

(11)(21)(C) **2,059,288**

(86) 1990/06/21

(87) 1990/12/23

(45) 2001/02/13

(72) Riess, Jean, FR

(72) Jeanneaux, François, FR

(72) Krafft, Marie-Pierre, FR

(72) Santaella, Catherine, FR

(72) Vierling, Pierre, FR

(73) Alliance Pharmaceutical Corp., US

(51) Int.Cl.⁵ C07F 9/6533, A61K 7/50, A61K 9/127, C07F 9/09, A61K 49/00

(30) 1989/06/22 (89401777.1) EP

(54) MOLECULES AMPHIPHILES A PROPRIETES TENSIO-ACTIVES QUI CONTIENNENT DU FLUOR ET DU PHOSPHORE

(54) FLUORINE AND PHOSPHOROUS-CONTAINING AMPHIPHILIC MOLECULES WITH SURFACTANT PROPERTIES

(57) Les composés des formules générales (I) ou (II) sont utiles en tant que tensio-actifs dans la préparation d'émulsions de fluorocarbone, pouvant servir de substituants du sang transportant l'oxygène, ainsi que dans beaucoup d'autres applications thérapeutiques et diagnostiques. Ils sont également utiles dans des formulations liposomiques, lesquelles constituent des agents thérapeutiques ou un véhicule pour de tels agents.

(57) Compounds of general formula (I) or (II) are useful as surfactants in the preparation of fluorocarbon emulsions, which can be used as oxygen-carrying blood substitutes, and for many other therapeutic and diagnostic applications. They are further useful in liposomal formulations which are themselves therapeutic agents or provide a vehicle for such agents.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07F 9/10, A61K 31/675

A1

(11) International Publication Number:

WO 90/15807

(43) International Publication Date:

27 December 1990 (27.12.90)

(21) International Application Number:

PCT/EP90/00991

(22) International Filing Date:

C07F 9/09, 9/6533

21 June 1990 (21.06.90)

(30) Priority data:

89401777.1

22 June 1989 (22.06.89)

EP

FR

(34) Country for which the regional or international application was filed:

des Oliviers, F-06000 Nice (FR).

(71) Applicant: APPLICATIONS ET TRANSFERTS DE TECHNOLOGIES AVANCÉES [FR/FR]; 47, Corniche

(72) Inventors: RIESS, Jean; Les Giaines, F-06950 Falicon (FR). JEANNEAUX, François; 135, avenue Saint-Lambert, F-06100 Nice (FR). KRAFFT, Marie-Pierre; 34, rue Vernier, F-06100 Nice (FR). SANTAELLA, Catherine; 74, avenue Saint-Barthélémy, F-06100 Nice (FR). VIERLING, Pierre; Les Giaines, F-06950 Falicon (FR).

(74) Agent: CABINET MALEMONT; 42, avenue du Président Wilson, F-75116 Paris (FR).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent)*, DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: FLUORINE AND PHOSPHOROUS-CONTAINING AMPHIPHILIC MOLECULES WITH SURFACTANT **PROPERTIES**

(57) Abstract

Compounds of general formula (I) or (II) are useful as surfactants in the preparation of fluorocarbon emulsions, which can be used as oxygen-carrying blood substitutes, and for many other therapeutic and diagnostic applications. They are further useful in liposomal formulations which are themselves therapeutic agents or provide a vehicle for such agents.

$$R^{1}$$
-CH₂
 $(R^{2}$ -CH) m O
 CH_{2} -O-P-X
 (I)

FLUORINE AND PHOSPHOROUS-CONTAINING AMPHIPHILIC MOLECULES WITH SURFACTANT PROPERTIES

Background of the Invention

This invention relates to surfactants which as amphiphilic molecules have a variety of applications, in particular in the preparation of liposomes, dispersions, and emulsions such as fluorocarbon emulsions.

10

The achievement of an intravenously injectable oxygen-delivering system has become a major objective in biomedical research. Such a system is destined to serve as a temporary substitute for blood, but also, more generally, whenever in vivo administration of oxygen is required, as for example in cases of myocardial infarction or stroke, during cardiovascular surgery, for the preservation of isolated tissues and organs, as an adjuvant to cancer radio—and othemo—therapy and in perioperative hemodilution.

Fluorocarbons presently appear to be the most promising oxygen vectors for this purpose. Fluorocarbons also have significant utility as contrast enhancement agents, such as for diagnosis by X-ray, magnetic resonance or ultrasound radiography.

25

The intravenous injection of neat fluorocarbons is, however, precluded by their insolubility in an aqueous medium. It is therefore necessary to prepare them in the form of emulsions, which implies the use of one or more surfactants. Although albumin has been used as a surfactant, the primary synthetic surfactants used in fluorocarbon emulsions today are polyoxyethylene polyoxypropylene block co-polymers of PLURONIC F-68 (registered trademark) type, and natural sur-

35

30

Lecithins, however, have their drawbacks and limitations; they are sensitive, oxidizable materials; reliable sources

SUBSTITUTE SHEET

factants such as egg-yolk lecithins.

of consistent quality are few; they are not particularly fluorophilic; and they leave little room for manipulating the emulsions' characteristics in order to adjust them to specific therapeutic applications.

5

Further mastery of the art of fluorocarbon emulsion technology is desirable, especially to allow the optimal adaptation of the emulsions' characteristics to each individual therapeutic application and to extend their spectrum of application. A further, ideal, objective would be the ability to modulate the biological response they trigger in the organism.

Likewise it is desirable to gain further mastery in the art of liposome technology, especially to allow the modulation of the characteristics and properties of lipid membranes and liposomes and to extend their spectrum of applications, especially for drug and contrast agent delivery.

20

The present invention provides various fluorine-substituted lecithin analogues and derivatives, which are useful as surfactants in fluorocarbon emulsions and in lipid membranes and in liposome manufacturing.

25

Certain fluorine-containing surfactants are known. For example, DE-A-2160783 discloses certain fluorocarbon phosphoric acid derivatives having a chlorine atom substituted on the carbon atom β - to the phosphate group.

30

35

Fujita et al. (JP-A-60181093, Chem. Pharm. Bull., 35:647 (1987) disclose certain fluorocarbon phosphoric acid derivatives based on glycerol in which a single fluorine-containing (R_F) moiety is present and the secondary alcohol function is either free (OH) or acetylated (OCOCH₃). DD-A-222595 discloses some fluorinated glycerophosphocholine derivatives but these contain only a 2,2,2-trifluorethyl

group.

The article by Gu et al [Chemical Abstract 110:154749c (1989); HUAXUE XUEBAO or Acta Chimica Sinica, 49:913 (1988)], discloses phosphatidylcholine derivatives having two F-alkyl chains, but these contain a chlorine atom at their extremity.

Kunitake et al (Memoirs of the Faculty of Engineering, 10 Kyushu University 46 221 (1986)) disclose fluorocarbon phosphoric acid derivatives which contain an amide linkage, as a result of being a glutamic acid diester.

DE-A-2656429 discloses certain fluorocarbon phosphorous (not phosphoric) acid derivatives including the presence of a CH=CF double bond.

Various publications also disclose one or two fluorocarbon moieties substituted onto a phosphoric acid moiety; in the case of the mono-substituted compounds both remaining groups of the phosphoric acid are independently hydroxy, alkoxy, alkylthio or alkylamino.

DE-A-3609491, DE-A-3609492 and JP-A-84204197 disclose certain dibasic fluorocarbon-substituted phosphoric acid derivatives.

JP-A-8623590 and JP-A-86123591 (Fuji) disclose certain fluorocarbon-substituted phosphoric acid derivatives having no methylene groups.

Mahmood et al (Inorg. Chem. 25 4081 (1986)) discloses molecules having central bifunctional fluorinated chains with two phosphate groups, one on each end of the chain.

Various sulphonamides containing fluorocarbon moieties and a phosphoric acid residue are known.

US-A-3976698 and US-A-3948887 (Pennwalt) disclose certain sulphur-containing fluorocarbon-substituted phosphoric acid derivatives.

5

None of the above documents discloses the use of the surfactants disclosed in fluorocarbon emulsions. Further, none of the prior documents discloses compounds within the scope of the present invention.

10

Summary of the Invention

The invention is directed toward novel surfactants having the general formula

$$R^{1}-CH_{2}$$
 $(R^{2}-CH)_{m}$
 $CH_{2}-O-P-X$
 $R^{1}-CH_{2}$
 $CH_{2}-O-P-X$
 $R^{2}-CH_{2}$
 $R^{2}-CH_{2}$

20

25

wherein \mathbb{R}^1 and \mathbb{R}^2 are fluorine containing moieties, and X and Y substituents are as defined herein.

The invention is also directed to methods of using the novel compounds described. The amphiphilic nature of the molecules combined with their biocompatibility make them useful in the preparation of emulsions and liposomal formulations which can be adapted to many biological and medical applications.

Finally. methods of preparing the compounds of Formula 30 I are provided herein.

Brief Description of the Drawings

The description makes reference to the accompanying drawings, in which:

Figure 1 shows the structures of preferred compounds of the invention;

Figure 2 shows a general synthetic scheme for preparing compounds of general formulae Ia and Ib and certain intermediate compounds;

40

35

Figure 3 shows an exemplary synthetic scheme for preparing certain compounds of the invention, which may be extended by analogy for the preparation of other compounds of the invention;

5

Figure 4 shows in more detail part of the synthetic scheme shown in Figure 3;

Figure 5 shows further exemplary synthetic schemes for preparing certain compounds of the invention, which again may be extended by analogy for the preparation of other compounds of the invention.

Detailed Description of the Invention

According to a first aspect of the invention, there is provided a compound of the general formula:

wherein:

30

R¹ represents:

 $R_F(CH_2)_a-(CH=CH)_b-(CH_2)_c-(CH=CH)_d-(CH_2)_e-A-;$

RF-(CH₂)f-OCH₂CH(CH₂OH)CH₂-A-;

 R_{F} -(CH₂)_g-OCH₂CH(CH₂OH)-A-,

wherein -A- represents -O-, -C(0)O-, -R⁶(R⁷)N⁺-, (wherein each of R⁶ and R⁷ represents C₁-C₄ alkyl or hydroxyethyl), -(CH₂)_n-, wherein n=0 or 1, or

35 $-C(0)N(R^9)-(CH_2)q^-B$, wherein q is an integer from 0 to 12, B represents -0- or -C(0)-, and R^9 is hydrogen or R^6 ,

and wherein the sum of a+c+e is from 0 to 11, the sum b+d is from 0 to 12 and each of f and g is from 1 to 12:

40 RF-(CH₂-CH₂-O)_h-;

15

20

30

35

 R_F -[CH(CH₃)CH₂O]_h-; R_F (-CH₂-CH₂-S)_h-,

wherein h is from 1 to 12; and wherein RF represents a fluorine-containing moiety having one of the following structures:

- (a) $F(CF_2)_{i-}$, wherein i is from 2 to 12,
- (b) $(CF_3)_2CF(CF_2)_{j-}$, wherein j is from 0 to 8,
- (c) $R_F1[CF_2CF(CF_3)]_{k^-}$, wherein k is from 1 to 4, and R_F1 represents CF_{3^-} , $C_2F_{5^-}$ or $(CF_3)_2CF_-$,
- (d) $R_{F^2}(R_{F^3}) CFO(CF_2CF_2)_{1-}$, wherein 1 is from 1 to 6 and wherein each of R_{F^2} and R_{F^3} independently represents CF_{3-} , C_2F_{5-} , $n-C_3F_{7-}$ or $CF_3CF_2CF(CF_3)_{-}$, or R_{F^2} and R_{F^3} taken together represent $-(CF_2)_{4-}$ or $-(CF_2)_{5-}$, or
- (e) one of the structures (a) to (d) in which one or more of the fluorine atoms are replaced by one or more hydrogen or bromine atoms and/or at least two chlorine atoms in a proportion such that at least 50% of the atoms bonded to the carbon skeleton of R_F are fluorine atoms, and wherein R_F contains at least 4 fluorine atoms;

m is 0 or 1;

25 R² represents R¹, hydrogen or a group OR,
wherein R represents a saturated or unsaturated C₁-C₂₀
alkyl (preferably C₁-C₈ alkyl) or C₃-C₂₀ acyl
(preferably C₃-C₈ acyl); and when m is 1, R¹ and R² may
exchange their positions; and

each of X and Y independently represent:
 hydroxyl;

 $-0(CH_2CH_2O)_nR^3$,

wherein n is an integer from 1 to 5 and R^3 represents a hydrogen atom or C_1 - C_4 alkyl group; -OCH₂CH(OH)CH₂OH; -NR⁴R⁵ or N⁺R⁴R⁵R⁸,

wherein each of ${\ensuremath{\mathtt{R}}}^4$, ${\ensuremath{\mathtt{R}}}^5$ and ${\ensuremath{\mathtt{R}}}^8$ independently represents a hydrogen atom, a C1-C4 alkyl group, $-CH_2CH_2O(CH_2CH_2O)_SR^3$, wherein s represents an integer of from 1 to 5, or \mathbb{R}^4 and \mathbb{R}^5 when taken together represent $-(CH_2)_q$ where q is an integer of from 2 to 5, or with the nitrogen atom \mathbb{R}^4 and R⁵ form a morpholino group;

 $-O(CH_2)_pZ$ wherein Z represents a 2-aminoacetic acid group, $-\text{NR}^4\text{R}^{\bar{5}}$ or $-\text{NR}^4\text{R}^5\text{R}^8$ where R^8 is as defined for R^4 and R⁵ above, and p is an integer of from 1 to 5;

with the proviso that X and Y do not both represent hydroxyl or an ionized form derived from hydroxyl.

