

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2223776 C 2002/02/12

(11)(21) 2 223 776

(12) BREVET CANADIEN
CANADIAN PATENT

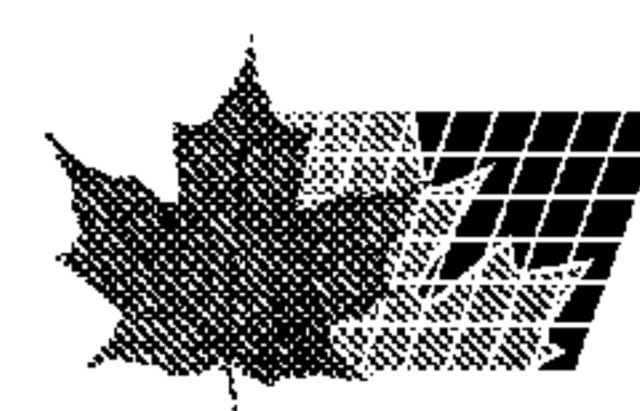
(13) C

(86) Date de dépôt PCT/PCT Filing Date: 1996/06/06
(87) Date publication PCT/PCT Publication Date: 1996/12/19
(45) Date de délivrance/Issue Date: 2002/02/12
(85) Entrée phase nationale/National Entry: 1997/12/05
(86) N° demande PCT/PCT Application No.: US 1996/009306
(87) N° publication PCT/PCT Publication No.: 1996/040162
(30) Priorité/Priority: 1995/06/07 (08/474,497) US

(51) Cl.Int.⁶/Int.Cl.⁶ A61K 31/70

(72) Inventeurs/Inventors:
METZGER, W. James, US;
NYCE, Jonathan W., US

(73) Propriétaire/Owner:
EAST CAROLINA UNIVERSITY, US


(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : PROCEDE DE TRAITEMENT DE MALADIES PULMONAIRES AU MOYEN D'OLIGONUCLEOTIDES
ANTISENS

(54) Title: METHOD OF TREATMENT FOR LUNG DISEASES USING ANTISENSE OLIGONUCLEOTIDES

(57) Abrégé/Abstract:

A method of treating airway disease in a subject in need of such treatment is disclosed. The method comprises topically administering to the subject an antisense oligonucleotide in an amount effective to treat the airway disease, where the antisense oligonucleotide is essentially free of adenosine. Pharmaceutical formulations are also disclosed.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 31/70		A1	(11) International Publication Number: WO 96/40162 (43) International Publication Date: 19 December 1996 (19.12.96)
(21) International Application Number: PCT/US96/09306		(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 6 June 1996 (06.06.96)			
(30) Priority Data: 08/474,497 7 June 1995 (07.06.95) US			
(60) Parent Application or Grant (63) Related by Continuation US 08/474,497 (CIP) Filed on 7 June 1995 (07.06.95)			
(71) Applicant (for all designated States except US): EAST CAROLINA UNIVERSITY [US/US]; 210 Spilman Building, Greenville, NC 27858-4353 (US).		(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(72) Inventors; and (75) Inventors/Applicants (for US only): NYCE, Jonathan, W. [US/US]; 903-11 Treybrooke Circle, Greenville, NC 27834 (US). METZGER, W., James [US/US]; 238 Windsor, Greenville, NC 27858 (US).		Published With international search report.	
(74) Agents: SIBLEY, Kenneth, D. et al.; Bell, Seltzer, Park & Gibson, P.O. Drawer 34009, Charlotte, NC 28234 (US).			

(54) Title: METHOD OF TREATMENT FOR LUNG DISEASES USING ANTISENSE OLIGONUCLEOTIDES

(57) Abstract

A method of treating airway disease in a subject in need of such treatment is disclosed. The method comprises topically administering to the subject an antisense oligonucleotide in an amount effective to treat the airway disease, where the antisense oligonucleotide is essentially free of adenosine. Pharmaceutical formulations are also disclosed.

METHOD OF TREATMENT FOR LUNG DISEASES USING ANTISENSE OLIGONUCLEOTIDES

This invention was made with Government support under grant RO1CA47217-06 from the National Cancer Institute. The Government has certain rights to this invention.

5

Field of the Invention

This application concerns a method of administering antisense oligonucleotides essentially free of adenosine as a treatment for lung diseases.

Background of the Invention

10 Antisense oligonucleotides have received considerable theoretical consideration as potentially useful pharmacologic agents in human disease. R. Wagner, *Nature* 372, 333-335 (1994). However, practical applications of these molecules in actual models of human 15 disease have been elusive. One important consideration in the pharmacologic application of these molecules is route of administration. Most experiments utilizing antisense oligonucleotides *in vivo* have involved direct application to limited regions of the brain (see C. 20 Wahlestedt, *Trends in Pharmacological Sciences* 15, 42-46 (1994); J. Lai et al., *Neuroreport* 5, 1049-1052 (1994); K. Standifer et al., *Neuron* 12, 805-810 (1994); A. Akabayashi et al., *Brain Research* 21, 55-61 (1994)), or to spinal fluid (see e.g. L. Tseng et al., *European J. 25 Pharmacol.* 258, R1-3 (1994); R. Raffa et al., *European J. Pharmacol.* 258, R5-7 (1994); F. Gillardon et al., *European J. Neurosci.* 6, 880-884 (1994)). Such applications have limited clinical utility due to their invasive nature.

The systemic administration of antisense oligonucleotides also poses significant problems with respect to pharmacologic application, not the least of which is the difficulty in targeting disease-involved 5 tissues. In contrast, the lung is an excellent potential target for antisense oligonucleotide application since it may be approached noninvasively and in a tissue-specific manner. Additionally, the lung represents an exceptional target for antisense ODN therapeutics as compared to other 10 *in vivo* target organs or tissues, possibly because the lung is lined with surfactant which consists primarily of cationic lipids, well known to enhance cellular uptake of ODNs in other systems. However, the technology involved in delivering antisense agents to the lung remains 15 relatively undeveloped, and potential problems related to the application of antisense agents to the lung remain unexplored.

Adenosine, a purine which contributes to intermediary metabolism and participates in the 20 regulation of physiological activity, is a recognized neuromodulator. This nucleoside is involved in many local regulatory mechanisms, in particular at synapses in the CNS and at neuroeffector junctions in the periphery. In the CNS adenosine is known to inhibit the release of 25 a variety of neurotransmitters (noradrenaline, serotonin, GABA, acetylcholine, dopamine, glutamate, etc.), to inhibit neurotransmission, depress neuronal firing, induce spinal analgesia, and to possess anxiolytic properties (E.S. Ben-Sorek et al., *Archives of Internal Medicine* 153, 2701-2702 (1993)). In the heart, adenosine 30 is known to slow atrioventricular (AV) conduction, suppress pacemaker activity, possess antiarrhythmic effects, modulate autonomic control, and to trigger the synthesis and release of prostaglandins. M.K. Church et 35 al., *J. Allergy & Clinical Immunology* 92, 190-194 (1993). It also possesses potent vasodilatory effects and modulates vascular tone. S.T. Holgate et al., *Annals*

-3-

of the New York Academy of Sciences 629, 227-236 (1991).

As a therapeutic agent, adenosine has achieved considerable recent success as an antiarrythmic agent in the treatment of supraventricular tachycardia. See C.G. DeGroff and M.J. Silka, *Journal of Pediatrics* 125, 822-823 (1994); I. Drake et al., *Human and Exp. Toxicol.* 13, 263-265 (1994). However, many adverse effects of adenosine treatment have been reported in the literature. See, e.g., A. Aggarwal, et al., *Anesthesiology* 79, 1132-1135 (1993); K.K. Burkhardt, *American J. Emergency Med.* 11, 249-250 (1993); S.K. Srinivasan and P.J. Iversen, *J. Clin. Lab. Analysis* 9, 129- 137 (1995); C.A. Stein et al., *Pharmacology & Therapeutics* 52, 365-384 (1991); B.B. Fredholm et al., *Pharmacological Reviews* 46, 143-156 (1994); H. Saito, et al., *Blood* 66, 1233-1240 (1985). In particular, asthmatic individuals show an extreme sensitivity to adenosine and adenosine monophosphate. See, J.H. Butterfield et al., *Leukemia Res.* 12, 345-355 (1988); CLONETICS: *Normal Human Cell Systems Manual* (1995); R.W. Wagner, *Nature* 372, 333-335 (1994). Serious, near-fatal induction of bronchospasm has occurred in asthmatic individuals administered adenosine for supraventricular tachycardia. See, S. Tabor, in: *Current Protocols in Molecular Biology*, Vol. 1, Section 3.10.2 (John Wiley & Sons, 1987); J.H. Weiss, *Id.*, at Section 6.2.2.

Similarly, asthmatic rabbits produced using the dust mite allergic rabbit model of human asthma also were shown to respond to aerosolized adenosine with marked bronchoconstriction, while non asthmatic rabbits showed no response. S. Ali et al., *Agents Actions* 37, 165-176 (1992). Recent work using this model system has suggested that adenosine-induced bronchoconstriction and bronchial hyperresponsiveness in asthma are mediated primarily through the stimulation of adenosine receptors. S. Ali et

-4-

al., *J. Pharmacol. Exp. Ther.* 268, 1328-1334 (1994); S. Ali et al., *Am. J. Physiol* 266, L271-277 (1994).

Accordingly, adenosine is contraindicated in the lungs of asthmatics (who represent 10% of the adult 5 and 15% of the pediatric population in the United States). Since antisense ODNs are typically composed of all four base pairs, adenine, guanine, cytosine and thymidine, their breakdown products will produce free deoxyadenosine monophosphate in these hyperresponsive 10 airways. Deoxyadenosine monophosphate differs from adenosine monophosphate only by the loss of an oxygen atom on the 3' carbon of the sugar moiety.

Summary of the Invention

A first aspect of the present invention is a 15 method of treating airway disease in a subject in need of such treatment. The method comprises administering an antisense oligonucleotide essentially free of adenosine to the lungs of the subject in an amount effective to treat the airway disease.

20 A second aspect of the present invention is a pharmaceutical composition, comprising, together in a pharmaceutically acceptable carrier, an antisense oligonucleotide essentially free of adenosine in an amount effective to treat an airway disease.

25 A third aspect of the present invention is the use of an antisense oligonucleotide essentially free of adenosine as given above for the preparation of a medicament for treating airway disease in a subject in need of such treatment.

Brief Description of the Drawings

Figures 1-4 demonstrate that antisense oligonucleotides can be utilized as effective agents in the treatment or prevention of airway diseases.

35 **Figure 1** illustrates the effects of A₁ adenosine receptor antisense oligonucleotides and mismatch control

WO 96/40162

PCT/US96/09306

-5-

antisense oligonucleotides on the dynamic compliance of the bronchial airway in a rabbit model. **Figure 2** illustrates the specificity of A₁ adenosine receptor antisense oligonucleotides as indicated by the A₁ and A₂ adenosine receptor number present in A₁ adenosine receptor antisense oligonucleotide-treated airway tissue.

Figure 3 is a graphical representation illustrating that aerosolized deoxyadenosine monophosphate is a potent bronchoconstrictor in asthmatic pathways of allergic rabbits. Further, the figure shows that the effect of deoxyadenosine monophosphate is equipotent to that observed for adenosine monophosphate.

Figure 4 is a graphical representation illustrating that bronchoconstrictor effects occur with aerosolized phosphorothioate oligodeoxynucleotides containing adenosine, but not with oligodeoxynucleotides that are free of adenosine.

Detailed Description of the Invention

Nucleotide sequences are presented herein by 20 single strand only, in the 5' to 3' direction, from left to right. Nucleotides and amino acids are represented herein in the manner recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or (for amino acids) by three letter code, in accordance with 37 CFR §1.822 25 and established usage. See, e.g., PatentIn User Manual, 99-102 (Nov. 1990) (U.S. Patent and Trademark Office, Office of the Assistant Commissioner for Patents, Washington, D.C. 20231); U.S. Patent No. 4,871,670 to Hudson et al. at Col. 3 - lines 20-43.

30 The method of the present invention may be used to treat airway disease in a subject for any reason, with the intention that adenosine content of antisense compounds be eliminated or reduced so as to prevent its

liberation upon antisense degredation. Such liberation may cause serious, even life-threatening, bronchoconstriction in patients with hyperreactive airways. Examples of airway diseases that may be treated 5 by the method of the present invention include cystic fibrosis, asthma, chronic obstructive pulmonary disease, bronchitis, and other airway diseases characterized by an inflammatory response.

Antisense oligonucleotides to the A₁ and A₃ 10 receptors are shown to be effective in the downregulation of A₁ or A₃ in the cell. One novel feature of this treatment, as compared to traditional treatments for adenosine-induced bronchoconstriction, is that administration is direct to the lungs. Additionally, a 15 receptor protein itself is reduced in amount, rather than merely interacting with a drug, and toxicity is reduced. Other proteins that may be targeted with antisense agents for the treatment of lung conditions include, but are not limited to: human A2a adenosine receptor, human A2b 20 adenosine receptor, human IgE receptor β , human Fc-epsilon receptor CD23 antigen, human histidine decarboxylase, human beta tryptase, human tryptase-I, human prostaglandin D synthase, human cyclooxygenase-2, human eosinophil cationic protein, human eosinophil 25 derived neurotoxin, human eosinophil peroxidase, human intercellular adhesion molecule-1 (ICAM-1), human vascular cell adhesion molecule 1 (VCAM-1), human endothelial leukocyte adhesion molecule (ELAM-1), human P selectin, human endothelial monocyte activating factor, 30 human IL-3, human IL-4, human IL-5, human IL-6, human IL-8, human monocyte-derived neutrophil chemotactic factor, human neutrophil elastase, human neutrophil oxidase factor, human cathepsin G, human defensin 1, human defensin 3, human macrophage inflammatory protein-1- 35 alpha, human muscarinic acetylcholine receptor HM1, human muscarinic acetylcholine receptor HM3, human fibronectin, human GM-CSF, human tumor necrosis factor α , human

- 7 -

leukotriene C4 synthase, human major basic protein, and human endothelin 1. In these latter targets, and in target genes in general, it is particularly imperative to eliminate or reduce the adenosine content of the 5 corresponding antisense oligonucleotide to prevent their breakdown products from liberating adenosine.

As used herein, the term "treat" or "treating" a lung disease refers to a treatment which decreases the likelihood that the subject administered such treatment 10 will manifest symptoms of the lung disease. The term "downregulate" refers to inducing a decrease in production, secretion or availability (and thus a decrease in concentration) of the targeted intracellular protein.

15 The present invention is concerned primarily with the treatment of human subjects but may also be employed for the treatment of other mammalian subjects, such as dogs and cats, for veterinary purposes. Targeted proteins are preferably mammalian and more preferably of 20 the same species as the subject being treated.

In general, "antisense" refers to the use of small, synthetic oligonucleotides, resembling single-stranded DNA, to inhibit gene expression by inhibiting the function of the target messenger RNA (mRNA). 25 Milligan, J.F. et al., *J. Med. Chem.* 36(14), 1923-1937 (1993). In the present invention, inhibition of gene expression of the A₁ or A₃ adenosine receptor is desired. Gene expression is inhibited through hybridization to coding (sense) sequences in a specific messenger RNA 30 (mRNA) target by hydrogen bonding according to Watson-Crick base pairing rules. The mechanism of antisense inhibition is that the exogenously applied oligonucleotides decrease the mRNA or protein levels of the target gene or cause changes in the growth 35 characteristics or shapes of the cells. *Id.* See also Helene, C. and Toulme, J., *Biochim. Biophys. Acta* 1049, 99-125 (1990); Cohen, J.S., Ed., *Oligodeoxynucleotides as*

Antisense Inhibitors of Gene Expression; CRC Press: Boca Raton, FL (1987).

As used herein, "antisense oligonucleotide" is defined as a short sequence of synthetic nucleotides that 5 (1) hybridizes to any coding sequence in an mRNA which codes for the targeted protein, according to hybridization conditions described below, and (2) upon hybridization causes a decrease in gene expression of the targeted protein.

10 The mRNA sequence of the A₁ or A₃ adenosine receptor is derived from the DNA base sequence of the gene expressing either the A₁ or A₃ adenosine receptor. The sequence of the genomic human A₁ adenosine receptor is known and is disclosed in U.S. Patent No. 5,320,963 to G. 15 Stiles et al. The A₃ adenosine receptor has been cloned, sequenced and expressed in rat (see F. Zhou et al., *Proc. Nat'l Acad. Sci. USA* 89:7432 (1992)) and human (see M.A. Jacobson et al., U.K. Patent Application No. 9304582.1 (1993)). Thus, antisense oligonucleotides that 20 downregulate the production of the A₁ or A₃ adenosine receptor may be produced in accordance with standard techniques.

