

1 562 826

- (21) Application No. 45358/76 (22) Filed 1 Nov. 1976
 (31) Convention Application Nos.
 50/148 669U (32) Filed 31 Oct. 1975 in
 50/148 670U
 (33) Japan (JP)
 (44) Complete Specification published 19 March 1980
 (51) INT. CL. ³ F16D 55/224
 (52) Index at acceptance
 F2E 2N1C2C 2N1D16 E1

(54) FLOATING CALIPER DISC BRAKES

(71) We, AKEBO BRAKE INDUSTRY Co. LTD., a Japanese Company, of No. 2-3, 1-chome, Koami-cho, Nihonbashi, Chuo-ku, Tokyo, Japan, do hereby declare the 5 invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

10 This invention relates to disc brakes of the floating caliper type, and more particularly to an improvement in the caliper support arrangement.

Known forms of disc brakes often are 15 of the floating caliper type, and with these it is usually necessary for the caliper to be removed from the support therefor when the friction pads are to be exchanged. Sometimes, the support is arranged to allow 20 the caliper to be pivotted to a position in which the friction pads may be removed, after the connection of the caliper to the support partially has been dismantled. In either case, however, it often happens that 25 the guide pins on which the caliper floats axially become exposed to grit, dust, mud and other harmful materials. When re-assembled, the floating action no longer properly operates because the guides there- 30 for tend to bind, owing to the presence of the harmful material.

According to this invention, there is 35 provided a disc brake assembly of the floating caliper type, comprising a support member for a pair of friction pads to be positioned one adjacent each face of a brake disc, a caliper for urging the friction pads into engagement with the faces of the disc, the caliper being mounted on 40 the support member by means allowing sliding movement of the caliper parallel to the axis of the disc, the caliper mounting means including a first guide pin secured on the support member and slidably 45 mounted in the caliper and a second guide

pin also slidably mounted in the caliper and releasably securable within an open slot provided in the support member, whereby when the second guide pin is released, the guide pin can be moved out 50 of its associated slot through the opening thereof to be free of the support member whereafter the caliper can be pivotted about the first guide pin to allow access to the friction pads. 55

With the arrangement of this invention, it is possible to gain access to the friction pads without having to dismantle completely the means mounting the caliper on the support member. Because of this, the sliding surfaces of the mounting means need 60 not be exposed when changing friction pads and can be protected against the ingress of foreign matter, leading to greater reliability. 65

It will be appreciated that the slot can be regarded as having a hole portion in which the guide pin is normally located when secured to the support member and comprising the base of the slot, and an 70 open slot portion communicating the hole portion to an adjacent edge of the support member and through which the guide pin moves to become free of the support member. Thus, in the following, references will be made to the "hole portion" 75 and the "slot portion" of the slot in the support member.

The slot portion may extend in a direction normal to a line joining the centres 80 of the guide pins when the second guide pin is located in its associated hole portion and secured to the support member, whereby the second guide pin, when released, moves through the slot as the caliper is 85 pivotted. Alternatively, the slot portion may extend in a direction parallel to a line joining the centres of the guide pins when the second guide pin is located in its associated hole portion and secured to the sup- 90

port member, the second guide pin being movable laterally when released to become free of the support member whereafter the caliper may be pivotted to allow access to 5 the friction pads.

In the latter construction the second 10 guide pin is preferably located within a receptor provided in the caliper, the pin being slidably journalled in a flexible annular rib provided within the receptor so as to allow the end of the pin to be moved laterally, out of the slot portion.

So as to align the second guide pin and the support member automatically as the 15 guide pin is secured thereto, it is advantageous for the support member to be provided with a tapered annular surface around the hole portion of the slot for the second guide pin and for the second guide 20 pin to be provided with a shoulder defining a tapered annular surface adapted to mate with the tapered surface of the support member. When the securing means for the second guide pin comprises a nut screwed 25 on a threaded portion, in addition or instead of the just-described arrangement, the nut may be provided with a tapered annular surface adapted to mate with a corresponding tapered surface provided on the 30 support member around the hole portion of the slot, whereby the alignment between the second guide pin and the support member will automatically be effected as the nut is tightened.