- It is to be appreciated that at least some of the compounds of general formulae Ia and Ib can exist in ionized or non-15 ionized form. The exact nature of the species present will of course depend on the environment and in particular the pH.
- For a better understanding of the invention, and to show how 20 it may be put into effect, preferred embodiments of the invention, in its first and other aspects, will now be described.
- Preferred compounds of general formulae Ia and Ib have, independently or (where compatible) together, one or more of 25 the following characteristics:
 - in general formula Ia, m=0;
 - in general formula Ia, m=1;
 - R² represents R¹;
- R¹ represents a group 30

35

 $R_F(CH_2)_a-(CH=CH)_b-(CH_2)_c-(CH=CH)_d-(CH_2)_e-A-;$

- preferably b+d=0.
- preferably -A- represents -0-, -C(0)0-, or
- $(CH_2)_n$ (wherein n=0);

- RF represents any of the previously defined structures (a) to (d), where one or more of the

fluorine atoms are replaced by one or more hydrogen or bromine atoms;

- R_F represents $F(CF_2)_i$ -, wherein i is from 2 to 12;
- כ
- preferably R_F represents $F(CF_2)_{i}$ -, wherein i is from 4 to 8;
- each of X and Y independently represents hydroxyl, morpholine, a group $OCH_2CH(OH)CH_2)OH$, or a group $O(CH_2CH_2O)_nR^3$, wherein n is 1 or 2 and R^3 represents methyl;
 - each of X and Y independently represents -0CH2CH2N+(CH3)3; and
- each of X and Y independently represents $-O(CH_2)_pZ$ where points an integer from 1 to 5, and preferably 2, and Z represents $-NR^4R^5$ or $NR^4R^5R^8$ where each of R^4 , R^5 and R^8 represents a methyl or an ethyl group; with the proviso that X and Y do not both represent

hydroxyl or an ionized form derived from hydroxyl.

Particularly preferred compounds in accordance with the invention are shown in Figure 1.

- Compounds in accordance with the first aspect may be prepared by any convenient method. Certain methods of preparing such compounds however will be preferred as a matter of practice.
- According to a second aspect of the present invention, there is provided a process for the preparation of a compound in accordance with the first aspect, the process comprising:
- (a) reacting a compound of general formula IIa, IIb, IIc, or IId, as shown in Figure 2, with a compound HX to effect mono-substitution, and in the case of IIa and IIb, working up the mono-chlorinated product to a mono-hydroxylated product, and optionally allowing the product to react with

the HY to effect di-substitution; or

- (b) when X and/or Y represents a group $-O(CH_2)_pZ$, wherein p is an integer from 1 to 5 and Z represents a group NR^4R^5 or $N^+R^4R^5R^8$, reacting a compound of general formula IIb or IIc, as shown in Figure 2, wherein L represents Z or a leaving group, and when L is Z with HX, and when L is a leaving group with HX, then with a compound HNR^4R^5 , $HN^+R^4R^5R^8$, or $NR^4R^5R^8$, to effect mono- or di-substitution and in the case of mono-substitution of a compound of general formula IIb or IIc working up the mono-chlorinated product to a mono-hydroxylated product;
- (c) optionally after step (a) or (b) converting a compound of general formula Ia or Ib so formed into another compound of general formula Ia or Ib.
- Compounds of general formulae IIb and IIc may be prepared from compounds of general formulae IIa and IId respectively, as shown in Figure 2, by reaction with a compound of the general formula HO(CH₂)_pL, wherein p is defined as for general formulae Ia an Ib and L represents Z, or a leaving group, for example a halogen atom such as bromine.
- Compounds of general formulae IIb and IIc may also be prepared from compounds of the formulae IVa and IVb respectively by reaction with a compound of the general formula Hal₂P(0)O(CH₂)_pL, where p is as defined for formulae Ia and Ib, L represents Z or a leaving group as before and Hal represents a halogen atom such as chlorine, which is either available in the art or may be synthesized by methods known to those skilled in the art.
- Compounds of general formulae IIa and IId can be prepared from compounds of general formulae IVa and IVb, respectively, as shown in Figure 2, by reaction with phosphorus oxychloride (POCl₃). Compounds of general

-10-

formulae IVa and IVb and the other reagents used are either available in the art or may be synthesized by methods known to those skilled in the art.

Compounds of general formulae IIa, IIb, IIc, and IId are valuable intermediates in the preparation of compounds of general formulae Ia and Ib. According to a third aspect of the present invention there is provided a compound of general formula IIa or IId; according to a fourth aspect there is provided a compound of general formula IIb or IIc.

The above and other synthetic routes are illustrated in Figures 3 to 5, the procedures of which may be generalized to make other compounds of the invention.

15

20

25

30

Compounds of the invention are useful in the preparation of fluorocarbon emulsions, which in turn are useful as oxygencarrying blood substitutes among other medical and diagnostic applications. Processes by which such emulsions can be prepared will be familiar to those skilled in the art and include the use of mechanical high pressure homogenizers such as a Gaulin homogenizer, a Microfluidizer (Microfluidics, Inc., Boston, Massachusetts) or even, if appropriate and economically feasible, ultrasonics. Particularly suitable preparative techniques are disclosed in EP-A-0231070 and EP-A-0307087 (both in the name of David M. Long, Jr.); compounds in accordance with the first aspect of this invention should be substituted for the surfactants disclosed in the above European patent applications (or in any other known and suitable formulation) in the same or suitably modified amounts.

According to a fifth aspect of the invention, there is provided an emulsion comprising an oily phase, an aqueous phase and a surfactant in accordance with the first aspect.

Various appropriate additives may also be present, for example those disclosed in EP-A-0231070 and EP-A-0307087.

Compounds of the invention are also useful in the preparation or modification of lipid membranes and liposomes or niosomes, which in turn are useful as drug, or drug carriers, (including in connection with oxygen carriers such as hemoglobin or modified hemoglobin or synthetic chelates), contrast agents, delivering and targeting systems, or in 10 cosmetics. Processes by which such lipid membranes, liposomes or niosomes can be prepared will be familiar to those skilled in the art and include the use of solvent techniques, injection, or the use of ultrasonics or of a mechanical high pressure homogenizer such as a Gaulin 15 homogenizer or a Microfluidizer". Thus, the present invention provides a stable, non-hemolytic liposomal formulation comprising any one of the compounds in accordance with the first aspect, possibly together with a therapeutic, cosmetic or diagnostic agent, such as a drug or oxygen.

20 The term "emulsion" is intended to include dispersions, liposomes, niosomes, vesicles, gels, micellar solutions, and microemulsions, or similarly structured phases, and containing polar or non-polar substances, including drugs, or an oil, which may be hydrocarbonated or not, and the emulsion may contain one or more other surfactants. 25

The non-polar substances or oils may be highly fluorinated or perfluorinated and present at a concentration of from 10 % to 70 % volume/volume. Thus the present invention contemplates a fluorocarbon as the oily phase, in which case such compositions are useful as blood substitutes and contrast enhancement agents. In such compositions, the highly fluorinated or perfluorinated compounds, with molecular weights_between about 400 and 700, may be chosen especially, but not exclusively, among at least one of the following: the bis(F-alkyl)-1,2-ethenes and more particularly the 35 bis(F-butyl)-1,2-ethenes, the F-isopropyl-1, F-hexyl-2ethenes and the bis(F-hexyl)-1,2-ethenes, the perfluorodecalins, the perfluoro-methyldecalins, the perfluoro-dimethyldecalins, the perfluoromono- and dimethyladamantanes, the perfluoro-trimethylbicyclo-

/3,3,1/nonanes and their homologues, ethers of formula (CF₃)CFO(CF₂CF₂)OCF(CF₃)₂, (CF₃)₂CFO(CF₂CF₂)₃OCF(CF₃)₂, (CF₃)₂CFO(CF₂CF₂)₂F, (CF₃)₂CFO(CF₂CF₂)₃F, $F[CF(CF_3)CF_2O]_2CHFCF_3$, $(C_6F_{13})_2O$, the amines $N(C_3F_7)^3$, 5 N(C4F9)3, the perfluoromethyl-quinolidines and perfluoroisoquinolidines, the halogen derivatives $C_6F_{13}Br$, CgF₁₇Br, C₆F₁₃CBr₂CH₂Br, 1-bromoheptadecafluoro-4isopropylcyclohexane or mixed hydrocarbon/fluorocarbon compounds with a lower molecular mass, $C_n^F_{2n+1}^C M_{2m+1}^N C_n^F_{2n+1}^C M_{2m+1}^C$ in which the hydrocarbon chain contains a double bond, wherein n is an 10 integer between 1 and 10 and m is an integer between 1 and 20. and analogues, it being understood that the compounds can be used separately or in the form of mixtures. Such compositions are more particularly used as gas carriers, and in particular for oxygen in living surroundings, for human and veterinary medical applications, -15 in particular as blood substitutes, means to treat cerebral and cardiac ischemia in preoperative hemodilution, for the preservation of organs, tissues, embryos, semen, medium usable in cardiovascular therapy and surgery, for example as a cardioplegic, reperfusion, or coronary angioplasty, 20 solution medium usable as adjuvant for radiotherapy or chemotherapy of cancer, or medium usable as medicinal vehicle, as contrast agents or diagnosis by X-rays, magnetic resonance or ultrasound radiography.

25

30

35

The compositions of the present invention may comprise 5-80% (vol/vol) of the oily phase, e.g., a non-polar compound, and 0.5-12% (vol/vol) of at least one surfactant of the first aspect, and the remainder being the solvent, e.g. water, and optionally, various additives, including inorganic salts, generally in the form of buffers, which allow adjustment of the pH and obtaining of an isotonic composition.

The surfactant comprises at least one of the fluorinated surfactants of the first aspect of the present invention, optionally in combination with conventional surfactant, the fluorinated surfactants of the invention representing, by volume, from 1% to 100% of the total volume of surfactants. The present invention is illustrated by means of the following Examples, which are not intended to be unduly 40

10

15

20

25

35

limiting, since the methods set forth therein are broadly applicable to the preparation of all of the compounds disclosed.

EXAMPLE 1: Synthesis of

[2-(F-hexyl)-ethyl] dimorpholinophosphoramidate 1

20.89 g of 2-(F-hexyl)-ethanol and 18 ml of triethylamine were allowed to react in dry ether at 0°C and under argon with 8.8g of phosphorous oxychloride to give [2-(F-hexyl) ethoxyl] phosphoryl dichloride.

A solution of 12.5g of morpholine and 18 ml of triethylamine in ether was then added dropwise to the cooled reaction mixture. After treatment, the oily clear residue was distilled (Eb = 150°C/0.03 mmHg), yielding 26.72g (80%)

of [2-(F-hexyl) ethyl] dimorpholinophosphoramidate 1. $F=25 \text{ °C } \pm 1 \text{ °C; C } \text{ found } \text{ (calculated)} \quad 33.40 \quad (32.99); \text{ H } 3.52 \\ (3.44); \text{ N } 4.93 \quad (4.81); \text{ F } 40.42(42.44); \text{ P } 5.36 \quad (5.83); \text{ MS} \\ \text{(LID/IC/NH}_3); \text{ m/e } (\$); \text{ M+1 } 583 \quad (100); \text{ IR } (\nu \text{ cm}^{-1}); \text{ 1250-1150} \\ \text{(P=0, C-F), 972 } \text{(P-N); NMR } \text{ }^{1}\text{H} \quad (\$\text{ppm, CDCl}_3); \text{ 2.56 } \text{(tt, 2H, } 3\text{J}_{\text{HH}}=5.3 \text{ Hz, } 3\text{J}_{\text{HF}}=18.5 \text{ Hz, R}_{\text{F}}\text{CH}_2), \text{ 3.17 } \text{(dt, 8H, }^{3}\text{J}_{\text{HH}}=5.3 \text{ Hz, } 3\text{J}_{\text{HH}}=5.3 \text{ Hz, CH}_2\text{OCH}_2), \\ \text{4.32 } \text{(dt, 2H, }^{3}\text{J}_{\text{HH}}=5.3 \text{ Hz, }^{3}\text{J}_{\text{PH}}=7.9 \text{ Hz, CH}_2\text{OP}); \text{ NMR }^{13}\text{C} \\ \text{($\$\text{ppm, CDCl}_3$): 31.9 } \text{(td, }^{1}\text{J}_{\text{CF}}=21 \text{ Hz, }^{3}\text{J}_{\text{CP}}=7 \text{ Hz, R}_{\text{F}}\text{CH}_2), \\ \text{44.5 } \text{(s, PNCH}_2), 57.1 } \text{(d, }^{2}\text{J}_{\text{PC}}=5 \text{ Hz, R}_{\text{F}}\text{CH}_2\text{CH}_2), 67.1 } \text{(d, }^{3}\text{J}_{\text{PC}}=8 \text{ Hz, CH}_2\text{OCH}_2); NMR }^{31}\text{P} \text{($\$\text{ppm, CDCl}_3$): 14.2; NMR }^{19}\text{F}\text{($\$\text{ppm, CDCl}_3$): -81.3 } \text{(CF}_3), -114.0 } \text{(CF}_3\text{CF}_2), -122.3 } \text{(2F), }^{-123.3} \text{ (2F), }^{-124.0} \text{ (2F), }^{-126.6} \text{ (CH}_2\text{CH}_2).}$

EXAMPLE 2: Synthesis of

[2-(F-octyl) ethyl] dimorpholinophosphoramidate 2

The experimental procedure described above when applied to 16.58g of 2-(F-octyl)-ethanol, 5.48g of phosphorus oxychloride and 7.84g of morpholine afforded after treatment, chromatography and/or recrystallization from hexane, 17.04g (70%) of 2 as white crystals.

