Title: USE OF CATIONIC SURFACANT AS ANTIMICROBIAL ACTIVITY ENHANCER IN DEODORANTS AND ORAL CARE

Abstract: Antimicrobial system which comprises a cationic surfactant, derived from the condensation of fatty acids and esterified dibasic amino acids, according to the following formula (I), where: X is Br, Cl, or HSO_4; R_1 is linear alkyl chain from an saturated fatty acid, or hydroxy-acid from 8 to 14 atoms of carbon bonded to the α-amino acid group through amide bond. R_2 is a linear or branched alkyl chain from 1 to 18 carbon atoms or aromatic. R_3 is for Formula (II), where n can be from 0 to 4, and at least one antimicrobial agent characterised for its enhanced activity.

(I) $\text{R}_3\text{-(CH}_2\text{n-)}\text{COOR}_2\text{+X}^-$

(II) NH_3

NH_2

NH_2
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
DESCRIPTION

This invention relates to a novel use of cationic surfactants as activity enhancers of the traditional antimicrobials and preparations according to this novel use in deodorants and oral care.

Many antimicrobials are known to be effective against specific and general bacteria which are present in the oral cavity and such bacteria which are responsible for the body odour. But, most of them display incompatibilities with the human skin and the mouth cavity mucous membranes, such as irritations and allergies and are toxic to human beings as well.

On the other hand, it has been demonstrated that cationic surfactants derived from lauric acid and arginine are biologically active substances, in particular, the ethyl ester of the lauramide of the arginine monohydrochloride, hereafter referred to as LAE. LAE has the chemical structure of formula (1).

![Chemical structure of LAE](attachment:formula.png)

The preparation of this product has been described in a number of different patents.
Biological studies carried out at different research centres under supervision of the applicant of the present invention showed LAE acts mainly over the external and cytoplasmatic membrane of the microorganisms and, also, into the cytoplasmatic media, preventing their proliferation. Its action depends on the kind of microorganism and on the exposure time.

Besides, its metabolism in rats has been studied showing a fast absorption and metabolism into naturally-occurring amino acids and the fatty acid lauric acid, which are eventually excreted as carbon dioxide and urea. Toxicological studies have demonstrated LAE is completely harmless to animals and humans.

We have found that combinations of LAE with traditional antimicrobials have a better activity than LAE or these antimicrobials by themselves in the tested applications. This activity enhancement of LAE may be explained by its action over the cytoplasmatic membrane of the microorganisms.

So, it was the object of the present invention to provide further antimicrobial systems for cosmetic preparations for skin and oral care with in particular the goal of providing systems which comprise smaller amounts of the traditional antimicrobials in view of the risk of lack of tolerance.

The use of the invention relates to cationic surfactants derived from the condensation of fatty acids and esterified dibasic amino acids, according to the following formula:

\[
\begin{align*}
\left(R_3-(CH_2)_n \right) \underbrace{\text{COOR}_2}_{\oplus} \\
\text{NHR}_1 \underbrace{X^-}_{\ominus}
\end{align*}
\]

where:

\[X^- \text{ is } \text{Br}^-, \text{Cl}^-, \text{or } \text{HSO}_4^-\]

\[R_1^+ \text{ is a linear alkyl chain from a saturated fatty acid or hydroxyacid from 8 to 14 atoms of carbon bonded to the } \alpha-\text{ amino acid group through an amido bond.}\]
R₂: is a linear or branched alkyl chain from 1 to 18 carbon atoms or an aromatic group.

R₃: is:

\[
\text{---NH₃}
\]

\[
\text{---NH} \quad \text{---NH₂}
\]

\[
\text{---NH} \quad \text{---NH} \quad \text{---NH}
\]

and n can be from 0 to 4.

The most preferred compound of the above class of compounds is LAE.

This antimicrobial system is characterised for its enhanced activity. It has now been found that the antimicrobial activity of the combinations of LAE and the other compounds defined by the above formula (1) with most of the common antimicrobials used in formulations and preparations for skin and oral care is higher than the activity displayed by each of the components when used alone at the same dosage. There has been observed activity enhancement when the amounts of the compounds of formula (1) and the antimicrobial are reduced.

