensis (dried root of Scutellaria baicalensis), Prunus junashaker, Phellodendron amurense, Coptis japonica, Panax ginseng, Hypericum erectum, Lamium alinum var. barbatum, Watercress, orange, Polysgala tenuifolia, Prunella vulgaris subsp. asiatica, Polygonum multiflorum, Pagoda Tree, mugwort, Zedoary, Kudzu, Valeriana aureia, chamomile, Trichosanthes kirilowii var. japonica, Artemisia capelliaris Thunb, lico- rice, Tussilago farfara, Bramble, kiwi fruit, balloon flower, Chrysanthemum, Catalpa ovata, Rutaceae plant fruit (unrip- ened fruit of Citrus aurantium or Citrus natsudaidai), Citrus tachibana, cucumber, Aralia cordata, Angelica pubescens, apricot, Chinese Wolfberry, Sophora flavescens, Camphor tree, Sasa veitchii, grapefruit, Cinnamon, Schizonepeta tenui- folia, Senna obtusifolia, Ipomoea purpurea, morning glory, Saflower, Sunac, Comfrey, Copaiba, gardenia, gentiana, Magnolia obovata (bark of Magnolia obovata), achyranthes bidentata (root thereof), tetradium ruticarpum (fruit thereof), burdock, schisandra chinensis (fruit thereof), rice, rice bran, wheat, bupleurum scorzoneronifolium (root thereof), saffron, Saponaria officinalis, Hawthorn, Japanese pepper, salvia, panax pseudoginseng, Chinese mushroom, rehmannia glutinosa (root thereof), Quisqualis indica, lithospermum eryth- rhorizon (root thereof), perilla, persimmon (sepal of fruit thereof), peony, plantago asiatica (seed thereof, whole parts thereof), ginger, iris, glossy privet (fruit thereof), filipendula mul-ti Juga, white birch, Japanese honeysuckle (bud thereof), hedera heller, achillea millefolium, elder, azuki bean, Japa- nese red elder, malva sylvestris, cedum officinale makino, Japanese green gentian, mulberry (root bark thereof, leaves thereof), jujube, soybean, aralia elata, panax japonicus, ane- marhena asphodeloides (bulf thereof), sanguisorba offici- nalis (root thereof), houttuynia cordata, Caterpillar fungus, pepper, Chinese lantern plant, thyme, green tea, black tea, clove, citrus unshiu (exocarp thereof), camellia, cotaleta asia- tica, pepper, angelica acutiloba (root thereof), calendula officinalis, citrus aurantium (exocarp of fruit thereof), sanguisorba officinalis (root thereof), corn (style of gynoecium thereof), eucommia ulmoides (bark thereof, leaves thereof), tomato, nandina domestica (fruit thereof), garlic, barley (mal), Pictanum albus (bark of root of Pictanum albus), Ophiopogon japonicus (Ophiopogon japonicus tube), parsley, batata, mint, hamamelis, rose, leaves of loquat, Porz coccus, grape or leaves thereof, dishcloth gourd, tilia migne- liana, peony (root bark thereof), hop, Rosa rugosa, pine needle, marronier, rosemary, soupberry, melissa, mellilot, Japanese quince, bean sprout, peach (inner core of seed thereof).

[0165] Examples of the microorganism culture metabolites include yeast essence, zinc-containing yeast essence, germanium-containing yeast essence, selenium-containing yeast essence, magnesium-containing yeast essence, fermented rice essence, euglena extract, lactic fermentation product of skimmed milk.

[0166] Examples of the α-hydroxy acid include glycol acid, citric acid, malic acid, tartaric acid, and lactic acid.

[0167] Examples of the inorganic colorings include silicic acid anhydride, magnesium silicate, talc, kaolin, bentonite, mica, titanium mica, bisulf oxycarbonate, zirconium oxide, magnesium oxide, zinc oxide, titanium oxide, calcium carbonate, magnesium carbonate, iron oxide yellow, collochart, iron oxide black, ultramarine, chromium oxide, chromium hydroxide, carbon black, and calamine.

[0168] Examples of the ultraviolet ray absorber include p-aminobenzoic acid derivative, salicylic acid derivative, amhranlic acid derivative, coumarin derivative, amino acid compound, benzotiazole derivative, tetrazole derivative, imidazole derivative, pyrimidine derivative, dioxane derivative, camphor derivative, furan derivative, pyrene derivative, nuclear acid derivative, allantoin derivative, nico
tin acid derivative, vitamin B6 derivative, oxybenzone, benzo phenone, guaiaculol, shikonin, baicalin, baicalein, and berberine.

[0169] Examples of the astringent include laconic acid, tartaric acid, succecinic acid, citric acid, allantoin, zinc chloride, zinc sulfate, zinc oxide, calcium carbonate, p-pbenzoic acid, p-sulfonic acid, aluminum calcium sulfate, resorcin, iron chloride, and tannic acid.

[0170] Examples of the antioxidant include ascorbic acid and salt thereof, ester stearate, tocopherol and ester derivative thereof, nordihydroguantareric acid, butylhydroxytoluene (BHT), butylhydroxyanisole (BHA), parahydroxyanisole, propyl gallate, sesamol, sesaminol, and gossypol.

[0171] Examples of the anti-inflammatory agent include ichthammol, indomethacin, kaolin, salicylic acid, sodium salicylate, methyl salicylate, acetyl salicylic acid, diphenhy
dramine chloride, d- or dl-camphor, hydrocortisone, guaiza
lene, chamazulene, chlorpheniramine maleate, glycyr
rhizin acid and salt thereof, glycyrhetinic acid and salt thereof.

[0172] Examples of the fungicide and disinfectant include acrinol, sulfur, benzalkonium chloride, benzethonium chloride, methylosuaniline chloride, cresol, calcium gluconate, chlorhexidine gluconate, sulfamine, mercuric chloride, and hydrolysates thereof.

[0173] Examples of the hair care agent include selenium disulfide, alkyl isosquolinolium bromide liquid, zinc pyridone, biphenamine, thiadnol, kasutari tincture, ginger
tincture, pepper tincture, quinine hydrochloride, strong ammonia water, potassium bromate, sodium bromate, and thioglycidic acid.

[0174] Examples of the aroma chemical include: natural animal aroma chemical such as musk, civet, castoreum, and ambergris; plant aroma chemicals such as anis essential oil, angelica essential oil, ylang-ylang essential oil, iris essential oil, lemon essential oil, orange essential oil, cananga essential oil, caraway essential oil, cardamom essential oil, guaiac wood essential oil, cumin essential oil, linderia essential oil, cassia essential oil, cinnamon essential oil, geranium essential oil, copaiba balsam essential oil, coriander essential oil, perrilla essential oil, cedar wood essential oil, citronella essential oil, jasmine essential oil, ginger grass essential oil, cedar essential oil, spearmint essential oil, peppermint essential oil, Ferula gummosa essential oil, tuberose essential oil, clove essential oil, orange flower essential oil, wintergreen essential oil, hoa balsam essential oil, Patchouli essential oil, rose essential oil, palmarosa oil, Japanese cypress essential oil, Japanese cypress essential oil, sandal wood oil, petitgrain essential oil, bay essential oil, vetiver essential oil, bergamot essential oil, balsam of Peru essential oil, bois de rose essential oil, camphor tree essential oil, mandarin essential oil, eucalyptus essential oil, lime essential oil, lavender essential oil, frankincense essential oil, lemon grass essential oil, lemon essential oil, rosenary essential oil, and Japanese mint essential oil; and other synthetic aroma chemicals.