F=60°C ± 1C; C 31.73 (31.67); H 2.96 (2.93); N 3.90 (4.10); F 47.21 (47.36); P 4.23 (4.54); MS (LID/IC/NH₃); m/e (%),

M + 1: 683 (100); IR (ν cm⁻¹): 1250 - 1150 (P=O, C-F), 970 (P-N); NMR ¹H (δ ppm, CDCl₃): 2.54 (tt, 2H, ³J_{HH}= 5.3 Hz, ³J_{HF}=18.5 Hz, R_FCH₂); 3.16 (dt, 8H, ³J_{HH}=5.3 Hz, ³J_{PH}=2.7 Hz, NCH₂); 3.66 (t, 8H, ³J_{HH}=5.3 Hz, CH₂OCH₂); 4.31 (dt, 2H, ³J_{HH}=5.3 Hz, ³J_{PH}=7.9 Hz, CH₂OP); NMR ¹³C (δ ppm, CDCl₃): 32.1 (td, ²J_{CF}=21.5 Hz, ³J_{CP}=7 Hz, R_FCH₂), 44.6 (s, NCH₂), 57.3 (m, ²J_{PC}=5 Hz, R_FCH₂CH₂), 67.1 (d, J_{CP}=5 Hz, CH₂OCH₂); NMR ³¹P (δ ppm, CDCl₃): 14.2; NMR ¹⁹F (δ ppm, CDCl₃): -81.3 (CF₃); -114.0 (CF₃CF₂); -122.4 (6F): -123.2 (2F); -124.0 (2F); -126.6 (CF₂CH₂).

EXAMPLE 3: Synthesis of

[11-(F-hexyl) undecyl) dimorpholinophosphoramidate 3

The previous method when applied to 3.26g of 11-(F-hexyl) undecanol, 1.02g of phosphorus oxychloride and 1.73g of morpholine, gave after chromatography 3.0g (65%) of the phosphoramidate 3.

F=20°C ± 1°C; C 42.56 (42.37); H 5.24 (5.36); N 3.66 (3.95); F 34.03 (34.89); P 4.43 (4.38); MS (LID/IC/NH₃); m/e (%); M+1 683 (100); IR $(\nu \text{ cm}^{-1})$ 2929, 2954 (C-H); 1240-1150 (P=O, 20 C-F); 972 (P-N); NMR 1 H (δ ppm, CDCl₃): 1.33 ("s", 18H, (CH₂)₉); 1.80 (m, 2H, R_FCH₂); 3.14 (dt, 8H, ³J_{HH}=5.3 Hz, $^{3}J_{PH}=2.7$ Hz, NCH₂); 3.64 (t, 8H, $^{3}J_{HH}=5.3$ Hz, CH₂OCH₂); 3.98 (dt, 2H, $^{3}J_{HH}=5.3$ Hz; $^{3}J_{PH}=7.9$ Hz, $CH_{2}OP$); NMR ^{13}C (δppm , CDCl₃): 20.0 (t, ${}^{3}J_{CF}=5$ Hz, $R_{F}CH_{2}CH_{2}$), 25.7, 29.1, 29.2, 25 29.3, 29.5, 30.6 (all s, 8CH₂), 30.8 (t, ${}^{2}J_{CF}=20$ Hz, $R_{F}CH_{2}$); 44.7(s, NCH₂), 65.5 (d, ${}^{2}J_{CP}=4.8$ Hz, CH₂OP), 67.2 (d, ${}^{3}J_{CP}=6$ Hz, CH_2OCH_2); NMR ^{31}P (δppm , $CDCl_3$): 13.9; NMR ^{19}F (δppm , CDCl₃): -81.3 (CF₃); -114.9 (CF₃CF₂), -122.3 (6F); -123.2 (2F); -124.0 (2F); -126.6 (CF_2CH_2) . 30

EXAMPLE 4: Synthesis of

[11-(F-otcyl) undecyl) dimorpholinophosphoramidate 4

As in Example 3, the reaction between 3.5g of 11-(F-ocyyl) undecanol-1, 0.91g of phosphorus oxychloride and 1.3g of morpholine, afforded, after treatment and chromatography 3.40g (71%) of the phosphoramidate 4.

F=65°C \pm 1°C; C 40.08 (40.10); H 4.83 (4.70); N 3.43 (3.46); F 38.50 (39.97); P 3.75 (3.84); IR (ν cm⁻¹): 2924, 2853 (C-H); 1258-1205 (P=O, C-F); 974 (P-N); NMR ¹H (δ ppm, CDCl₃): 1.32 (broad s, 18H, (CH₂)₉; 2.03 (m, 2H, R_FCH₂); 3.16 (dt, 8h, ³J_{HH}=5.3 Hz, ³J_{PH}=2.7 Hz, NCH₂); 3.66 (t, 8H, ³J_{HH}=5.3 Hz, CH₂OCH₂); 3.96 (dt, 2H, ³J_{HH}=5.3 Hz, ³J_{PH}=7.9 Hz, CH₂OP); NMR ¹³C (δ ppm, CDCl₃): 20.5 (t, ³J_{CF}=5 Hz, R_FCH₂CH₂), 26.0, 29.3, 30.0, 30.1, 30.2, 31.5 (all s, 8 CH₂), 31.7 (t, ²J_{CF}=20 Hz, R_FCH₂), 44.8 (s, NCH₂), 65.7 (d, ²J_{CP}=5 Hz, CH₂OP), 67.5 (d, ³J_{CP}=6 Hz, CH₂OCH₂); NMR ³¹P (δ ppm, CDCl₃): 13.9; NMR ¹⁹F (δ ppm, CDCl₃): -81.3 (CF₃); -114.9 (CF₃CF₂); -122.3 (6F); -123.2 (2F); -124.0 (2F); -126.6 (CF₂CH₂).

EXAMPLE 5: Synthesis of [2-(F-octyl) ethyl] [2'-N,N,N trimethylamino ethyl] phosphate 5

2-(F-octyl)-ethanol (21.30g) and triethylamine (14.5ml) were allowed to react in dry ether at 0°C and under argon first with phosphorus oxychloride (7.04g) then with 5.74g of bromoethanol and 10ml triethylamine to give 29.02g (94%) of [2-(F-octyl) ethoxy] [2'-bromoethyl] phosphoryl chloride.

28.86g of this compound, dissolved in acetonitrile, were hydrolyzed at 0-5°C into 27.65g (98%) of [2-(F-octyl) ethyl] [2'-bromoethyl] phosphate.

- A large excess of trimethylamine was bubbled through a 50/50 chloroform/acetonitrile solution of the latter compound. The mixture, heated at 40°C for 15 hours, was then allowed to react with silver carbonate (5.91g), leading after treatment to 18.71g (71%) of 5.
- F: decomposition 267°C; $C(+H_2O)$ 28.12 (27.82); H 3.01 (2.94); N 2.15 (2.16); F 48.29 (49.92); P 4.59 (4.79); MS (LID/IC/NH₃) M/e (%): M+1 630 (2.5); IR (ν cm⁻¹): 1250-1200 (P=0, C-F); NMR 1H (δ ppm, CH_3OD); 2.55 (tt, 2H, $^3J_{HH}$ =5.3 Hz, J^3_{HF} =18.5 Hz; R_FCH_2); 3.24 (s, 9H, NCH_3); 3.66 (m, 2H, $^2J_{CF}$ =20.5 Hz, $^3J_{PC}$ =7 Hz, R_FCH_2); 55.3 (3 lines due to J_{CN} =4 Hz, NCH_3); 59 (m, $^3J_{PC}$ =5 Hz, R_FCH_2 CH₂), 61 (d, $^2J_{CP}$ =5.4 Hz,

OCH₂CH₂N); 68.1 (m, 1 J_{CN}=4 Hz, 3 J_{PC}=7 Hz, CH₂N); NMR 31 P (6 Ppm, CD₃OD); 0.50; NMR 19 F (6 Ppm, CD₃OD); -80.7 (CF₃); -113.0 (CF₃CF₂); -121.3 (6F); 122.2 (2F); -123.1 (2F); -125.7 (CH₂CH₂).

5

10

15

20

EXAMPLE 6: Synthesis of [11-(F-octyl) undecyl] [2'-N,N,N trimethylamino ethyl] phosphate 6

The process of Example 5 applied first to 60.70g of 11-(F-otcyl)-undecanol, 36ml of triethylamine and 15.74g of phosphorus oxychloride, then to 12.86g of bromoethanol and 20ml of triethylamine yielded 78.42g (96%) of [11-(F-octyl) undecyl] 2'-bromoethyl) phosphoryl chloride. After hydrolysis into [11-(F-octyl) undecyl] [2'-bromoethyl] phosphate and reaction with trimethylamine, then with 17.70g of silver carbonate and successive recrystallizations from chloroform-methanol, 39.02g (50% global) of 6 were obtained. F decomposition > 250°C; C $(+H_2O)$ 37.14 (37.26; H 5.20) (4.78); N 2.07 (1.81); F 40.83 (41.78); P 4.20 (4.01); IR (cm $^{-1}$); 2924-2954 (C-H); 1236-1204 (P=O, C-F); NMR 1 H (δ ppm, CD3OD); 1.34 (broad s, 18H, (CH2)9); 2.03 (tt, 2H, RFCH2); 3.22 (s, 9H, NCH₃), 3.65 (m, 2H, CH₂Br); 3.85 (dt, 2H, $^{3}J_{PH}=6$ Hz, (CH₂)₉C $\underline{\text{H}}_{2}$ OP); 4.26 (m, 2H, $^{3}J_{PH}=4$ Hz, OC $\underline{\text{H}}_{2}$ CH₂; NMR 13 C (δ ppm, CD₃OD): 21.2 (J<2Hz, R_FCH₂CH₂), 26.9 30... 30.8 [(CH₂)₇], 31.8 (CH₂CH₂CH₂OP), 31.9 (t, 2 J_{CF}=22 Hz, CF_2CH_2), 54.6 (three lines due to $^1J_{CN}=4$ Hz, NCH_2), 60.15 $(d, ^2J_{CP} = 4.9 \text{ Hz}, (CH₂)_7CH₂O), 66.75 (d, <math>^2J_{CP} = 6.2 \text{ Hz},$ $OCH_2CH_2N)$, 67.4 (m, CH_2N); NMR ¹⁹F (δ ppm, CD_3OD): -80.9 (CF_3) ; -114.0 $(CF_3C\underline{F}_2)$; -121.5 (6F); -122.3 (2F); -123.1 (2F); -125.9 (CF₂CH₂); NMR 31 P (δ PPm, CD₃OD); 0.50.

30

35

25

EXAMPLE 7: Synthesis of [5-(F-hexyl) pentyl] [2'N,N,N trimethylamino ethyl] phosphate 7

5-F-hexyl) pentanol (3.1g) and triethylamine (1.3ml) were allowed to react in dry ether at 0°C and under argon with phosphorous oxycholoride (1.42g). After evaporation of the solvent and redissolution in dry chlorofrom, a solution of choline tosylate (3.0g) in pyridine (5.2ml) was added.

After hydrolysis and treatment, 3.2gm (73% of 7 were obtained.

