A device is provided for detecting the amount of work done by an excavator/loader, which swings up and down bucket support means with respect to a car body and tilts the bucket with respect to the bucket support means. This device comprises means (17) for detecting a bottom pressure of a cylinder (6) for swinging up and down the bucket support means (5, 7), means (18) for computing the weight of sand and gravel inside the bucket (9) from the detected bottom pressure, and means (31) for integrating the computed weight inside the bucket.
車体に対してバケット支持手段を上下揺動させると共に、該バケット支持手段に対してバケットをチルト作動させるようにした掘削積込機の作業量検出装置において、前記バケット支持手段（５、7）を上下揺動するシリンダ（６）のボトム圧力を検出するボトム圧力検出手段（１７）と、検出されたボトム圧力からバケット（９）内の土砂重量を演算するバケット内土砂重量演算手段（１８）と、演算されたバケット内土砂重量を積算するバケット内土砂重量積算手段（３１）とにより構成された作業量検出装置である。
1

明細書

掘削積込機の作業量検出装置

5

技術分野

この発明は、パワーショベル、ホイールローダ等のパケットを有する掘削積込機の作業量検出装置に関する。

背景技術

10 土木工事現場における土砂の掘削運搬作業としては、掘削積込機によってダンプトラックに土砂を積込み、そのダンプトラックによって土砂を運搬する作業が一般に知られている。そして、このような土砂の掘削運搬作業は、ダンプトラックの運搬走行距離にもよりが、通常はダンプトラック5〜6台と掘削積込機1台の組み合わせで行うことにより、掘削積込機が休止することなく連続して掘削積込作業が行われるようにしている。

そこで、このような土砂の掘削運搬作業においては1日の土砂運搬量を知ることが作業管理上重要である。そこで、上記従来の土砂運搬量算出システムでは、例えば各ダンプトラックに積載量測定装置を設置して各ダンプトラックの積載量を検出し、それらの積載量を合計することにより1日の土砂運搬量を算出している。

このため、従来の土砂運搬量算出システムでは、ダンプトラックの数により変化する積載量測定装置が必要になるため、大変高価になってしまうことを問題にしている。

25 そこで、本発明の目的は、ダンプトラックの積載量を検出す
に、掘削積込機の作業量、つまりダンプトラックへの積込量を検出するようにし、それにより各ダンプトラックに積載量測定装置を設置せずとも１日の土砂運搬量を算出できるようにして、土砂運搬量算出システムを安価に構成できるようにした掘削積込機の作業量検出装置を提供することを目的とする。

発明の開示

上記及び上記以外の目的を達成するために、本発明によれば、車体に対してパケット支持手段を上下揺動させると共に、該パケット支持手段に対してパケットをチルト作動させるようにした掘削積込機の作業量検出装置において、前記パケット支持手段を上下揺動するシリンダのボトム圧力を検出するボトム圧力検出手段と、検出されたボトム圧力からパケット内の土砂重量を演算するパケット内土砂重量演算手段と、演算されたパケット内土砂重量を積算するパケット内土砂重量積算手段とにより成ることを特徴とする作業量検出装置が提供される。

この構成によれば、掘削積込機のパケットによる１回分のパケット内土砂重量及び該パケット内土砂重量の一日分の総計を検出できるから、１台の掘削積込機と複数台のダンプトラックを組み合わせて土砂の掘削運搬作業を行なう場合に、各ダンプトラックに高価な積載量測定装置を設置せずとも、１日の運搬土砂重量を検出できる。従って、土砂運搬量算出システムを安価に構成することができる。

尚、上記の構成において、好ましくは、パケットがダンプ作動したことを検出するダンプ作動検出手段を
備え、前記バケット内土砂重量演算手段は、ダンプ作動検出手手段からダンプ作動検出信号の入力時点より若干前後の時点の前後に検出したボトム圧力の平均値からバケット内土砂重量を演算するようにする。