35 Preferably, protective flexible boots are provided around the guide pins to seal the pins to the caliper in order to prevent the ingress of foreign matter to the sliding surfaces. Of course, these need not 40 be dismantled when the caliper is to be pivotted to gain access to the friction pads.

By way of example only, four specific 45 embodiments of this invention will now be described, reference being made to the accompanying drawings, in which:—

Figure 1 is a side view, partly in section, of one embodiment of disc brake of the floating caliper type, according to the present invention;

50 Figure 2 is a fragmentary bottom view of the disc brake of Figure 1, showing the support plate having a laterally slotted hole;

55 Figures 3A and 3B are fragmentary side views, partly in section, of a second embodiment of disc brake according to the present invention;

60 Figure 4 is a bottom view of the disc brake of Figure 3, showing the support plate having a longitudinally slotted hole;

65 Figure 5 is a side view, partly in section, of a third embodiment of disc brake according to the present invention;

Figure 6 is a fragmentary bottom view 65 of the disc brake of Figure 5, showing

the support plate having a laterally slotted hole provided with a bevelled portion; and

70 Figure 7 is a fragmentary side view, partly in section, of a fourth embodiment of disc brake according to the present invention.

Referring to Figures 1 and 2, there is shown the first embodiment of disc brake according to this invention. This brake comprises an axially-located rotating member or disc 1, for instance suitably connected to a wheel of a road vehicle, for rotation therewith. A caliper 2 has an acting portion and a reacting portion located respectively on the two sides of 80 the disc 1 and serves to urge the friction pads 6 and 7 into engagement with the disc when the brake is operated. A support member 3 is provided for the brake friction pads 6 and 7 and is suitably mounted 85 on a fixed part, such as a suspension part of the vehicle. The support member 3 is constructed from first and second plates 4 and 5 so as to be generally T-shaped when viewed end-on. The first plate 4 has 90 left and right arms 4a and 4b, and the second plate has left and right arms 5a and 5b to each side of a central portion 5c. The arms 4a and 4b are respectively rigidly attached to the arms 5a and 5b such that the general planes of the first and second plates are at right-angles, arms 5a and 5b being positioned centrally on arms 4a and 4b. The friction pads 6 and 7 are mounted 95 respectively on plates 4 and 5 such that their faces are parallel to the plane of the disc 1, and a guiding mechanism is provided to support the caliper 2 for sliding movement axially of the rotor.

100 The guiding mechanism comprises a pair 105 of guide pins 8 and 9 rigidly secured at their one ends respectively to the arms 4a and 4b of the first plate 4. Pin 8 is directly screw-threaded at 10 into a tapped hole in arm 4a, whereas pin 9 is threaded and 110 attached to the arm 4b by means of a nut 11. The pins extend into receptors 12 and 13 respectively, there being associated resilient air-tight boots 14 and 15.

115 In accordance with this invention, the hole 4d (Figure 2) of the first support plate 4 through which the threaded section of the guide pin 9 extends is slotted outwardly in the radial direction of the disc 1, as indicated at 4e, so that when the nut 11 is loosened on pin 9, the caliper 2 can 120 be pivotted about the guide pin 8 to reveal the friction pads 6 and 7. During this pivoting, the guide pin 9 moves through the slotted portion 4e away from the hole portion 4d toward the outer edge of the first support plate 4 and eventually the pin 9 comes free of the plate 4. In this way, it is possible to exchange the friction pads by new ones without the necessity of com- 130

pletely removing the guide pin 9 from its receptor 13, and therefore without allowing foreign matter (such as grit or mud) to enter the sliding interspace between the 5 guide pin 9 and its receptor 13. Thus, the operation of exchanging the friction pads 6 and 7 is greatly facilitated.

Figures 3A and 3B and Figure 4 show another embodiment of a disc brake according to the present invention, which is generally similar to that described above, and like parts are given like reference characters. In this embodiment, however, guide pin 9 slides within an over-bored 15 receptor 16 having a flexible central annular projection 16a which fits closely around the guide pin 9. Also, the first support plate 4', having arms 4'a and 4'b, is provided with a hole portion 4'd for the pin 9, the hole portion joining a slot portion as shown at 4'e in a direction aligned with the centre line connecting hole portion 4'd and the hole provided for pin 8 (not shown in Figures 3 and 4). To release the caliper 25 2, the nut 11 is loosened, and then the pin 9 can be inclined as shown in Figure 3B to move through the slot portion 4'e and come free of the plate 4'; thereafter the plate 4' can be rotated as in the first 30 embodiment. An advantage of this second embodiment is that the angular adjustment of the caliper 2 relative to the support member 3 is automatically effected, because the hole portion 4'd is slotted out 35 wardly in the radial direction of the disc.