[0175] Examples of the coloring and coloring matter include red cabbage coloring, red rice coloring, Rubi argyi coloring, annato coloring, sepia coloring, turmeric coloring, sophor coloring, krill coloring, persimmon coloring, car
camel, gold, silver, gardenia coloring, corn coloring, onion coloring, tamarin coloring, spirulina coloring, buckwheat coloring, cherry coloring, layer coloring, hibiscus coloring, grape juice coloring, marigold coloring, purple potato coloring, purple yam coloring, lac coloring, and rutin.

[0176] Examples of the sweetening include sugar, *Hydrangea macrophylla*, fructose, arabinose, galactose, xyllose, mannanose, maltose, honey, glucose, miraculin, and monellin.

[0177] Examples of the nutritional additive include calcified shell calcium, cyanocobalamin, yeast, wheat germ, soybean embryo, yolk powder, hemicellulose, and heme iron.

[0178] Other examples of materials that may be included in the activator of the present invention include hormones, chelating agent, p/adjuster, chelating agent, antiseptic, fungicide, refrigerant, stabilizer, emulsifier, animal/plant proteins, and decomposition products thereof, animal/plant polysaccharides and decomposition products thereof, animal/plant glycoproteins and decomposition products thereof, blood flow promoting agent, anti-inflammatory agent, and anti-allergy agent, cell activator, keratolytic agent, wound healing drug, foam boosting agent, thickener, agent for oral use, deodorant, bittering agent, seasoning, and oxygen.

2. Anti-Aging Method

[0179] Usage of the bio surfactant that is an active ingredient of the activator of the present invention allows providing an anti-aging method. That is, the present invention encompasses an anti-aging method with use of the bio surfactant.

[0180] The anti-aging method of the present invention includes the step (i) of causing the biosurfactant to touch an animal. The biosurfactant is preferably at least one selected from a group consisting of mannosyl erythritol lipid (MEL),
mannosyl mannitol lipid (MML), a triacyl derivative of mannosyl erythritol lipid (MEL), and a triacyl derivative of mannosyl mannitol lipid (MML).

[0181] The animal is not particularly limited as long as an anti-aging effect of the biosurfactant can be expected. A preferable example of the animal is a mammal. A further preferable example of the animal is a human.

[0182] “Causing the biosurfactant to touch an animal” indicates causing the biosurfactant to touch a range where an external agent can be applied, such as skin and mucous membrane of the animal.

[0183] The anti-aging method of the present invention further includes the step (ii) of activating cells with use of the biosurfactant. Activating cells with use of the biosurfactant having a cell-activating function allows yielding an anti-aging effect such as preventing and improving wrinkles, sags, and hardening of skin so as to maintain resilient, youthful, and healthy skin.

Embodiment 2

[0184] The following explains another embodiment of the present invention.

[0185] **<Mannosyl Erythritol Lipid (MEL)>**

[0186] In order to aid understanding of MEL of the present invention, the following outlines conventional MEL.

[0187] The conventional MEL is produced through cultivation of a MEL-producing microorganism. A representative example of the chemical structure of the conventional MEL is shown by general formula (5) below.

[0188] The chemical structure includes 4-O-β-D-mannopyranosyl-β-erythritol as a basic structure thereof.

![Chemical structure of MEL](image)

[R: alkyl or alkenyl]

MEL-A: R₁ = R₂ = H
MEL-B: R₁ = R₂ = Ac
MEL-C: R₁ = Ac, R₂ = H
MEL-D: R₁ = H, R₂ = Ac
MEL-E: R₁ = R₂ = H

[0189] In the general formula (5), a substituent R is a hydro carbon group (alkyl group or alkenyl group). Four kinds of the conventional MEL are known according to whether an acetyl group at 4- and 6-positions of mannose exists or not. The four kinds include MEL-A, MEL-B, MEL-C, and MEL-D.

[0190] MEL-A is designed such that each of substituents R₁ and R₂ is an acetyl group in the general formula (5). MEL-B is designed such that the substituent R₂ is an acetyl group and the substituent R₁ is hydrogen in the general formula (5). MEL-C is designed such that the substituent R₁ is hydrogen and the substituent R₂ is an acetyl group in the general formula (5). MEL-D is designed such that each of the substituents R₁ and R₂ is hydrogen.

[0191] The number of carbons in the substituent R of the MEL-A, MEL-B, MEL-C, and MEL-D varies according to the number of carbons in fatty acid constituting triglyceride in fats and oils included in an MEL-producing medium and the degree of assimilation of fatty acid by MEL producing microorganism in use. In a case where the triglyceride includes an unsaturated fatty acid residue, when the MEL producing microorganism do not assimilate a double-bonding section of the unsaturated fatty acid, it is possible for MEL to include the unsaturated fatty acid residue as the substituent R. As is evident from the above, each resulting MEL is generally a mixture of compounds having different fatty acid residues of the substituents R.

[0192] On the other hand, MEL of the present invention has a structure represented by the general formula (1) and is an optical isomer in which erythritol is introduced in a direction opposite to that of the conventional MEL. In the general formula (1), the substituents R¹ may be the same or different from each other and are fatty series acyl groups having 4-24 carbon atoms, and the substituents R² may be the same or different from each other and represent hydrogen or acetyl groups. Further, the substituent R³ represents a fatty series acyl group having 2-24 carbon atoms. Note that the present invention excludes MEL where both of the substituents R² are fatty series acyl groups having 12 carbon atoms, both of the substituents R² are acetyl groups, and the substituent R³ is hydrogen. This is intended to exclude the MEL disclosed in Non-patent Document B from the present invention, and is not indented for any other purpose. This exclusion is not a limitative matter that unduly limits the scope of the present invention.

[0193] Further, the substituent R³ in the general formula (1) may be a fatty series acyl group or an unsaturated fatty series acyl group, and is not particularly limited. When the substituent R³ includes an unsaturated bond, the substituent R³ may include a plurality of double bonds. The carbon chain may be a straight chain or a branched chain. Further, in a case of hydrocarbon group containing an oxygen atom, the number and the position of the contained oxygen atom are not limited.