C 33.71 (33.64); H 4.09 (4.06); N 2.44 (2.45); F 41.20 (43.23); P 5.50 (5.42); RMN 1 H (δ ppm, CD3OD, TMS): 1.32-1.80 (m, 6H, $R_{F}CH_{2}(CH_{2})_{3}$), 1.98-2.30 (m, 2H, $R_{F}CH_{2}-$), 3.26 (s, 9H, N(CH_{3})), 3.70 (m, 2H, $-CH_{2}$ N, 3.90 (dt, $^{3}J_{HH}=6.6Hz$, $^{3}J_{HP}=5.5Hz$, 2H, $R_{F}(CH_{2})_{4}CH_{2}OP$), 4.28 (m, 2H, $OCH_{2}CH_{2}N$); RMN 13C(δ ppm, CD3OD, TMS): 21.0 (t, $^{3}J_{CF}=4.7Hz$, $CF_{2}CH_{2}CH_{2}$); 26.5 (s, $R_{F}(CH_{2})_{2}CH_{2}$), 31.4 (d, $^{3}J_{CP}=7.2Hz$, $R_{F}(CH_{2})_{3}CH_{2}CH_{2}OP$), 31.6 (t, $^{2}J_{CF}=22.3Hz$, $R_{F}CH_{2}$), 54.6 (t, $^{1}J_{CN}=3.7Hz$, N(CH_{3})), 60.2 (d, $^{2}J_{CP}=4.9Hz$, $OCH_{2}CH_{2}N$) 66.4 (d, $^{2}J_{CP}=6.1Hz$, $R_{F}(CH_{2})_{4}CH_{2}OP$), 67.4 (m, $OCH_{2}CH_{2}N$); RMN 19F (ν ppm, CD3OD, CFCl3): -81.3 (3F, CF_{3}), -114.1 (2F, $CF_{2}CH_{2}$), -121.7 to 123.2 (6F, $CF_{3}CF_{2}(CF_{2})_{3}$), -126.2 (2F, $CF_{3}CF_{2}$); RMN 31p (δ ppm, CD3OD, H3PO4): 0.74(s).

EXAMPLE 8: Synthesis of [5-(F-octyl) pentyl] [2'N,N,N trimethylamino ethyl] phosphate 8

The process of Example 7 applied first to 10.1g of

5-(F-octyl) pentanol, 3.5ml of triethylamine and 3.85g of

phosphorus oxychloride, then to 8.25g of choline tosylate and 12ml of pryridine yielded after hydrolysis and treatment 9.4g (70%) of 8. C 32.20 (32.20); H 3.78 (3.45); N 2.06 (2.09); F 44.82 (48.40); P 4.80 (4.61); RMN ¹H $(\delta ppm, CD_3OD, TMS)$: 1.45-1.80 $(m, 6H, R_FCH_2(CH_2)_3); 2.05-2.37 (m, 2H, R_FCH_2-); 3.27 (s,$ 9H, $N(CH_3)_3$; 3.68 (m, 2H, $-CH_2N$); 3.94 (dt, $^3J_{HH}=6.0$ Hz, $^{3}J_{HP}=6.3$ Hz, $^{2}H_{1}$, $^{2}R_{F}(CH_{2})_{4}C_{1}^{H_{2}}OP)$; $^{4.28}(m, 2H, OC_{12}CH_{2}N)$; RMN 13 C (δppm, CD₃OD, TMS): 20.1 (t, 3 J_{CF}=3.8 Hz, CF₂CH₂CH₂); 26.4 (s, $R_F(CH_2)_2CH_2$); 31.4 (d, $^3J_{CP}=7.4$ Hz, 30 $R_F(CH_2)_3CH_2CH_2OP)$; 31.6 (t, $^2J_{CF}=22.1$ Hz, R_FCH_2); 54.6 (t, ${}^{1}J_{CN}=4.0 \text{ Hz}$, $N(\underline{C}H_{3})_{3}$); 60.2 (d, ${}^{2}J_{CP}=4.8 \text{ Hz}$, $O\underline{C}H_{2}CH_{2}N$); 66.4 (d, ${}^{2}J_{CP}=6.2$ Hz, $R_{F}(CH_{2})_{4}CH_{2}OP$); 67.5 (m, $OCH_{2}CH_{2}N$); RMN ¹⁹F (δ ppm, CD₃OD, CFCl₃): -81.0 (3F, C<u>F</u>₃); -113.9 (2F, CF_2CH_2); -121.4 to -123.0 (10F, $CF_3CF_2(CF_2)_3$); -125.9 (2F, CF_3CF_2); RMN ³¹P (δ ppm, CD_3OD , H_3PO_4): 1.18 (s).

10

25

30

EXAMPLE 9: Synthesis of [5-(F-octyl) pentyl] [2'-N, ethyl-N,N dimethylamino ethyl] phosphate 9

The process of Example 7 applied first to 5.2g of 5-(F-octyl) pentanol, 1.8ml of triethylamine and 1.96g of phosphorus oxychloride, then to 4.45g of N-ethyl-n,n-dimethyl-ethanolamine tosylate and 6.2ml of pyridine yielded after hydrolysis and treatment 4.7g (67%) of 9.

RMN 1 H (6 ppm, CD 3 OD, TMS): 1.40 (t, 3 J $_{HH}$ =7.2 Hz, 3H, NCH 2 C 1 H 3); 1.45-1.80 (m, 6H, R 2 CH 2 CH 2); 2.04-2.33 (m, 2H, R 2 C 1 H 2 CH 2); 3.16 (s, 6H, N(C 1 H 3); 3.52 (q, 3 J $_{HH}$ =7.2 Hz, 2H, NC 1 H 2 CH 3); 3.60 (m, 2H, -C 1 H 2 N); 3.90 (dt, 3 J $_{HH}$ =6.1 Hz, 3J $_{HP}$ =6.3 Hz, 2H, R $_{F}$ (CH $_{2}$)4C 1 H 2 OP); 4.22 (s large, 2H, OC 1 H 2 CH 2 N); RMN 13 C (6 ppm, CD 3 OD, TMS): 8.5 (s, NCH 2 CH 3); 21.1 (t, 3 J $_{CF}$ =4.6 Hz, CF 2 CH 2 CH 2 CH 2); 26.5 (s, R 2 CCH 2);

21.1 (t, ${}^{3}\text{J}_{\text{CF}}=4.6$ Hz, ${}^{2}\text{CF}_{2}\text{CH}_{2}$); 20.3 (s) ${}^{4}\text{F}_{1}$ (ch₂); 22.2 (d, ${}^{3}\text{J}_{\text{CP}}=7.4$ Hz, ${}^{2}\text{R}_{\text{F}}$ (CH₂); ${}^{2}\text{CH}_{2}$ CH₂OP); 31.7 (t, ${}^{2}\text{J}_{\text{CF}}=22.2$ Hz, ${}^{4}\text{R}_{\text{F}}$ CH₂); 51.6 (s large, ${}^{4}\text{N}_{\text{CH}_{3}}$); 60.1 (d, ${}^{2}\text{J}_{\text{CP}}=5.1$ Hz, ${}^{4}\text{C}_{\text{H}_{2}}$ CH₂N); 62.3 (s large, ${}^{4}\text{C}_{\text{H}_{2}}$ CH₃); 64.6 (m, ${}^{4}\text{C}_{\text{H}_{2}}$ CH₂N); 66.5 (d, ${}^{2}\text{J}_{\text{CP}}=5.6$ Hz, ${}^{4}\text{R}_{\text{F}}$ (CH₂); ${}^{4}\text{C}_{\text{H}_{2}}$ OP); RMN ${}^{19}\text{F}_{\text{F}}$ (\$ppm, CD₃OD, CFCl₃): -81.0 (3F, CF₃); -113.9 (2F, CF₂CH₂); -120.3 to -123.0 (10F, CF₃CF₂(CF₂)₃); -125.9 (2F, CF₃CF₂); RMN ${}^{3}\text{L}_{\text{P}}$ (\$ppm, CD₃OD, H₃PO₄): 1.04 (s).

EXAMPLE 10: Synthesis of 1.2-di[(11-F-hexyl) undecanoyl] .

3-[2'-(N,N,N-trimethylamino) ethyl phosphoryl] rac
glycerol 10

1) Synthesis of 1,2-Di[(11-F-hexyl) undecanoyl]
3-benzyl rac-glycerol

1-benzyl rac-glycerol (3.92g) and triethylamine were allowed to reach in Et₂O at 0°C under argon with 11-F-hexyl-undecanoyl chloride (24.56g). After chromatography and recrystallization, 23.89g (95%) of 1,2-di[(11-F-hexyl) undecanoyl] 3-benzyl rac-glycerol as a white solid were obtained.

C 46.00 (45.76), H 4.389 (4.51), F 42.97 (42.77);

35 IR (ν cm⁻¹, KBr): 1742 (C=O), 1240-11CO (CF), 735, 702 (monosubstituted benzene); NMR ¹H (δ ppm, CDCl₃, TMS): 1.20-2.60 (m, 40H, (CH₂)₁₀), 3.6 (d, ³J_{HH}=5.3 Hz, 2H, CH₂OBz),

15

20

25

4.13-4.55 (m, 2H, $COOC_{H_2}CH$), 4.66 (s, 2H, CH_2Ph), 5.20-5.50(m, 1H, CH), 7.46 (s, 5H, Ph); NMR 13 C (δ ppm, CDCl₃/CD₃OD, TMS): 20.21 (t, ${}^{3}J_{CF}=3.7$ Hz, $CF_{2}CH_{2}CH_{2}$), 24.96 and 25.03 (s, CH₂CH₂CO), 29.19, 29.30 and 29.43 (s, (CH₂)₆), 31.035 (t, ${}^{2}J_{CF}=22.3$ Hz, $CF_{2}CH_{2}$), 34.20 and 34.41 (s, $CH_{2}CO$), 62.79 and 68.46 (s, $CH_2CH_2CH_2$), 70.21 (s, CH_3), 73.45 (s, CH_2Ph), 127.71 and 128.51 (s, C ortho and meta), 127.86 (s C para), 137.89 (s, $CH_2-C(Ph)$, 173.13 and 173.41 (s, CO).

- 2) Synthesis of 1,2-di[(11-F-hexyl)-undecanoyl] racglycerol.
- 1.44g of 10% palladium on activated charcoal were added under argon to a solution of 1.2-di[(11-F-hexyl) undecanoyl] 3-benzyl rac-glycerol (20.62g) in THF. The stirred suspension was kept under hydrogen pressure (1.6 bar) until hydrogenolysis was complete. The catalyst was filtered off and the filtrate was either concentrated or used directly in the next step. The product was stored at 4°C. IR $(\nu \text{ cm}^{-1}, \text{ KBr})$; 3500 (OH), 1742 (C=O), 1232-1100 (CF); NMR 1 H(δ ppm, CDCl₃, TMS): 1.16-2.60 (m, 40H, (CH₂)₁₀), 3.76 (d, ${}^{3}J_{HH}=6$ Hz, 2H, $C_{\underline{H}_{2}}O_{H}$), 4.16-4.63 (m, 2H, $O_{CH_{2}}$), 5.13 (m, 1H CH).
- Synthesis of 1,2-di[(11-F-hexyl) undecanoyl] 3-[2'-(N,N,N-trimethylamino) ethyl] phosphoryl rac-glycerol, 10.
- A solution of 1,2-di[(11-F-hexyl) undecanoyl] racglycerol (2.59g) in THF was added to a cooled solution of (2-bromoethyl) dichlorophosphate (0.82g) and triethylamine (1.23g) in THF. The mixture was first stirred at room temperature, then refluxed gently. After cooling at 0°C, 4.5ml of water were added, and stirring was continued. The 30 mixture was decanted and the aqueous phase extracted with CHCl3. After evaporation, the crude residue (3.33g) was dissolved in CHCl3 and CH3CN to which 1.23g of trimethylamine was added. The mixture was heated for 24h at 50°C. After cooling, Ag₂CO₃ (0.56g) was added and stirring 35 was continued for 3 hours. Purification over silica gel and recrystallization afforded 1.08g (32%) of 10.