One aspect of this invention is an antisense oligonucleotide having a sequence capable of binding 25 specifically with any sequence of an mRNA molecule which encodes an airway disease-associated protein so as to prevent translation of the mRNA molecule.

Chemical analogs of oligonucleotides (e.g., oligonucleotides in which the phosphodiester bonds have 30 been modified, e.g., to the methylphosphonate, the phosphotriester, the phosphorothioate, the phosphorodithioate, or the phosphoramidate, so as to render the oligonucleotide more stable *in vivo*) are also an aspect of the present invention. The naturally 35 occurring phosphodiester linkages in oligonucleotides are susceptible to degradation by endogenously occurring cellular nucleases, while many analogous linkages are

highly resistant to nuclease degradation. See Milligan et al., and Cohen, J.S., *supra*. Protection from degradation can be achieved by use of a "3'-end cap" strategy by which nuclease-resistant linkages are 5 substituted for phosphodiester linkages at the 3' end of the oligonucleotide. See Tidd, D.M. and Warenius, H.M., *Br. J. Cancer* 60, 343-350 (1989); Shaw, J.P. et al., *Nucleic Acids Res.* 19, 747-750 (1991). Phosphoramidates, phosphorothioates, and methylphosphonate linkages all 10 function adequately in this manner. More extensive modification of the phosphodiester backbone has been shown to impart stability and may allow for enhanced affinity and increased cellular permeation of oligonucleotides. See Milligan, et al., *supra*. Many 15 different chemical strategies have been employed to replace the entire phosphodiester backbone with novel linkages. *Id.* Backbone analogues include phosphorothioate, phosphorodithioate, methylphosphonate, phosphoramidate, boranophosphate, phosphotriester, 20 formacetal, 3'-thioformacetal, 5'-thioformacetal, 5'-thioether, carbonate, 5'-N-carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methylimino) (MMI) or methyleneoxy(methylimino) (MOMI) linkages. 25 Phosphorothioate and methylphosphonate-modified oligonucleotides are particularly preferred due to their availability through automated oligonucleotide synthesis. *Id.* Where appropriate, the antisense oligonucleotides may be administered in the form of their pharmaceutically 30 acceptable salts.

Antisense oligonucleotides may be of any suitable length (e.g., from about 10 to 60 nucleotides in length), depending on the particular target being bound and the mode of delivery thereof. Preferably the 35 antisense oligonucleotide is directed to an mRNA region containing a junction between intron and exon. Where the antisense oligonucleotide is directed to an intron/exon

-10-

junction, it may either entirely overlie the junction or may be sufficiently close to the junction to inhibit splicing out of the intervening exon during processing of precursor mRNA to mature mRNA (e.g., with the 3' or 5' 5 terminus of the antisense oligonucleotide being positioned within about, for example, 10, 5, 3, or 2 nucleotides of the intron/exon junction).

When practicing the present invention, the antisense nucleotides administered may be related in 10 origin to the species to which it is administered. When treating humans, human antisense may be used if desired.

Pharmaceutical compositions comprising an antisense oligonucleotide as given above effective to reduce expression of an A₁ or A₃ adenosine receptor by 15 passing through a cell membrane and binding specifically with mRNA encoding an A₁ or A₃ adenosine receptor in the cell so as to prevent its translation are another aspect of the present invention. Such compositions are provided in a suitable pharmaceutically acceptable carrier (e.g., 20 sterile pyrogen-free saline solution). The antisense oligonucleotides may be formulated with a hydrophobic carrier capable of passing through a cell membrane (e.g., in a liposome, with the liposomes carried in a pharmaceutically acceptable aqueous carrier). The 25 oligonucleotides may also be coupled to a substance which inactivates mRNA, such as a ribozyme. Such oligonucleotides may be administered to a subject to inhibit the activation of A₁ or A₃ adenosine receptors, which subject is in need of such treatment for any of the 30 reasons discussed herein. Furthermore, the pharmaceutical formulation may also contain chimeric molecules comprising antisense oligonucleotides attached to molecules which are known to be internalized by cells. These oligonucleotide conjugates utilize cellular uptake 35 pathways to increase cellular concentrations of oligonucleotides. Examples of macromolecules used in this manner include transferrin, asialoglycoprotein

-11-

(bound to oligonucleotides via polylysine) and streptavidin.

In the pharmaceutical formulation the antisense compound may be contained within a lipid particle or vesicle, such as a liposome or microcrystal. The particles may be of any suitable structure, such as unilamellar or plurilamellar, so long as the antisense oligonucleotide is contained therein. Positively charged lipids such as N-[1-(2,3-dioleoyloxi)propyl]-N,N,N-trimethyl-ammoniummethylsulfate, or "DOTAP," are particularly preferred for such particles and vesicles.

The preparation of such lipid particles is well known. See, e.g., U.S. Patent Nos. 4,880,635 to Janoff et al.; 4,906,477 to Kurono et al.; 4,911,928 to Wallach; 15 4,917,951 to Wallach; 4,920,016 to Allen et al.; 4,921,757 to Wheatley et al.; etc.

Subjects may be administered the active composition by any means which transports the antisense nucleotide composition to the lung. The antisense compounds disclosed herein may be administered to the lungs of a patient by any suitable means, but are preferably administered by generating an aerosol comprised of respirable particles, the respirable particles comprised of the antisense compound, which 25 particles the subject inhales. The respirable particles may be liquid or solid. The particles may optionally contain other therapeutic ingredients.

Particles comprised of antisense compound for practicing the present invention should include particles 30 of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. In general, particles ranging from about .5 to 10 microns in size are respirable. Particles of non-35 respirable size which are included in the aerosol tend to deposit in the throat and be swallowed, and the quantity of non-respirable particles in the aerosol is preferably

-12-

minimized. For nasal administration, a particle size in the range of 10-500 μm is preferred to ensure retention in the nasal cavity.

Liquid pharmaceutical compositions of active 5 compound for producing an aerosol can be prepared by combining the antisense compound with a suitable vehicle, such as sterile pyrogen free water. Other therapeutic compounds may optionally be included.

Solid particulate compositions containing 10 respirable dry particles of micronized antisense compound may be prepared by grinding dry antisense compound with a mortar and pestle, and then passing the micronized composition through a 400 mesh screen to break up or separate out large agglomerates. A solid particulate 15 composition comprised of the antisense compound may optionally contain a dispersant which serves to facilitate the formation of an aerosol. A suitable dispersant is lactose, which may be blended with the antisense compound in any suitable ratio (e.g., a 1 to 1 20 ratio by weight). Again, other therapeutic compounds may also be included.

The dosage of the antisense compound administered will depend upon the disease being treated, the condition of the subject, the particular formulation, 25 the route of administration, the timing of administration to a subject, etc. In general, intracellular concentrations of the oligonucleotide of from .05 to 50 μM , or more particularly .2 to 5 μM , are desired. For administration to a subject such as a human, a dosage of 30 from about .01, .1, or 1 mg/Kg up to 50, 100, or 150 mg/Kg or more is typically employed. Depending on the solubility of the particular formulation of active compound administered, the daily dose may be divided among one or several unit dose administrations. 35 Administration of the antisense compounds may be carried out therapeutically (i.e., as a rescue treatment) or prophylactically.

-13-

Aerosols of liquid particles comprising the antisense compound may be produced by any suitable means, such as with a nebulizer. See, e.g., U.S. Patent No. 4,501,729. Nebulizers are commercially available devices 5 which transform solutions or suspensions of the active ingredient into a therapeutic aerosol mist either by means of acceleration of a compressed gas, typically air or oxygen, through a narrow venturi orifice or by means of ultrasonic agitation. Suitable formulations for use 10 in nebulizers consist of the active ingredient in a liquid carrier, the active ingredient comprising up to 40% w/w of the formulation, but preferably less than 20% w/w. The carrier is typically water or a dilute aqueous 15 alcoholic solution, preferably made isotonic with body fluids by the addition of, for example, sodium chloride. Optional additives include preservatives if the formulation is not prepared sterile, for example, methyl hydroxybenzoate, antioxidants, flavoring agents, volatile 20 oils, buffering agents and surfactants.

Aerosols of solid particles comprising the active compound may likewise be produced with any solid particulate medicament aerosol generator. Aerosol generators for administering solid particulate medicaments to a subject produce particles which are 25 respirable, as explained above, and generate a volume of aerosol containing a predetermined metered dose of a medicament at a rate suitable for human administration. One illustrative type of solid particulate aerosol generator is an insufflator. Suitable formulations for 30 administration by insufflation include finely comminuted powders which may be delivered by means of an insufflator or taken into the nasal cavity in the manner of a snuff. In the insufflator, the powder (e.g., a metered dose 35 thereof effective to carry out the treatments described herein) is contained in capsules or cartridges, typically made of gelatin or plastic, which are either pierced or opened *in situ* and the powder delivered by air drawn

-14-

through the device upon inhalation or by means of a manually-operated pump. The powder employed in the insufflator consists either solely of the active ingredient or of a powder blend comprising the active 5 ingredient, a suitable powder diluent, such as lactose, and an optional surfactant. The active ingredient typically comprises from 0.1 to 100 w/w of the formulation. A second type of illustrative aerosol generator comprises a metered dose inhaler. Metered dose 10 inhalers are pressurized aerosol dispensers, typically containing a suspension or solution formulation of the active ingredient in a liquified propellant. During use these devices discharge the formulation through a valve adapted to deliver a metered volume, typically from 10 to 15 15 μl , to produce a fine particle spray containing the active ingredient. Suitable propellants include certain chlorofluorocarbon compounds, for example, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane and mixtures thereof. The 20 formulation may additionally contain one or more co-solvents, for example, ethanol, surfactants, such as oleic acid or sorbitan trioleate, antioxidants and suitable flavoring agents.

The aerosol, whether formed from solid or 25 liquid particles, may be produced by the aerosol generator at a rate of from about 10 to 150 liters per minute, more preferably from about 30 to 150 liters per minute, and most preferably about 60 liters per minute. Aerosols containing greater amounts of medicament may be 30 administered more rapidly.

The following examples are provided to illustrate the present invention, and should not be construed as limiting thereon. In these examples, μM means micromolar, mL means milliliters, μm means 35 micrometers, mm means millimeters, cm means centimeters, $^{\circ}\text{C}$ means degrees Celsius, μg means micrograms, mg means

-15-

milligrams, g means grams, kg means kilograms, M means molar, and h means hours.

EXAMPLE 1

Design and synthesis of antisense oligonucleotides

5 The design of antisense oligonucleotides against the A₁ and A₃ adenosine receptors may require the solution of the complex secondary structure of the target A₁ receptor mRNA and the target A₃ receptor mRNA. After generating this structure, antisense nucleotides are
10 designed which target regions of mRNA which might be construed to confer functional activity or stability to the mRNA and which optimally may overlap the initiation codon. Other target sites are readily usable. As a demonstration of specificity of the antisense effect,
15 other oligonucleotides not totally complementary to the target mRNA, but containing identical nucleotide compositions on a w/w basis, are included as controls in antisense experiments.

Adenosine A₁ receptor mRNA secondary structure
20 was analyzed and used as described above to design a phosphorothioate antisense oligonucleotide. The antisense oligonucleotide which was synthesized was designated **HAdA1AS** and had the following sequence:

5' -GAT GGA GGG CGG CAT GGC GGG-3' (SEQ ID NO:1)

25 As a control, a mismatched phosphorothioate antisense nucleotide designated **HAdA1MM** was synthesized with the following sequence:

5' -GTA GCA GGC GGG GAT GGG GGC-3' (SEQ ID NO:2)

30 Each oligonucleotide had identical base content and general sequence structure. Homology searches in GENBANK (release 85.0) and EMBL (release 40.0) indicated that the antisense oligonucleotide was specific for the human and rabbit adenosine A₁ receptor genes, and that the

-16-

mismatched control was not a candidate for hybridization with any known gene sequence.

Adenosine A₃ receptor mRNA secondary structure was similarly analyzed and used as described above to 5 design two phosphorothioate antisense oligonucleotides. The first antisense oligonucleotide (**HAdA3AS1**) synthesized had the following sequence:

5'-GTT GTT GGG CAT CTT GCC-3' (SEQ ID NO:3)

As a control, a mismatched phosphorothioate antisense 10 oligonucleotide (**HAdA3MM1**) was synthesized, having the following sequence:

5'-GTA CTT GCG GAT CTA GGC-3' (SEQ ID NO:4)

A second phosphorothioate antisense oligonucleotide (**HAdA3AS2**) was also designed and 15 synthesized, having the following sequence:

5'-GTG GGC CTA GCT CTC GCC-3' (SEQ ID NO:5)

Its control oligonucleotide (**HAdA3MM2**) had the sequence:

5'-GTC GGG GTA CCT GTC GGC-3' (SEQ ID NO:6)

Phosphorothioate oligonucleotides were 20 synthesized on an Applied Biosystems Model 396 Oligonucleotide Synthesizer, and purified using NENSORB chromatography (DuPont, MD).

EXAMPLE 2

Testing of A1-Adenosine Receptor

Antisense Oligonucleotides *in vitro*

The antisense oligonucleotide against the human A₁ receptor (SEQ ID NO:1) described above was tested for

-17-

efficacy in an *in vitro* model utilizing lung adenocarcinoma cells HTB-54. HTB-54 lung adenocarcinoma cells were demonstrated to express the A₁ adenosine receptor using standard northern blotting procedures and 5 receptor probes designed and synthesized in the laboratory.

HTB-54 human lung adenocarcinoma cells (106/100 mm tissue culture dish) were exposed to 5.0 μ M **HAdA1AS** or **HAdA1MM** for 24 hours, with a fresh change of media and 10 oligonucleotides after 12 hours of incubation. Following 24 hour exposure to the oligonucleotides, cells were harvested and their RNA extracted by standard procedures. A 21-mer probe corresponding to the region of mRNA targeted by the antisense (and therefore having the same 15 sequence as the antisense, but not phosphorothioated) was synthesized and used to probe northern blots of RNA prepared from **HAdA1AS**-treated, **HAdA1MM**-treated and non-treated HTB-54 cells. These blots showed clearly that **HAdA1AS** but not **HAdA1MM** effectively reduced human 20 adenosine receptor mRNA by >50%. This result showed that **HAdA1AS** is a good candidate for an anti-asthma drug since it depletes intracellular mRNA for the adenosine A₁ receptor, which is involved in asthma.

EXAMPLE 3

25 Efficacy of A₁-Adenosine Receptor
Antisense Oligonucleotides in vivo

A fortuitous homology between the rabbit and human DNA sequences within the adenosine A₁ gene overlapping the initiation codon permitted the use of the 30 phosphorothioate antisense oligonucleotides initially designed for use against the human adenosine A₁ receptor in a rabbit model.

Neonatal New Zealand white Pasteurella-free rabbits were immunized intraperitoneally within 24 hours 35 of birth with 312 antigen units/mL house dustmite (*D. farinae*) extract (Berkeley Biologicals, Berkeley, CA),

-18-

mixed with 10% kaolin. Immunizations were repeated weekly for the first month and then biweekly for the next 2 months. At 3-4 months of age, eight sensitized rabbits were anesthetized and relaxed with a mixture of ketamine 5 hydrochloride (44 mg/kg) and acepromazine maleate (0.4 mg/kg) administered intramuscularly.

The rabbits were then laid supine in a comfortable position on a small molded, padded animal board and intubated with a 4.0-mm intratracheal tube 10 (Mallinkrodt, Inc., Glens Falls, NY). A polyethylene catheter of external diameter 2.4 mm with an attached latex balloon was passed into the esophagus and maintained at the same distance (approximately 16 cm) from the mouth throughout the experiments. The 15 intratracheal tube was attached to a heated Fleisch pneumotachograph (size 00; DOM Medical, Richmond, VA), and flow was measured using a Validyne differential pressure transducer (Model DP-45161927; Validyne Engineering Corp., Northridge, CA) driven by a Gould 20 carrier amplifier (Model 11-4113; Gould Electronic, Cleveland, OH). The esophageal balloon was attached to one side of the differential pressure transducer, and the outflow of the intratracheal tube was connected to the opposite side of the pressure transducer to allow 25 recording of transpulmonary pressure. Flow was integrated to give a continuous tidal volume, and measurements of total lung resistance (RL) and dynamic compliance (Cdyn) were calculated at isovolumetric and flow zero points, respectively, using an automated 30 respiratory analyzer (Model 6; Buxco, Sharon, CT).