Figures 5 and 6 show a third embodiment of disc brake according to the present invention, and again like parts with the first embodiment are given like reference characters. In this third embodiment, a device is provided for automatically effecting the angular adjustment of the caliper 2 relative to the support member 3 when the guide pin 9 is rigidly secured 45 in the correct position with respect to the first plate 4. The hole portion 4d has a slot portion as shown at 4g, in a manner similar to that shown in connection with the embodiment of Figures 1 and 2. The 50 aforementioned device comprises first and second tapered annular surfaces arranged to mate when the nut 11 is tightened to secure the pin 9 to the first plate 4, whereby the angular adjustment of the caliper relative to the support plate 4 is established with a high degree of accuracy. The first tapered annular surface 4f is formed around the hole portion 4d on the 55 surface of the first plate 4 remote from plate 5, and the second annular tapered surface 9b is formed on the mating surface of a flanged portion 9a of the guide pin 9. The provision of such a device gives several advantages, one of which is that once 60 properly established, the correct angular

disposition is maintained stably without accidental slippage, which might otherwise occur were these tapered surfaces 4f and 9b not provided.

A modification of the above arrangement is shown in Figure 7, in which the first tapered surface 4f' is provided on the surface of the first plate 4 nearer the second plate 5, while the second tapered surface 11'a is provided on the mating 75 surface of the nut 11'. In a similar way, a tapered surface may be provided between the head of the guide pin 8 and the first plate 4, correctly to align this pin.

As will be appreciated from the foregoing, the present invention provides a disc brake of floating caliper type which has an improved caliper-supporting mechanism, insofar as difficulties in assembling the parts of the complete brake and exchanging old friction pads by new ones are reduced, without introducing disadvantages on the braking action.

WHAT WE CLAIM IS:—

1. A disc brake assembly of the floating caliper type, comprising a support member for a pair of friction pads to be positioned one adjacent each face of a brake disc, a caliper for urging the friction pads into engagement with the faces of the disc, the caliper being mounted on the support member by means allowing sliding movement of the caliper parallel to the axis of the disc, the caliper mounting means including a first guide pin secured 90 on the support member and slidably mounted in the caliper and a second guide pin also slidably mounted in the caliper and releasably securable within an open slot provided in the support member, whereby when the second guide pin is released, the guide pin can be moved out of its associated slot through the opening thereof to be free of the support member whereafter the caliper can be pivotted about the first 100 105 guide pin to allow access to the friction pads.

2. A disc brake assembly according to claim 1, wherein the second guide pin is releasably securable to the support member 115 by means of a nut co-operating with a threaded portion of the second guide pin.

3. A disc brake assembly according to claim 1 or claim 2, wherein the slot extends in a direction normal to a line joining the centres of the guide pins when the second guide pin is located in the slot and secured to the support member, whereby the second guide pin, when released, moves through the slot as the caliper is pivotted. 120

4. A disc brake assembly according to claim 1 or claim 2, wherein the slot extends in a direction parallel to a line joining the centres of the guide pins when the second guide pin is located in the slot 130

and secured to the support member, the second guide pin being movable laterally when released to become free of the support member whereafter the caliper may 5 be pivotted to allow access to the friction pads.

