摘要

本发明的课题在于提供一种化学镀钯液，其溶液稳定性高，可以得到耐腐蚀性、焊接接合性、引线焊接性优异的镀膜。本发明通过提供下述化学镀钯液而解决了上述课题，即，一种化学镀钯液，其特征在于，含有水溶性钯化合物、络合剂和稳定剂，所述络合剂是氨、胺化合物、氨基羧酸化合物、羧酸的任一种，所述稳定剂是磷酸或膦化合物。

优选进而含有作为还原剂的次磷酸、亚磷酸、甲酸、乙酸、萘、硼氢化物、胺硼烷化合物和它们的盐的任一种。
1. 一种化学镀钯液，其特征在于，含有水溶性钯化合物、络合剂和稳定剂，所述络合剂是氰、胺化合物、氨基羧酸化合物、羧酸的任一种，所述稳定剂是铋或铋化合物。

2. 根据权利要求 1 所述的化学镀钯液，其特征在于，进而含有作为还原剂的次磷酸、亚磷酸、甲酸、乙酸、肼、硼氢化合物、胺硼烷化合物和它们的盐的任一种。

3. 一种钯镀敷物，其特征在于，使用权利要求 1 或 2 所述的化学镀钯液进行了成膜。

4. 一种镀敷方法，其特征在于，使用权利要求 1 或 2 所述的化学镀钯液，通过化学镀敷进行成膜。
化学镀钯液

技术领域

本发明涉及在电子部件等的镀敷中使用的化学镀钯液、镀敷物和镀敷方法。

背景技术

化学镀镍/镀金液的使用目的主要是提高基底金属的耐腐蚀性、焊接接合性、引线焊接性。特别是经常用于搭载半导体凸块、半导体的封装基板、便携电话用基板等。

近年，伴随电子器件的高性能化，为了提高可靠性，要求进一步提高耐腐蚀性、焊接接合性，人们认为在化学镀镍层和化学镀金层之间插入化学镀钯层是有效的。作为化学镀钯液，可以列举出专利文献 1、专利文献 2 记载的镀敷液。这些化学镀钯液含有硫化合物作为浴液稳定剂，因此有若干槽析到钯被膜中，由于该硫的偏析，使得耐腐蚀性、焊接接合性低下。

专利文献 1：日本专利第 3204035 号公报
专利文献 2：特公平 8-28561 号公报

发明内容

鉴于上述事实，本发明的目的在于提供一种浴液稳定性高、可以获得耐腐蚀性、焊接接合性、引线焊接性优异的被膜的化学镀钯液。

本发明者们为了实现上述目的，进行了深入研究，结果发现，通过代替硫化合物而使用铋或铋化合物作为浴液稳定剂，可以获得与使用硫化合物的情况同样程度的浴液稳定性高、可以获得耐腐蚀性、焊接接合性、引线焊接性更优异的被膜的化学镀钯液。

即，本发明的构成如下。
（1）一种化学镀钯液，其特征在于，含有水溶性钯化合物、络合剂和稳定剂，所述络合剂是氨、胺化合物、氨基羧酸化合物、羧酸的任一种，所述稳定剂是铋或 이렇化合物。

（2）上述（1）记载的化学镀钯液，其特征在于，还有含有作为还原剂的次磷酸、亚磷酸、甲酸、乙酸、肼、硼氢化物、胺硼烷化合物和它们的盐的任一种。

（3）一种钯镀敷物，其特征在于，使用上述（1）或（2）记载的化学镀钯液进行了成膜。

（4）一种镀敷方法，其特征在于，使用上述（1）或（2）记载的化学镀钯液，通过化学镀敷进行成膜。

本发明的化学镀钯液，稳定性高，可以获取耐腐蚀性、焊接接合性、引线焊接性优异的镀膜。因此，在对印制布线板等的基底进行了镀镍后，通过使用本发明的化学镀钯液进行镀敷，可以提高耐腐蚀性、焊接接合性。

具体实施方式

下面，对本发明的化学镀钯液进行详细地说明。

本发明的化学镀钯液，是含有水溶性钯化合物、络合剂和稳定剂的水溶液，其中，所述络合剂是氨、胺化合物、氨基羧酸化合物、羧酸的任一种，所述稳定剂是铋或铋化合物。

作为水溶性钯化合物，没有特别的限定，可以使用例如氯化钯、二氯四氢合钯等的氯化氢合钯、氯合钯、硫酸钯、亚硝酸钯、乙酸钯盐等。本发明的化学镀钯液，在镀液中含有 0.1～100g/L、优选含有 0.1～20g/L 的这些水溶性钯化合物。如果水溶性钯化合物的浓度小于 0.01g/L，镀液速度显著变慢，即使超过 100g/L，效果也饱和，没有优势。