Animals were randomized and on Day 1 pretreatment values for PC50 were obtained for aerosolized adenosine. Antisense (**HAdA1AS**) or mismatched control (**HAdA1MM**) oligonucleotides were dissolved in 35 sterile physiological saline at a concentration of 5000 ug (5 mg) per 1.0 ml. Animals were subsequently administered the aerosolized antisense or mismatch

-19-

oligonucleotide via the intratracheal tube (approximately 5000 μ g in a volume of 1.0 ml), twice daily for two days.

Aerosols of either saline, adenosine, or antisense or mismatch oligonucleotides were generated by an ultrasonic 5 nebulizer (DeVilbileiss, Somerset, PA), producing aerosol droplets 80% of which were smaller than 5 μ m in diameter.

In the first arm of the experiment, four randomly selected allergic rabbits were administered antisense oligonucleotide and four the mismatched control 10 oligonucleotide. On the morning of the third day, PC50 values (the concentration of aerosolized adenosine in mg/ml required to reduce the dynamic compliance of the bronchial airway 50% from the baseline value) were obtained and compared to PC50 values obtained for these 15 animals prior to exposure to oligonucleotide.

Following a 1 week interval, animals were crossed over, with those previously administered mismatch control oligonucleotide now administered antisense oligonucleotide, and those previously treated with 20 antisense oligonucleotide now administered mismatch control oligonucleotide. Treatment methods and measurements were identical to those employed in the first arm of the experiment. It should be noted that in six of the eight animals treated with antisense 25 oligonucleotide, adenosine-induced bronchoconstriction could not be obtained up to the limit of solubility of adenosine, 20 mg/ml. For the purpose of calculation, PC50 values for these animals were set at 20 mg/ml. The values given therefore represent a minimum figure for 30 antisense effectiveness. Actual effectiveness was higher. The results of this experiment are illustrated in both **Figure 1** and **Table 1**.

-20-

TABLE 1. EFFECTS OF ADENOSINE A₁ RECEPTOR ANTISENSE OLIGONUCLEOTIDE UPON PC50 VALUES IN ASTHMATIC RABBITS.

5	Mismatch Control		A ₁ receptor Antisense oligonucleotide	
	Pre oligonucleotide	Post oligonucleotide	Pre oligonucleotide	Post oligonucleotide
	3.56 ± 1.02	5.16 ± 1.93	2.36 ± 0.68	>19.5 ± 0.34**

Results are presented as the mean (N = 8) ± SEM. Significance was determined by repeated-measures analysis of variance (ANOVA), and Tukey's protected t test. **Significantly different from all other groups, P < 0.01.

10 In both arms of the experiment, animals receiving the antisense oligonucleotide showed an order of magnitude increase in the dose of aerosolized adenosine required to reduce dynamic compliance of the lung by 50%. No effect of the mismatched control 15 oligonucleotide upon PC50 values was observed. No toxicity was observed in any animal receiving either antisense or control inhaled oligonucleotide.

These results show clearly that the lung has exceptional potential as a target for antisense 20 oligonucleotide-based therapeutic intervention in lung disease. They further show, in a model system which closely resembles human asthma, that downregulation of the adenosine A₁ receptor largely eliminates adenosine-induced bronchoconstriction in asthmatic airways. 25 Bronchial hyperresponsiveness in the allergic rabbit model of human asthma is an excellent endpoint for antisense intervention since the tissues involved in this response lie near to the point of contact with aerosolized oligonucleotides, and the model closely 30 simulates an important human disease.

-21-

EXAMPLE 4

Specificity of A₁-adenosine receptor
Antisense oligonucleotide

At the conclusion of the crossover experiment 5 of Example 3, airway muscle from all rabbits was quantitatively analyzed for adenosine A₁ receptor number. As a control for the specificity of the antisense oligonucleotide, adenosine A₂ receptors, which should not have been affected, were also quantified.

10 Airway smooth muscle tissue was dissected from each rabbit and a membrane fraction prepared according to described methods (J. Kleinstein and H. Glossmann, *Naunyn-Schmiedeberg's Arch. Pharmacol.* 305, 191-200 (1978), with slight modifications. Crude plasma membrane 15 preparations were stored at - 70°C until the time of assay. Protein content was determined by the method of Bradford (M. Bradford, *Anal. Biochem.* 72, 240-254 (1976)). Frozen plasma membranes were thawed at room 20 temperature and were incubated with 0.2 U/ml adenosine deaminase for 30 minutes at 37°C to remove endogenous adenosine. The binding of [³H]DPCPX (A₁ receptor-specific) or [³H]CGS-21680 (A₂ receptor-specific) was measured as previously described. S. Ali et al., *J. Pharmacol. Exp. Ther.* 268, 1328-1334 (1994); S. Ali et 25 al., *Am. J. Physiol* 266, L271-277 (1994).

As illustrated in both **Figure 2** and **Table 2**, animals treated with adenosine A₁ antisense oligonucleotide in the crossover experiment had a nearly 75% decrease in A₁ receptor number compared to controls, 30 as assayed by specific binding of the A₁-specific antagonist DPCPX. There was no change in adenosine A₂ receptor number, as assayed by specific binding of the A₂ receptor-specific agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-(N-ethylcarboxamido) adenosine (CGS- 35 21680).

TABLE 2. SPECIFICITY OF ACTION OF ADENOSINE A₁ RECEPTOR ANTISENSE OLIGONUCLEOTIDE.

	Mismatch Control oligonucleotide	A ₁ Antisense oligonucleotide
5	A ₁ -Specific Binding	1105 ± 48**
	A ₂ -Specific Binding	302 ± 22
		442 ± 171

Results are presented as the mean (N = 8) ± SEM. Significance was determined by repeated-measures analysis of variance (ANOVA), and Tukey's protected t test. **Significantly different from mismatch control, P < 0.01.

10 The above demonstrates the effectiveness of antisense oligonucleotides in treating airway diseases. Since the antisense oligonucleotides described above eliminate the receptor systems responsible for adenosine-mediated bronchoconstriction, it may be less imperative to
 15 eliminate adenosine from them. However, it would be preferable to eliminate adenosine from even these oligonucleotides. Examples of such adenosine-free oligonucleotides are provided below in Example 5.

EXAMPLE 5

20 The method of the present invention is also practiced with the following antisense oligonucleotides targeted to their corresponding proteins, in essentially the same manner as given above, for the treatment of various conditions in the lungs. Described below is a
 25 series of antisense oligonucleotides targetting the mRNA of proteins involved in inflammation. Adenosine has been eliminated from their nucleotide content to prevent its liberation during degradation.

In the following, the first sequence provided
 30 after the name of the targeted inflammation-involved protein is the antisense sequence that targets the initiation codon, wherein the naturally-occurring adenosine is substituted by one of the following: (1) a universal base that is not adenosine; (2) a adenosine
 35 analog that lacks the ability to bind to the adenosine A₁

-23-

and/or A3 receptors; or (3) a "spacer." Any one of these three is represented in the sequence as the letter "B," recognized by the IUPAC-IUB Nomenclature Commission as "not-A." See *Patentin User Manual*, p.99 (November 1990).
5 Listed following the antisense sequence targeted against the initiation codon are additional antisense oligonucleotide sequences directed against other portions of the mRNA of the targeted protein. These additional sequences are the "des-adenosine antisense sequences," in
10 that they do not contain adenosine within the sequence.

Fragments of the following sequences that are at least ten, and more preferably at least twelve, nucleotides in length are also an aspect of the present invention and are useful in carrying out the present
15 invention. Fragments set forth below that span multiple lines of text indicate "5'" at the beginning thereof, and "3'" at the end thereof.

Human A1 adenosine receptor:

20 5'-GGC GGC CTG GBB BGC TGB GBT GGB GGG CGG CBT
GGC GGG CBC BGG CTG GGC-3'

des-adenosine antisense sequences:
TTT TCC TTC CTT TGT CTC TCT TC

GCT CCC GGC TGC CTG

CTC GGC CGT GCG GCT CTG TCG CTC CCG GT

25 CCG CCG CCC TCC GGG GGG TC

TGC TGC CGT TGG CTG CCC

CTT CTG CGG GTC GCC GG

TGC TGG GCT TGT GGC

GGC CTC TCT TCT GGG

30 CCT GGT CCC TCC GT

GGT GGC TCC TCT GC

GCT TGG TCC TGG GGC TGC

TGC TCT CCT CTC CTT

-24-

Human A2a adenosine receptor:

GTBCBCCGBGGBGCCCBTGBTGGCBTGCCCBGBCGBCBGGC

des-adenosine antisense sequences:

HSA2ARECAS1: TGC TTT TCT TTT CTG GGC CTC (SEQ ID NO:7)

HSA2ARECAS2: TGT GGT CTG TTT TTT TCT G

HSA2ARECAS3: GCC CTG CTG GGG CGC TCT CC

HSA2ARECAS4: GCC GCC CGC CTG GCT CCC

HSA2ARECAS5: GGB GCC CBT GBT GGG CBT GCC

HSA2ARECAS6: GTG GTT CTT GCC CTC CTT TGG CTG

HSA2ARECAS7: CCG TGC CCG CTC CCC GGC

HSA2ARECAS8: CTC CTG GCG GGT GGC CGT TG

HSA2ARECAS9: GGC CCG TGT TCC CCT GGG

HSA2ARECAS10: GCC TGG GGC TCC CTT CTC TC

HSA2ARECAS11: GCC CTT CTT GCT GGG CCT C

HSA2ARECAS12: TGC TGC TGC TGG TGC TGT GGC CCCC

Human A2b adenosine receptor:5' -BCBGCGCGTCTGTCTCCBGCBGCBTGGCC
GGGCCBGCTGGGCC-3'*des-adenosine antisense sequences:*HSA2BRECAS1: 5'-GGC GCC GTG CCG CGT CTT GGT GGC
GGC GG-3' (SEQ ID NO:8)HSA2BRECAS2: 5'-GTT CGC GCC CGC GCG GGG CCC CTC
CGG TCC-3'HSA2BRECAS3: 5'-TTG GCC CGC GCG CCC GCC CGT CTC
GGG CTG GGC GG-3'

HSA2BRECAS4: CGG GTC GGG GCC CCC CGC GGC C

HSA2BRECAS5: 5'-GCC TCG GGG CTG GGG CGC TGG TGG
CCG GG-3'

HSA2BRECAS6: CCG CGC CTC CGC CTG CCG CTT CTG

HSA2BRECAS7: GCT GGG CCC CGG GCG CCC CCT

HSA2BRECAS8: CCC CTC TTG CTC GGG TCC CCG TG

Human A3 adenosine receptor5' -BCB GBG CBG TGC TGT TGT TGG GCB TCT TGC CTT
CCC BGG G-3'*des-adenosine antisense oligonucleotides:*

CCC TTT TCT GGT GGG GTG

GTG CTG TTG TTG GGC

TTT CTT CTG TTC CC

40 Human IgE receptor β :5' -BTTTGCTCTCCTBTBCTTTCTGTGTCCBTAAAAA
CBTTBBCCGBGCTGT-3'*des-adenosine antisense sequences:*HUMIgE β rAS1: TTT CCC CTG GGT CTT CC (SEQ ID NO:9)HUMIgE β rAS2: CTC CTG CTC TTT TTT C

-25-

Human Fc-epsilon receptor CD23 antigen (IgE receptor):
 5' -TCTCTGBBTBTTGBCCTTCCTCCBTGGCGGTCTGCTT
 GGBTTCTCCCGB-3'

5 *des-adenosine antisense sequences:*
 HUMIgErCD23AS1: GCC TGT GTC TGT CCT CCT (SEQ ID NO:10)
 HUMIgErCD23AS2: GCT TCG TTC CTC TCG TTC
 HUMIgErCD23AS3: CTG CTT GGT GCC CTT GCC G
 HUMIgErCD23AS4: GTC CTG CTC CTC CGG GCT GTG G
 10 HUMIgErCD23AS5: 5' -GTC GTG GCC CTG GCT CCG
 GCTGGT GGG CTC CCC TGG-3'
 HUMIgErCD23AS6: CCT TCG CTG GCT GGC GGC GTG C
 HUMIgErCD23AS7: GGG TCT TGC TCT GGG CCT GGC TGT
 HUMIgErCD23AS8: GGC CGT GGT TGG GGG TCT TC
 15 HUMIgErCD23AS9: GCT GCC TCC GTT TGG GTG GC

Human IgE receptor, α subunit:

5' -BCBGTBGBGBTBGGGGBTTCCTGGCBGGBGCCBTC
 TTCTTCBTGGBCCTCC-3'
 and
 20 5' -TTC BBG GBG BCC TTB GGT TTC TGB GGG BCT GCT
 BBC BCG CCB TCT GGB GC-3'
des-adenosine antisense sequences:
 HUMIgEr α AS1: GCCTTCCTGGTTCTCTT (SEQ ID NO:11)
 GTT GTT TTT GGG GTT TGG CTT

25 **Human IgE receptor, Fc epsilon R:**
 5' -GBT CTC TGB BTB TTGB CCT TCC BTG GCG GTC CTG
 CTT GGB-3'
des-adenosine antisense sequences:
 30 HSJGEBFRAS1: GCC TGT GTC TGT CCT CCT (SEQ ID NO:12)
 HSJGEBFRAS2: GCT TCG TTC CTC TCG TTC
 HSJGEBFRAS3: CTG CTT GGT GCC CTT GCC G
 HSJGEBFRAS4: GTC CTG CTC CTC CGG GCT GTG G
 35 HSJGEBFRAS5: 5' -GTC CTC GCC CTG GCT CCG GCT GGT
 GGG CTC CCC TGG-3'
 HSJGEBFRAS6: CCT TCG CTG GCT GGC GGC GTG C
 HSJGEBFRAS7: CCC BGB BCG BGB CCC GGB CCG BCB
 HSJGEBFRAS8: GGC CGT GGT TGG GGG TCT TC
 HSJGEBFRAS9: GCT GCC TCC GTT TGG GTG GC

40 **Human histidine decarboxylase:**
 5' -CTC TGT CCC TCT CTC TCT GTB CTC CTC BGG CTC
 CBT CBT CTC CCT TGG GC-3'

45 *des-adenosine antisense sequences:*
 HUMHDCAS1: TCT CCC TTG GGC TCT GGC TCC TTC TC
 (SEQ ID NO:13)

-26-

HUMHDCAS2: TCT CTC TCC CTC TCT CTC TGT
 HUMHDCAS3: CGCCTCCGCCCTGGCTGCTGGGTGGTGGTGC
 HUMHDCAS4: TTT TGT TCT TCC TTG CTG CC
 HUMHDCAS5: GCC CCG CTG CTT GTC TTC CTC G

5 **Human beta tryptase:**

5'-GGG CCT GGC CTG GGG CBG GGG CCG CGT BGG CGC
 GGC TCG CCB GGB CGG GCB GCG CCB GCB GCB GCB GBT
 TCB GCB TCC TGG-3'

des-adenosine antisense sequences:

10 HUMBTRYPAS1: CTTGCTCCTGGGGGCCTCCTG (SEQ ID
 NO:14)
 HUMBTRYPAS2: GTC CCT CCG GGT GTT CCC GGC

Human tryptase-I:

15 5'-CCT GGB CTG GGG CBG GGG CCG CGT BGG CGC GGC
 TCG CCB GGB CGG GCB GCG CCB GCB GCB GGC TCB
 GCB TCC TGG CCB CGG BBT TCC-3'

des-adenosine antisense sequences:

HUMTRYAS1: CTTGCTCCTGGGGGCCTCCTG (SEQ ID NO:15)
 HUMTRYAS2: GTC CCT CTG GCT G TT CCC GGC

20 **Human prostaglandin D synthase:**

5'-CCC CBG CBG GBC CBG TCC CBT CCB CBG CGT GTG
 BTG BGT BGC CBT TCT CCT GCB GCC GBG-3'

des-adenosine antisense sequences:

25 HUMPROSYNAS1: GGTGTGCGGGGCCTGGTGCC (SEQ ID NO:16)
 HUMPROSYNAS 2: CCT GGG CCT CGG GTG CTG CCT GT
 HUMPROSYNAS 3: GCG CTG CCT TCT TCT CCT GG
 HUMPROSYNAS 4: 5'-GTC CTC GCC GGG GCC CTT GCT
 GCC CTG GCT GT -3'
 HUMPROSYNAS 5: GCC CTG GGG GTC TGG GTT CGGCTGT

30 **Human cyclooxygenase-2:**

5'-TGB GCG CCB GGB CCG CGC BCB GCB GCB GGG CGC
 GGG CGB GCB TCG CBG CGG CGG GCB GGG-3'

des-adenosine antisense sequences:

35 HUMCYCLOXAS1: GGGCGCGGGCGBGCBTCGC (SEQ ID NO:17)
 HUMCYCLOXAS2: TTT GGG CTT TTC TCC TTT GGT T

Human eosinophil cationic protein:

5'-CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC
 CBT GTT TCC CBG TCT CTG BGC TGT GGC-3'

des-adenosine antisense sequences:

40 HSECPAS1: CCTCCTTCC TGG TCT GTC TGC (SEQ ID
 NO:18)

Human eosinophil derived neurotoxin:

5'-CCC CBB CBG BBG BBG CBG BCB BBT TTG GGB BGT
 GBB CBG TTT TGG BBC CBT GTT TCC TGT-3'

-27-

des-adenosine antisense sequences:

HSEOSDNAS1: GCC CTG CTG CTC TTT CTG CT (SEQ ID NO:19)

5

HSEOSDNAS 2: TCC CTT GGT GGG TTG GGC C

HSEOSDNAS 3: GCT GGT TGT TCT GGG GTT C

HSEOSDNAS 4: TTG CTG CCC CTT CTG TCC C

HSEOSDNAS 5: TGT TTG CTG GTG TCT GCG C

Human eosinophil major basic protein:

GGG GGB GTT TCB TCT TGG CTT T

10

des-adenosine antisense sequences:

TCT CCC CTT GTT CCT CCC C

TCT CCT GCT CTG GTG TCT CCT C

TTC CCT CCC TCC CCT GCC

GTG TTG TCT GTG GGT GTC C

15

GTT TCG CTC TTG TTG CCC

TGG GCC CTT CCC TGC TGG

Human eosinophil peroxidase:5'-GCB CCG TCC BGT GBT GGT GCG GTB CTT GTC GCT
GCB GCG CTC GGC CTG GTC CCG GBG BGC-3'

20

des-adenosine antisense sequences:

HSEPAS1: GCGCTCGGCCTGGTCCCGG (SEQ ID NO:20)

HSEPAS2: GGG TCT CCT CTT GTT GTT GC

HSEPAS3: TTG CGC CTC CTG CTG GGG GT CC

HSEPAS4: CTC TGT TCT TGT TTT GGG GGC

25

HSEPAS5: GGG CCC GGC CGT TGT CTT G

HSEPAS6: GTT TGG GGG TTT CCG TTG

HSEPAS7: GGG TTC TCC TGG CCC GGG CCT TGC CC

HSEPAS8: GGC CGT GGT CCC GGC TTC GTT GC

HSEPAS9: CCT GTC TCC GTC TCG GCT CTT CTG

30

HSEPAS10: GGG CCT TGC GCT GTC TTT GGT G

Human intercellular adhesion molecule-1 (CAM-1) :

35

5' - CGG BGC CTC CCC GGG GCB GGB TGB CTT TTG BGG
GGG BCB CBG BTG TCT GGG CBT TGC CBG GTC CTG GGB
BCB GBG CCC CGB GCB GGB CCB GGB GTG CGG GCB GCG
CGG GCC GGG GGC TGC TGG GBG CCB TBG CGB GGC TGB
G-3'

40

des-adenosine antisense sequences:

HSICAM1AS1: GCGCGGGCCGGGGCTGCTGGG (SEQ ID NO:21)

HSICAM1AS2: GGT TGG CCC GGG GTG CCC C

HSICAM1AS3: GCC GCT GGG TGC CCT CGT CCTCTGCGGGTC

HSICAM1AS4: GTG TCT CCT GGC TCT GGT TCC CC

45

HSICAM1AS5: 5'-GCT GCG CCC GTT GTC CTC TGG GGT
GGCCTTC-3'

-28-

HSICAM1AS6: GCT CCC GGG TCT GGT TCT TGT GT
 HSICAM1AS7: TGG GGG TCC CTT TTT GGG CCT GTT GT
 HSICAM1AS8: GGC GTG GCT TGT GTG TTC GGT TTC
 HSICAM1AS9: TGC CCT GTC CTC CGG CGT CCC

5 Human vascular cell adhesion molecule 1 (VCAM-1):
 5'-CTG BGC BBG BTB TCT BGB TTC TGG GGT GGT CTC
 GBT TTT BBBB GCT TGB GBB GCT GCB BBC BTT BTC
 CBB BGT BTB TTT GBG GCT CCB BGG BTC BCG BCC BTC
 TTC CCB GGC BTT BTB BGT TGC TGT CGT -3'

10 des-adenosine antisense sequences:
 HSVCAM1AS1: CCTCTTTCTGTTTCCC (SEQ ID NO:22)
 HSVCAM1AS2: CTC TGC CTT TGT TTG GGT TCG
 HSVCAM1AS3: CTT CCT TTC TGC TTC TTC C
 HSVCAM1AS4: CTGTGTCTCCTGTCTCCGCTTTCTTC
 15 HSVCAM1AS5: GTC TTT GTT GTT TTC TCT TCC TTG

Human endothelial leukocyte adhesion molecule (ELAM-1):
 5'-BBG TGB GBG CTG BGB GBB BCT GTG BBG CBB TCB
 TGB CTT CBB GBG TTC TTT TCB CCC -3'

20 des-adenosine antisense sequences:
 HUMELAM1AAS1: GTTCTGGCTTCTCTGTC (SEQ ID NO:23)
 HUMELAM1AAS2: CGT TGG CTT CTC GTT GTC CC
 HUMELAM1AAS3: TGT GGG CTT CTC GTT GTC CC
 HUMELAM1AAS4: CCC TTC GGG GGC TGG TGG
 HUMELAM1AAS5: GGC CGT CCT TGC CTG CTG G

25 Human P Selectin:
 des-adenosine antisense sequences:
 HUMPSELECTAS1: CTCTGCTGGT TTTCTGCCTT CTGCC
 (SEQ ID NO:24)

30 Human endothelial monocyte activating factor:
 30 des-adenosine antisense sequences:
 HUMEMAPIIAS1: 5'-TTT TCT CTT TCG CTT TCT TTT
 CGTCTCCTGTTCCCTCCTTTT-3' (SEQ ID NO:25)
 HUMEMAPIIAS2: 5'-TTG CTG TTT TTT CTC CTT CTT
 CTC TCC TTT CTT TTC -3'

35 Human IL3:
 5' -GGCGGBCCBGGBGTGGBGCBGGBGCBGGBCGGCB
 GGCCTCCTGTTGGBTGGCBGGCBGGCGCTC -3'
 des-adenosine antisense sequences:
 40 HUMIL3AAS1: 5'-CTC TGT CTT GTT CTG GTC CTT CGT
 GGG GCT CTG (SEQ ID NO:26) -3'
 HUMIL3AAS2: TGT CGC GTG G GTG CGG CCG TGG CC

45 Human IL3 receptor:
 5' -GCBGGBGBCBGGGCBGGGCGBTGCBGGBGCBGCGT
 GBGCCBGBGGBCCBTGCGGBCGCBGCTCCG
 GBBCGCBGGBCBGBGGTGCC-3'

-29-

des-adenosine antisense sequences:
TCTGGGGTGTCCCTG

5 TCTTCCTTCGTTGC
CGTCCCGCGGGGGCCCCGGGCCT
GGCTGCGCTCCTGCCCGC
CTCTTCCCCGGGCTCTT
10 GCGCTGGGGGGTGCTCC
CGTGTGTTGCGCCCTCCTCCTG
GCTGTCTGGTTGG
15 GCCCGGCTTGCCCCGCCTCCC
GGCGCCTGGCCCGGCC
TTCCTGGCTGCGTGC
20 GTTCTGTTCTTCCTGGC

Human IL4:

<div[](https://img/1000px-5'-GCCGGCCTGCTBGGGCGG-3'.png)

25 *des-adenosine antisense sequences:*
HUMIL4AS1: CTC TGG TTG GCT TCC TTC-3'
(SEQ ID NO:27)

Human IL4 receptor:
30 5' -GTTCCCBGGBGCTTGCCBCCTGCBGCBGGBCCBGGCBGCTC
BCBGGGBBCBGGBGCCCBGBGCBBBGCCBCCCCCBTTGGGGBG
BTGCCCBGGCBCCBGGCTG-3'

des-adenosine antisense sequences:
TCTGCGCGCCCTGCTCC

35 ~~oooooooooooo~~

ccccccccctccgttgttc

TGCTCGCTGGGCTTG

GGTTTCCCTGGGGCCCTGGGGTTT

TCTGCCGGGTCGTTTC

- 30 -

	CTTGGTGCTGGGGCTCC
5	GGCGGCTGCAGGCTGGGTTGGG
	CTTGGCTGGTTCTGGCCTCGGG
	CCTCCTCCTCCTCCTC
10	GCTCCCTTTTCTTCCTCT
	TCCCTGCTGCTCTC
15	TGCCCTCCCTTCCCTCCTGG
	GGTGCCTCCTGGGCCCCCTGC
	GGCTGCTCCTTGCCCC
20	CTCTGGGTGGGCTGGC
	GGGGCGTCTCTGTGC
25	CTGGCCTGGGTGCC
	GCCTCTCCTGGGGGG
	GGTGGCTCCCTGTCC
30	CCTTTCCCCGGCTCC
	GTGGGGGCTTGGC
	GGGGGTCTGTGGCCTGCTCCTGGGG
35	AGGGGTCTGGGGCCCTC
	TTTGCCCCGTCTGGCTTG
40	GCCTGGCTGCCTTCC
	GGGGCCTGCCGTGGGGC
	TGTCCCTCTGTTGCTCCCCTT
45	TGCCTGCTGTCTGG
	GGTTCCCGCCCTTCCCT

Human IL5:

50 5' - GTGGGBBTTTCTGTGGGBTGGCBTBCBCGTBGGCB
 GCTCCBBGBGCTBGCBBCTCBBBTGCBGBBGBCTC
 CTCBTGGCTCTGBBBCG - 3'

-31-

des-adenosine antisense sequences:

HUMIL5AS1: TCC CTG TTT CCC CCC TTT (SEQ ID
NO:28)

5 HUMIL5AS2: CGT TCT GCG TTT GCC TTT GGC

HUMIL5AS3: GTT TTT TGT TTG TTT TCT

HUMIL5AS4: CTC TCC GTC TTT CTT CTC C

HUMIL5AS5: CCT CCT GCC TGT GTC CCT GCT CCC C

HUMIL5AS6: GAG GGT TTC TGG CTT CCT CTC T

HUMIL5AS7: TGT CTC TCT GTC CTT TTG TT

10 HUMIL5AS8: 5'-TGT TGT GCG GCC TGG TGC TGC CCT
GCCCG GG-3'

Human IL5 receptor antisense oligonucleotide

5' - CTCBGTGGCCCCCB BBBBGGBT

GBGTBBTBCBTGCGCCBCGBT

15 GBTCBTBTCCCTTTBCTBTGBGG-3'

des-adenosine antisense sequences:

CCGTGTCTGTCGTGTCT

20 TTCCTTGCTCTTG

GTGTGTCTTGCTGT

GCCCTGCCTCTCTGC

25 **Human IL6:**

5' - CTCCTGGGGGTBCTGGGGCBGGGBB

GGCBGCBGGCBBBCBCCBGGBGCBGC

CCCBGGGBGBBGGCBBCBTGGBCCGB

BGGCGCTTGTGGBGBBGGBGTTCBT

30 BGCTGGGCTCCTGGBGGGBGBTBGBGC-3'

des-adenosine antisense sequence:

HUMIL6AS1: GCT TCT CTT TCG TTC CCG GTG GGC TCG
(SEQ ID NO:29)

HUMIL6AS2: GTG GCT GTC TGT GTG GGG CGG CT

35 HUMIL6AS3: GTG CCT CTT TGC TGC TTT C

HUMIL6AS4: GAT TCT TTG CCT TTT TCT GC

Human IL6 receptor antisense oligonucleotides

5' - GCBGCGCTCTTGCCBCCTCCTGCGCBGGGCB

GCGCCTTGGGGCCBGC CGCCGCTCCGGCGCG

40 GCCBGC BGGGCBGCCBGC CGCGCBGCCB

CGGCCBGC BTGCTTCCCTCGGCTBCCBCT

CCBTGGTCCCGCBGBGGCGBCBGGC-3'

des-adenosine antisense sequences:

45 GGGGTGGCTTCCCTGCC

CGGTCTCTGGGCCGTCCC

GTCCCTCGGCCCGCGCCGCGCTCGGCTCCTCTCCC

TCTGGCCCGGCTC

-32-

GGGGCGGGGCGGGCGGTGGGCGGGC
GGCGCTGCCCTGC
5 GCGGCGCTGGCCCC
TGCTGGCCGTCGGCTGCGCGCTGCTGGCTGCCCT
GCTGGCCGCGGCCGGG
10 GCCTGTCCGCCTCTGC
CGCTGTCTCCTGGC
TTGTCTTCCGGCTCT
TCTGCTGGGGTGGG
15 GCTGGGCGGCCGGCCGGT
GCTGGGGCTCCTCGGGGG
20 GGGGGCTCTTCCGG
GCTGTCTCCCTCCGGG
GCAGGGGTTCTGGCC
25 GTGGGGGTCTTG
TGGCCTCCGGGCTCC
30 TGCTTGTCTTGCCTTC
TCTGGTCGGTTGTGGCTCG
GGGCTCCGTGGGTCCCTGGC
35 GCCCGTTGTGTTGTC
TTTCCCCCTGGCGT
40 CCCTGTGCCCTCTCCTCTCCTCCTCTGCTTCTC
GCTCTCCTTGTGGG
GCCCTCCCTGCTGCT
45 CTTGGTTTGGGCT
TTTTTTCTCTCCTCCTTTTC
50 GTGCGTGGGCCTCC

- 33 -

Human monocyte-derived neutrophil chemotactic factor:

5 5' -GGGGTGGBBGGTTGGBGTBTGTCCTTBGCBCTGB
 CBTCTBBGTTCTTBGCBCTCCTGGCBBBBCTGCB
 CTTCBCBCBGBGCTGCBGBBBTCBGGBBGGCTGCCBB
 GBGBGCCBCGGCCBGCTGGBBGTCBTGTTBCBC
 BGTGBGBTGGTCTCCGG-3'

des-adenosine antisense sequences:

10 HSMDNCFAS1: GCT TGT GTG CTC TGC TGT CTC T (SEQ
 ID NO: 30)
 HSMDNCFAS2: 5' -TGG TTC CTT CCG GTG GTT TCT TCC
 TGG CTC TTG TCC T -3'
 HSMDNCFAS3: TTC TCT TGG CCC TTG GC

Human neutrophil elastase (medullasin):

15 5' -GGGCTCCCGCCGCGBGBGGTTBTGGGCTCCCBGGBC
 CCGCBCCGCGCGGBCGTTBCBTTCGCCBCGCBGTGCGC
 GGCCGBCBTGBCGBGTTGGGCGCBBTCBGGGTGGCGCC
 GCBGBBGTGGCCTCCGCGCBGCTGCBGGGBCBCCBTGBB
 GGGCCBCGCGTGGGGCCGCGCTCGCCGGCCCCCB
 CTCCGBGGCCBGC CGCGGTGCCCCCBGCBGCBGGCG
 CBGGBCBCBGGCGBGGBGBCBGCGBGTGGCGGCC
 GGTCBTGGTGGGCTGGGCTCCGGGTCTCTGCC
 CGTGC-3'

des-adenosine antisense oligonucleotides:

25 HSMEDURAS1: 5' -TGG TGG GGC TGG GGC TCC GGG GTC
 TCT GCC CCT CCG TGC-3' (SEQ ID NO: 31)
 HSMEDURAS2: CGC GTG GGG CCG CGC TCG CCG GCC
 HSMEDURAS3: CCT GCC GGG TGG GCT CCC GCC GCG
 HSMEDURAS4: CGC CGG CCT GCC GGC CCC TC
 HSMEDURAS5: 5' -GTG GGT CCT GCT GGC CGG GTC CGG
 GTC CCG GGG GTG GGG-3'
 HSMEDURAS6: CGC GBG TCG GCG GCC GBG GGT C

Human neutrophil oxidase factor:

35 5' -CGGGBGTGGGGGTCTGGBCGGCBCTGBBGGCB
 CTCCCTTCCBGTCTTCTTGTCCGCTGCCBGC
 BTTCCBGBGGCTGBTGGCCTCCBCCBGGGCB
 TBGBBBCTBGGBGGCC-3'

des-adenosine antisense sequence:

40 HUMNOXFAS1: GGC CTC CBC CBG GGB CBT G (SEQ ID
 NO: 32)
 HUMNOXFAS2: GTC CTT CTT GTC CGC TGC C
 HUMNOXFAS3: TCT CTG GGG TTT TCG GTC TGG GTG G
 HUMNOXFAS4: GCT TTC CTC CTG GGG CTG CTG CTG
 HUMNOXFAS5: 5' -GGC TCT TCT TTT TGT TTC TGG CCT
 GGTG-3'
 HUMNOXFAS6: CTC TCT CGT GCC CTT TCC
 HUMNOXFAS7: CTT GGG TGT CTT GTT TTT GT
 HUMNOXFAS8: 5' -GGCCTCCBCCBGGGCB
 GTGGTCCTTCTTGTCCGCTGCC -3'

- 34 -

Human cathepsin G:

5' - CCCTCCBCBTCTGCTCTGBCCTGCTGGBCTCTG
 GBTCTGBBGBTBCGCCBTGTBGGGGCGGGBGTG
 GGGCCTGCTCTCCGGCCTCCGBTGBTCTCCCCT
 GCCTCBGCCCCBGTGGGTBGGBGBBBGGCCBGCB
 GBBGCBGGBGTGGCTGCBTCTTCCTG - 3'

5

des-adenosine antisense sequences:

HUMCTHGAS1: GTG GGG CCT GCT CTC CCG GCC TCC G
 (SEQ ID NO:33)
 10 HUMCTHGAS2: TGTGTTGCTGGGTGTTTCCCCTCTCTGG
 HUMCTHGAS3: TCT GCC TTC GGG GGT CGT

10

Human defensin 1:

5' - CCGGGGCTGCBGCBCCCTCBTCBGCTCTGCCT
 GGBGTGGCTCBGCCTGGGCCTGCBGGGCCBCCB
 GGBGBTGGCBGCBGGBTGGCGBGGGTCCCB
 TGGCTGGGTGCBGCBTCCTCTBGCTBGGCBGG
 GTGBCCBGBGBGGC - 3'

15

des-adenosine antisense sequences:

HUMDEF1AAAAS1: GGG TCC TCB TGG CTG GGG (SEQ ID
 20 NO:34)
 HUMDEF1AAAAS2: GCC TGG GCC TGC BGG GCC
 HUMDEF1AAAAS3: GCT CTT GCC TGG BGT GGC TC
 HUMDEF1AAAAS4: GCC CBG BGT CTT CCC TGG T

20

Human defensin 3:

5' - CGCTGCBBTCTGCTCCGGGGCTGCBGCBCCCTCBTC
 BGCTCTGCCTGGBGTGGCTCBGCCTGGGCCTGCBG
 GGCCBCCBGGBGBTGGCBGCBGGBTGGCGBGGGT
 CCTCBTGGCTGGGTGCBCCCTGGBGGBGGGBGCBGG - 3'

25

des-adenosine antisense sequences:

HUMNTRIIIAS1: GGG TCC TCB TGG CTG GGG TC (SEQ
 30 ID NO:35)
 HUMNTRIIIAS2: CCT CTC TCC CGT CCT

30

**Human macrophage inflammatory protein-1-alpha: RANTES
RECEPTOR**

35 5' - GBGGGGGCBGCBGTTGGGCCBBGGCCCTCTCGT
 TCBCCCTCTGGCBGGBGTGCBTCCCCBTGTCBB
 BCTCTGTGGTCGTGTCBTGTCCTCTGTGGTGTGG
 GBGTTTCCBTCCCCGGCTTCTCTGGTCCBBGGGB - 3'

35

des-adenosine antisense sequences:

HUMRANTESAS1: GTC TTT GTT TCT GGG CTC GTG CC
 (SEQ ID NO:36)
 HUMRANTESAS2: CCB TCC CGG CTT CTC TCT GGT TCC
 HUMRANTESAS3: GTC CTCTGT GGT GTT TGG
 HUMRANTESAS4: 5' - CCC TGC TTC CTT TTG CCT GTT
 45 TCTTTGTTT CTGGGCTCGT GCC - 3'

45

-35-

RANTES:

5 5' -GGGCBCGGGGCBGTGGGCGGGCBTGTBGGC
 BBBGCBGCBGGGTGTGGTGTCCGBGGBBTBTGGG
 GBGGCBGBTGCBGGCGCBGBGGCBGTBGCBB
 TGBGGBTGBCBGCGBGGCGTGCCCGGBGBCCTTC
 BTGGTBCCCTGTGGBGBGGCTGTCCGGBGG-3'

des-adenosine antisense sequences:

10 GGGTGTGGTGTCCG
 CTTGGCGGTTCTTCGGGTG
 TTTCTTCTCTGGGTTGGC
 15 CTGCTGCTCGTCGTGGTC
 GCTCCGCTCCCGGGTTC
 GTCTCGCTCTGTCGCC
 20 CTTCCCTCCTTGTC
 GTGTTCCCTCCCTTCCTGCCTCT

Human muscarinic acetylcholine receptor HM1:

25 *des-adenosine antisense sequences:*
 HSHM1AS1: GTT CBT GGT GGC TBG GTG GGG C (SEQ ID
 NO:37)
 HSHM1AS2: GCT GCC CGG CGG GGT GTG CGC TTG GC
 HSHM1AS3: GCTCCCGTG CTC GGT TCT CTG TCTCCCGGT
 30 HSHM1AS4: CCC CCT TTG CCT GGC GTC TCG G
 HSHM1AS5: GCC TTC GTC CTC TTC CTC TTC TTC CTTCC
 HSHM1AS6: 5' -GCT CCG TGG GGG CTG CTTGGTGGG
 GGCCTG TGC CTC GGG GTC C-3'
 HSHM1AS7: CGG GGC TTC TGG CCC TTG CC

35 Human muscarinic acetylcholine receptor HM3:

des-adenosine antisense sequences:
 HSHM3AS1: GGG GTG GGT BGG CCG TGT CTG GGG (SEQ
 ID NO:38)
 HSHM3AS2: GTT GGC CBT GTT GGT TGC C
 HSHM3AS3: TCT TGG TGG TGC GCC GGG C
 HSHM3AS4: 5' -GCG TCT TGG CTT TCT TCT CCT TCG
 GGC CCT CGG GCC GGT GCT TGT GG-3'
 HSHM3AS5: 5' -GCT CCT CCC GGG CGG CCT CCC CGG
 GCG GGG GCT TCT TG-3'
 40 HSHM3AS6: GCG CTG GCG GGG GGG CCT CCT CC
 HSHM3AS7: 5' -GCT CTG TGG CTG GGC GTT CCT TGG
 TGT TCT GGG TGG C-3'
 HSHM3AS8: TGG CGG GCG TGG TGG CCT CTG TGG TGG
 HSHM3AS9: GGG CCC GCG GCT GCB GGG G
 45 HSHM3AS10: TTG CCT GTC TGC TTC GTC
 HSHM3AS11: CTT TGC GCT CCC GGG CCG CC
 50

-36-

Human fibronectin:*des-adenosine antisense sequences:*

HUMFNA/HSFIB1AS1: CGG TTT CCT TTG CGG TC (SEQ ID NO:39)

5 HUMFNA/HSFIB1AS2: TTG GCC CGG GCT CCG GGT G
HUMFNA/HSFIB1AS3: CCC GCC CGC CCG CCG GCC GCCGC
HUMFNA/HSFIB1AS4: 5'-CCC GCC GGG CTG TCC CCG
CCC CGC CCC-3'10 HUMFNA/HSFIB1AS5: GGC CCG GGG CGC GGG GG
HUMFNA/HSFIB1AS6: CGG CCC TCC CGC CCC TCT GG
HUMFNA/HSFIB1AS7: GCC GGC GCG GGC GTC GG
HUMFNA/HSFIB1AS9: 5'-CCG CTC GCG CCT GGG GTT
CCC TCT CCT CCCCCCTGTGC-3'15 HUMFNA/HSFIB1AS10: GCC TGC CTC TTG CTC TTC
HUMFNA/HSFIB1AS11: TGC GTC CGC TGC CTT CTC CC
HUMFNA/HSFIB1AS12: CTC TCC TCG GCC GTT GCCTGTGC
HUMFNA/HSFIB1AS13: 5'-TGT CCG TCC TGT CGC CCT
TCC GTG GTG C-3'20 HUMFNA/HSFIB1AS14: TGT TGT CTC TTC TGC CCT C
HUMFNA/HSFIB1AS15: GGT GTG CTG GTG CTGGTGGTGGTG
HUMFNA/HSFIB1AS16: CCT CTG CCC GTG CTC GCC
HUMFNA/HSFIB1AS17: CTG CCT GGG CTG GCCTCTTCGGGT
HUMFNA/HSFIB1AS18: 5'-GTG GCT TTG GGG CTC TCT
TGG TTG CCC TTT-3'25 HUMFNA/HSFIB1AS19: 5'-CTT CTC GTG GTG CCT CTC
CTC CCT GGC TTG GTC GT-3'
HUMFNA/HSFIB1AS20: TGT CTG GGG TGG TGCTCCTCTCCC30 HUMFNA/HSFIB1AS21: TTT CCC TGC TGG CCG TTT GT
HUMFNA/HSFIB1AS22: CCT GTT TTC TGT CTT CCT CT
HUMFNA/HSFIB1AS23: TTC CTC CTG TTT CTC CGT
HUMFNA/HSFIB1AS24: 5'-TTG GCT TGC TGC TTG CGG
GGC TGT CTC C-3'35 HUMFNA/HSFIB1AS25: CTT GCC CCT GTG GGC TTT CCC
HUMFNA/HSFIB1AS26: TGG TCC GGT CTTCTCCTTGGGGGTC
HUMFNA/HSFIB1AS27: GCC CTT CTT GGT GGG CTG
HUMFNA/HSFIB1AS28: GCT CGT CTG TCT TTT TCC TTCC
HUMFNA/HSFIB1AS29: 5'-TGG GGG TGG CCG TTG TGG
GGC GTG TGG TCC GCC T-3'
HUMFNA/HSFIB1AS30: TGC CTC TGC TGG TCT TTC40 **Human interleukin 8:**5'-GBTGTTGTTBCCBBGCBTCBBGGBTBGCTTG
TBTCTBBGGGBTBCBCBTTBGBCBTBGGBBBBCGC
TGTBGGTCBGBBBGBTGTGCTTBCCTTCBCBCBG
BGCTGCBGBBBTCBGGBBGGCTGCCBBGBGBGCC
BCGGCCBGCTTGGBGTCBTGTTBCBCBCBGTBG-3'*des-adenosine antisense sequences:*

HUMIL8AAS1: GTG CTC CGG TGG CTT TTT (SEQ ID NO:40)

50 HUMIL8AAS2: GCT TGT GTG CTC TGC TGT CTC TG
HUMIL8AAS3: 5'-TTC CTT CCG GTG GTT TCT TCC TGG
CTC TTG TCC T-3'

HUMIL8AAS4: TTC TCT TGG CCC TTG GCC C

-37-

Human IL-8 receptor-alpha

5 5' - BCBGGGGCTGTBBTCTTCBTCTGCBGGTGGCB
 TGCCBGTGBBBTTBGBTCTCBCTCBBBBTCCCBCBT
 CTGTGGBTCTGTBBTBTGGTGBTCTBCTGBBGCBCCG
 BGTTTCBGCBBTGGTTGBTCTBCTGBBGCBCCG
 GCCBGG-3'

des-adenosine antisense sequences:
 TGGCTCGGTGCTTCTGCCCG
 10 TGTTGTTGCAGCGCTC
 GGTTGGTGTGGCCCCCTG
 TGGTGCTTCGTTCC
 15 CCCTCTTCTCTTGTTC
 GGGGGTTCTTGTGGC
 GGGCTGCTTGTCTCGTTCC

20 Human GM-CSF:

5' - CTTGBGCBGGBBGCTCTGGGCBGGGBGCTGGCBG
 GGCCCBGGGGGGTGGCTTCCTGCBCTGTCCBGBGT
 GCBCTGTGCCBCBGCAGCTGCBGGGCCBTGB
 CTTCBTGGGGCTCTGGGTGGCBGGTCCBGCCBTGG
 25 GTCTGGGTGGGGCTGGGCTGCBGGCTCCGGG-3'

des-adenosine antisense sequences:
 HUMGCSFAS1: GGT CCB GCC BTG GGT CTG GG (SEQ ID
 NO:41)
 HUMGCSFAS2: GGC TGG GCT GCB GGC TCC GG
 30 HUMGCSFAS3: GCG GGC GGG TGC GGG CTG CGT GCT GGG
 HUMGCSFAS4: GGC TGC CCC GCA GGC CCT GC

Human tumor necrosis factor α :

5' - CBCCGCCTGGBGCCCTGGGGCCCCCTGTCTTCTTGGG
 GBGCGCCTCCTCGGCCBGCTCCBCGTCCGGGBTCTGCTTT
 35 CBGTGCTCBTGGTGTCTTCCBGGGBGBGBGGG-3'

des-adenosine antisense sequences
 HSTNFAAS1: GCT GGT CCT CTG CTG TCC TTG CTG (SEQ
 ID NO:42)
 HSTNFAAS2: GTG CTC BTG GTG TCC TTT CC
 40 HSTNFAAS3: GCC CTG GGG CCC CCC TGT CTT CTT GGGG
 HSTNFAAS4: CCT CTT CCC TCT GGG GGC CG
 HSTNFAAS5: TCT CTC TCC CTC TCT TGC GTC TCT C
 HSTNFAAS6: TCT TTC TCT CTC TCT CTT CCC C
 HSTNFAAS7: TTT CCC GCT CTT TCT GTC TC
 45 HSTNFAAS8: GGT GTC TGG TTT TCT CTC TCC
 HSTNFAAS9: GCT GGC TGC CTG TCT GGC CTG CGC TCTT
 HSTNFAAS10: GGC CTG TGC TGT TCC TCC
 HSTNFAAS11: TCC GGT TCC TGT CCT CTC TGT CTG TC
 HSTNFAAS12: GCC CCC TCT GGG GTC TCC CTC TGG C
 50 HSTNFAAS13: GTG GTG GTC TTG TTG CTT

-38-

HSTNFAAS14: GGG CTG GGC TCC GTG TCT C
 HSTNFAAS15: CBG TGC TCB TGG TGT CC
 HSTNFAAS16: GCT GBG GGB GCG TCT GCT GGC

Human leukotriene C4 synthase:

5 5' - CTCGGTBGBCGCGCTCGBBCTCGGGTGGGCCGGTGGTGB
 BCGGGCGGCGBCBCGCGGBGGCCCTGCGCGCCGBGBTBCBC
 CTGCBGGGBGBBGTTGCBGCBGGBCCTCCBGGBGGG
 TGBCBGCBGCCBGTBGBCTBCCTCGTCCTCCTGTCB
 TCGGTGTGGTGGCBCGGGCTGTGTGTGBBGGCGBGCTGG-3'

des-adenosine antisense sequences:

HSU11552AS1: GCC CCG TCT GCT GCT CCT CGT GCC G
 (SEQ ID NO:43)

HSU11552AS2: 5' - CCT CGT CCT TCA TGG TAC CGT
 CGGTGT GGT GGC-3'

15 HSU11552AS3: CTC GGG TGG GCC GGT GGT G

HSU11552AS4: GGG CGC GCG CGC TCG CGT

HSU11552AS5: 5' - GGC TCC GGC TCT TCT TTC CCG
 GCTCCG TCG GCC CGG GGG CCTTGGTCTC-3'

HSU11551AS6: CCT CGT CCT TCB TGG TBC CG

Human Endothelin-1:

20 5' - BCCGGCGGBGCCGCCBGGGTGGBCTGGGBGTGGGTT
 TCTCCCCGCCGTTCTCBCCCBCGCGCTGBGCTCBGC
 CTBGBCTGCTGTTCTGGBGCTCCTTGGCBBGCCBCBB
 BCBGCBGBGBGBBBTCTGBGCBBTBTCCBTCTGB
 BBBBGGGBTCBBBBCCCTCCGT-3'

des-adenosine antisense sequences:
 CCCGTTCGCCTGGCGC

GCGCTGCGGGTTCTC

GTGGGTTTCTCCCCGCCGTTCTC

30 CGGTCTGTTGCCTTGTTGGGG

CTTCTTGTCTTTGGCT

GTTCTTTCTGCTTGGC

GTCTTTCTTCTTCTT

TGTGCTCGGTTGTGGGTC

35 CGCTGGTCCTTGCC

CTGTGTGTTCTGCTG

Endothelin receptor ET-B antisense oligonucleotides

40 5' - GCCCTGTCGGCGGGBBGCCTCTCTCCTCTCCCCBG
 BTCCGCGBCBGGCCGCBGGCBGGBCCBGCGBCCBGG
 GCGCGTCCGCBGBCTTGGBGGCGGCTGCBTGCTGCTB
 CCTGCTCCBGBBGCCTGGGTGGCCCGC-3'