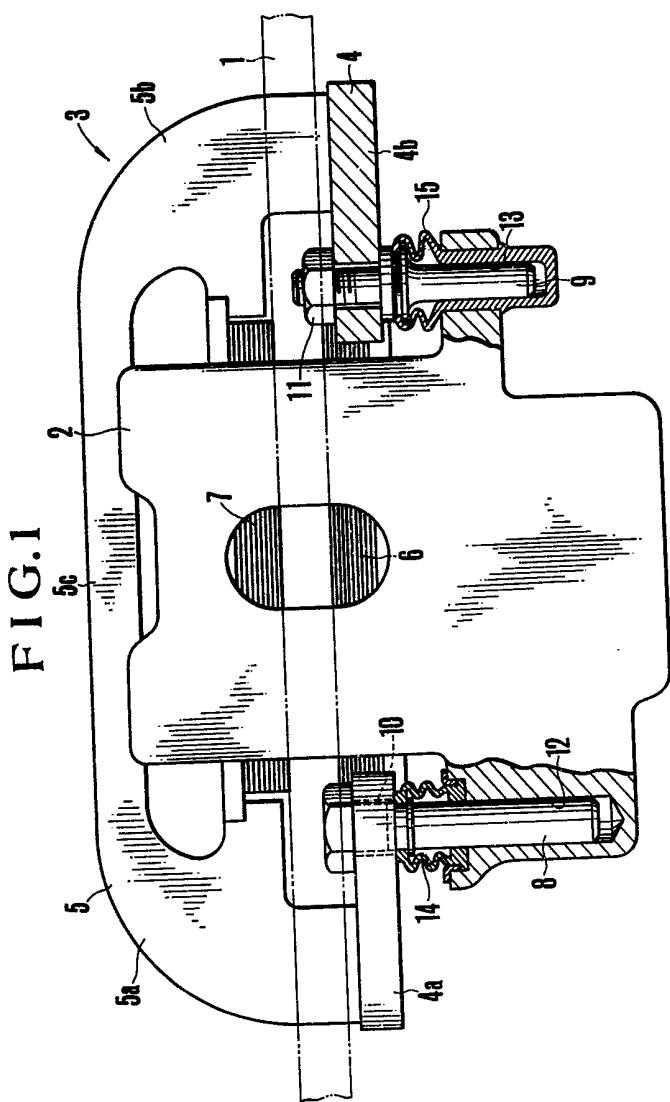
5. A disc brake assembly according to claim 4, wherein the second guide pin is located within a receptor provided in the 10 caliper, the pin being slidably journaled in a flexible annular rib provided within the receptor so as to allow the end of the pin to be moved laterally.

6. A disc brake assembly according to 15 any of the preceding claims, wherein the support member is provided with a tapered annular surface around the slot for the second guide pin and the second guide pin is provided with a shoulder defining a 20 tapered annular surface adapted to mate with the tapered surface of the support member such that the alignment between the second guide pin and the support member is automatically effected as the guide 25 pin is secured thereto.

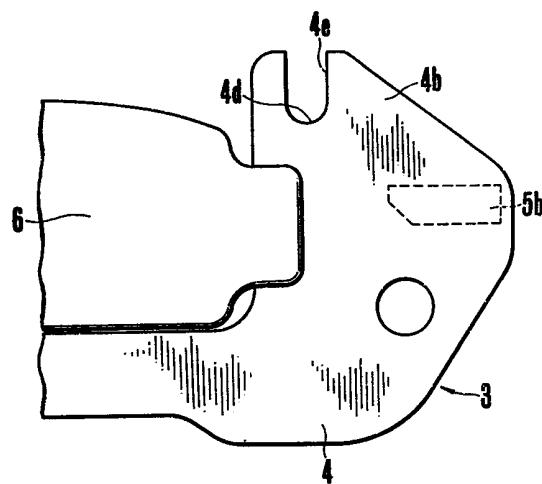
7. A disc brake assembly according to claim 2 or any claim appendent thereto, wherein the nut is provided with a tapered annular surface adapted to mate with a