この構成によれば、バケットをダンプ作動する直前のシリンダのボトム圧力の平均値からバケット内土砂重量を求めるから、掘削負荷変動によるボトム圧力の変化の影響を受けることがなく、バケット内土砂重量を正確に検出できる。

また、好ましくは、バケットの位置に関するデータを検出するバケット位置データ検出手手段と、検出されたバケット位置データからバケット位置を演算するバケット位置演算手段を備え、前記バケット内土砂重量演算手段は、演算されたバケット位置に基づいてバケット内土砂重量を補正するようにする。

この構成によれば、バケットの位置によってボトム圧力が変化しても、バケット位置に基づいてボトム圧力とバケット内土砂重量との関係を補正するから、バケット位置に関係なくバケット内土砂重量を正確に検出できる。

また、好ましくは、車体の傾斜角度を検出する傾斜角度検出手段を備え、前記バケット位置演算手段は、検出された車体傾斜角度に基づいてバケット位置を補正するようにする。

この構成によれば、車体の傾斜によりボトム圧力が変化しても、車体の傾斜角度に基づいてバケット位置を補正するので、車体が傾斜角度に関係なくバケット内土砂重量を正確に検出できる。

また、好ましくは、前記バケット内土砂重量の演算を中止する信号を前記バケット内土砂重量演算手段に入力する演算中止信号入力
手段を設ける。
この構成によれば、パケットによって積込み作業以外の補助作業を行なった時にはパケット内土砂重量の算を中止できるので、パケット内土砂重量の総計、例えば１日の運搬土砂重量を正確に検出できる。
更に、好ましくは、演算したパケット内土砂重量、演算したパケット内土砂重量が書き込み、読み出しされるＩＣメモリカードを挿入・抜き出し自在に設ける。
この構成によれば、パケット内土砂重量などをＩＣメモリカードに記憶させておいて他の場所に設置されたマイコンなどに入力できるから、作業管理上好ましい。

図面の簡単な説明
本発明は、以下の詳細な説明及び本発明の実施例を示す添付図面により、より良く理解されるものとなろう。なお、添付図面に示す実施例は、発明を特定することを意図するものではなく、単に説明及び理解を容易とするものである。
図中、
図１は、本発明による掘削積込機の作業量検出装置の一実施例の全体構成説明図、
図２は、パケット位置により変化する、パケット内土砂重量とブームシリンダボトム圧力との間係を示す図表、
図３は、ブームシリンダのボトム圧力の変化波形を示す図表、
図４は、パケットのダンプ作動の説明図、
図５は、エンジン部分のセンサの説明図、
図6は、ラック位置によって変化する、エンジン回転数と燃料消費量との関係を示す図表である。

発明を実施するための最良の形態

以下に、本発明の好適実施例による掘削積込機の作業量検出装置を図1乃至図6を参照しながら説明する。

図1において、Aは掘削積込機であって、下部走行体1上には上部車体2を旋回自在に設けられ、この上部車体2にエンジン3、運転室4が設けてある。また、上部車体2にはブーム5が上下回動自在に支承され、該ブーム5はブームシリンダ6により挙動させる。このブーム5にアーム7が上下回動自在に支承され、該アーム7はアームシリンダ8により挙動させる。このアーム7にバケット9がチルト作動自在に取付けられ、該バケット9はバケットシリンダ10によりダンプ作動をはじめとしてチルト作動させる。

ブーム5の支軸には上部車体2に対するブーム5の角度を検出するブーム角度計11が設けられ、アーム7の支軸にはブーム5に対するアーム7の角度を検出するアーム角度計12が設けられ、バケットシリンダ10にはバケットシリンダ10のストロークを検出するストローク計13が設けられ、これらの計器による検出値はコントローラ14のバケット位置演算部15に入力されてバケット位置が演算される。上部車体2には車体傾斜計16が設けられ、該車体傾斜計16の検出値がバケット位置演算部15に入力され、該演算部15はその検出値に基づきバケット位置の補正を行う。