30

NMR ¹H (δppm, CDCl₃, TMS): 1.30 (bs, 24H, (CH₂)₆), 1.60 (m, 8H, CH_2 in β from CF_2 and CO); 1.90-2.27 (m, 4H, CF_2CH_2); 2.25-2.40 (m, 4H, CH_2CO), 3.33 (s, 9H, NCH_3), 3.63 m, 2H, CH_2N); 4.00 (dd, 2H, $^3J_{HH}=6.2$ Hz, $^3J_{HP}=6.7$ Hz, CHCH₂OP); 4.18 and 4.45 (part AB of an ABX system, $^2J_{AB}=12.3$ 5 Hz, ${}^{3}J_{AX}=7$ Hz, ${}^{3}J_{BX}=3.3$ Hz, ${}^{2}H_{2}$, ${}^{2}H_{2}$ CHCH₂OP); 4.27 (m, 2H, $OCH_2CH_2N)$, 5.25 (m, 1H, CH); NMR ¹³C (δ ppm, CDC1₃/CD₃OD, TMS): 20.56 (t, ${}^{3}J_{CF}=3.6$ Hz, $CF_{2}CH_{2}CH_{2}$), 25.30 and 25.36 (s, CH₂CH₂CO), 29.53, 29.69 and 29.81 (s, (CH₂)₆), 31.29(t, ${}^{2}J_{CF}=22.2$ Hz, $CF_{2}CH_{2}$), 34.50 and 34.65 (s, $CH_{2}CO$), 54.45 10 (three lines due to ${}^{1}J_{CN}=1.7$ Hz, NCH₃), 59.57 (d, ${}^{2}J_{CP}=4.9$ Hz, $POCH_2CH_2$), 63.16 (s, OCH_2CH), 64.11 (d, $^2J_{CP}=5.2$ Hz, $CHCH_2OP$), 6.95 (m, CH_2NH), 70.96 (d, $^3J_{CP}=8.2$ Hz, CH), 174.02 and 174.39 (s, CO); NMR 31 P (δ ppm, CDCl₃/CD₃OD, H_3PO_4): -0.68; NMR ¹⁹F (δppm , CDCl₃/CD₃OD, CFCl₃): -81.53 15 (CF_3) , -115.12 (CF_3CF_2) , -122.65, -123.66 and -124.16 $((CF_2)_3), -126.83 (CF_2CH_2).$

EXAMPLE 11: Synthesis of 1,2-di[(11-F-butyl) undecanoyl]
20 3-[2'-(N,N,N-trimethylamino) ethyl phosphoryl] rac-glycerol
11

The procedure described in Example 10 when applied to 1-benzyl rac-glycerol (5.3g), (11-F-butyl) undecanoyl chloride (50.3g) and triethylamine (19ml) afforded 22.1g (80%) of 1,2-di [(11-F-butyl) undecanoyl] 3-benzyl rac-glycerol. Hydrogenolysis, then reaction with (2-bromoethyl) dischlorophosphate (6.03g) and triethylamine (11.04g), followed by hydrolysis, and finally, reaction with trimethylamine (19g) led to 6.60g (30%) of 11.

C 44.36 (44.32), H 5.75 (5.64), F 32.66 (33.21), N 1.35 (1.36) P 3.14 (3.01); RMN ¹H (6ppm, CDCl₃/CD₃OD, TMS): 1.30

(bs, 24H (CH₂)₆), 1.60 (m, 8H, CH₂ in β from CF₂ and CO), 1.93-2.27 (m, 4H, CF₂CH₂), 2.30 and 2.45 (two t, 4H, CH₂CO), 3.25 (s, 9H, NCH₃), 3.6-3.7 (m, 2H, CH₂N), 4.0 (dd, 2H, ³J_{HH}=6.2 Hz, ³J_{HP}=6.7 Hz, CH₂CH₂OP), 4.18 and 4.45 (part AB of an ABX system, ²J_{AB}=12.3 Hz, ³J_{AX}=7 Hz, ³J_{BX}=3.3 Hz, 2H, CH₂CHCH₂OP), 4.3-4.33 (m, 2H, CH_2 CH₂N), 5.20 (m, 1H, CH);

NMR 13 C (δ ppm, CDCl₃/CD₃OD, TMS): 20.44 (t, 3 J_{CF}=3.6 Hz, CF₂CH₂CH₂), 25.2 (s, CH₂CH₂CO), 29.42, 29.57 and 29.70 ((CH₂)₆), 31.08 (t, 2 J_{CF}=22.3 Hz, CF₂CH₂), 34.35 and 34.51 (s, CH₂CO), 54.27 (three lines due to 1 J_{CN}=1.7 Hz, NCH₃), 59.53 (d, 2 J_{CP}=4.8 Hz, POCH₂), 63.03 (s, OCH₂CH), 64.02 (d, 2 J_{CP}=5 Hz, CHCH₂OP), 66.82 (m, CH₂N), 70.91 (d, 3 J_{CP}=8.1 Hz, CH), 173.89 and 174.24 (s, CO); NMR 31 P (δ ppm, CDCl₃/CD₃OD, H₃PO₄): -0.13 (s).

EXAMPLE 12: Synthesis of 1,2-di [(11-F-hexyl) pentanoyl]
3-[2'-(N,N,N-trimethylamino) ethyl phosphoryl] rac-glycerol
12

The procedure described in Example 10 when applied to 1-benzyl rac-glycerol (8.3g), (11-F-hexyl) pentanoyl chloride (42g) and triethylamine (13.5ml) afforded 38.5g of 15 1,2-di [(11-F-hexyl) pentanoyl] 3-benzyl rac-glycerol. Hydrogenogenolysis, then reaction with (2-bromoethyl) dichlorophosphate (10.73g) and triethylamine (19.73g), followed by hydrolysis, and finally, reaction with trimethylamine (31.6g) led to 10.5g (25%) of 12. 20 RMN ¹H (δ ppm, CDCl₃/CD₃OD, TMS): 1.73 (m, 8H, CH₂ in β from CF₂ and CO), 2.01-2.29 (m, 4H, CF₂C \underline{H}_2), 2.31 and 2.63 (two t, 4H, $C_{H_2}CO$), 3.30 (s, 9H, NCH₃), 3.6-3.7 (m, 2H, CH₂N), 4.0 (dd, 2H, $^{3}J_{HH}=6.2$ Hz, $^{3}J_{HP}=6.7$ Hz, $CH_{2}C\underline{H}_{2}OP$), 4.19 and 4.63 (part AB of an ABX system, $^2\mathrm{J}_{AB}=12.3$ Hz, $^3\mathrm{J}_{AX}=7$ Hz, 25 $^{3}J_{BX}=3.3$ Hz, 2H, $C\underline{H}_{2}CHCH_{2}OP$), 4.3-4.33 (m, 2H, $OC\underline{H}_{2}CH_{2}N$), 5.03 (m, 1H, CH); NMR 13 C (δ ppm, CDCl₃/CD₃OD, TMS):19.51 (t, $^3J_{CF}=3.6$ Hz, $CF_2CH_2CH_2$, 23.98 and 24.00 (s, CH_2CH_2CO), 30.78 (t, $^2J_{CF}=22.4$ Hz, CF_2CH_2), 33.32 and 33.49 (s, CH_2CO), 54.05 (three lines due to $^{1}J_{CN}=3.7$ Hz, NCH₃), 58.78 30 (d, $^{2}J_{CP}=4.8$ Hz, $PO\underline{CH}_{2}$), 62.73 (s, $O\underline{CH}_{2}CH$), 63038 (d, $^{2}J_{CP}=5$ Hz, $CHCH_2OP$), 66.41 (m, CH_2N), 70.43 (d, $^3J_{CP}=8.1$ Hz, CH), 172.56 and 174.89 (s, CO); NMR 31 P (δ PPm, CDCl₃/CD₃OD, H_3PO_4):0.57 (s), ^{19}F (δppm , CDCl₃, CD₃OD, CFCl₃): -81.5 (CF₃), -115.2 (CF₃-CF₂); -122.6, -123.6, 124.2 (CF₂)₃, 35

SUBSTITUTE SHEET

-128.63 (CF₃-CF₂).

15

20

25

EXAMPLE 13: Synthesis of 1,2-di [(11-F-butyl) undecyl]
3-[2'-(N,N,N-trimethylamino) ethyl phosphoryl] rac-glycerol,
13

1) Synthesis of 1,2-di [(11-F-butyl) undecyl] benzyl3 rac-glycerol.

6g of (11-F-butyl) undecyl tosylate in ether were allowed to react with 1g of benzyl=1 rac-glycerol under phase transfer conditions (KOH, 10N/6g of $(nBu)_4N^+$ HSO_4^-). 3.2g (63%) of the title compound were obtained after 10 days of reaction and chromatography of the organic phase. NMR ^{1}H (δ ppm, CCl₄): 1.02-2.41 (m, 40H, (CH₂)₁₀); 3.40

NMR 1 H (δ ppm, CCl₄): 1.02-2.41 (m, 40H, (CH₂)₁₀); 3.40 (m, 9H, OCH₂ and CH); 4.47 (s, 2H, CH₂Ph); 7.26 (s, 5H, Ph).

2) Synthesis of 1,2-di [(11-F-butyl) undecyl] 3-[2'-(N,N,N-trimethylamino) ethyl phosphoryl] rac-glycerol, 13.

The process described in Example 10 when applied to 6.7g of 1,2-di [(11-F-butyl) undecyl]benzyl-3 rac-glycerol led, after hydrogenolysis, reaction with 1.9g of (2'-bromoethyl) dichlorophosphate and 2ml of triethylamine, then hydrolysis and finally reaction with trimethylamine (7g), to 4g (56%) of 13.

NMR 1 H (6 ppm, CDCl 3 /CD 3 OD): 1.05-1.65 (m, 36H, (CH 2)9); 1.80-2.1 (m, 4H, CF 2 CH 2); 3.17 (s, 9H, NCH 3); 3.35 (t, 2H, 3 JHH=6.5 Hz, CH 2 N); 3.40-3.63 (m, 8H, OCH 2); 3.79 (t, 2H, 3 JHH=6.5 Hz); 4.10-4.30 (m, 1H, CH); NMR 13 C (6 ppm, CDCl 3 /CD 3 OD): 20.3 (t, 3 JFC=3.5 Hz, CF 2 CH 2 CH 2); 26.3 to 30.3 (nine singles for the two (CH 2)8 chains); 31.0 (t, 2 JFC=22 Hz, CF 2 CH 2 ; 54.5 (s, NCH 3); 59.4 (d, 2 JPC=5 Hz, CH 2 OP); 65.34 (d, 2 JPC=5 Hz, POCH 2 CH); 66.65 (d, 3 JPC=6.5 Hz, CH 2 N); 70.83, 72.01 (s, CH 2 CH 2 O); 70.9 (s, CH 2 OCH 2 CH); 78.3

(d, $^{3}J_{PC}=8$ Hz, CH); NMR ^{31}P (^{6}PPm , CDCl₃/CD₃OD): -0.07; NMR ^{19}F (^{6}PPm , CDCl₃/CD₃OD): -81 (CF₃), -114.0 (CF₃CF₂); -124.4 (CF₂); -126.0 (CF₂CH₂).

35

30

EXAMPLE 14: Synthesis of [1',2'-di [(11-F-hexyl) undecanoyl] rac-glyceryl] [di (2'-methoxy-ethyl)] phosphate 14

1,2-di [(11-F-hexyl) undecanoyl] 3-benzyl rac-glycerol (1.99g) in either was added dropwise at 0°C to a solution of phosphorus oxychloride (0.31g) and triethylamine (0.66g) in After stirring at room temperature, 2-methoxy1ether. ethanol (0.35g) in ether was added and the mixture was refluxed. Triethylammonium chloride was filtered off, the solvent removed and 15ml of a mixture of acetonitrile and 10 acetone was added. The soluble fraction was concentrated and purified over silica gel yielding 1g (42%) of 14. IR (ν cm⁻¹, KBr); 1744 (C=0), 1240-1100 (CF), NMR ¹H (δ ppm, CDCl₃, TMS): 1.10-1.86 (broad s, 32H, (CH₂)₈); 1.87-2.06 (m, 4H, CF₂CH₂); 2.20-2.53 (m, 4H, CH₂CO); 3.46 (s, 6H, 15 OCH₃); 3.66 (m, 4H, CH₂OMe); 4.10-4.66 (m, 8H, OCH₂); 5.16-5.50 (m, 1H, CH).

EXAMPLE 15: Synthesis of

[2-(F-octyl) ethyl] [di-(2'-methoxyethyl)] phosphate 15

The procedure described for the preparation of 145,
when applied to 30.8g of 2-F-octylethanol, 18ml of pyridine,
10.2g of phosphorus oxychloride and to 11.2g of 2methoxyethanol led to 26.5 (60%) of 15.

IR (ν cm $^{-1}$): 1242 (P=O); 1207-1140 (CF); 979 (P-O), NMR 1 H (δ Ppm, CDCl₃, TMS): 2.61 (m, 2H, CF₂CH₂); 3.43 (s, 6H, OCH₃); 3.66 (m, 4H, CH₃OCH₂); 4.32 (m, 6H, CH₂OP).

EXAMPLE 16: Synthesis of

[5-(F-hexyl) pentyl][diglycerol] phosphate 16
5-(F-hexyl) pentanol (5.0g) and triethylamine (2.2ml)
were allowed to react in dry ether at 0°C and under argon
first with phosphorus oxychloride (2.4g) then with 10g of
isopropyliden glycerol and 8.2ml triethylamine to give 5.3g

(60%) of [5-(F-hexyl) pentyl][diisopropyliden glycerol]
phosphate.

After hydrolysis in CF3CO2H/H2O 9/1 and treatment, 4.0g

and the second s

25

(85%) of 16 were obtained.