[0194] Further, it is preferable that one of the substituents R² is an acetyl group and the other of the substituents R² is hydrogen. That is, it is preferable that the MEL of the present invention is a 1-O-MEL and is MEL-B or MEL-C. In particular, it is further preferable that the MEL of the present invention has hydrogen at 4-position and an acetyl group at 6-position, i.e., MEL-B.

[0195] For example, compared with MEL-A (having two acetyl groups), MEL-B or MEL-C (having one acetyl group) has higher polarity and different in its self-assembly behavior in water. Consequently, formed liquid crystals have different phases. In MEL-A, a sponge phase (L₃ phase) etc. is formed in a wide concentration region, whereas in MEL-B or MEL-C, a lamella phase (Lα phase) is likely to be formed. The lamella phase is very similar to a keratin layer of skin, making the MEL have high skin-permeability and effective as a skin-care material. Further, in MEL-B, a bimolecular film is likely to form a capsuled vesicle (liposome), which allows the capsule to include a drug therein. Therefore, it is expected that MEL-B is easily applicable to liposome cosmetics and drugs (see Non-patent Documents 9 and 10).

[0196] The MEL synthesized in Non-patent Document 8 is of A type, and includes two fatty acids each being C12. In contrast thereto, the present invention allows producing MEL-B or MEL-C, and widely varying the length of a fatty acid chain. This allows providing MEL having an ability to form more different liquid crystals.
Note that the synthesizing method described in Non-patent Document 8 is limited to a method for synthesizing MEL-A. In order to synthesize MEL-B and MEL-C, it is necessary to use different protective groups and to repeat different steps. Therefore, the MEL of the present invention could not have been synthesized based on Non-patent Document 8.

In the general formula (1), it is preferable that the substituent R1 is a fatty series acyl group having 2-24 carbon atoms. When both of the substituents R1 and R2 are fatty series acyl groups, the MEL is triacyl MEL that has properties different from those of diacyl MEL.

Specifically, a triacyl derivative is a surfactant having lower HLB (hydrophilic-hydrophobic balance) and higher lipophilicity than a conventional diacyl derivative. Therefore, the triacyl derivative is used for purposes different from those of the diacyl derivative. For example, the triacyl derivative can be used for W/O emulsion, a dispersing agent etc. Further, as with the above case, the synthesizing method described in Non-patent Document 8 is limited to a method for synthesizing a diacyl derivative of MEL-A, and synthesizing a triacyl derivative would require entirely different synthesizing route (different protective groups and different multi-stage reactions). Therefore, the MEL of the present invention could not have been produced based on Non-patent Document 8.

The chemical structure of the MEL of the present invention can be obtained in the form of a mixture made of compounds that are different according to the number of carbons in a fatty series acyl group that is the substituent R1 in the general formula (1) or to whether a double bond exists or not. The compounds can be made a single MEL compound by purifying with use of a preparative HPLC.

As with the conventional MEL, the MEL of the present invention has high surface-activity, and unlike the conventional MEL, the MEL of the present invention has new physiological activity and self-assembling property, and therefore can be used as a surfactant or various catalysts for fine chemicals. Further, the MEL is very significant since it has high biodegradability and highly safe. That is, the MEL is a biosurfactant that has high biodegradability, low toxicity, and is environment-friendly.

It is reported that the conventional MEL has various bioactive functions. For example, it is reported that MEL has the following functions: when MEL is caused to act on strain of human acute promyelocytic leukemia cell line HL 60, MEL shows a promyelocytic cell differentiation inducing function for differentiating granulocytes; when MEL is caused to act on PC 12 cells derived from rat adrenal medulla melanocyte, MEL shows neural system cell differentiation inducing function etc. for elongating neuritids; and for the first time among glycolipids produced by a microorganism, MEL can induce apoptosis of melanoma cells (X. Zhao et al, Cancer Research, 59, 482-486 (1999)), and hence MEL has a function for preventing proliferation of cancer cells. In consideration of the bioactive functions of the conventional MEL, it is expected that the MEL of the present invention also has various bioactive functions and is applicable to drugs such as an anticancer agent and a new cosmetic material.

Further, as explained in later-mentioned Examples, the MEL of the present invention is significantly different in liquid crystal forming ability from the conventional MEL due to the difference in chirality of molecules. Specifically, the MEL of the present invention has an ability to produce a lamella phase in a concentration area greatly wider than that of the conventional MEL. Therefore, the MEL of the present invention is a biosurfactant that is extremely excellent in the ability to form liquid crystals.

Evaluation of the ability to form liquid crystals can be made by a conventional and publicly known method. An example of the method for easily comparing the ability to form liquid crystals is a water invading method. In this method, MEL is applied on a slide glass and distilled water is dropped beside the applied area, and a liquid crystal phase formed at an interface by dropping of the distilled water is observed by a microscope. Thus, behavior of liquid crystal formation can be searched. With the method, it is possible to easily compare the conventional MEL with the MEL optical isomer of the present invention in terms of their abilities to form liquid crystals.

2. Method for Producing MEL

The method for producing the MEL of the present invention is characterized by usage of a microorganism capable of producing 1-O-MEL. Specifically, it is a method including the step of culturing a microorganism that belongs to Pseudozyma genus and is capable of producing mannosyl erythritol lipid, so as to produce mannosyl erythritol lipid having the structure represented by the general formula (1). In the describing explanations the method for producing the MEL of the present invention, in the general formula (1), the substituents R1 may be the same or different from each other and are fatty acid acyl groups having 4-24 carbons, the substituents R2 may be the same or different from each other and represent hydrogen or acetyl groups, and the substituent R3 represents hydrogen or fatty series acyl group having 2-24 atoms.

Examples of the microorganism useable in the method of the present invention for producing MEL is not particularly limited as long as the microorganism belongs to Pseudozyma genus and produces the MEL optical isomer represented by the general formula (1).

Examples of the microorganism that produces the MEL represented by the general formula (1) include microorganism that belong to Pseudozyma tsukubaensis, Pseudozyma crassa etc. In particular, the microorganism belonging to Pseudozyma tsukubaensis is preferable. The microorganism belonging to Pseudozyma tsukubaensis has high productivity at 25-30°C. In particular, Pseudozyma tsukubaensis JCM 10324 strain has the highest productivity at a culture temperature of 30°C.

The culture medium may be a culture medium generally used for general microorganisms and yeasts, and is not particularly limited. A culture medium used for yeasts is particularly preferable. An example of such culture medium is aYPD culture medium (10 g of yeast extract, 20 g of polypepton, and 100 g of glucose). It is known that preferable culture temperature for Pseudozyma tsukubaensis JCM 10324 strain ranges from 27-33°C. This is because Pseudozyma tsukubaensis JCM 10324 strain has significantly high productivity of MEL at the temperature.

The composition of a culture medium suitable for producing MEL with use of a microorganism usable for the method of producing the MEL of the present invention, in particular Pseudozyma tsukubaensis JCM 10324 strain, is as follows.
Yeast essence: preferably 0.1-2 g/L, and particularly preferably 1 g/L.