Thus, the adverse toxic effects and/or irritation and/or allergy displayed by the antimicrobial systems have also been reduced.

LAE can be used in association with common antimicrobials, such as 2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan), 3,4,4'-trichlorocarbanilid (triclocarban), 2-phenoxyethanol, chlorhexidine salts, hexetidine and cetylpyridinium salts, for cosmetic formulations and preparations directed to avoid body odour and to provide oral care, which are applied to the epidermis or on the teeth and in the mouth cavity mucous membranes, in order to clean, perfume and/or change body odour and/or protect a good physical state.
The antimicrobial system of the invention comprises the cationic surfactant of formula (1) in an amount from 0.001 to 1% by weight and the concentration of the traditional antimicrobial agent from 0.0001% to 2% by weight relative to whole weight.

The antimicrobial system of the invention comprises more in particular a preferred amount of the traditional antimicrobial agent in deodorant applications, from 0.001 to 0.5% by weight of 2,4,4′-trichloro-2′-hydroxydiphenylether (triclosan) and/or from 0.001 to 1.5% by weight of 3,4,4′-trichlorocarbanilid (triclocarban) and/or from 0.001 to 1% by weight of 2-phenoxethanol and/or 0.001 to 1% by weight of chlorhexidine salts.

And the amount of the traditional antimicrobial agent in oral care applications is from 0.001 to 0.3% by weight of 2,4,4′-trichloro-2′-hydroxydiphenylether (triclosan) and/or from 0.001 to 0.15% by weight of chlorhexidine gluconate and/or from 0.001 to 0.1% by weight of hexetidine and/or from 0.001 to 0.05% by weight of cetylpyridinium salts.

The composition of this invention comprises a medium which is compatible with the skin, the mucous membranes, and hair. These compositions may contain the usual components such as: fatty compounds such as mineral oil, animal oil, vegetal oil, from synthesis and silicon, and also alcohols, fatty acids and waxes; organic solvents, surface active agents, solubilizers and ionic and non ionic emulsifiers, thickening agents and jellying hydrophilic agents such as carboxyvinyl polymers (e.g. carbomer), acrylic copolymers (e.g. acrylates and alkylacrylates), polyacrylamides, polysaccharides, natural gums (e.g. xanthan gum); thickening agents and jellying lipophilic agents such as modified clays (ex. bentonite), fatty acid metallic salts, hydrophobic silica and polyethylene; perfumes and essential oils; astringents; antiperspirants; fluorides; humectants; sweeteners; softeners; excipients; antioxidants; sequestrant agents; opacifiers; filters; colouring compounds which are either hydrophilic or lipophilic, and pigments; and hydrophilic or lipophilic active ingredients. These compositions can also contain further antimicrobial agents which are different from the ones defined in the claims.
The amounts of these usual components mentioned in the previous paragraph are the normal ones as used in the art. These components are added to the antimicrobial systems of the invention without having any influence on their composition.

According to the invention the compositions can be in different cosmetic forms suitable for a topical application, such as:

a) Monophasic systems:

- water or hydro-glycolic solution that contains one or more surfactants to be used for the cleaning of the skin and mucous membranes;
- water, hydro-alcoholic, hydro-glycolic or oily solution that can contain other additives to be used in the general care and/or protection for skin and/or mucous membranes;
- water, hydro-alcoholic, hydro-glycolic or oily gel that can contain other additives to be used in general care and/or protection for skin and/or mucous membranes;
- solid anhydride products that can contain other additives to be used in the general care and/or protection for skin and/or mucous membranes;

b) Biphasic systems:

- water, hydro-alcoholic, hydro-glycolic or oily gel that can contain other additives to be used in general care and/or protection for skin and/or mucous membranes;
- solid anhydride products that can contain other additives to be used in the general care and/or protection for skin and/or mucous membranes;
- emulsions formed by dispersion of a oil phase in a water phase (O/W) or an inverse phase (W/O), to be used in general care and/or protection of the face skin and/or mucous membranes;

c) and combinations of the other systems that form multiphasic systems, suspensions and micro-emulsions.
The compositions previously mentioned can also be used as a spray, or as aerosol compositions and can contain a propulsion agent under pressure.