SURFACE ACTIVITY

The strong surface activity of the compounds encompassed by this invention is illustrated in particular by the strong lowering of the surface tensions (γ_s) they cause when added to water, as shown by the examples of surface tensions (measured at 20°C and expressed in milliNewton.meter⁻¹) and calculated spreading coefficients collected in the table below:

	Compound	Concent In Wate mmol/l	tration er g/l	γs (mNm ⁻¹) (+0.3)	γi(mNm ⁻¹) (+0.3)	Spreading Coef.(mNm)
15	5	1.59	1	23.0	4.5	- 4.6
	6	1.32	1	30.0	9.4	-16.5
	2	1.47	1	22.5	1.0	- 0.6
	1	1.72	1	22.5	2.0	- 1.6
	4	0.124	0.1	22.5	1.4	- 1.0
20	3	0.141	0.1	24.4	7.5	- 0.9

More specifically, the action of these compounds at the interface between water and fluorocarbons is demonstrated by the very sharp diminution of the interfacial tension (γ_i) between water and perfluorodecalin ($56~\text{mNm}^{-1}$ in the absence of surfactant) and the increase of the spreading coefficient ($-56~\text{mNm}^{-1}$ in the absence of surfactant) as illustrated by the examples collected in the same table.

30 BIOCOMPATIBILITY

The biocompatibility of compounds belonging to the present invention is illustrated, in particular, by the fact that aqueous solutions or dispersions in 9% of NaCl of these compounds do not perturb the growth and multiplication of lymphoblastoid cell cultures of the Namalva strain with respect to a control of a NaCl 9% solution (100% of growth and viability).

40

35

SUBSTITUTE SHEET

-25-

Examples	are	given	in	the	following	table
----------	-----	-------	----	-----	-----------	-------

Compound	Concentr mmol/l	ration g/l	Cell Growth %	Culture Viability %		
5 2 10 11 13	15.9 1.47 0.81 0.97 0.99	10 1 1 1	96 67 99 60 55	102 106 95 83 91		
			-	7 A		
	11	5 15.9 2 1.47 10 0.81 11 0.97	mmol/l g/l 5 15.9 10 2 1.47 1 10 0.81 1 11 0.97 1	mmol/l g/l Growth % 5 15.9 10 96 2 1.47 1 67 10 0.81 1 99 11 0.97 1 60		

Likewise the biocompatibility of compounds belonging to the invention is illustrated by the fact that aqueous solutions or dispersions in 9% of NaCl of these compounds at the concentrations given in the following table do not cause the hemolysis of human red blood cells.

	Compound	Concentration mmol/l g/l		
20	8 1 5	0.94	1 10	
	10 11	15.9 24.4 97.2	10 30 100	
25	12 13 14	56.2 59.9 14.60	100 60 10	

In the same way, the biocompatibility of such compounds is illustrated by the fact that the injection of 500μ l of a solution or a dispersion in NaCl 9% of hereafter compounds in concentration given below, into the tail vein of 10 mice of 20-25g caused no deaths, and did not perturb the normal growth of the animals, which was observed for 35 days.

	Compound	Concentration g/l
4 4	5	1
40	6	1
	10	30
	11	190
	12	100
	13	60
45	14	10

25

PREPARATION OF LIPOSOMES

- 1) Lipid 12 dissolved in chloroform was placed in a round bottom flask and the solvent evaporated by rotation under argon to produce a uniform film of dry lipid. Residual traces of chloroform were removed under vacuum (10-3mmHg, 3h). Dried lipid is suspended in HEPES buffer (10-2M, pH 7), vortexed for 5 mn., then probe sonicated (dial 7 on a Branson B30* sonifier, Power 4, Pulse 50, 3 mn.) 15°C above phase transition temperature, to produce a clear bluish dispersion. Final concentration of 12 is 3% (w/v). Average size measurements were realized by light scattering on a Coulter Model N4SD*, sub-Micron Particle Analyzer: 0,12µm.
- 2) Same dispersion procedure applied to powder lipid 15 12 produced a clear dispersion with an average particle size $0,12\mu m$.

Liposomes were observed by electronic microscopy after freeze-etching as unilamellar and multilamellar vesicles. The appearance of liposomes showed no differences or structural distortions after sterilization (8 mn.-121°C - 15 lb/sq.in.). Sterilized dispersions stored at 25°C showed enhanced stability as time for appearance of a precipitate monitored by visual inspection was higher than 5 months, while hydrocarbonated phosphatidylcholine dispersion's stability is known to be lower than one month.

PREPARATION OF EMULSIONS

SURFA	CTANT	EFFE	CT	TABLE I	•			
Сопро	und I	EYPb	F-decalin	· ·				
1		- / /	 > + 0			\		
Number		8 (W/	v) (w/v)	Preparation	at bull			
5 Ref.		0	 	0.48	0.55	14		
				can be prepared				
5 6 Ref.		0 0 3	 50 	0.20	0.30 0.36 0.55	50 44 72		
	Compo Number 5 Ref.	Compound 1 Number 8 5 1 Ref. 0 5 3 6 3	Compound EYPb Number % % (w/)	Number % % (w/v) % (Average Part Compound EYPb F-decalin	Average Particle Size (μm) Compound EYPb F-decalin		

^{*}TRADE MARK

- a) Emulsions prepared by sonication.
- b) EYP: natural egg yolk phospholipids.

TABLE II

10	Compo	1	EYP ^b	F-decalin	After	icle Size (µm) After 6 months a at 4°at 25°at50°	Relative Increase at 4°C
15	_	2.5		100	1	0.22 0.41 0.98	10

a) Emulsions prepared by microfluidization.

20

25

35

TABLE III

Compou Number		EYP	F-decalin	Average Particle After Preparationa	e Size (µm) After l nonth	Relative Increase
3 4 5 6 Ref. 11 Ref.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 3 1.33 2	20	0.26 0.26 0.15 0.17 0.17 0.15 0.37	0.39b 0.39b 0.29b 0.36b 0.44b 0.50c 0.62c	50 50 100 110 200 35 80

- a) Emulsions prepared by sonication.
- b) The emulsions are stored at 25°C.
- c) The emulsions are stored at 50°C.

-28-

TABLE IV

5		
		1
	Compound	1

10

20

25

30

35

Compo <u>Number</u>		EYP (w/v)	F-decalin	Average Par After Preparation	lAfter 3	lAfter 8	Increase
5 Ref.	0.66		100	0.6	l l.l broken	1	125

a) All the emulsions are prepared by microfluidization and stored at 50°C.

The new perfluoroalkylated surfactants were solubilized or dispersed into water. Then the fluorocarbon was added under agitation. Any emulsification method like sonication can be used but mechanical procedures such as microfluidization or high pressure homogenization are preferred. The emulsion obtained can be used as an O₂ carrier. The significant stabilization effect which can be obtained by incorporating the new F-alkyl surfactants is illustrated for various emulsion formulations (see Tables above). The results show that both the average particle sizes, measured immediately after preparation, and stability (evaluated by the relative increase of the average particle sizes, for 1 to 6 months storage at 4, 25 and 50°C) are always higher for the reference emulsions prepared with the same amount of natural EYP than for the F-alkyl-based one.

Additional stable perfluorodecalin (50 % w/v) emulsions based on the perfluoroalkylated phosphatidyl cholines 11 or 12 (2 or 3 % w/v) as the sole surfactant have been prepared by sonication. It is noteworthy that the increase in average particle size was found to be smaller for the emulsions based on the F-alkylated surfactants (10 % of increase), than for the reference emulsions.

40

These experiments led to several important observations: simply the fact that it is possible to prepare 50 % w/v F-decalin emulsions with F-alkylated amphiphiles as the sole surfactants, and that these emulsions are stable is, by itself, remarkable (see Table I). It is also remarkable that it proved possible to prepare such 50 % F-decalin emulsions, which remain stable at 50° C for at least one month, with only 1 % of 5. In comparison, when the same formulation is used, but with EYP instead of 5, phase separation is observed immediately (see Table I).

Another striking observation concerns the fact that at 4°C there is no detectable change in particle size in the fluorinated surfactant 5 and 6-containing highly concentrated (100 % w/v) F-decalin emulsion over a 6-month period of time (see Table II).

30

10

15

35

WO 90/15807

PCT/EP90/00991

- 30 -

WHAT IS CLAIMED IS:

1. A compound of the general formula:

Wherein:

R, represents:

 $R_{F}(CH_{2})_{a}-(CH=CH)_{b}-(CH_{2})_{c}-(CH=CH)_{d}-(CH_{2})_{e}-A-;$

 $R_{F}(CH_{2})_{f}-OCH_{2}CH(CH_{2}OH)CH_{2}-A-;$

 $R_F(CH_2)_g$ -OCH₂CH(CH₂OH)-A-;__

wherein -A- represents -O-, -C(O)O-, -R⁶(R⁷)N⁷-, (wherein each of R⁶ and R⁷ represents C_1 - C_4 alkyl or hydroxyethyl), -(CH₂)n-, wherein n=0 or 1, or -C(O)N(R⁹)-(CH₂)_q-B, wherein q is an integer from 0 to 12, B represents -O- or -C(O)-, and R⁹ is hydrogen or R⁶,

and wherein the sum of a+c+e is from 0 to 11, the sum b+d is from 0 to 12 and each of f and g is from 1 to 12;

 $R_{F} - (CH_{2} - CH_{2} - O)_{h} - ;$

 $R_{F} - (CH(CH_{3})CH_{2}O)_{h} - ;$

 $R_{F}(-CH_{2}-CH_{2}-S)_{h}-$

wherein h is from 1 to 12; and

wherein R_F represents a fluorine-containing moiety having one of the following structures:

- (a) $F(CF_2)$, wherein i is from 2 to 12,
- (b) $(CF_3)_2CF(CF_2)_i$, wherein j is from 0 to 8, ...
- (c) $R_F 1(CF_2CF(CF_3))_{k}$, wherein k is from 1 to 4, and $R_F 1$ represents CF_3 , C_2F_5 or $(CF_3)_2CF$,
- (d) R_F2(R_F3)CFO(CF₂CF₂)₁-, wherein 1 is from 1 to 6 and wherein each of R_F2 and R_F3 independently represents CF₃-, C₂F₅-, n-C₃F₇- or CF₃CF₂CF(CF₃)- or R_F2 and R_F3 taken together represent -(CF₂)₄- or -(CF₂)₅-, provided that in compounds of the general formula Ia, when m=0, R¹ is R_F(CH₂)_a-(CH=CH)_b-(CH₂)_c-(CH=CH)_d-(CH₂)_e-A-, wherein -A- is -(CH₂)_n- and n=0, each of R_F2 and R_F3 represents CF₃-, and 1 is 1, then the sum of b+d must be 1 or more; or

(e) one of the structures (a) to (d) in which one or more of the fluorine atoms are replaced by one or more hydrogen or bromine atoms and/or at least two chlorine atoms in a proportion such that at least 50% of the atoms bonded to the carbon skeleton of R_F are fluorine atoms, and wherein R_F contains at least 4 fluorine atoms,

m is 0 or 1;

R₂ represents R₁, hydrogen or a group OR,

wherein R represents a saturated or unsaturated C_1 - C_{20} alkyl or C_{20} acyl; and

4

when m is 1, R_1 and R_2 may exchange their positions; and each of X and Y independently represent:

hydroxyl;

-OCH₂CH(OH)CH₂OH;

 $-O(CH_2CH_2O)_nR^3$,

wherein n is an integer from 1 to 5; and

 R^3 represents a hydrogen atom or C_1 - C_4 alkyl group;

 $-NR^4R^5$ or $N^4R^4R^5R^8$,

wherein each of R^4 , R^5 , and R^8 independently represents a hydrogen atom; a C_1 - C_4 alkyl group; - $CH_2CH_2O(CH_2CH_2O)_sR^3$ wherein s represents an integer of from 1 to 5, or R^4 and R^5 when taken together represent - $(CH_2)_q$ wherein q is an integer of from 2 to 5, or when with the nitrogen atom R^4 and R^5 form a morpholino group;

-O(CH₂)_pZ wherein Z represents a 2-aminoacetic acid group, -N R⁴ R⁵ or -N⁺ R⁴ R⁵ R⁸ where R⁸ is as defined for R⁴ and R⁵ above, and p is an integer of from 1 to 5;

with the proviso that X and Y do not both represent hydroxyl; further provided for compounds of the general formula Ia, that when m=0 or 1, R^2 is H, and R^1 is $R_F(CH_2)_a$ -($CH=CH)_b$ -(CH_2)_c-($CH=CH)_d$ -A-, in which A is CH_2 or O; or when m=0 and R^1 is $R_F(CH_2-CH_2-O)_h$, one of X and Y is not $CH_2CH(OH)CH_2OH$ when the other is OH or an ionized form derived from OH.