Sodium nitrate: preferably 0.1-1 g/L, and particularly preferably 0.3 g/L.

Potassium dihydrogen phosphate: preferably 0.1-1 g/L, and particularly preferably 0.3 g/L.

Magnesium sulfate: preferably 0.1-1 g/L, and particularly preferably 0.3 g/L.

Fats and oils: preferably 40 g/L or more, and particularly preferably 80 g/L.

Further, when culturing the microorganism, it is preferable that a carbon source is added to a culture medium. The carbon source includes at least one of, or a mixture of, fats and oils, fatty acid, fatty acid derivative (fatty esters such as fatty acid triglyceride) and synthesized ester. Other conditions of the carbon source are not particularly limited and may be determined suitably in accordance with a technical standard at the time of usage of the present invention.

The “fats and oils” may be plant oils, animal oils, mineral oils, and hardened oils thereof. Specific examples of the fats and oils include: animal/plant oils such as avocado oil, olive oil, sesame oil, camellia oil, evening primrose oil, turtle oil, macadamia nut oil, corn oil, mink oil, colza oil, persic oil, peanut oil, safflower oil, wheat germ oil, sasanka oil, castor oil, linseed oil, safflower oil, cotton seed oil, perilla oil, soybean oil, arachis oil, tea oil, Japanese torreya seed oil, rice oil, tung oil, jojoba oil, cacao oil, coconut oil, horse oil, palm oil, palm kernel oil, beef tallow, sheep tallow, lard, lanoline, whale wax, beeswax, carnauba wax, Japan wax, candelilla wax, and squalan and hardened oils thereof; mineral oils such as liquid paraffin and Vaseline; and synthesized triglycerin such as glycerin tripalmitate. Preferable examples of the fats and oils include: avocado oil, olive oil, sesame oil, camellia oil, evening primrose oil, turtle oil, macadamia nut oil, corn oil, mink oil, colza oil, persic oil, wheat germ oil, sasanka oil, castor oil, linseed oil, safflower oil, cotton seed oil, perilla oil, soybean oil, arachis oil, tea oil, Japanese torreya seed oil, rice oil. Further preferable examples of the fats and oils include: olive oil and soybean oil.

“Fatty acid” or “fatty acid derivative” preferably derives from higher fatty acid. Examples of the fatty acid and the fatty acid derivative include caprylic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, behenic acid, 12-hydroxy stearic acid, isostearic acid, undecylenic acid, tallow acid, eicosapentaenoic acid, and docosahexaenoic acid. Preferable examples of the fatty acid derivative include lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, and undecylenic acid. Further preferable examples of the fatty acid and the fatty acid derivative include oleic acid, linoleic acid, and undecylenic acid.

Examples of the synthesized ester include methyl caprate, methyl caprylate, methyl caprate, methyl laurate, methyl myristate, methyl palmitate, methyl oleate, methyl linoleate, methyl stearate, methyl undecylenate, ethyl caprate, ethyl caprylate, ethyl caprate, ethyl laurate, ethyl myristate, ethyl palmitate, ethyl oleate, ethyl linoleate, ethyl linolenate, ethyl stearate, ethyl undecylenate, vinyl caprate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl oleate, vinyl linoleate, vinyl linolenate, vinyl stearate, vinyl undecylenate, cetyl octanoate, octyldecyl myristate, isopropyl myristate, myristyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, decyl olate, dimethyl octanoic acid, cetyl lactate, and myristyl lactate. Preferable examples of the synthesized ester include methyl laurate, methyl myristate, methyl palmitate, methyl oleate, methyl linoleate, methyl linolenate, methyl stearate, and methyl undecylenate. Further preferable examples of the synthesized ester include methyl oleate, methyl linoleate, and methyl undecylenate.

These may be used singularly or two or more of them may be used suitably in combination.

Specific steps of the method for producing MEL of the present invention are not particularly limited and may be determined suitably according to purposes. For example, it is preferable that the steps are scaled up in the order of seed culture, main culture, and culture for producing MEL. The following shows culture media and culture conditions for these cultures.

Seed culture: 1 platinum loop is inoculated to a test tube containing 5 mL of a liquid culture medium including 40 g/L of glucose, 1 g/L of yeast essence, 0.3 g/L of sodium nitrate, 0.3 g/L of potassium dihydrogen phosphate, and 0.3 g/L of magnesium sulfate, and the liquid culture medium is subjected to shaking culture at 30°C for 1 day.

Main culture: the culture solution of a) is inoculated to a Sakaguchi flask containing 100 mL of a liquid culture medium including a predetermined amount of fat and oil such as plant fat and oil, 1 g/L of yeast essence, 0.3 g/L of sodium nitrate, 0.3 g/L of potassium dihydrogen phosphate, and 0.3 g/L of magnesium sulfate, and the culture solution is cultured at 30°C for 2 days.

Culture for producing mannosyl erythritol lipid; the culture solution is inoculated to a jar fermenter containing 1.4 L of a liquid culture medium including a predetermined amount of fat and oil such as plant fat and oil, 1 g/L of yeast essence, 0.3 g/L of sodium nitrate, 0.3 g/L of potassium dihydrogen phosphate, and 0.3 g/L of magnesium sulfate, and cultured at 30°C with a stirring speed of 800 rpm. In the culture, it is preferable that plant fat and oil is flowed into the culture vessel in the course of the culture so that the concentration of the fat and oil in the culture medium is kept at 20-200 g/L.

Method for Collecting MEL>

A method for collecting MEL may be a conventional and publicly known method and is not particularly limited. For example, after the culture, a lipid component is extracted with use of ethyl acetate whose volume is not less than the volume of the lipid component and not more than four times of the lipid component, and then ethyl acetate is removed with use of an evaporator so as to collect the lipid component and glycolipid component. Thereafter, the lipid component is dissolved in chloroform whose volume is equal to the volume of the lipid component, and is treated with silica gel chromatography so that chloroform, chloroform:acetone (80:20), chloroform:acetone (70:30), chloroform:acetone (60:40), chloroform:acetone (50:50), chloroform:acetone (30:70), and acetone are eluted in order. Each solution is charged to a thin layer chromatography (TLC) plate, and is developed with a ratio of chloroform:methanol:ammonia water=65:15:2 (volume ratio). After the development, whether glycolipid exists or not is confirmed with use of an aniline sulfonic acid reagent. An eluate containing glycolipid is gathered, a solvent is removed, and thus the glycolipid component can be obtained.
Structural determination of the MEL obtained by the method for producing the MEL may be performed by a conventional and publicly known method and is not particularly limited. For example, the following explains structural determination of MEL with reference to a structural determination method of MEL obtained with use of *Pseudomonas tsukubaensis* JCM 10524 strain.