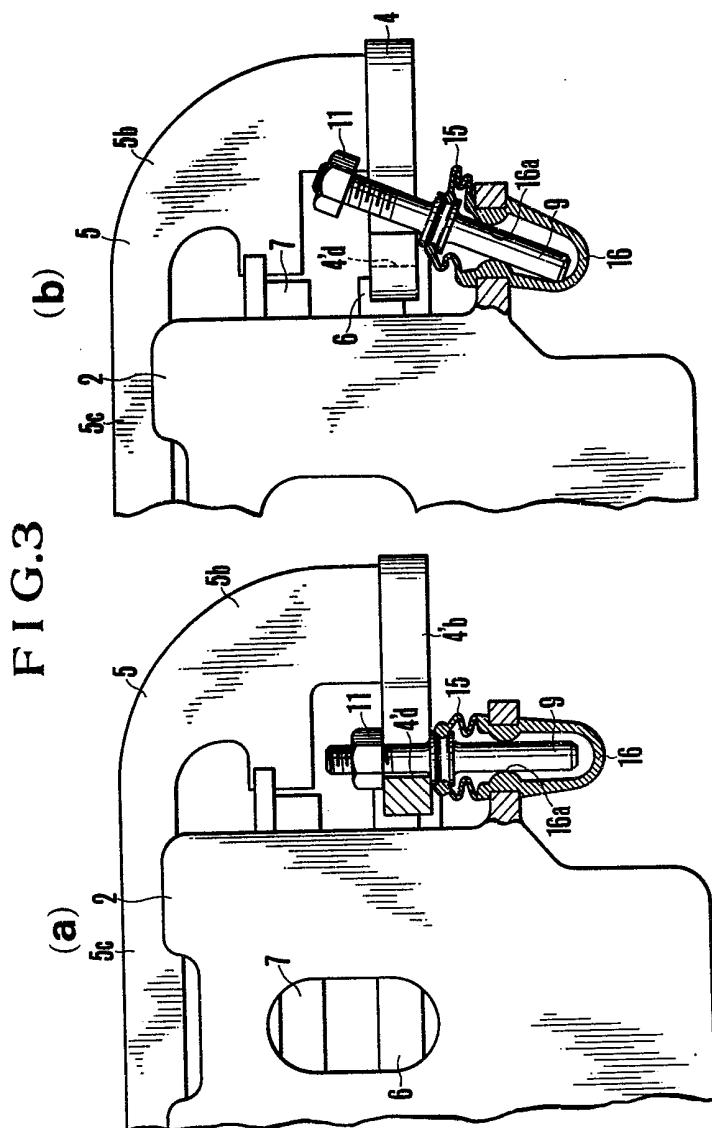
corresponding tapered surface provided on 30 the support member around the slot, whereby the alignment between the second guide pin and the support member is automatically effected as the nut is tightened.

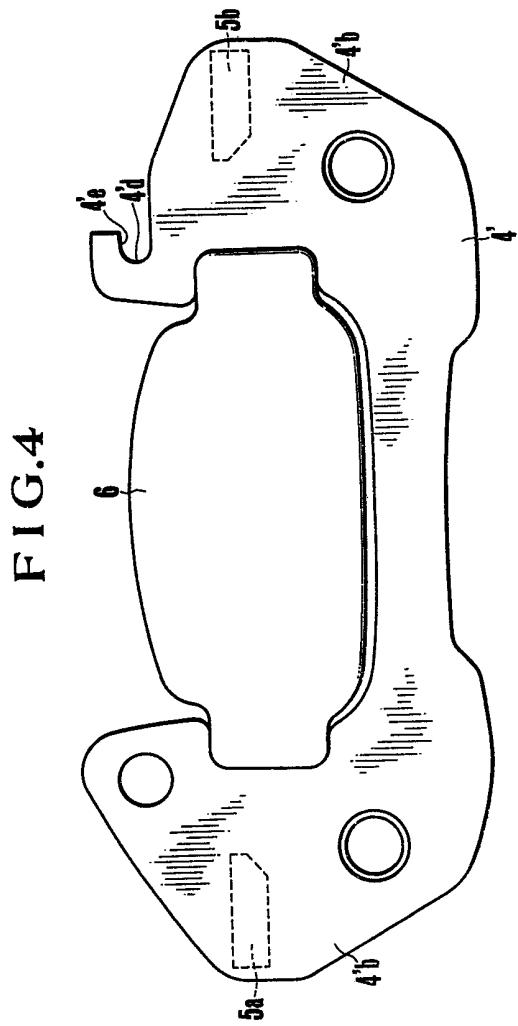
8. A disc brake assembly according to 35 any of the preceding claims, wherein protective flexible boots are provided around the guide pins to seal the pins to the caliper in order to prevent the ingress of foreign matter to the sliding surfaces. 40


9. A disc brake assembly substantially as hereinbefore described with reference to and as illustrated in Figures 1 and 2, or in Figures 3 and 4, or in Figures 5 and 6 or in Figure 7 of the accompanying drawings. 45

10. A disc brake comprising the combination of an assembly according to any of the preceding claims, a pair of friction pads slidably mounted on the support member and a rotatable brake disc arranged with the friction pads one to each face 50 respectively of the disc.