ブームシリンダ6にはブームシリンダ6のボトム圧力を検出する圧
力センサ１７が設けられ、該センサ１７の検出値はコントローラ１４のバケット内土砂重量演算部１８に入力される。バケット内土砂重量演算部１８では、検出されたブームシリンダボトム圧力をパケット位置演算部１５から入力されたパケット位置を基に演算してバケット内土砂重量を求めるが、その演算は、図２に示したようなパケット位置により変化する、バケット内土砂重量とブームシリンダボトム圧力との関係を示すマップに基づき行われる。また、この演算結果はコントローラ１４のバケット内土砂重量積算部３１に入力され、該積算部３１において順次積算される。

運転室４内には操作レバー１９が設けられ、この操作レバー１９を前後・左右に操作することで上記各シリングに圧油を供給する操作弁を切換えて掘削積込機に掘削・積込み動作をさせる。

また、この操作レバー１９には、ダンプトラックの積込みが完了したことをダンプトラックのオペレータに知らせるホーンスイッチを兼用する土砂積込完了計数カウント用のカウントスイッチ２０と、バケット内土砂重量測定中止用のキャンセルスイッチ２１が設けてあると共に、上記運転室４には足踏み式のバケットダンプスイッチ２２が設けられ、これらの信号は前記バケット内土砂重量演算部１８に入力される。

エンジン３には、スロットル開度センサ２３、回転センサ２４、稼動時間計２５が設けられ、それらの信号はコントローラ１４の燃料消費量計算部２６に入力される。

上記コントローラ１４にはインプットキー２７、ディスプレイ２８、プリンター２９が接続されていると共に、ＩＣメモリーカード３０が挿入・抜き出し可能に設けられている。
次に本実施例によるバケット内土砂重量の検出について説明する。
バケット内土砂重量とブームシリンダボトム圧力との関間に特定の関係があるので、圧力センサ１７でブームシリンダボトム圧力を計測し、バケット内土砂重量演算部１８で演算することによりバケット内土砂重量を求めることができるが、そのバケット内土砂重量が同一でもバケット位置によってブームシリンダボトム圧力が異なる、即ちバケット位置によってバケット内土砂重量とブームシリンダボトム圧力との関係が変化するため、図２に示すように、バケット位置によって変化する、ブームシリンダボトム圧力とバケット内土砂重量との関係を示すマップに基づいて演算を行う。
その際、コントローラ１４のバケット位置演算部１５ではバケット位置を演算し、かつ車体傾斜計１６からの車体傾斜角度に基づき該バケット位置を補正してバケット内土砂重量演算部１８に入力する。従って、バケット位置や車体の傾斜角度に関係なくバケット内土砂重量を正確に検出できる。
また、ブームシリンダボトム圧力は掘削荷重変動などで図３に示すように変化するので、本実施例では、ダンプトラックに積込む直前のブームシリンダボトム圧力を測定することでバケット内土砂重量を正確に検出できるようにしてある。
すなわち、図３に示すようにブームシリンダボトム圧力を連続して計測しており、バケットダンプ信号が入力された時点 T₂から所定時間 t₁ sec（例えば2秒）前の時点 T₀ の 0.1 sec 前後の圧力 P₁、P₂ の平均値をブームシリンダボトム圧力として検出する。そして、この検出したブームシリンダボトム圧力と前記演算したバケット位置から、図２に示すマップに基づいてバケット内土砂重量
を演算して求める。

この求めたパケット内土砂重量はコントローララ14の積算部31によって順次積算されて、1日分がダンプトラックに積込んだ土砂重量の総計、つまり1日分の作業量となる。

かくして、各ダンプトラックに高価な積載量測定装置を設置せずとも、1日の運搬土砂重量を検出できる。従って、土砂運搬量算出システムを安価に構成することができる。

尚、前述のパケットダンプ信号は、ダンプスイッチ22からの信号でも良い。また、パケット位置が所定の高さ以上の時に入力されたパケットシリンダ10のストローク計13からのシリンダ短縮に相当する信号でも良い。例えば、図4に示すように、パケット高さHが設定値（作業現場において可変）以上で、角度θ1が増える方向に動き、角度θ2が設定値以上の時のストローク計13からの信号をダンプ信号としても良い。