The isolated glycolipid component can be determined as glycolipid component since the glycolipid component shows blue-green in response to an anthrone sulfuric acid reagent on the TLC plate. Whether the glycolipid is MEL or not can be easily confirmed by subjecting the glycolipid to 1H, 13C, and two-dimensional NMR analyses and comparing the obtained spectrum with the spectrum of conventional MEL-A, MEL-B, MEL-C, and MEL-D (represented by the general formula (4)) whose structure has been already known.

With use of 1) NMR analysis of sugar skeleton and 2) measurement of optical rotation that are mentioned below, it is easily confirmed that the MEL of the present invention is an optical isomer of conventional MEL.

In 1H-NMR spectrum measured in chloroform-d, proton of a sugar chain of MEL is detected near 3.3-5.6 ppm. In particular, proton at a mannose 1'-position (reducing terminal) that contributes to glycoside bond and proton at erythritol 4'-position are detected near 4.7 ppm and near 4.0 ppm, respectively. However, it is reported by D. Chirch et al. that when directions in binding of erythritol are different, the peaks due to the above protons shift (see Non-patent Document 8). Therefore, it is confirmed whether the MEL of the present invention shows spectrum patterns shifted only by the above peaks with respect to the conventional MEL.

Further, a sugar chain (mannosyl erythritol; which may hereinafter abbreviated as ME) obtained by saponifying the resulting MEL with use of alkali (NaOH) is subjected to NMR analysis. By comparing a sugar chain of the resulting MEL with a sugar chain of the conventional MEL in terms of their NMR spectra, it is possible to confirm that the structure of a sugar chain of the MEL of the present invention shows a spectrum pattern different from that of the conventional MEL (4-O-β-D-mannopyranosyl-meso-erythritol structure).

By measuring optical rotation of MEL or ME, it is possible to compare chirality of molecules of the conventional MEL with chirality of molecules of the MEL of the present invention (see Non-patent Document 8). α, β-d-O-acetyl-β-D-mannopyranosyl-β-D-erythritol that is reported by D. Chirch et al. that has the same sugar skeleton as the MEL of the present invention has specific optical rotation $[\alpha]_D = +25.9^\circ (c = 1.5)$. Comparison of the MEL of the present invention with the conventional MEL with reference to the specific optical rotation shows the difference in three-dimensional structures between the MEL of the present invention and the conventional MEL.

The above method allows confirming that the MEL of the present invention is different from the conventional MEL in terms of three-dimensional structures of sugar skeletons.

As described above, with the method for producing MEL of the present invention, it is possible to selectively produce MEL whose chirality is different from that of the conventional MEL and which has not been reported to be produced by a microorganism. As explained above, difference in chirality of molecules has great influence on physiological activity and a self-assembling body forming function. Consequently, although the MEL of the present invention has the same surface activity as that of the conventional MEL, the MEL of the present invention is different from the conventional MEL in terms of other properties. Therefore, comparison of the MEL of the present invention with the conventional MEL in terms of their physical properties shows important factors for evaluation of functions of MEL. Consequently, storage of data concerning a structure-physical property relationship such as physiological activity greatly contributes to development of usage of biosurfactants in various fields such as drugs, foods, and cosmetics.

The MEL of the present invention appears to be theoretically synthesized by a chemical synthesis method. However, the chemical synthesis of the MEL of the present invention would require an extremely special synthesis technique and multiple stages of complicated protection/deprotection reactions. Further, it is extremely difficult to completely control chirality, and therefore it is extremely difficult to chemically synthesize the MEL of the present invention in reality. In contrast thereto, the production method of the present invention that uses a microorganism includes an elaborate biosynthesis step and therefore provides a method for producing MEL with only one step while maintaining a special structure in which position/three-dimensional structure is completely controlled. Therefore, the method can be very effective.

It is additionally remarked that MEL whose mannosyl erythritol skeleton in a molecular structure is 1-O-β-D-mannopyranosyl meso-erythritol, which is described in Embodiment 2, may be combined with the invention described in Embodiment 1.

The embodiments and concrete examples of implementation discussed in the foregoing detailed explanation serve solely to illustrate the technical details of the present invention, which should not be narrowly interpreted within the limits of such embodiments and concrete examples, but rather may be applied in many variations within the spirit of the present invention, provided such variations do not exceed the scope of the patent claims set forth below.

EXAMPLES

Example 1

Cell-Activating Function of MEL on Normal Human Skin Fibroblasts

Normal human skin fibroblasts were cultured by a common procedure with use of a normal human skin fibroblast total kit (CA106K05, manufactured by Cell Applications, Inc. USA, imported and sold by TOYOBO CO., LTD).

Normal human skin fibroblasts were inoculated to a microplate having 48 holes, so that 2×10^4 cells were inoculated to each well. An inoculation medium was a Dulbecco’s Modified Eagle’s Medium (DMEM) to which 10% of fetal calf serum was added. The cells were cultured at 37°C with 5 vol % of carbon dioxide concentration for 24 hours, and then the cells were put in a test medium to which MEL-A with final concentration of 1 ng/ml-0.01 mg/ml was added, and the cells were further cultured for 48 hours. MEL-A used in the present Example was obtained by cultivating *Pseudomonas antarctica* ATCC 10736 in a medium to which soybean oil was added (3% soybean oil, 0.02% MgSO4·H2O, 0.02% KH2PO4, 0.1% yeast extract).
MEL-A was dissolved in ethanol and then diluted stepwise by ethanol, and was added to each medium so that final concentration of ethanol was 0.5% in each medium. A solvent control was an ethanol group (final concentration was 0.5%). Further, in order to confirm that cytotoxic substance prevents cell proliferation, an SDS-added group (final concentration was 0.1%) was provided. Further, the cells were put in a medium containing 100 µg/mL of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) was used for 3 hours, and formazan produced by ring-opening of a tetrazolium ring was extracted with use of 2-propanol, and absorption of light of 550 nm was measured by a microplate reader. At the same time, absorption of light of 650 nm was measured as turbidity, and cell-activating function was evaluated based on the difference between the two measurement values.

The result of the evaluation is shown in FIG. 1 by relative values with the cell-activating function of an ethanol group (solvent control group) being 100.

As is evident from FIG. 1, the MEL-A-added group showed a higher cell-activating function than the ethanol group with respect to normal human skin fibroblasts at each concentration. In particular, in a case of adding MEL-A whose final concentration was 1 ng/mL, a significant cell-activating function that was higher by 65% or more than the ethanol group was observed. This result shows that MEL has an excellent cell-activating function, which suggests that application of MEL to skin yields an extremely excellent anti-aging effect, effectively improving wrinkles, sags etc. of skin due to aging, exposure to ultra violet ray etc.

Example 2
Cell-Activating Function of MEL on Human Head Hair Papilla Cells

(1) How to Culture Human Head Hair Papilla Cells

Human hair papilla cells were cultured according to a normal procedure with use of human head hair papilla cells (THPC-001) total kit (HDPC total kit; THPC-001, manufactured by Cell Applications Inc. USA, imported and sold by TOYOBO CO., LTD). Human head hair papilla cells are widely used for evaluating medicinal benefits of a hair growth drug (see Japanese Unexamined Patent Applications No. 2006-83084, No. 2003-81793, and No. 2000-159640).