-32-

- 2. The compound of Claim 1, wherein R_F is $\text{F}(\text{CF}_2)_{\dot{1}}$ and 5 m is 0.
 - 3. The compound of Claim 1, wherein R_F is $F(CF_2)_{\mbox{\sc i}}$ and m is 1.
 - 4. The compound of Claim 3, wherein \mathbb{R}^2 is the same as \mathbb{R}^1 .
- 10 The compound of any one of Claims 1 to 4, wherein R^1 is $R_F(CH_2)_a-(CH=CH)_b-(CH_2)_c-(CH=CH)_d-(CH_2)_e-A-$.
 - 6. The compound of Claim 5, wherein b+d=0.
 - 7. The compound of Claim 5, wherein A represents -0-, $-C(0)^{\circ}0-$, or $-(CH_2)_n-$, wherein n=0 or 1.
- 15 8. The compound of any one of Claims 1 to 4, wherein R_F is $F(CF_2)_i$ -, and wherein i is from 2 to 12.
 - 9. The compound of Claim 8, wherein i is from 4 to 8.
 - each of X and Y independently represents hydroxyl, morpholino, or a group $-O(CH_2CH_2O)_nR^3$, wherein n is 1 or 2 and R^3 represents a methyl group, with the proviso that X and Y do not both represent hydroxyl or an ionized form derived from hydroxyl.
- 11. The compound of any one of Claims 1 to 4, wherein each of X and Y independently represents $-OCH_2CH_2N^+(CH_3)_3$.
 - 12. A method for the preparation of a compound having the structure set forth in Claim 1, comprising the steps of:
 - (a) reacting a compound of general formula

$$R^{1}$$
- CH_{2} R^{1} - CH_{2} O $(R^{2}$ - $CH)_{m}$ O ; or CH - O - P - Cl_{2} R^{2} - CH_{2} (IIa)

with a compound HX to effect mono-substitution of one of the Cl atoms, and converting the mono-chlorinated product to a mono-hydroxylated product,

wherein X represents:

30

35

hydroxyl;

-OCH2CH(OH)CH2OH;

 $-0(CH_2CH_2O)_nR^3$,

wherein n is an integer from 1 to 5, and \mathbb{R}^3 represents a hydrogen atom or \mathbb{C}_1 - \mathbb{C}_4 alkylgroup;

 $-NR^4R^5$ or $N^+R^4R^5R8$,

wherein each of \mathbb{R}^4 , \mathbb{R}^5 and \mathbb{R}^8 independently represent a hydrogen atom, a C_1 - C_4 alkyl group,

 $-CH_2CH_2O(CH_2CH_2O)_SR^3$, wherein s represents an integer of from 1 to 5, or R^4 and R^5 when taken together represent $-(CH_2)_q$ where q is an integer of from 2 to 5, or with the nitrogen atom R^4 and R^5 form a morpholino group;

 $-0(CH_2)_pZ$

30

wherein Z represents either a leaving group, a 2-aminoacetic acid group, $-NR^4R^5$ or $-N^+R^4R^5R^8$ wherein R^8 is as defined for R^4 and R^5 above, and p is an integer of from 1 to 5.

13. The method of Claim 12, further comprising the step of allowing the product to react with HY to effect disubstitution, wherein Y independently represents the groups as defined for X above,

with the proviso that X and Y do not both represent hydroxyl.

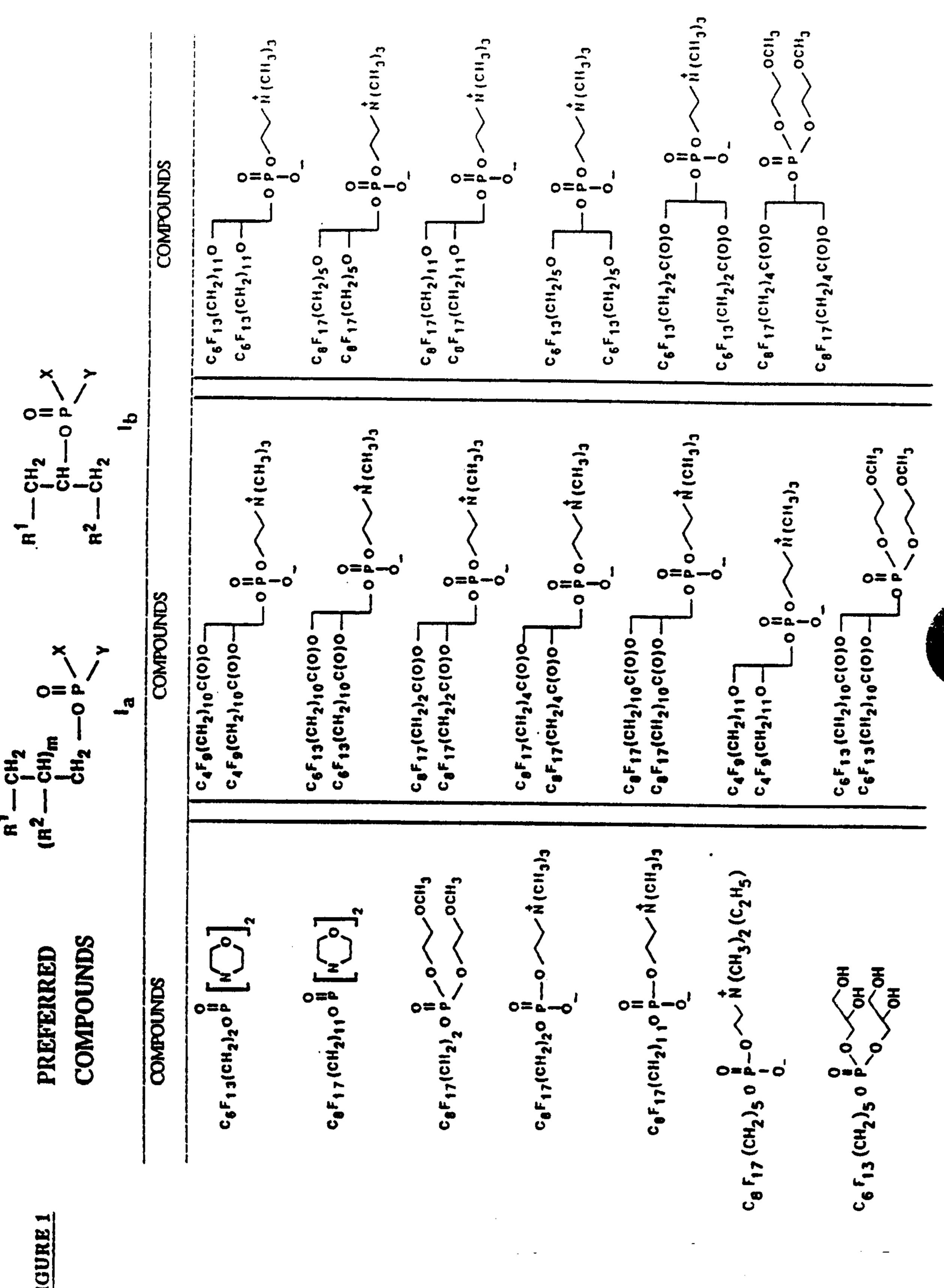
- 14. The method of Claim 12 or 13 wherein X and/or Y represents a group $-O(CH_2)_pZ$, wherein p is an integer from 1 to 5 and Z represents a leaving group, L, comprising the additional step of reacting said mono- or di-substituted product with a compound HNR^4R^5 or $NR^4R^5R^8$.
- 15. The method of Claim 12 or 13, comprising the additional step of replacing said X or Y group of the product with a different X or Y group.
- 16. A stable, non-hemolytic liposomal formulation comprising any one of the compounds of Claims 1 to 4
 - 17. A liposomal formulation comprising a compound of any one of Claims 1 to 4, together with a therapeutic,

WO 90/15807 PCT/EP90/00991

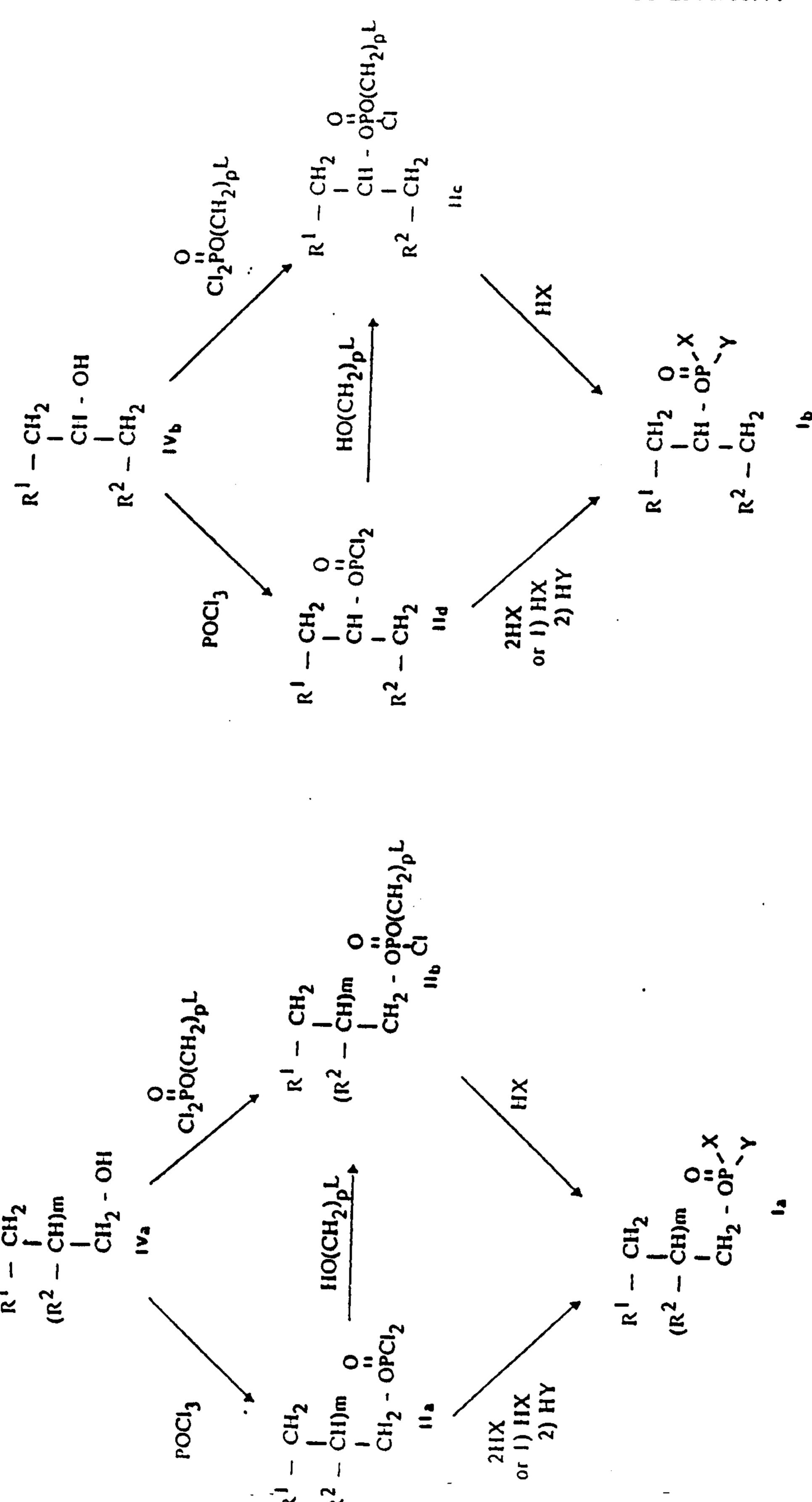
-34 -

cosmetic, or diagnostic agent.