- 39 -

des-adenosine antisense sequences:
 GCGTCCGGTGGCCGCGC

GCCTCTCTCCTCTCCCC

GTGGCCCTGTCGGGCGGG

5 TCCTGCCGTCCGTCTCCTT

TCTTTGCTGTCTTGT

CTTCCCGTCTCTGCTTT

Endothelin ETA receptor antisense oligonucleotides

10 5' -CBTCCBCBTGBTGCTTBGBTGCTGTGCTGTBTCTCTCB
 GGBTTBTCBCTGBTBCCBCTCCBCCBGTGCCBGCCBBB
 GGBTGCCCTGBGGCBBGGGTTCCBTCTTGBTGGCBBTTT
 GBGGB-3'

des-adenosine antisense sequences:
 GTCTGTCCTCCCCGTCTCCTCCC

15 ACTGCTTCTCCGGGG

GCTTCCCCGGCTTC

GGGTGGCCGGTGTCCCGGGCTCCGGCGCGGGCG

20 GGCTTCGGCTGC

GGGTGGGTGGCGCGG

GCTGCCGGGTCCGCGCGGCGCCTGGGCC

25 CTTGTGCTGCTTT

TGCTTGTTCGGTTC

TGGCTGCTCCGGTCTGTGTTGTGGTTTTG

TTTCTTCTTGGGTGTGGG

30

CCTTGCGGTTTG

CTGTGGGCCCTTG

35 GGGCCTTGGCTTCTGGCTC

Substance P antisense oligonucleotide

40 5' -CTGCTGBGGCTTGGGTCTCCGGCGBTTCTCTGCBGBGBT
 GCTCBBGGGCTCCGGCBGTTCTCCTGGBTCTGGCTGTCG
 TBCCBGTGGBCCBGTBBTCTGCBGBTCTCBTTGGCTCCTBTTTC
 TTCTGCBBBCBGCTGBGTGGBGBCBGBBBBBBGBCTGCCBBGG
 CCBCGGBGBTTTCTGTTGGBTGGCTTGCGBGGCBGTCCCGCG
 GGGTGCTGAGTTCTGTTCTGGCTCCTCCGBGCGCB-3'

- 40 -

des-adenosine antisense sequences:
 CGTGGTCGCTCCGC

TTTCTCTGGTTCTCCG

GTCCCGCGGGGTGCTG

5 TCTGGTCGCTGTCGT

GGCTTGGGTCTCCGGGCG

GTTTCCTCCTTTCCGC

Substance P receptor antisense oligonucleotide

10 5' -GGCTBBGBTGBTCCBCBCTBCBTBCCBCGTTGCCCBCCBCB
 GBGGTCBCCBCBGTGBCCGTGTBGGCBGCTGCCCBGGBCB
 TTTGCCBGGCTGGTTGCBGCBCTGBTGGTTCCGBGGTGT
 BGTGGBGBTGTTGGGGBGBGGTCTGBGTCCBCCGGGBGGBCG
 TTBTCCBTTTCGBBGCTBGGCGGTBBGCCCTBCTBTCTGTBC
 15 BCBBCCCCCTCTGCBGCBGBGTCTGTCGTGGCGCTGGGGC
 TCBGGGTCC-3'

des-adenosine antisense sequences:
 GTCCTGTCGTGGCGCCTGGGGCTC

20 TTCTTTGTGGGCT

CTTTGGTGGCTGTGGCTG

TGGTCTCTGTGGTTG

25 CTGCCCTGGGTCTGG

GGGTGTGGCCTTGGGGCCGTCCTCTGGCTCCTCGTGGGGCCCC

Chymase

30 5' -GGBGCTGBTCTGCBGATTCBGBGGGBGBCCCT
 GBTBCTCBCCBGCTTCBGCTCTGGBGCBBCBGBGBBBGB
 GCBGCBGGGGGBGBGGBBGCBGCBTCTCCCBGBGB
 GGCTGCCTGBGCBBTGTGGTTTCCCTTCBGTCTTG
 GGTTTTTBBCCTCCCBGBBGGCBBGBGBGGGGCBGG-3'

des-adenosine antisense sequences:
 CGTTTTCTTCTCTC

TGCTGGTTTCCTTCC

40 TGGCAGTGGGTGGGGTGGGGTGGGTGGC

TTCCTTGTTCCTGGGGTGTCT

CTTGCTCTGGGCTTTCT

45 CCCCTTTCTTCC

TGTCTGTTTCCTGGGG

-41-

CTCTCCTCTGTCTCTGTGT
 CCTTGCCCTGGCCC
 5 TCTTCCCTCTCCTGTCTCCTGT
 CCCTGTGTTCCGCC
 GTCTTCCCTCTCCTG
 10 ACCTCCTTTCCTCCG
 CTGGGTGGGGCCCTG
 CCTGTTCTCTGCTCCC
 TGGCTTGGGGTTTCTTCTG
 15 TGTGTCTTCTTCCTCTGTT
 GGCTGGCTTCCTCCTTC
 TTTTGTCTTCCTGGG
 TGCCCCTTCTTCCTTCTTGGG
 20 TCCTTGGTGCTTGGGCTGGG
Endothelial nitric oxide synthase
 25 5' - GCGTCTTGGGGTGCBBGGGCCBTCCCTGCTGCGCCTGGGCG
 CTGBGGGTGTCBTBGGTGBTGCTCCCCBCCTCCCBGTTCTTCB
 CBCGBGGGBCTTGGGCCCTCTGGGGCTGGGTTBGCGGGB
 GCTCGGGGGCTGTGTTCTGGCGCTGGTGGGBGTBGGGBTGCT
 GGGGCCGGCTGGGCTCBGGGGCCGGGTGGCTGGGCCCTGCT
 TGCCGCBCBGCCCBGGCCCBGCCCCBGCCTGGCCGCBGGG
 TGGCCCBGGCTCCTGGGCCBGCTCTTCBGGTGTGCCCCTGTTB
 CTGTGCGTCCGTCTGCTGGBGCBGGCBGBGTGGGBTTC-3'
 30 *des-adenosine antisense sequences:*
 CTGTGCGTCCGTCTGCTGG
 GGGGCCGGGTGGCTGGGCCCTGCTTGGCGC
 ACGACCCCGGGCCGACCCGAG
 35 GCTCGGGGGCTGTGTTCTGGCGCTGGTGGG
 CTTGGGCCCTCTGGGGCTGGGTT
 TCCTGCTGCGCCTGGCGCTG
 GCGTCTTGGGGTGC
 GGGGCCGGGGGCCGGGG
 40 GCCGCTGTTCGTGGGCCTGGG

-42-

GGTGCCTGTGGCTGCC
GGTTGCCCGGGTTGGTGGC
GCCGTCCTGCTGCCGGT
CGTTGGCTGGGTCCCCCGC
5 CCGTTTCCTGGGGTCC
GCGTGGGGTGCTCC
GGTCCTCGTGCCG
CTGCTGCCTTGTCTTC
GGCCGTGGCGGCGTGGTGC
10 GCCCCCCCTGGCCTCTGCTC
GGGGTCTGGCTGGT
TGCCGGTGCCCTGGCGGC
GGTCTTCTTCCTGGTG
GCTCTGGGCCGGCCGGTCTCG
15 GCGTCTCGTGTTCG
CTCTTGTGCTGTTCCGGCG
CTCCTTCCTCTCCGCCGCC
GCCGCTCCCCGCC
20 GCTCGTCGCCCTGGCCC
GGCCTCCTCCTGGCGC
TGTCTCGGGCGGGCGGCTTGGC
GCTCCGTTGGGGCTG
CCTCTGGCGCTTCC
25 GCCCTCGGCCTGGCGCTC
TCTTCCGCCTGTGC
TGGTGGCCCTCGTGG
GCCCTCCTGGCCTCCGGTGTCC
TGTGGTCCCCGGCTGGT

-43-

1 GGCCGGGCCGGTTGGGCAGGC
 5 GTGGGCGCCGGCGGGTCCTCC
 10 GGGCTGCCCTTCTCC
 15 GCCGGGGTCCCGC
 20 GCTCCTGCTGTTCCCTGGGCTCTTCTGCC
 25 TCTCTCCTGGGTGGGTGCTGGGTGCCG
 30 GGTCTTGGGGTTGTC
 35 TGTGGCCCCGCTCG
 40 TGTGCCCTCCGTCGCC
 45 CGTCGCCGGCCTCGTCC
 50 CCTCCTGGGTGCGC
 55 GGCAGGGCTGGTCCT
 60 GGCGTTTGCTCCTTCCTGG

Inducible nitric oxide synthase

1 5'-CTGCCCBGTTTTGBCCTCCTCCTGCCCCGTGGGGGBGGB
 5 CBTGGGGTTGCBTCCBGCTTGBCCBGBGBTTCTGGBG
 10 BCTTCTTCCCGTCTCCBCGGBGGGCTGCGGGGBCTCB
 15 TTCTGCTGCTTGTGGTGTGBTCTGBGGTCBTCC
 20 TGTGTCBCTGGBCTGGBGGTGGCCTGGGGCTTC
 25 CBCBTTGTTGTTGBTGTCTTTCCCCBTTCBTTGCBT
 30 BCTGGTGGBBTTGGTCTTGBBCBGBBBTTCCBBGGB
 35 CBGGCCBTCTCTBTGGCTTBCBBGCBGGTCBCTTBT
 40 GTCBCTTBTCTGGBTTGBGCTCBGBTGTTCTCBCTG
 45 TGGGGCTTGCCTGGCTGCBCTGCCTCCCCGGGTB-3'

Human major basic protein:

GTTTCATCTT GGCTTTATCC (SEQ ID NO:44)

40

EXAMPLE 6

Turning now to **Figure 3**, two asthmatic rabbits were administered adenosine, and two rabbits were administered dAMP, at the indicated concentrations, by inhalation as described above in Example 3. The results (shown in **Figure 3** as change in compliance) indicate that dAMP, a breakdown product of antisense

-44-

oligodeoxynucleotides containing adenosine, is as potent in the induction of bronchoconstriction as adenosine in the hyperresponsive airways of asthmatic rabbits.

EXAMPLE 7

5 An aerosolized phosphorothioate 21-mer antisense ODN consisting of 50% adenosine and 50% guanine plus cytosine in a random configuration was found to produce potent bronchoconstrictor effects in hyperreactive airways of asthmatic rabbits, as 10 illustrated in **Figure 4**. The control molecule used in this study, a phosphorothioate 21-mer antisense ODN consisting of 50% guanine and 50% thymidine plus cytosine (*des*-adenosine ODN) produced no bronchoconstrictor or any other effect in these same animals.

15 In this study, bronchoconstrictor effects were measured as a percentage change in bronchial compliance. Each group consisted of two allergic rabbits, and data shown are for the period following the second of two daily administrations of 5 mg aerosolized ODN by 20 nebulizer.

These results indicate that antisense oligonucleotides, even when modified to slow degradation, produce adenosine metabolites capable of potent bronchoconstriction when administered in asthmatic 25 airways.

The foregoing examples are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be 30 included therein.

-45-

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Nyce, Jonathan W.
- (ii) TITLE OF INVENTION: Method of Treatment of Lung Diseases Using Antisense Oligonucleotides
- (iii) NUMBER OF SEQUENCES: 44
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Kenneth D. Sibley
 - (B) STREET: Post Office Drawer 34009
 - (C) CITY: Charlotte
 - (D) STATE: NC
 - (E) COUNTRY: USA
 - (F) ZIP: 28234
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Sibley, Kenneth D.
 - (B) REGISTRATION NUMBER: 31,665
 - (C) REFERENCE/DOCKET NUMBER: 5218-32
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (919) 881-3140
 - (B) TELEFAX: (919) 881-3175
 - (C) TELEX: 575102

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GATGGAGGGC GGCATGGCGG G

-46-

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GTAGCAGGCG GGGATGGGGG C

21

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GTTGTTGGGC ATCTTGCC

18

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GTACTTGCGG ATCTAGGC

18

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- 47 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GTGGGCCTAG CTCTCGCC

18

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GTCGGGGTAC CTGTGGC

18

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TGCTTTCTT TTCTGGCCT C

21

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGCGCCGTGC CGCGTCTTGG TGGCGGCGG

29

-48-

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TTTCCCCTGG GTCTTCC

17

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GCCTGTGTCT CTCCTCCT

18

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GCCTTTCCCTG GTTCTCTT

18

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- 49 -

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCCTGTGTCT GTCCTCCT

18

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 26 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

TCTCCCTTGG GCTCTGGCTC CTTCTC

26

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTTGCTCCTG GGGGCCTCCT G

21

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

-50-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CTTGCTCCTG GGGGCCTCCT G

21

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GGTGTGCGGG GCCTGGTGCC

20

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 12
- (D) OTHER INFORMATION: /standard_name= "Reduced A"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 15
- (D) OTHER INFORMATION: /standard_name= "Reduced A"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GGGCGCGGGC GAGCATCGC

19

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

-51-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CCTCCTTCCT GGTCTGTCTG C

21

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GCCCTGCTGC TCTTTCTGCT

20

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GCGCTCGGCC TGGTCCCGG

19

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GCGCGGGCCG GGGGCTGCTG GG

22

- 52 -

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

CCTCTTTCT GTTTTCCC

19

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTTCTTGGCT TCTTCTGTC

19

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 26 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

CTCTGCTGGT TTTCTGCCTT CTGCC

26

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 41 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

-53-

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TTTTCTCTTT CGCTTTCTTT TCGTCTCCTG TTCCCTCCTTT T

41

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

CTCTGTCTTG TTCTGGTCCT TCGTGGGGCT CTG

33

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

CTCTGGTTGG CTTCCCTTC

18

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

WO 96/40162

PCT/US96/09306

- 54 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

TCCCTGTTTC CCCCCTTT

18

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GCTTCTCTTT CGTTCCCGGT GGGCTCG

27

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

GCTTGTGTGC TCTGCTGTCT CT

22

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 39 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TGGTGGGGCT GGGGCTCCGG GGTCTCTGCC CCTCCGTGC

39

(2) INFORMATION FOR SEQ ID NO:32:

-55-

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

GTCCCTTCTTG TCCGCTGCC

19

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GTGGGGCCTG CTCTCCGGC CTCCG

25

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GGGTCCCTCAT GGCTGGGG

18

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- 56 -

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 9
- (D) OTHER INFORMATION: /standard_name= "Reduced A"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GGGTCCCTCAT GGCTGGGGTC

20

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GTCTTTGTTT CTGGGCTCGT GCC

23

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 5
- (D) OTHER INFORMATION: /standard_name= "Reduced A"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 14
- (D) OTHER INFORMATION: /standard_name= "Reduced A"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GTTCATGGTG GCTAGGTGGG GC

22

(2) INFORMATION FOR SEQ ID NO:38:

- 57 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 10
- (D) OTHER INFORMATION: /standard_name= "Reduced A"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GGGGTGGGTA GGCGTGTCT GGGG

24

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CGGTTTCCTT TGCGGTC

17

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GTGCTCCGGT GGCTTTT

18

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

-58-

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 6
- (D) OTHER INFORMATION: /standard_name= "Reduced A"

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 10
- (D) OTHER INFORMATION: /standard_name= "Reduced A"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GGTCCAGCCA TGGGTCTGGG

20

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GCTGGTCCTC TGCTGTCCCTT GCTG

24

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 25 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

GCCCGTCTG CTGCTCCTCG TGCCG

25

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

-59-

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: misc_feature
(B) LOCATION: 6
(D) OTHER INFORMATION: /standard_name= "Reduced A"

(ix) FEATURE:

(A) NAME/KEY: misc_feature
(B) LOCATION: 17
(D) OTHER INFORMATION: /standard_name= "Reduced A"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GTTCATCTT GGCTTTATCC

20

WE CLAIM:

1. A pharmaceutical composition, comprising a pharmaceutically or veterinarilly acceptable carrier or diluent, and an oligonucleotide(s) (oligo(s)) which is
5 (are) effective for alleviating bronchoconstriction, lung inflammation, allergy(ies) or asthma, wherein the oligo contains no more than 3 adenosines (A) or, if at least 21 nucleotides long, no more than 3 A per every 21 nucleotides and is antisense to a target selected from the group consisting of the initiation codon, the coding region or the 5'-end and the 3'-end of a gene encoding a polypeptide associated with lung
10 airway dysfunction or anti-sense to the corresponding mRNA(s), combinations of the oligos and mixtures of the oligos.
2. The composition of claim 1, wherein the oligo is A-free.
3. The composition of claims 1-2, wherein the target is selected from the initiation codon, the coding region or the 5'-end or the 3'-end of an oncogene(s) or a
15 gene(s) encoding a polypeptide(s) associated with lung airway dysfunction or anti-sense to the corresponding mRNA(s), combinations of the oligos and mixtures of the oligos; and wherein the polypeptide(s) is(are) selected from peptide factors, peptide transmitters, antibodies, cytokines, chemokines, enzymes, binding proteins, adhesion molecules, receptors for the peptide factors, peptide transmitters, antibodies,
20 cytokines, chemokines, enzymes, binding proteins, adhesion molecules or non-peptide transmitters or malignancy associated proteins.
4. The composition of claims 1-3, wherein the target is selected from the initiation codon, the coding region and the 5'-end and the 3'-end of an oncogene(s) or a gene(s) encoding a polypeptide(s) associated with lung airway dysfunction or to the
25 corresponding mRNA(s), combinations of the oligos, or mixtures of the oligos; wherein the polypeptides are selected from adenosine receptors, immunoglobulin receptors, enzymes, factors, antigens, neurotoxins, interleukins, interleukin receptors, acetylcholine receptors or muscarinic receptors.
5. The composition of claims 1-4, wherein the target is selected from the
30 group consisting of the initiation codon, the coding region and the 5'-end and the 3'-end of a gene(s) encoding a polypeptide(s) associated with lung airway dysfunction or to the oncogene mRNA and the corresponding mRNA, combinations of the oligos,

- 61 -

and mixtures of the oligos; wherein the polypeptide(s) is(are) selected from the group consisting of adenosine A₁ receptor, adenosine A_{2a} receptor, adenosine A_{2b} receptor, adenosine A₃ receptor, IgE receptor β , Fc-epsilon receptor CD23 antigen, IgE receptor α subunit, IgE receptor Fc epsilon receptor, histidine decarboxylase, beta 5 tryptase, tryptase-I, prostaglandin D synthase, cyclooxygenase-2, eosinophil cationic protein, eosinophil derived neurotoxin, eosinophil peroxidase, P selectin, endothelial monocyte activating factor (IL-3), interleukin-3 (IL-3), interleukin-5 (IL-5), interleukin-6 (IL-6), monocyte-derived neutrophil chemotactic factor, neutrophil elastase (medullasin), neutrophil oxidase factor, cathepsin G, defensin 1, defensin 3, 10 macrophage inflammatory protein-1- α , muscarinic acetylcholine receptor HM1, muscarinic acetylcholine receptor HM3, fibronectin, interleukin-8 (IL-8), GM-CSF, tumor necrosis factor α , leukotriene C4 synthase or major basic protein.

6. The composition of claims 1-5, wherein at least one of the mononucleotide(s) in the oligo(s) is(are) linked or is(are) modified by one or more of 15 phosphorothioate, methylphosphonate, phosphotriester, thioformacetal, phosphorodithioate, phosphoramidate, formacetal boranophosphate, 3'-thioformacetal, 5'-thioether, carbonate, 5'-N-carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methylimino) (MMI) or methyleneoxy(methylimino) (MOMI) linkages, phosphorothioate or 20 methylphosphonate.

7. The composition of claims 1-6, wherein the oligo(s) comprise mononucleotides linked by phosphorothioate residues.

8. The composition of claims 1-7, wherein the anti-sense oligo comprises about 7 to about 60 mononucleotides.

25 9. The composition of claims 1-8, wherein the anti-sense oligo comprises a fragment selected from SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ. ID NO: 7 to SEQ. ID NO: 44.

10. The composition of claims 1-9, wherein the anti-sense oligo is operatively linked to, or complexed with, an agent selected from cell internalized or 30 up-taken agents or cell targeting agents.

11. The composition of claims 1-10, wherein the cell internalized or up-

- 62 -

taken agent is selected from transferrin, asialoglycoprotein or streptavidin.

12. The composition of claims 1-11, wherein the oligo is operatively linked to a vector that is a prokaryotic or eukaryotic vector.

13. The composition of claims 1-12, wherein the oligo(s) is(are) 5 hybridized to a ribonucleic acid.

14. A composition comprising a cell, carrying the oligo of claims 1-13.

15. The composition of claims 1-14, wherein the carrier or diluent is selected from gaseous, liquid, or solid carriers or diluents.

16. The composition of claims 1-15, further comprising an agent selected 10 from other therapeutic compounds, surfactants, flavoring and coloring agents, fillers, volatile oils, buffering agents, dispersants, RNA-inactivating agents, anti-oxidants, flavoring agents, propellants or preservatives.

17. The composition of claims 1-16, comprising one or more oligo(s), a surfactant, and a carrier or diluent for the oligo and the surfactant.

18. The composition of claims 1-17, wherein the agent is an RNA-inactivating agent that comprises an enzyme, optionally a ribozyme.

19. The composition of claims 1-18, wherein the anti-sense oligo is present in an amount of about 0.01 to about 99.99 w/w of the composition.

20. The composition of claims 1-19, which is a topical or systemic 20 formulation.

21. The composition of claims 1-20, which is an inhalable, intrapulmonary, nasal or respirable formulation.

22. The composition of claims 1-21, which comprises a nasal or intrapulmonary formulation of solid or liquid particles about 10 to about 500 μm in 25 size.

23. The composition of claims 1-21, which comprises a respirable or inhalable formulation of solid or liquid particles about 0.5 to about 10 μm in size.

24. The composition of claims 1-23, which is provided in a capsule or a cartridge.

30 25. The composition of claims 1-24, wherein the carrier is selected from the group consisting of aqueous and alcoholic solutions and suspensions, oily solutions and suspensions and oil-in-water and water-in-oil emulsions.

- 63 -

26. The composition of claims 1-25, wherein the carrier comprises a hydrophobic carrier.

27. The composition of claims 1-26, wherein the carrier comprises lipid vesicles, and optionally liposomes, or particles, and optionally microcrystals.

5 28. The composition of claims 1-27, wherein the carrier comprises liposomes, and the liposomes comprise the anti-sense oligo.

29. The composition of claims 1-28, which is an aerosol formulation.

30. The composition of claims 1-29, in single- or multi-unit dose form.

31. The composition of claims 1-29, in bulk.

10 32. The composition of claims 1-31, comprising the oligo, a carrier and a surfactant.

33. The composition of claims 1-32, comprising the oligo, a carrier, a surfactant and a propellant.

15 34. A diagnostic or therapeutic kit, comprising a delivery device;

in a separate container(s), the oligo(s) of claims 1-33; and instructions for the preparation of a formulation effective for countering or diagnosing bronchoconstriction, allergy(ies), inflammation, or asthma or a disease or condition associated with either, and for its administration.

20 35. The kit of claim 34, wherein the formulation is a respirable formulation and the delivery device comprises a nebulizer, which delivers single metered doses of the formulation.

36. The kit of claims 34-35, wherein the nebulizer comprises an insufflator and the composition is provided in a piercable or openable capsule or cartridge.

25 37. The kit of claims 34-36, wherein the delivery device comprises a pressurized inhaler and the composition comprises a suspension, solution or dry formulation of the oligo.

30 38. The kit of claims 34-37, further comprising, in a separate container, an agent selected from the group consisting of other therapeutic agents, surfactants, anti-oxidants, flavoring agents, fillers, volatile oils, dispersants, antioxidants, propellants, preservatives, buffering agents, RNA inactivating agents, cell-internalized or up-taken agents and coloring agents.

- 64 -

39. The kit of claims 34-38, comprising, in separate containers, one or more oligos, and one or more selected from the group consisting of surfactants, propellants, a carrier or diluent, and therapeutic compounds other than the oligo(s).

40. Use of a composition having a particle size of about 0.5 μm to about 5 500 μm comprising a pharmaceutically or veterinarily acceptable carrier or diluent at least one nucleic acid(s) comprising at least one oligonucleotide(s) (oligo(s)) that is anti-sense to one or more target polydeoxyribonucleotide(s) encoding a polypeptide associated with high sensitivity to or high levels of adenosine or adenosine receptors, or associated with bronchoconstriction, inflammation, allergy or asthma, or with 10 diseases or conditions associated with either one, the oligo(s) containing up to and including about 15% adenosine (A), and being anti-sense to the initiation codon, the coding region or the 5' or 3' intron-exon junctions of a gene encoding the polypeptide, or being anti-sense to the corresponding mRNA, for administration into the airways of a subject to reach and hybridize to the target 15 polydeoxyribonucleotide(s), and reduce the production or availability, or to increase the degradation, of mRNA corresponding to the polydeoxyribonucleotide(s), or to reduce the amount of the target polypeptide present in the lungs.

41. The use of claim 40, wherein the amount of the oligo(s) is effective to reach and hybridize to the target polynucleotide(s), and reduce or inhibit the 20 polynucleotide(s)' transcription and/or expression and, thereby, alleviating high sensitivity to adenosine or to high levels of adenosine, bronchoconstriction, lung inflammation, allergy(ies) and/or asthma.

42. The use of claims 40-41, wherein the composition is to be administered nasally, by inhalation, or into the respiratory airways or the lung (s) of 25 the subject.

44. The use of claims 40-42, wherein the composition is effective to reduce the production or availability, or to increase the degradation, of the target mRNA or to reduce the amount of the target polypeptide present in the lungs.

45. The use of claims 40-44, for the treatment of asthma or a disease or 30 conditions associated with asthma.

46. The use of claims 40-45, for the treatment of bronchoconstriction or a disease or condition associated with bronchoconstriction.

47. The use of claims 40-46, for the treatment of lung inflammation or a disease or condition associated with lung inflammation.

48. The use of claims 40-47, for the treatment of allergy(ies) or a disease or condition associated with lung allergy(ies).

5 49. The use of claims 40-48, for administration to a human or a non-human subject.

50. The use of claims 40-49, wherein the oligo is to be administered in amount of about 0.005 to about 150 mg/kg body weight of the subject.

10 51. The use of claims 40-50, wherein at least one of the oligo(s) is(are) A-free.

52. The use of claims 40-51, wherein the target is selected from the initiation codon, the coding region or the 5'-end or the 3'-end of an oncogene(s) or a gene(s) encoding a polypeptide(s) associated with lung airway dysfunction or anti-sense to the corresponding mRNA(s), combinations of the oligos and mixtures of the 15 oligos; and wherein the polypeptide(s) is(are) selected from peptide factors, peptide transmitters, antibodies, cytokines, chemokines, enzymes, binding proteins, adhesion molecules, receptors for the peptide factors, peptide transmitters, antibodies, cytokines, chemokines, enzymes, binding proteins, adhesion molecules or non-peptide transmitters or malignancy associated proteins.

20 53. The use of claims 40-52, wherein the target is selected from the initiation codon, the coding region and the 5'-end and the 3'-end of an oncogene(s) or a gene(s) encoding a polypeptide(s) associated with lung airway dysfunction or to the corresponding mRNA(s), combinations of the oligos, or mixtures of the oligos; wherein the polypeptides are selected from adenosine receptors, immunoglobulin 25 receptors, enzymes, factors, antigens, neurotoxins, interleukins, interleukin receptors, acetylcholine receptors or muscarinic receptors.

30 54. The use of claim 40-53, wherein the target is selected from the group consisting of the initiation codon, the coding region and the 5'-end and the 3'-end of a gene(s) encoding a polypeptide(s) associated with lung airway dysfunction or to the oncogene mRNA and the corresponding mRNA, combinations of the oligos, and mixtures of the oligos; wherein the polypeptide(s) is(are) selected from the group consisting of adenosine A₁ receptor, adenosine A_{2a} receptor, adenosine A_{2b} receptor,

adenosine A₃ receptor, IgE receptor β , Fc-epsilon receptor CD23 antigen, IgE receptor α subunit, IgE receptor Fc epsilon receptor, histidine decarboxylase, beta tryptase, tryptase-I, prostaglandin D synthase, cyclooxygenase-2, eosinophil cationic protein, eosinophil derived neurotoxin, eosinophil peroxidase, P selectin, endothelial 5 monocyte activating factor (IL-3), interleukin-3 (IL-3), interleukin-5 (IL-5), interleukin-6 (IL-6), monocyte-derived neutrophil chemotactic factor, neutrophil elastase (medullasin), neutrophil oxidase factor, cathepsin G, defensin 1, defensin 3, macrophage inflammatory protein-1- α , muscarinic acetylcholine receptor HM1, muscarinic acetylcholine receptor HM3, fibronectin, interleukin-8 (IL-8), GM-CSF, 10 tumor necrosis factor α , leukotriene C4 synthase or major basic protein.

55. The use of claims 40-54, wherein at least one of the mononucleotide(s) in the oligo(s) is(are) linked or is(are) modified by one or more of phosphorothioate, methylphosphonate, phosphotriester, thioformacetal, phosphorodithioate, phosphoramidate, formacetal boranophosphate, 3'-thioformacetal, 5'-thioether, 15 carbonate, 5'-N-carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methylimino) (MMI) or methyleneoxy(methylimino) (MOMI) linkages, phosphorothioate or methylphosphonate.

56. The use of claims 40-55, wherein the oligo(s) comprise 20 mononucleotides linked by phosphorothioate residues.

57. The use of claims 40-56, wherein the oligo(s) comprise(s) about 7 to about 60 mononucleotides.

58. The use of claims 40-57, wherein the anti-sense oligo(s) comprise(s) a fragment selected from SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ. ID 25 NO: 7 to SEQ. ID NO: 44.

59. The use of claims 40-57, wherein the oligo(s) is(are) operatively linked to, or complexed with, an agent selected from cell internalized or up-taken agents or cell targeting agents.

60. The use of claims 40-59, wherein the cell internalized or up-taken 30 agent is selected from transferrin, asialoglycoprotein or streptavidin.

61. The use of claims 40-60, wherein the oligo(s) is(are) operatively linked

to a vector that is a prokaryotic or eukaryotic vector.

62. The use of claims 40-61, wherein the oligo(s) is(are) hybridized to a ribonucleic acid.

63. The use of claims 40-62, for transfecting a host cell.

5 64. The use of claims 40-63, wherein the carrier or diluent is selected from gaseous, liquid, or solid carriers or diluents.

65. The use of claims 40-64, wherein the composition further comprises an agent selected from other therapeutic compounds, surfactants, flavoring and coloring agents, fillers, volatile oils, buffering agents, dispersants, RNA-inactivating agents, 10 anti-oxidants, flavoring agents, propellants or preservatives.

66. The use of claims 40-65, wherein the composition further comprises one or more oligo(s), a surfactant, and a carrier or diluent for the oligo and the surfactant.

67. The use of claims 40-66, wherein the composition further comprises an 15 agent that is an RNA-inactivating agent that comprises an enzyme, optionally a ribozyme.

68. The use of claims 40-67, wherein the anti-sense oligo is present in an amount of about 0.01 to about 99.99 w/w of the composition.

69. The use of claims 40-68, wherein the composition comprises a topical 20 or systemic formulation.

70. The use of claims 40-69, wherein the composition comprises an inhalable, intrapulmonary, nasal or respirable formulation.

71. The use of claims 40-70, wherein the composition comprises a nasal or intrapulmonary formulation of solid or liquid particles about 10 to about 500 μm in 25 size.

72. The use of claims 40-71, wherein the composition comprises a respirable or inhalable formulation of solid or liquid particles about 0.5 to about 10 μm in size.

73. The use of claims 40-72, wherein the composition is provided in a 30 capsule or a cartridge.

74. The use of claims 40-73, wherein the carrier is selected from aqueous or alcoholic solutions or suspensions, oily solutions or suspensions or oil-in-water or

water-in-oil emulsions.

75. The use of claims 40-74, wherein the carrier comprises a hydrophobic carrier.

76. The use of claims 40-75, wherein the carrier comprises lipid vesicles, 5 and optionally liposomes, or particles, and optionally microcrystals.

77. The use of claims 40-76, wherein the carrier comprises liposomes, and the liposomes comprise the anti-sense oligo.

78. The use of claims 40-77, wherein the composition comprises an aerosol formulation.

10 79. The use of claims 40-78, wherein the composition is provided in single- or multi-unit dose form.

80. The use of claims 40-79, wherein the composition is provided in bulk.

81. The use of claims 40-80, wherein the composition comprises the oligo, a carrier and a surfactant.

15 82. The use of claims 40-81, wherein the composition comprises the oligo, a carrier, a surfactant and a propellant.