Specifically, 10 ml of a PCGM medium for suspending thawed cells were dispensed in a 15 ml centrifugal tube and cooled by ice. A vial containing the thawed human head hair papilla cells (THPC-001) was rapidly melted in a thermostatic chamber at 37°C. The PCGM medium was gradually dropped by approximately 1 ml into the vial and DMSO was diluted, and then the total amount was moved to the centrifugal tube containing the PCGM medium and were suspended. Floating cells were subjected to centrifugal separation by a cooling slow centrifuge at 4°C, with 1000 rpm for 5 minutes. Supernatant was sucked while taking care not to suck precipitated cells, and the supernatant was suspended again in 1 ml, PCGM medium. The total amount was put in a T-75 flask coated with a collagen liquid, and the T-75 flask was put in an incubator under a humidified condition with 5% vol of carbon dioxide concentration at 37°C, and the total amount was subjected to a static culture. One day later, the medium was replaced. Thereafter, the medium was replaced every two days and a subculture was carried out.

The PCGM medium was obtained by adding 2.5 ml of 100-fold dilution of bovine pituitary extract (BPE), 2.5 ml of 100-fold dilution of fetal calf serum (FCS), 1.25 ml of 200-fold dilution of insulin transferrin triiodothyronine solution (ITT), and 1.25 ml of 200-fold dilution of thyroprotein solution (Cyp) to 250 ml of a PCGM basal medium containing 1% of FBS.

(2) Evaluation of Human Head Hair Papilla Cell-Activating Function

Human head hair papilla cells were inoculated to a microplate having 48 holes, so that 2 x 10^5 cells were inoculated to each well. An inoculation medium was a Dulbecco’s Modified Eagle’s Medium (DMEM) to which 10% of fetal calf serum was added. The cells were cultured for 24 hours, and then put in a test medium to which MEL-A with final concentration of 1 mg/ml-0.01 mg/ml was added, and the cells were further cultured for 48 hours. MEL-A used in the present Example was obtained by culturing Pseudomonas antarctica NBRC 10736 in a medium to which soybean oil was added (3% soybean oil, 0.02% MgSO4·H2O, 0.02% KH2PO4, 0.1% yeast extract).

MEL-A was dissolved in ethanol and then diluted stepwise by ethanol, and was added to each medium so that final concentration of ethanol was 0.5% in each medium. A solvent control was an ethanol group (final concentration was 0.5%). Further, the cells were put in a medium containing 100 µg/mL of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) and was cultured for 3 hours, and formazan produced by ring-opening of a tetrazolium ring was extracted with use of 2-propanol, and absorption of light of 550 nm was measured by a microplate reader. At the same time, absorption of light of 650 nm was measured as turbidity, and cell-activating function was evaluated based on the difference between the two measurement values.

The result of the evaluation is shown in FIG. 2 by relative values with the cell-activating function of an ethanol group (solvent control group) being 100.

As is evident from FIG. 2, the MEL-A-added group showed a higher cell-activating function than the ethanol group with respect to human head hair papilla cells in a range of 1 ng/ml-1 µg/ml. In particular, in a case of adding MEL-A whose final concentration was 1 ng/mL, a significant cell-activating function that was higher by 50% or more than the ethanol group was observed. This result suggests that application of MEL to skin yields an extremely excellent effect of activating hair papilla cells, which yields a hair-growing effect.

Example 3
Cell-Activating Function of Triacyl MEL on Normal Human Skin Fibroblasts

Triacyl MEL was OL-MEL (SB) that was obtained by adding oleic acid to a hydroxy group of an erythritol portion of MEL-A cultured in a soybean oil-added medium (3% soybean oil, 0.02% MgSO4·H2O, 0.02% KH2PO4, 0.1% yeast extract).

Normal human skin fibroblasts were cultured by a common procedure with use of a normal human skin fibroblast total kit (CA106K05, manufactured by Cell Applications Inc. USA, imported and sold by TOYOBO CO., LTD).

Normal human skin fibroblasts were inoculated to a microplate having 48 holes, so that 2 x 10^5 cells were inoculated to each well. An inoculation medium was a Dulbecco’s Modified Eagle’s Medium (DMEM) to which 10% of fetal calf serum was added. The cells were cultured at 37°C with 5 vol% of carbon dioxide concentration for 24 hours, and then the cells were put in a test medium to which the triacyl MEL (OL-MEL (SB)) with final concentration of 0.01 ng/ml-0.01 mg/ml was added, and the cells were further cultured for 48 hours. The triacyl MEL was dissolved in ethanol and then
diluted stepwise by ethanol, and was added to each medium so that final concentration of ethanol was 0.5% in each medium. A solvent control was an ethanol group (final concentration was 0.5%). Further, in order to confirm that cytotoxic substance prevents cell proliferation, an SDS-added group (final concentration was 0.1%) was provided. Further, the cells were put in a medium containing 100 μg/ml of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bro-
"me (MTT) and was cultured for 3 hours, and formazan produced by ring-opening of a tetrazolium ring was extracted with use of 2-propanol, and absorption of light of 550 nm was measured by a microplate reader. At the same time, absorption of light of 650 nm was measured as turbidity, and cell-
activating function was evaluated based on the difference between the two measurement values.

[0260] The result of the evaluation is shown in FIG. 3 by relative values with the cell-activating function of an ethanol group (solvent control group) being 100.

[0261] As is evident from FIG. 3, the triacyl MEL-added group showed a higher cell-activating function than the ethanol group with respect to normal human skin fibroblast cells at each concentration. In particular, in a case of adding the triacyl MEL whose final concentration was 1 mg/ml, a significa-
cnt cell-activating and anti-aging function that was higher by approximately 50% than the ethanol group was observed. This result shows that the triacyl MEL has an excellent cell-
activating function as with MEL-A, which suggests that application of the triacyl MEL to skin yields an extremely excellent anti-aging effect, effectively improving wrinkles, sags etc. of skin due to aging, exposure to ultra violet ray etc.

[0262] Examples 4-6 as described below show examples of prescriptions of various dosage forms of a cell-activator of the present invention.

Example 4

Essence

[0263] Essence having the following composition was pro-
duced by a common procedure.

<table>
<thead>
<tr>
<th>(Composition)</th>
<th>(Weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorbit</td>
<td>4.0</td>
</tr>
<tr>
<td>Dipropylene glycol</td>
<td>6.0</td>
</tr>
<tr>
<td>Polyethylene glycol 1500</td>
<td>5.0</td>
</tr>
<tr>
<td>POE (20) oleyl alcohol ether</td>
<td>0.5</td>
</tr>
<tr>
<td>Simple sugar fatty acid ester</td>
<td>0.2</td>
</tr>
<tr>
<td>Methyl cellulose</td>
<td>0.2</td>
</tr>
<tr>
<td>MEL</td>
<td>1.0</td>
</tr>
<tr>
<td>Purified water</td>
<td>amount that makes the whole amount of essence 100</td>
</tr>
</tbody>
</table>

Example 5

Emulsion

[0264] An emulsion having the following composition was pro-
duced by a common procedure.