作为络合剂的胺化合物，没有特别的限制，可以使用例如甲基胺、二甲基胺、三甲基胺、乙基胺、二乙基胺、三乙基胺、苄基胺、亚甲基二胺、乙二胺、四亚甲基二胺、二亚乙基三胺、三亚乙基四胺、四亚乙基五胺、六亚甲基四胺等。
作为氨基羧酸化合物，没有特别的限制，可以使用例如，乙二胺四乙酸、羟乙基乙二胺三乙酸、二羟乙基乙二胺二乙酸、丙二胺四乙酸、二亚乙基三胺五乙酸、三亚乙基四胺六乙酸、甘氨酸、甘氨酰甘氨酸、甘氨酰甘氨酰甘氨酸、二羟乙基甘氨酸、亚氨基二乙酸、羟乙基亚氨基二乙酸、次氨基三乙酸、次氨基三丙酸或它们的碱金属盐、碱土类金属盐、铵盐等。

作为羧酸，没有特别的限制，可以使用例如甲酸、乙酸、丙酸、柠檬酸、丙二酸、苹果酸、草酸、琥珀酸、酒石酸、乳酸、丁酸等。

作为络合剂，可以使用氯、胺化合物、氨基羧酸化合物、羧酸的任一种，优选胺化合物和氨基羧酸化合物。

络合剂，在镀液液中含有 0.1 ~ 200g/L，优选含有 0.1 ~ 100g/L。当络合剂的浓度小于 0.01g/L 时，络合力弱，即使超过 200g/L，效果也饱和，没有优势。

作为稳定剂，使用铋或铋化合物。作为铋化合物，没有特别的限制，可以使用例如，氧化铋、硫酸铋、亚硫酸铋、硝酸铋、氯化铋、乙酸铋等。稳定剂，在镀液液中含有 0.1 ~ 1000mg/L，优选含有 1 ~ 100mg/L。稳定剂的浓度如果小于 0.1mg/L，则溶液的稳定性低下，如果超过 1000mg/L，则镀液速度低下。

本发明的化学镀钯液，优选进而含有作为还原剂的次磷酸、亚磷酸、甲酸、乙酸、肼、硼氢化物、胺硼烷化合物和它们的盐的任一种。作为硼氢化物，没有特别的限制，可以使用例如硼氢化钠、硼氢化钾、硼氢化铵等，作为胺硼烷化合物，没有特别的限制，可以使用例如二甲基胺硼烷、二乙基胺硼烷等。另外，作为上述酸的盐，可以列举出碱金属盐、碱土类金属盐、铵盐等。

作为还原剂，优选亚磷酸、次磷酸和它们的盐。

这些还原剂，在镀液液中含量为 0.01 ~ 200g/L，优选 0.1 ~ 100g/L。如果还原剂的浓度小于 0.01g/L，则镀液速度低下，如果超过 200 g/L，则效果饱和，产生液体分解，没有优势。

进而，本发明的化学镀钯液，根据需要，可以添加 pH 缓冲剂。作为
pH 缓冲剂，特别优选磷酸类化合物。

作为磷酸类化合物，可以列举出，磷酸、焦磷酸或它们的碱金属盐、
碱土类金属盐、铵盐、磷酸二氢碱金属盐、磷酸二氢碱土类金属盐、磷酸
二氢铵、磷酸氢二酸金属盐、磷酸氢二酸土类金属盐、磷酸氢二铵等。镀
敷液中的磷酸类化合物的浓度，优选为 0.01～200g/L，更优选为 0.1～
100g/L。

本发明的镀金液的 pH，优选使用上述化合物作为 pH 缓冲剂来将 pH
调节为 4～10，更优选调节为 5～9。

另外，本发明的镀金液，优选在浴温 10～95℃下使用，更优选在 25～
70℃下使用。

镀敷液的 pH 和浴温在上述范围之外的情况下，存在镀敷速度慢、容
易引起浴液分解等的问题。

作为镀敷方法，可以将被镀敷物浸渍在本发明的镀敷液中。

作为被镀敷物，可以列举搭载半导体凸块、半导体的封装基板、印制
布线基板等的部件，本发明的化学镀钯液，作为它们的接合用镀层，
可以适合用于在化学镀镍层和化学镀金层之间插入的化学镀钯层。

实施例

通过下面所示的实施例和比较例对本发明进行进一步说明。

实施例 1～5、比较例 1～3

调制表 1 所示的各组成的镀敷液作为化学镀钯液。作为被镀敷材料，
使用具有 500 个抗蚀剂开口部 0.48mm 的焊盘（pad）的 BGA 用印制布
线板，用上述工序来进行镀敷。

碱脱脂（日矿メタルプレーティング制、KG-510）
（45℃、pH12.0、2 分钟）
→软蚀刻（硫酸+过硫酸钠类、25℃、45 秒）
→硫酸洗涤（3%，25℃、2 分钟）
→预浸渍（盐酸类、25℃、30 秒）
→活化剂（日矿メタルプレーティング制、KG-522）
(氯化物类、Pd 浓度：50mg/L、25℃、pH<1.0、2 分钟)
→ 硫酸洗涤（3%、25℃、10 秒）
→ 化学镀镍（镀液：日矿メタルプレーティング制、KG-530）
 （88℃、pH4.5、25 分钟、磷含量 7%）
→ 化学镀钯（表 1 所述的镀液、镀液条件）
→ 化学镀金（镀液：日矿メタルプレーティング制、KG-545）
 （Au 浓度：2.0g/L、88℃、pH5.0、10 分钟）
（除了预浸渍→活化剂的期间以外，全部插入 1 分钟的水洗工序）
对所获得的镀敷物进行如下的评价。