For the Applicants:
SANDERSON & CO.,
97 High Street,
Colchester,
Essex.




Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd., Berwick-upon-Tweed, 1980.
Published at the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies
may be obtained.

F I G.2

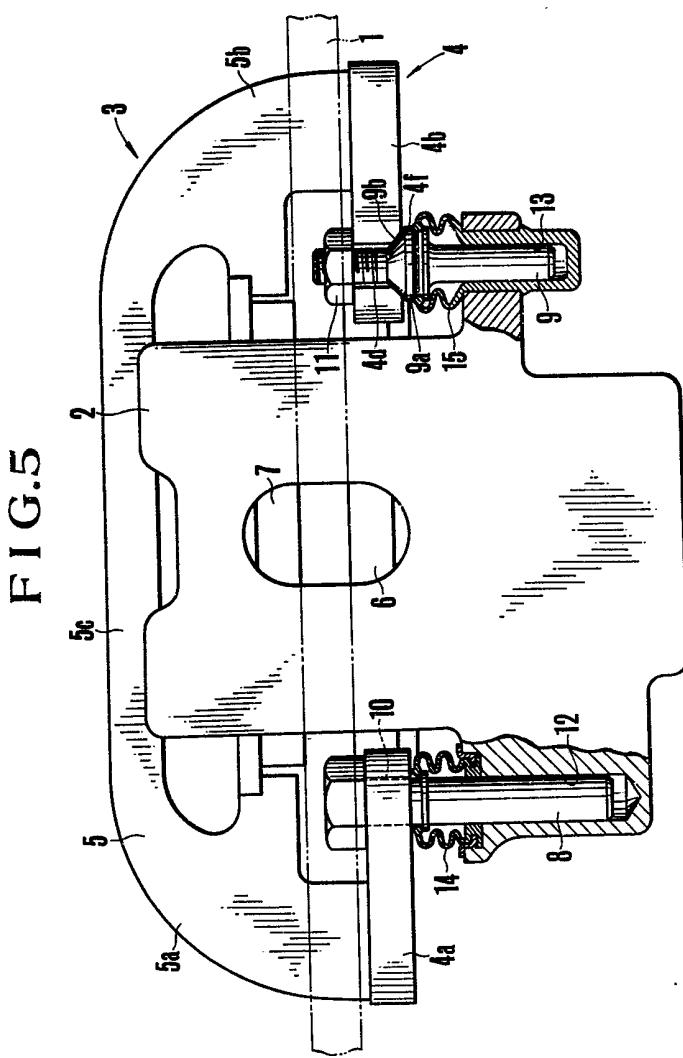


FIG.6

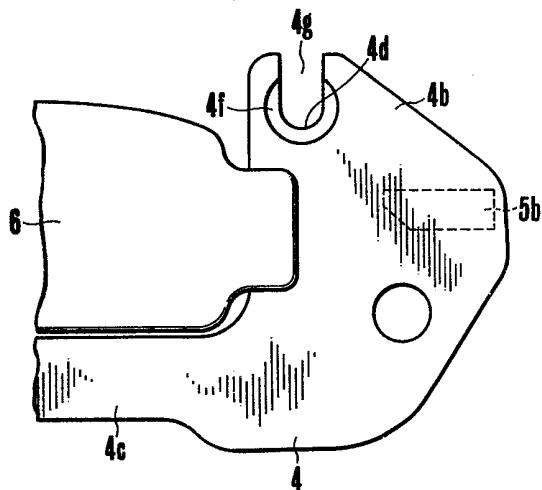
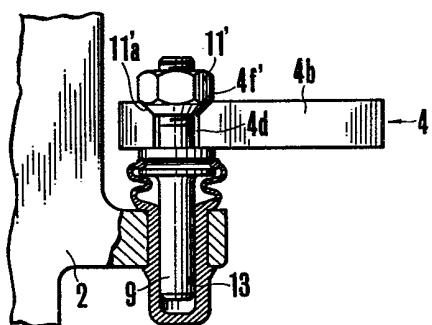



FIG.7