<table>
<thead>
<tr>
<th>(Composition)</th>
<th>(Weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyceryl ether</td>
<td>1.5</td>
</tr>
<tr>
<td>Simple sugar fatty acid ester</td>
<td>1.5</td>
</tr>
<tr>
<td>Sorbitan monostearate</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Example 6

Cream

[0265] Cream having the following composition was pro-
duced through a common procedure.

<table>
<thead>
<tr>
<th>(Composition)</th>
<th>(Weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squalan</td>
<td>7.5</td>
</tr>
<tr>
<td>Dipropylene glycol</td>
<td>5.0</td>
</tr>
<tr>
<td>MEL</td>
<td>1.0</td>
</tr>
<tr>
<td>Purified water</td>
<td>amount that makes the whole amount of emulsion 100</td>
</tr>
</tbody>
</table>

Example 7

Sensory Evaluation

[0266] Examples 4-6 were subjected to sensory evaluation. Comparative examples that did not include biosurfactants were also subjected to the same sensory evaluation. In the sensory evaluation, a group consisting of six evaluators of 26-48 years old, conscious about aging symptoms such as wrinkles, used the Examples and the Comparative Examples twice a day continuously for 3 months, and the evaluators were questioned as to the conditions of their skins after 3 months.

[0267] The result of the sensory evaluation is shown in Table 1 in which the number of evaluators in individual items is shown. 70% or more evaluators answered that the Examples made their skins more resilient and more improved their wrinkles than the Comparative examples that did not include biosurfactants did. This shows that the Examples have a significant effect of improving aging symptoms on skins.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples (with biosurfactant)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>Resiliency of skin</td>
</tr>
<tr>
<td>Rather</td>
</tr>
<tr>
<td>Improved</td>
</tr>
<tr>
<td>No change</td>
</tr>
<tr>
<td>Worsened</td>
</tr>
<tr>
<td>Improvement</td>
</tr>
<tr>
<td>Rather</td>
</tr>
<tr>
<td>Improved</td>
</tr>
</tbody>
</table>
Example 8

Culture of Pseudozyma tsukubaensis JCM 10324 Strain

| Example 8 | Culture of *Pseudozyma tsukubaensis* JCM 10324 strain preserved in a preservation medium (3 g/L of malt extract, 5 g/L of yeast extract, 5 g/L of peptone, 10 g/L of glucose, and 30 g/L of agar) was inoculated with one platinum loop into a test tube containing 2 mL of a liquid medium including 20 g/L of glucose, 1 g/L of yeast extract, 0.3 g/L of sodium nitrate, 0.3 g/L of potassium dihydrogen phosphate, and 0.3 g/L of magnesium sulfate, and the *Pseudozyma tsukubaensis* JCM 10324 strain was subjected to shaking culture at 30°C. Then, b) 1 mL of a resulting bacterial culture solution was inoculated into a Sakaguchi flask containing 20 mL of a liquid culture including a predetermined amount of soybean oil, 1 g/L of yeast extract, 0.3 g/L of sodium nitrate, 0.3 g/L of potassium dihydrogen phosphate, and 0.3 g/L of magnesium sulfate, and was subjected to shaking culture at 30°C.

| Example 9 | Confirmation of Ability of *Pseudozyma tsukubaensis* JCM 10324 Strain to Produce Glycolipid

- **Example 10**

 Production of MEL in a Medium for Producing MEL

<table>
<thead>
<tr>
<th>TABLE 1-continued</th>
<th>Examples</th>
<th>Comparative Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(with biosurfactant)</td>
<td>4 5 6</td>
<td>4 5 6 4</td>
</tr>
<tr>
<td>0 change</td>
<td>0</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>
worsened | 2 | 3 2 5 6 4 |

Example 11

Culture of *Pseudozyma crassa* CBS 9959 Strain and Confirmation of Ability to Produce MEL

Example 12

Structure Elucidation of MEL Produced by *Pseudozyma tsukubaensis* JCM 10324 Strain

17 Jul. 1, 2010
out detailed structure elucidation of 4-O-β-mannopyranosyl-D-erythritol (described as 1-O-β-mannopyranosyl-L-erythritol in the Document) that was prepared from usuchi lipid having the same structure as that of conventional MEL (J. Antibiot., 56, 91-101 (2003)), and described that chemical shift of proton at 4-position of conventional MEL is such that H-4a was 3.76 ppm and H-4b was 4.09 ppm. The known document describes that in the conventional MEL (and MEL), proton at 4-position of erythritol was largely separated into two parts. This shows that MEL of the present invention is new MEL that is an optical isomer of conventional MEL, and that includes as a sugar skeleton structure 1-O-β-mannopyranosyl-D-erythritol where erythritol was bonded in a reverse manner.

[0281] Subsequently, optical rotation of the ME was measured. ME was synthesized through alkaline hydrolysis in the above manner from MEL obtained by cultivating Pseudomonas antarctica KM-34 (FERMP-20730) strain and Pseudomonas tsukubaensis ICMP 10324 strain, and dissolved in distilled water to prepare a 1% aqueous solution. Optical rotation of each aqueous solution was measured with use of a polarimeter (digital polarimeter DIP 370 type manufactured by JASCO Corporation) so as to obtain specific optical rotation of each ME.

[0282] Consequently, specific optical rotation of ME derived from Pseudomonas antarctica KM-34 (FERMP-20730) was $\alpha_D^{25} - 35.2^\circ$ and specific optical rotation of ME derived from Pseudomonas tsukubaensis ICMP 10324 strain was $\alpha_D^{25} - 39.6^\circ$. This shows that chiralities of sugar skeletons of MEL produced from respective strains are different, which demonstrates that MEL produced by Pseudomonas tsukubaensis ICMP 10324 strain is an optical isomer whose 3-dimensional structure of sugar skeleton is different from that of conventional MEL.

[0283] Further, ME derived from Pseudomonas antarctica KM-34 (FERMP-20730) was obtained as white powder through the above collecting operation and had a melting point of 156.9$^\circ$ C, whereas ME derived from Pseudomonas tsukubaensis ICMP 10324 strain was obtained as a transparent, colorless, and oily compound, and a melting point of the ME could not be measured. This shows that the two ME have different molecular 3-dimensional structures and have different crystallinity.

[0284] It was confirmed from the above result that MEL produced by Pseudomonas tsukubaensis ICMP 10324 strain obtained in Example 9 is MEL-B and is 1-(6′-acetyl-2′,3′-di-O-alkyl(κενοy)-β-D-mannopyranosyl)- meso-erythritol that is an optical isomer of conventional MEL-B.