また、操作レバー19が出力する操作弁切換え用電気信号または油圧信号をダンプ信号としても良い。

掘削積込機はダンプトラックへの積込み作業の外に足場処理や浮石処理等の補助作業を行なうが、この補助作業の時に前述のようにパケット内土砂重量の測定を行うと作業量が正確に検出できないので、この補助作業を行なう場合には前記操作レバー19に設けたキャンセルスイッチ21をONにしてキャンセル信号をコントローララ14に入力して前述のパケット内土砂重量の測定を中止する。こうすれば、パケット内土砂重量の総計、例えば1日の運搬土砂重量を正確に検出できる。

次に、ダンプトラックに土砂を満杯に積込んだ時にカウントスイッ
チ２０をＯＮにすると、その信号はコントローラ１４に入力されて土砂を積込んだダンプトラックの台数がカウントされる。
また、この時スイッチ２０のＯＮによりホーンがなり、ダンプトラックのオペレータに積込みが完了したことを知らせる。

次にエンジンの燃料消費量の測定について説明する。

図５に示すように、エンジン３の燃料噴射ポンプ４０はラック４１を移動することで燃料噴射量をコントロールするように構成され、そのラック４１はレバー４４の揺動により移動させられる。レバー４４は、ムービングコイル型電磁アクチュエータ４２により駆動される杆体４３の移動により揺動させられ、該杆体４３に先端に差動トランス４５を設けることにより前記スロットル開度センサ２３を構成している。

このスロットル開度センサ２３で検出されたスロットル開度（ラック位置）と回転センサ２４で検出されたエンジン回転数はコントローラ１４の燃料消費量計算部２６に入力され、図６に示すマップに基づいて燃料消費量が計算される。つまり、図６に示すマップは、ラック位置により変化し、エンジン回転数と燃料消費量の関係を示している。

また、稼働時間計２５で計測された稼働時間はコントローラ１４に入力されて前記作業量とによって単位時間当り作業量を演算するのに用いられると共に、前記燃料消費量とによって単位時間当り燃料消費量を演算するのに用いられる。

これら演算した作業量、単位時間当り作業量、燃料消費量、単位時間当り燃料消費量は、ＩＣメモリカード３０に記憶されると共に、プリンター２９でデータとして打出したり、ディスプレイ２８に表
示すことができる。

このＩＣメモリカード30を管理事務所のパソコンにセットすることで、前述の各データをパソコンに入力し、そのパソコンより1日の作業データ、1ヶ月の作業データにまとめて、打出すこともできる。従って、作業管理上好ましい。

前述の1日の作業データ、1ヶ月の作業データとしては、次のものがある。

日付、サービスメータ（稼動時間計）、始業、終業時計時間、稼動時間、点検整備時間、故障休車時間、待機等の待ち時間などの時間データ。

パケット1杯の土砂量、積み込み回数、処理ダンプトラック台数、総生産量（積み込み土砂量）などの生産量データ。

燃料消費量、オイル消費量、フィルター等の消耗品、故障・修理経歴などの消費量データ。なお、消耗品、故障・修理経歴はインプトキーによって入力される。

積込みサイクルタイム、ダンプトラック処理時間、燃料当り作業量などのデータ。

なお、本発明は例示的な実施例について説明したが、開示した実施例に関して、本発明の要旨及び範囲を逸脱することなく、種々の変更、省略、追加が可能であることは、当業者において自明である。従って、本発明は、上記の実施例に限定されるものではなく、請求の範囲に記載された要素によって規定される範囲及びその均等範囲を包含するものとして理解されなければならない。