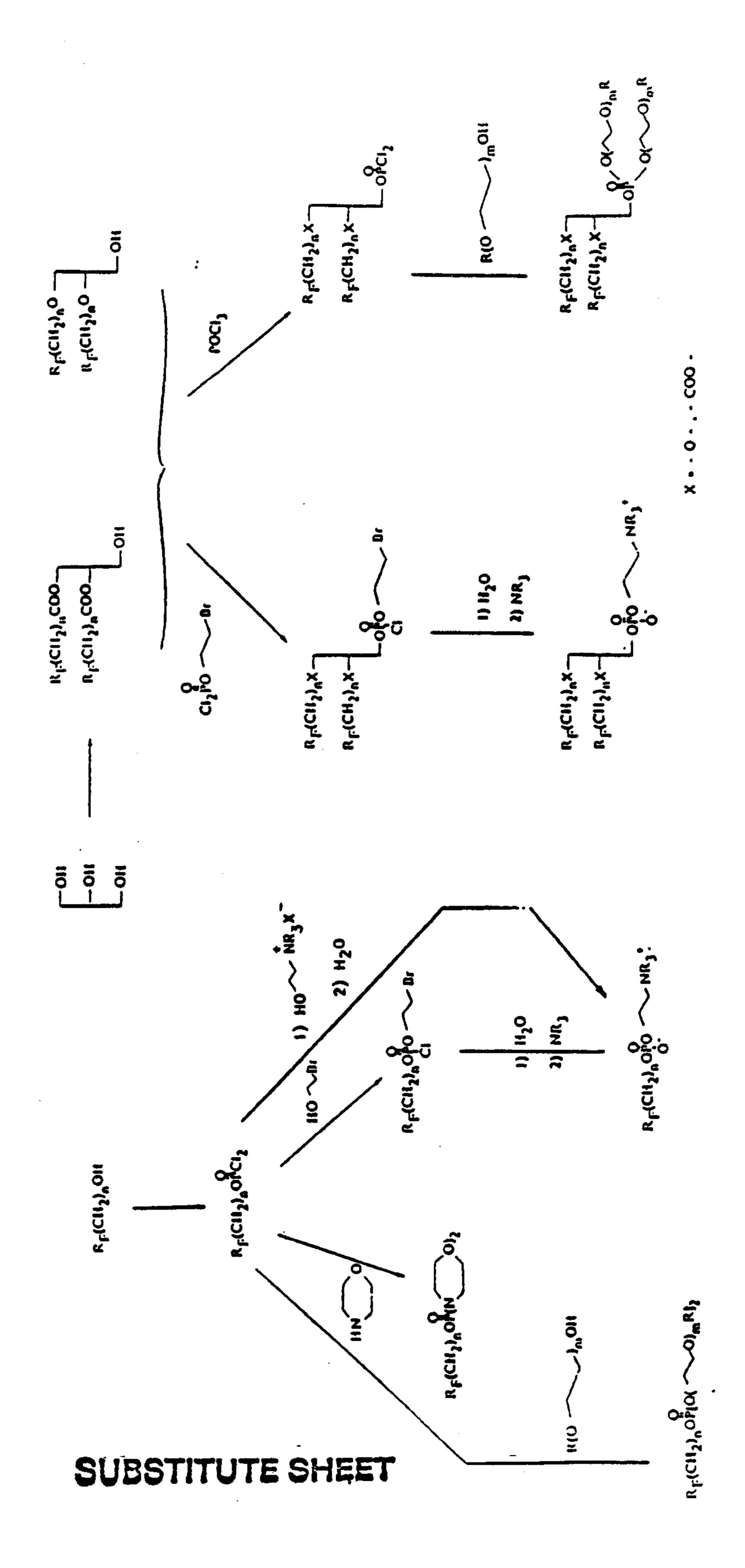
- 18. The formulation of Claim 16, wherein said agent is a drug or oxygen.
 - 19. An emulsion comprising an oily phase, an aqueous phase and a surfactant, wherein said surfactant is a compound according to any one of Claims 1 to 4.
- 20. The emulsion of Claim 19, wherein the oily phase comprises a fluorocarbon.
- 21. The emulsion of Claim 20, wherein the fluorocarbon is highly fluorinated or perfluorinated, and is present in said emulsion at a concentration of from 10% to 70% volume/volume.
- 22. The emulsion of Claim 21, wherein the highly fluorinated or perfluorinated compound has a molecular mass of from 400 to 700 and is a bis(F-alkyl)-1,2-ethene, 15 perfluorodecalin, perfluoro-methyldecalin, perfluorodimethyldecalin, perfluoromono- or dimethyladamantane, perfluoro-trimethylbicyclo-/3,3,1/nonane or homologue thereof, an ether having the formula $(CF_3)CFO(CF_2CF_2)OCF(CF_3)_2$, $(CF_3)_2CFO(CF_2CF_2)_3OCF(CF_3)_2$, 20 (CF₃)₂CFO(CF₂CF₂)₂F, (CF₃)₂CFO(CF₂CF₂)₃F, F(CF(CF₃)CF₂O)₂ CHFCF₃, or $(C_6F_{13})_2O$, an amine which is $N(C_3F_7)_3$, $N(C_4F_9)_3$, a perfluoromethyl-quinolidine or perfluoroisoquinolidine, or a halogen derivative C₆F₁₃Br, C₈F₁₇Br, C₆F₁₃CBr₂CH₂Br, 1-bromoheptadecafluoro-4-isopropylcyclohexane or mixed 25 hydrocarbon/fluorocarbon compounds with a lower molecular mass, $C_nF_{2n+1}C_mN_{2m+1}$, $C_nF_{2n+1}C_mH_{2m-1}$, in which the hydrocarbon chain contains a double bond, wherein n is an integer between 1 and 10 and m is an integer between 1 and 20 or analogues or mixtures thereof. 30
 - 23. The emulsion of Claim 22, wherein said bis(F-alkyl)-1,2-ethene is a bis(F-butyl)-1,2-ethene, an F-isopropyl-1, an F-hexyl-2-ethene or a bis(F-hexyl)-1,2-ethene.

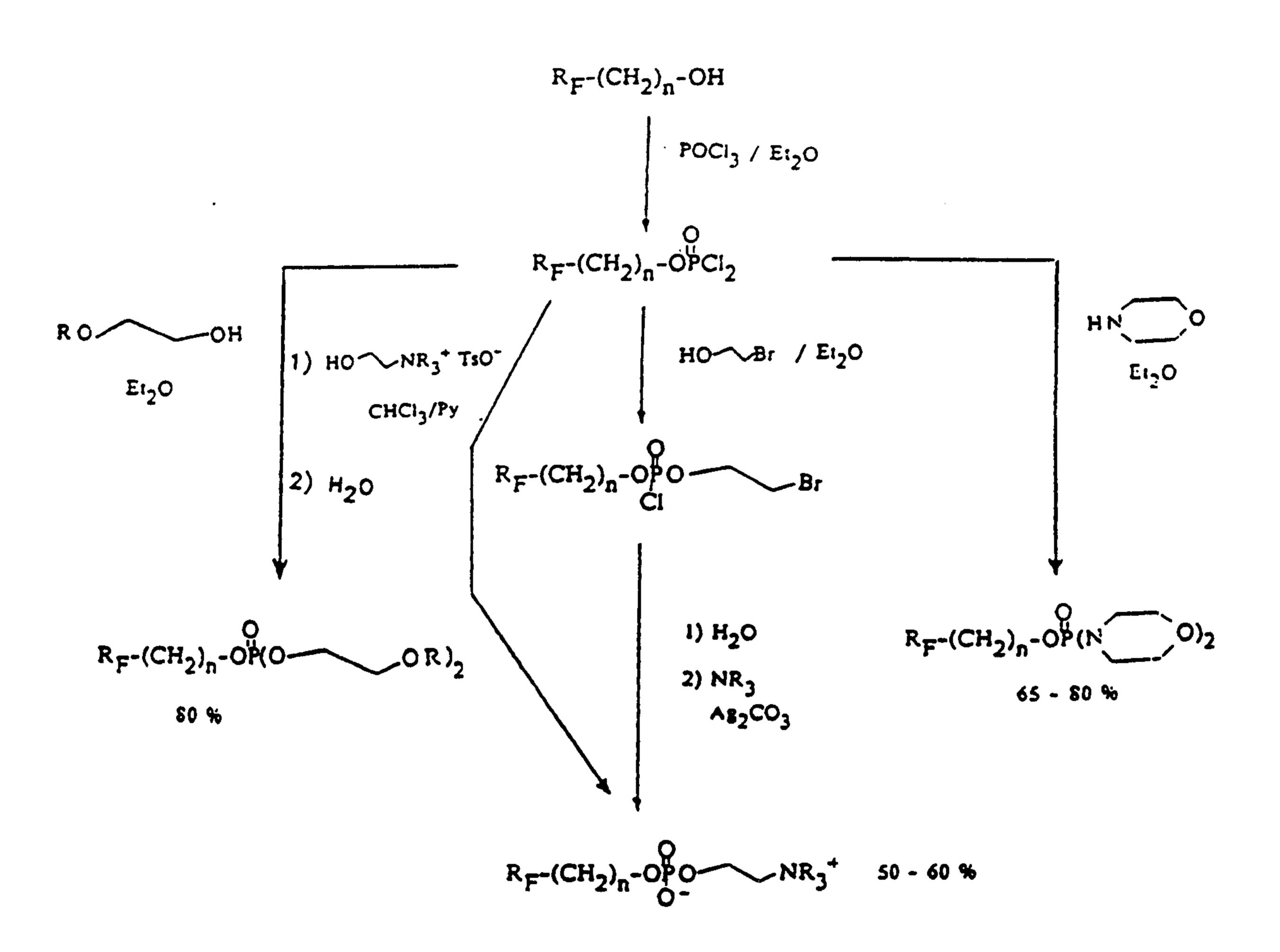

WO 90/15807

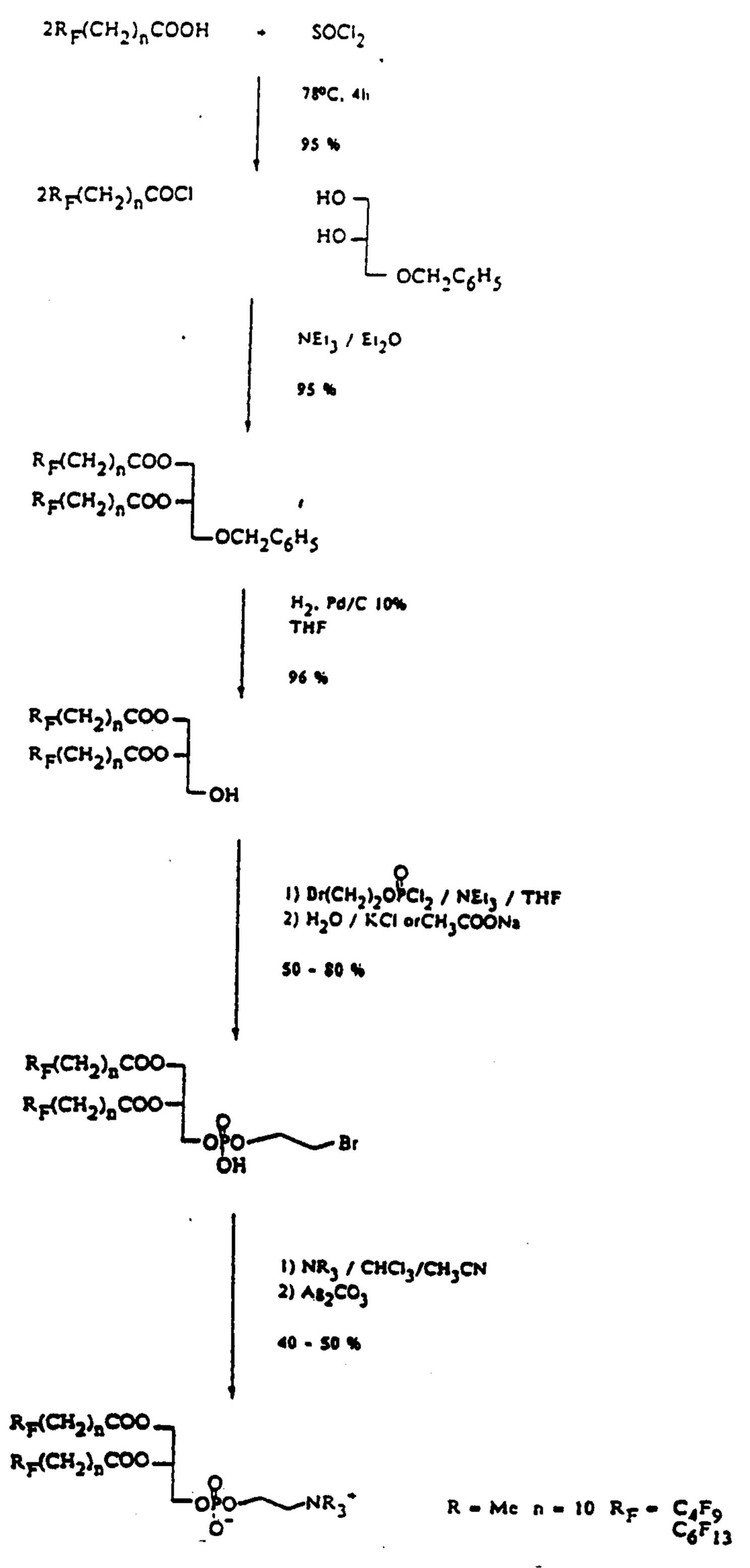
PCT/EP90/00991


-35-

24. A compound having the general structure $R^{1}-CH_{2}$ $R^{1}-CH_{2}$ $R^{1}-CH_{2}$ $R^{2}-CH_{2}$ R^{2}


wherein L is Z or a leaving group selected from the group consisting of chlorine, bromine, iodine, or tosylate; and R¹, R², Y, Z, m, and p are as defined in claim 1.


GENERAL FORMULAE IS AND IN


FIGURE 4: SYNTHETIC SCHEME FOR THE PREPARATION OF THE ESTERS AND AMIDES OF PHOSPHORIC ACID AND PHOSPHORYLCHOLINE DERIVATIVES

n = 2, 11 $R_F = C_6F_{13}, C_8F_{17}$ Compounds 1 to 6 and 11

FIGURE 5: SYNTHETIC SCHEME FOR THE PREPARATION OF THE LECITHIN:

DERIVATIVES

SUBSTITUTE SHEET

Compounds 7 and

$$R^{1}-CH_{2}$$
 $(R^{2}-CH)_{m}$
 $CH_{2}-O-P-X$
 (I)