83. The composition of claims 1-33, wherein the oligo(s) is(are) anti-sense to the initiation codon, the coding region or the 5'-end or the 3'-end of a gene(s) encoding an adenosine A1, A2b and/or A3 receptor, or anti-sense to the adenosine 20 A1, A2b and/or A3 receptor mRNA.

84. The composition of claims 1-33 and 83, wherein the oligo(s) comprise(s) DNA.

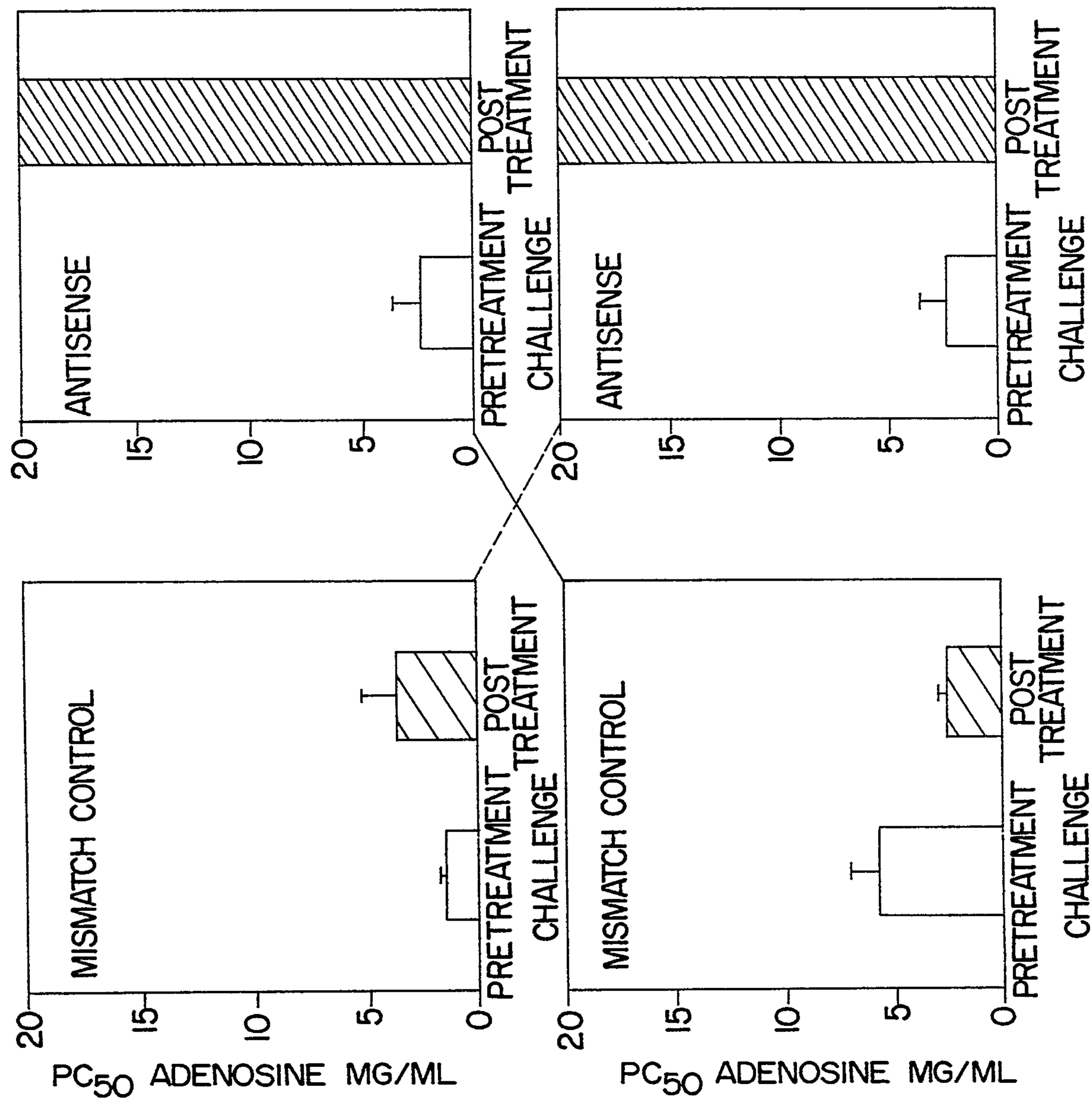
85. The composition of claims 1-33 and 83-84, wherein the oligo(s) comprise(s) RNA.

25 86. A diagnostic or therapeutic kit, comprising
a delivery device;

in a separate container(s), the oligo(s) of claims 83-85; and

instructions for the preparation of a formulation effective for countering or diagnosing bronchoconstriction, allergy(ies), inflammation, or asthma or a disease or 30 condition associated with either, and for its administration.

- 69 -


87. The kit of claim 86, wherein the formulation is a respirable formulation and the delivery device comprises a nebulizer, which delivers single metered doses of the formulation.

88. The kit of claims 86-87, wherein the nebulizer comprises an insufflator 5 and the composition is provided in a piercable or openable capsule or cartridge.

89. The kit of claims 86-88, wherein the delivery device comprises a pressurized inhaler and the composition comprises a suspension, solution or dry formulation of the oligo.

90. The kit of claims 86-89, further comprising, in a separate container, an 10 agent selected from the group consisting of other therapeutic agents, surfactants, anti-oxidants, flavoring agents, fillers, volatile oils, dispersants, antioxidants, propellants, preservatives, buffering agents, RNA inactivating agents, cell-internalized or up-taken agents and coloring agents.

91. The kit of claims 86-90, comprising, in separate containers, one or 15 more oligos, and one or more selected from the group consisting of surfactants, propellants, a carrier or diluent, and therapeutic compounds other than the oligo(s).

FIG. I.

2/4

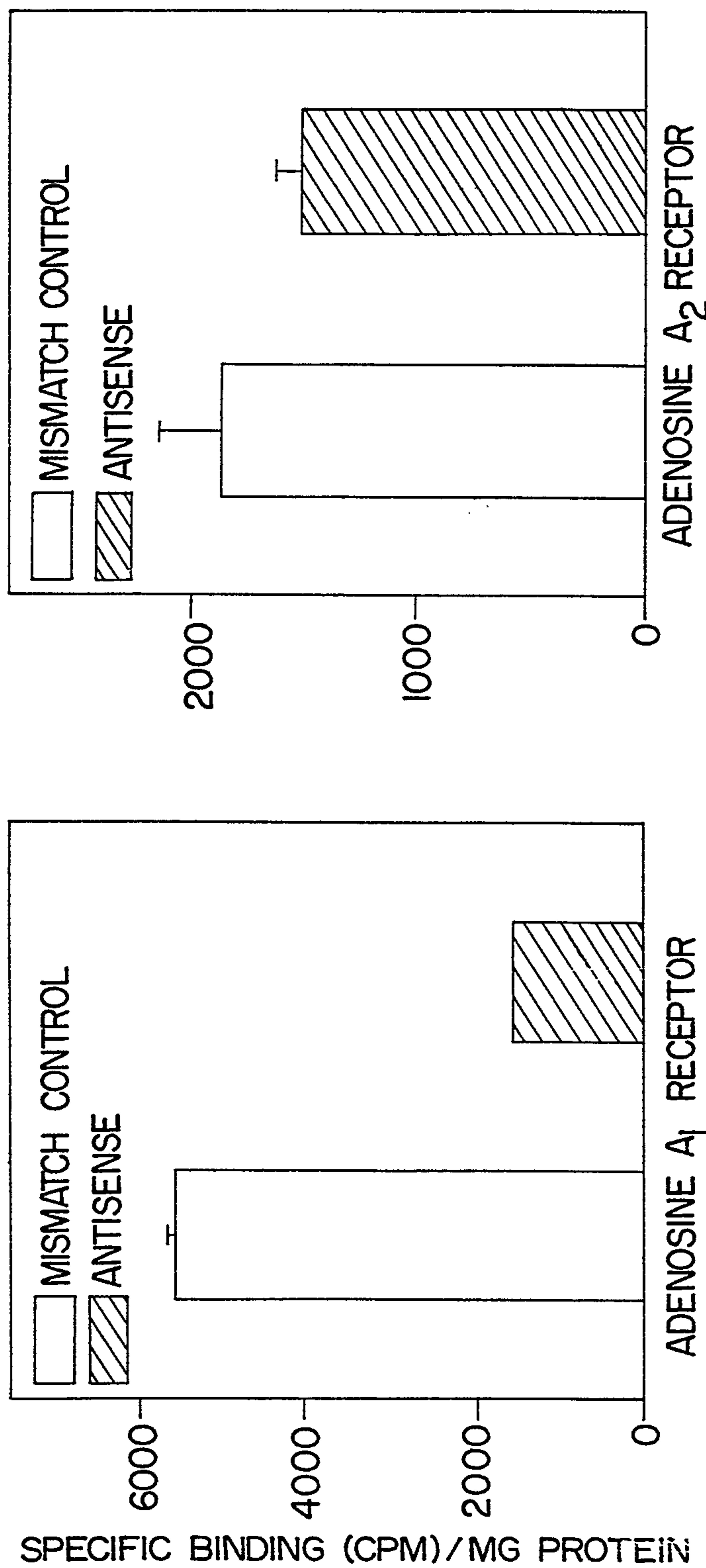


FIG. 2.

3/4

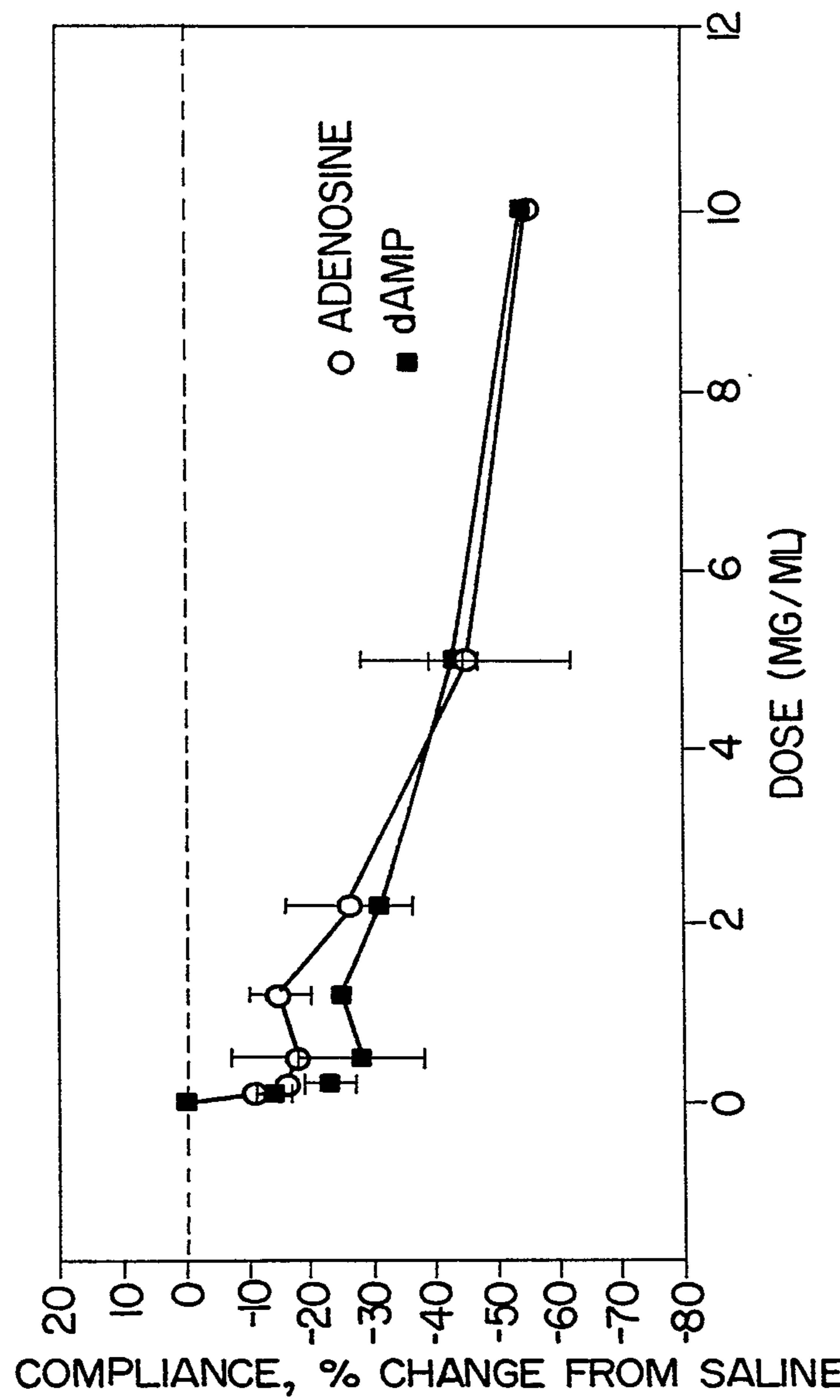


FIG. 3.

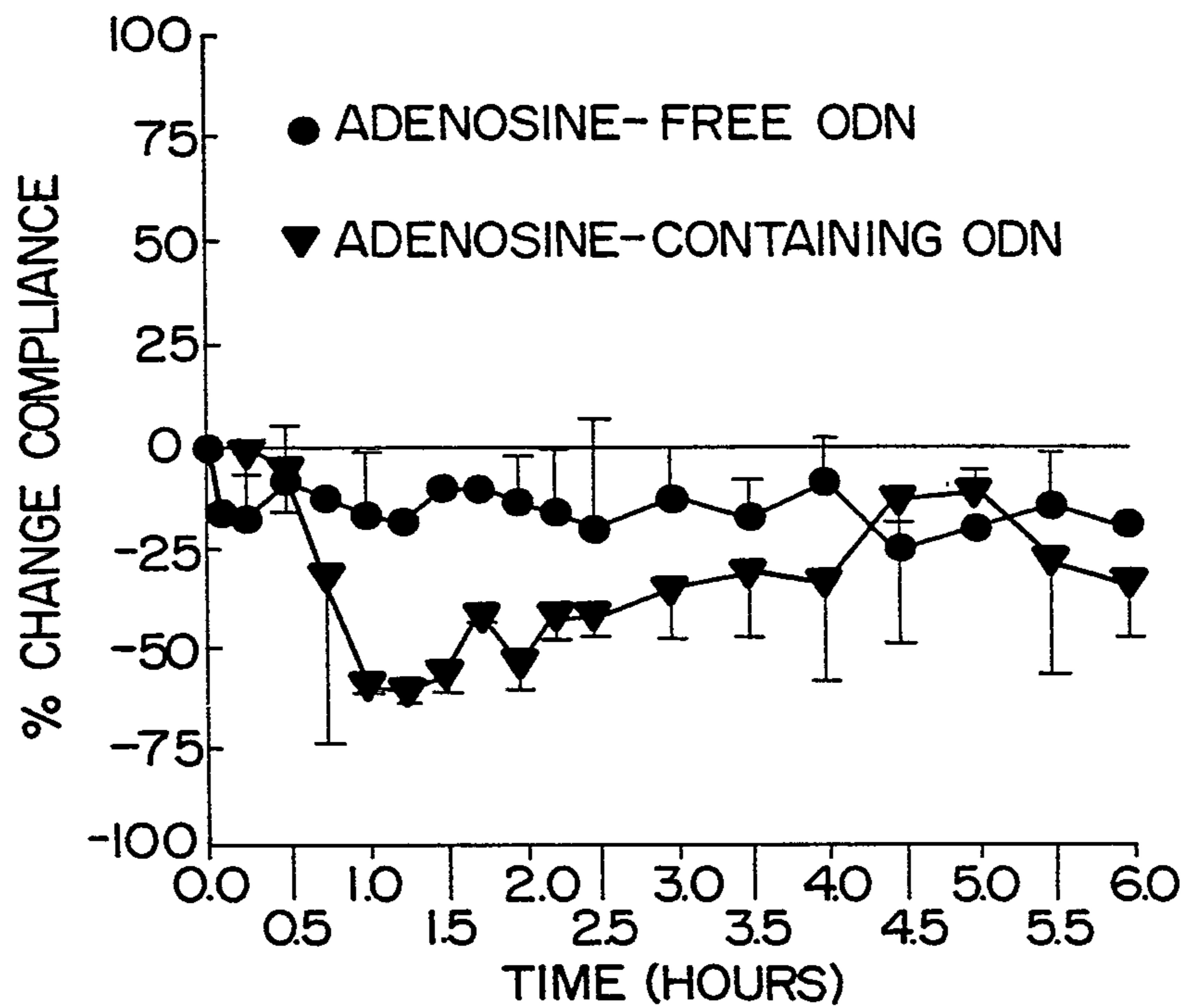


FIG. 4.