産業上の利用可能性
以上のように、本発明に係る掘削機械の作業量検出装置は、建設現場や鉱石採掘現場における作業管理に極めて有用である。
請求の範囲

1. 車体に対してパケット支持手段を上下揺動させると共に、該当パケット支持手段に対してパケットをチルト作動させるようにした掘削積込機の作業量検出装置において、

前記パケット支持手段を上下揺動するシリンダのボトム圧力を検出すボトム圧力検出手段と、検出したボトム圧力からパケット内の土砂重量を演算するパケット内土砂重量演算手段と、演算されたパケット内土砂重量を積算するパケット内土砂重量積算手段とにより成ることを特徴とする作業量検出装置。

2. パケットの位置に関するデータを検出すパケット位置データ検出手段と、検出したパケット位置データからパケット位置を演算するパケット位置演算手段を備え、前記パケット内土砂重量演算手段は、演算されたパケット位置に基づいてパケット内土砂重量を補正することを特徴とする、請求項1に記載の掘削積込機の作業量検出装置。

3. 車体の傾斜角度を検出す傾斜角度検出手段を備え、前記パケット位置演算手段は、検出した車体傾斜角度に基づいてパケット位置を補正することを特徴とする、請求項2に記載の掘削積込機の作業量検出装置。

4. パケットがダンプ作動したもの検出するダンプ作動検出手段を備え、前記パケット内土砂重量演算手段は、ダンプ作動検出手段からダンプ作動検出信号の入力時点より若干前の時点の前後に検出したボトム圧力の平均値からパケット内土砂重量を演算することを特徴とする、請求項1に記載の掘削積込機の作業量検出装置。
5. パケットの位置に関するデータを検出するパケット位置データ検出手段と、検出されたパケット位置データからパケット位置を演算するパケット位置演算手段を備え、前記パケット内土砂重量演算手段は、演算されたパケット位置に基づいてパケット内土砂重量を補正することを特徴とする。請求項4に記載の掘削積込機の作業量検出装置。

6. 車体の傾斜角度を検出する傾斜角度検出手段を備え、前記パケット位置演算手段は、検出された車体傾斜角度に基づいてパケット位置を補正することを特徴とする。請求項5に記載の掘削積込機の作業量検出装置。

7. 前記ダンプ作動検出手段は、パケットが所定の高さ位置にあり且つ所定の方向に所定の角度囲巻した時にダンプ検出信号を発生することを特徴とする。請求項5に記載の掘削積込機の作業量検出装置。

8. 前記パケット内土砂重量の演算を中止する信号を前記パケット内土砂重量演算手段に入力する演算中止信号入力手段を設けたことを特徴とする。請求項1乃至7のいずれかに記載の掘削積込機の作業量検出装置。

9. 演算したパケット内土砂重量、積算したパケット内土砂重量が書き込み、読み出しされるICメモリカードを挿入・抜き出し可能に設けたことを特徴とする請求項1乃至7のいずれかに記載の掘削積込機の作業量検出装置。

10. 前記ICメモリカードに、時間データ及び消費量データも書き込み、読み出しされることを特徴とする。請求項9に記載の掘削積込機の作業量検出装置。
11. 演算したパケット内土砂重量、積算したパケット内土砂重量が書き込み、読み出しされる ICメモリカードを挿入・抜き出し可能に設けたことを特徴とする請求項8に記載の掘削積込機の作業量検出装置。

12. 前記ICメモリカードに、時間データ及び消費量データも書き込み、読み出しされることを特徴とする、請求項11に記載の掘削積込機の作業量検出装置。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl 5 G01G19/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl 5 G01G19/08, G01G19/10, G01G19/12, E02F9/26

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1965 - 1993
Kokai Jitsuyo Shinan Koho 1971 - 1993