Example 13
Structure Elucidation of MEL. Produced by Pseudomonas crassa CBS 9959 strain

[0285] Glycolipids produced by Pseudomonas crassa CBS 9959 strain obtained in Example 11 were isolated and purified as in Example 12. Three kinds of glycolipids were subjected to 1H-NMR analysis and were compared with conventional MEL-A, MEL-B, and MEL-C.

[0286] Consequently, as illustrated in FIG. 9, it was confirmed that the three kinds of glycolipids produced by Pseudomonas crassa CBS 9959 strain correspond to MEL-A, MEL-B, and MEL-C, respectively, and proton at 4-position of erythritol would show two peaks in the conventional MEL, whereas proton at 4-position of erythritol shows one peak in MEL of the present invention.

Example 14
Comparison of Ability to Form Liquid Crystal

[0287] MEL produced by Pseudomonas tsukubaensis 3CM 10324 strain and conventional MEL produced by Pseudomonas antarctica KM-34 (FERMP-20730) strain were compared with each other by a water-invading method in terms of their abilities to form liquid crystal. The result of the comparison shows that MEL derived from Pseudomonas tsukubaensis ICMP 10324 strain has an ability to form lamella phase in a very wider concentration range than conventional MEL, and is a biosurfactant that is excellent in the ability to form liquid crystal, as illustrated in FIGS. 10 and 11.

Example 15
Production of Triacyl MEL by Culturing Pseudomonas tsukubaensis ICMP 10324 Strain

[0288] Frozen stock of 0.2 mL of P. tsukubaensis was planted in a 500 ml Sakaguchi flask containing 20 ml of a YM seed medium and cultured at 26°C. At 180 rpm for 1-night to be preincubum. 0.2 ml of the preincubum was planted in a 500 ml Sakaguchi flask containing 20 ml of a YM seed medium and cultured at 26°C. At 180 rpm for 1 night to be incubum. 20 ml of the inoculum was planted in 5 L jar containing 2 L of a YM medium and cultured at 26°C. At 300 rpm (14 VVM, 0.5 L air/min) for 8 days. The culture solution was centrifuged at 7,900 rpm for 60 min at 4°C, so that the culture solution was separated into strain (including MEL-B) and supernatant. 80 ml of ethyl acetate was added to strain fractions, and stirred upward and downward so that the strain was suspended sufficiently, and then centrifuged at 7,900 rpm for 60 min at 4°C. To the obtained supernatant was added the same amount of a saturated saline solution, and the resultant was stirred to obtain an etyl acetate layer. A suitable amount of sulfuric anhydride Na was added to the etyl acetate layer, and left at rest for 30 minutes and then evaporated to obtain glycolipid.

Example 16
NMR Analysis of Triacyl MEL Produced by Pseudomonas tsukubaensis ICMP 10324

[0289] Glycolipid obtained in Example 15 was isolated and purified through a known separation method with use of silica gel column chromatography to obtain 50 g of MEL-B and 1.5 g of triacyl MEL-B. Triacyl MEL-B fractions were subjected to 1H-NMR analysis with use of deuterated dimethylsulfoxide (DMSO-d$_6$) as a solvent and analyzed in the same manner as that of Example 13. The result is shown in FIG. 12. As shown in FIG. 12, it was confirmed that the triacyl MEL-B produced by P. tsukubaensis ICMP 10324 strain had erythritol that was bonded in a manner reverse to the manner of conventional MEL.

[0290] For comparison, Pseudomonas hubeiensis was cultured and produced, and 45 g of MEL-C and 1.3 g of triacyl MEL-C were isolated and purified with use of silica gel column chromatography in the same manner as above. The triacyl MEL-C was subjected to 1H-NMR analysis with use of deuterated dimethylsulfoxide (DMSO-d$_6$) as a solvent. Consequently, as shown in FIG. 13, it was confirmed that MEL-C
produced by *Pseudozyma hubeiensis* had erythritol bonded in the same direction as conventional MEL.

Example 18

Lipid Domain Analysis of MEL-3 Produced by *Pseudozyma tsukubaensis* JCM 10324 strain

[0291] MEL-B produced by *Pseudozyma tsukubaensis* JCM 10324 strain was separated by high performance liquid chromatography using reverse phase column, and then subjected to mass spectrometry (LC-MS analysis), and a fatty acid structure of lipid domain was confirmed. Consequently, as shown in FIG. 14, it was confirmed that fatty acid having 6 carbon atoms was mainly attached to one hydroxide group of mannose and fatty acid having 10-14 carbon atoms was attached to the other hydroxide group.

[0292] Analysis conditions of HPLC are as follows. HPLC device: Agilent 100, column: Intakt Cadenza CD-C18 2×150 mm, mobile-phase: A 0.1% formic acid, B acetonitrile, 0 min (50% B)-20 min (98% B)-30 min (98% B), flow rate: 0.2 ml/min, column temperature: 40°C, injection rate: 3 μl. MS conditions are as follows. MS device: BRUKER DALTONICS esquire 3000 Plus, ionization method: ESI positive.

[0293] The embodiments and concrete examples of implementation discussed in the foregoing detailed explanation serve solely to illustrate the technical details of the present invention, which should not be narrowly interpreted within the limits of such embodiments and concrete examples, but rather may be applied in many variations within the spirit of the present invention, provided such variations do not exceed the scope of the patent claims set forth below.

INDUSTRIAL APPLICABILITY

[0294] The present invention provides cosmetics, quasi-drugs (external agent for skin, bath agent, hair growth agent etc.), drinks and foods, and drugs for which highly safe cell-activating function and anti-aging function derived from a biosurfactant can be expected, and which include a cell-activating component and an anti-aging component as active ingredients. Therefore, the present invention is expected to greatly contribute to industries.

[0295] Further, the MEL of the present invention has a structure in which erythritol is ether-bonded to mannose in the reverse manner as that of conventional MEL, which makes the MEL of the present invention have an entirely different chlarity, greatly different liquid crystal forming behavior, and a greatly different self-assembling property, from those of the conventional MEL. Because of these differences in the properties, the MEL of the present invention is expected to show new physiological activities that are not seen in the conventional MEL. Therefore, the MEL of the present invention is expected to be widely used in the field of cleaning agents, food industries, chemical industries, environmental fields etc. as the conventional MEL, and in particular greatly contribute to wider application of MEL in the fields such as medicine and cosmetic industries.

1. An activator, comprising a biosurfactant as an active ingredient.
2. The activator as set forth in claim 1, wherein the biosurfactant is mannosylalditol lipid or a triacyl derivative thereof.
3. The activator as set forth in claim 2, wherein the mannosylalditol lipid is mannosylerythritol lipid (MEL) or mannosylmannitol lipid (MML).
4. An external agent, comprising as an active ingredient an activator as set forth in claim 1.
5. A cosmetic, comprising as an active ingredient an activator as set forth in claim 1.
6.-16. (canceled)