耐腐蚀性:
在对基板进行了规定的镀敷后，在 20 体积%的硝酸水溶液中浸渍 10
分钟，然后水洗，干燥。然后在光学显微镜 50 倍下观察全部焊盘的镀金的
外观。在 500 个焊盘中，变色少于 1%的记作○，1%以上、小于 10%的记
作△，10%以上记作×。

焊料接合强度:
在对基板进行了规定的镀敷处理后，在 165℃对基板进行 24 小时的热
处理。然后在 20 个 0.48mm φ 的焊盘中涂布助焊剂，搭载 0.6mm φ 的
Sn-4.0Ag-0.5Cu 焊料球，用回焊炉在加热温度为 250℃下进行回焊。使用
デイジ社制的粘合力试验机 4000，用加热拉伸法测定接合强度。

浴液寿命:
对基板实施实际的镀钯轮脛（turn）实验。在建浴钯浓度为 2g/L 的镀
敷液的情况下，将 2g/L 的钯析出到基板的量的镀敷称作 1MTO。通常化学
镀钯液以 3～5MTO 的程度更新浴液，因此只要具有 5MTO 以上的浴液
稳定性，就可以说稳定性高。因此，轮回实验进行至 5MTO，研究是否有
浴液分解、被膜特性的低下。其中，轮回实验中的钯浓度每减少 10%左右，
就补充钯。

评价结果如表 1 所示。
<table>
<thead>
<tr>
<th>实施例</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>溶液组成</td>
<td>氯化钯：2g/L(Pd)</td>
<td>氯化钯：1g/L(Pd)</td>
<td>氯化钯：10g/L</td>
<td>氯化钯：5g/L</td>
</tr>
<tr>
<td>还原剂</td>
<td>水解性丙二酸：5g/L</td>
<td>水解性丙二酸：5g/L</td>
<td>水解性丙二酸：5g/L</td>
<td>水解性丙二酸：5g/L</td>
</tr>
<tr>
<td>稳定剂</td>
<td>水解性三乙胺：5g/L</td>
<td>水解性三乙胺：5g/L</td>
<td>水解性三乙胺：5g/L</td>
<td>水解性三乙胺：5g/L</td>
</tr>
<tr>
<td>沉积剂</td>
<td>硫酸二氢钾：5g/L</td>
<td>硫酸二氢钾：5g/L</td>
<td>硫酸二氢钾：5g/L</td>
<td>硫酸二氢钾：5g/L</td>
</tr>
<tr>
<td>pH缓冲剂</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>处理温度(℃)</td>
<td>50</td>
<td>40</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>处理时间(分钟)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>腐蚀性</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>实施例</td>
<td>比较例</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>溶液组成</th>
<th>pH</th>
<th>处理温度 (℃)</th>
<th>处理时间 (分钟)</th>
<th>评价结果</th>
<th>耐药性 (μm)</th>
<th>耐药性等级 (μm)</th>
<th>溶液寿命 (MTO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>铝化合物</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>还原剂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>稳定剂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>稀释剂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>实施例</th>
<th>比较例</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>氧化剂: 2g/L(Pd)</th>
<th>氧化剂: 2g/L(Pd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲酸: 5g/L</td>
<td>甲酸: 10g/L</td>
</tr>
<tr>
<td>乙酸: 20mg/L</td>
<td>乙酸: 20mg/L</td>
</tr>
<tr>
<td>丙酸: 10g/L</td>
<td>丙酸: 20mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>氧化剂: 2g/L(Pd)</th>
<th>氧化剂: 2g/L(Pd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲酸: 5g/L</td>
<td>甲酸: 10g/L</td>
</tr>
<tr>
<td>乙酸: 20mg/L</td>
<td>乙酸: 20mg/L</td>
</tr>
<tr>
<td>丙酸: 10g/L</td>
<td>丙酸: 20mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>氧化剂: 2g/L(Pd)</th>
<th>氧化剂: 2g/L(Pd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲酸: 5g/L</td>
<td>甲酸: 10g/L</td>
</tr>
<tr>
<td>乙酸: 20mg/L</td>
<td>乙酸: 20mg/L</td>
</tr>
<tr>
<td>丙酸: 10g/L</td>
<td>丙酸: 20mg/L</td>
</tr>
</tbody>
</table>
由表1的结果可知，本发明的化学镀钯液，耐腐蚀性、焊接接合性优异。另外可知，与现有的使用硫化合物作为稳定剂的镀液具有相同程度的优异的稳定性。