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP, U, 61-8832 (Komatsu Ltd.), January 20, 1986 (20. 01. 86), Fig. 10 (Family: none)</td>
<td>1, 2</td>
</tr>
<tr>
<td>X</td>
<td>JP, U, 61-40455 (Komatsu Ltd.), March 14, 1986 (14. 03. 86), Fig. 8 (Family: none)</td>
<td>1-3</td>
</tr>
<tr>
<td>X</td>
<td>JP, A, 59-107217 (Caterpillar Mitsubishi Ltd.), June 21, 1984 (21. 06. 84), Lines 5 to 16, lower left column, page 3 (Family: none)</td>
<td>1, 2</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 60-141930 (Hitachi Construction Machinery Co., Ltd.), July 27, 1985 (27. 07. 85), Lines 11 to 13, lower left column, page 5 (Family: none)</td>
<td>8</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 64-57127 (Tokyo Electric Co., Ltd.),</td>
<td>9-12</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. [] See patent family annex.

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search September 1, 1993 (01. 09. 93)
Date of mailing of the international search report September 14, 1993 (14. 09. 93)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No. Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>March 3, 1989 (03. 03. 89), Fig. 1 (Family: none)</td>
<td>10, 12</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 4-31139 (Komatsu Ltd.), February 3, 1992 (03. 02. 92), Lines 8 to 18, page 2 (Family: none)</td>
<td>10, 12</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 59-153934 (Toyota Motor Corp.), September 1, 1984 (01. 09. 84), Fig. 2 (Family: none)</td>
<td>10, 12</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl. G 01 G 19/08

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl. G 01 G 19/08, G 01 G 19/10, G 01 G 19/12, E 02 F 9/26

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1965-1993年
日本国公開実用新案公報 1971-1993年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献の カテゴリー＊</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X JP, U, 61-8832（株式会社 小松製作所）， 20, 1月, 1986 (20, 01, 86), 第10図（ファミリーなし）</td>
<td></td>
<td>1, 2</td>
</tr>
<tr>
<td>X JP, U, 61-30455（株式会社 小松製作所）， 14, 3月, 1986 (14, 03, 86), 第8図（ファミリーなし）</td>
<td></td>
<td>1 - 3</td>
</tr>
<tr>
<td>X JP, A, 59-107217（キャタピラー三菱株式会社）,</td>
<td></td>
<td>1, 2</td>
</tr>
</tbody>
</table>

＊ 引用文献のカテゴリ

「A」特に関連のある文書ではなく、一般的技術文献を示すもの

「E」先行文献ではあるが、国際出願日以後に公表されたもの

「L」優先権主張の基盤を提供する文書又は他の文献の発行日若しくは他の特別な理由を考慮するために引用する文献（理由付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願日の日付に公表された文献

「T」国際出願日又は優先日後に公表された文書であって出願と矛盾するものでなく、発明の原理又は理論の理解のため引用するもの

「X」特に関連のある文献であって、当該文書のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文書と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 01.09.93
国際調査報告の発送日 14.09.93

名称及び住所

日本国特許庁 (ISA/JP)
郵便番号 110-00
東京都千代田区霞が関三丁目4番3号

特許庁审查官（権限のある職員）
後藤時男

電話番号 03-3581-1101 内線 3217

様式PCT／ISA／210（第2ページ）（1992年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, A, 60-141930（日立建機株式会社）, 27.7月, 1985 (27.07.85), 第5頁下欄第11-13行 (ファミリーなし)</td>
<td>8</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 64-57127（東京電気株式会社）, 3.3月, 1989 (03.03.89), 第1図 (ファミリーなし)</td>
<td>9-12</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 4-31139（株式会社小松製作所）, 3.2月, 1992 (03.02.92), 第2頁第8-18行 (ファミリーなし)</td>
<td>10,12</td>
</tr>
<tr>
<td>Y</td>
<td>JP, A, 59-153934（トヨタ自動車株式会社）, 1.9月, 1984 (01.09.84), 第2図 (ファミリーなし)</td>
<td>10,12</td>
</tr>
</tbody>
</table>