Thus, the compositions of the invention can have the aspect of a cream, a lotion, a milk, an emulsion, a gel or an oil for the skin, a salt, a gel, a foam/spray or an oil for a bath and shower and anyway aspect to be shown.

The compositions according to the invention have been prepared according to usual techniques well known for an expert in the matter.

Procedure to evaluate the efficacy of the antimicrobial system

The antimicrobial systems have been evaluated by the inhibition zone method (adapted from Association of Official Analytical Chemists, *J. Assoc. Off. Anal. Chem.* 62, 466-467 (1982)), using specific test microorganisms. These micro-organisms were:

- for oral care products evaluation:
 - *Streptococcus mutans* ATCC 25175
 - *Lactobacillus acidophilus* ATCC 4355
 - *Staphylococcus aureus* ATCC 6538
 - *Candida albicans* ATCC 10231

- for deodorant products evaluation:
 - *Propionibacterium acnes* ATCC 33179
 - *Corynebacterium sp.* ATCC 6931
 - *Trichophyton Mentagrophytes* ATCC 9533
 - *Staphylococcus epidermidis* ATCC 12600

The method consists of measuring the inhibition zone created by the antimicrobial system of each cosmetic composition, placed in a media hole, for every test micro-organism.
Each test micro-organism was inoculated into the appropriate culture media with a target concentration of 10^6 cfu/mL, approximately, and 20 mL of inoculated media were pipetted into petri dishes and let to harden. It is also possible to seed the microorganism on the surface of the sterile media if that is suitable.

A hole of 15 mm diameter was made in the media and 0.5 mL of the cosmetic composition was deposited into the hole. It is allowed to diffuse for an hour and is then incubated.

The temperature was kept at the optimum value for each micro-organism and dishes were protected against light.

Each test was carried out in triplicate.

The radius of the inhibition zone was measured at 24 hours for bacteria and 4 days for yeasts after the cosmetic composition was placed.
EXAMPLES

Different examples of cosmetic preparation formulations according to the invention have been assayed. The displayed examples are only a selection, and do not represent a restriction to the use of the antimicrobial system in other cases.

The concentrations of the antimicrobial agents used in the following examples are shown in Table 1:

<table>
<thead>
<tr>
<th>Antimicrobial system</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LAE at 0,3%</td>
</tr>
<tr>
<td>2</td>
<td>2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan) at 0,2%</td>
</tr>
<tr>
<td>3</td>
<td>3,4,4-trichlorocarbanilid (triclocarbon) at 0,75%</td>
</tr>
<tr>
<td>4</td>
<td>2-phenoxyethanol at 0,3%</td>
</tr>
<tr>
<td>5</td>
<td>chlorhexidine digluconate at 0,2%</td>
</tr>
<tr>
<td>6</td>
<td>hexetidine at 0,1%</td>
</tr>
<tr>
<td>7</td>
<td>cetylpyridinium chloride at 0,04%</td>
</tr>
<tr>
<td>8</td>
<td>LAE at 0,05% with 2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan) at 0,1%</td>
</tr>
<tr>
<td>9</td>
<td>LAE at 0,05% with 3,4,4-trichlorocarbanilid (triclocarbon) at 0,35%</td>
</tr>
<tr>
<td>10</td>
<td>LAE at 0,1% with 2-phenoxyethanol at 0,15%</td>
</tr>
<tr>
<td>11</td>
<td>LAE at 0,05% with chlorhexidine digluconate at 0,1%</td>
</tr>
<tr>
<td>12</td>
<td>LAE at 0,15% with hexetidine at 0,05%</td>
</tr>
<tr>
<td>13</td>
<td>LAE at 0,15% with cetylpyridinium chloride at 0,02%</td>
</tr>
</tbody>
</table>

The activity of each antimicrobial system is related to the activity of antimicrobial system 1 through their inhibition radius. The resulting value is used to compare the activity of the traditional antimicrobial agent with and without LAE. So, a bigger value of this parameter represents a larger antimicrobial activity related to the 0,3% at LAE system.

EXAMPLE OF MOUTH RINSE

- Example 1:
The composition of a direct use mouth rinse, made to test the effectiveness of the antimicrobial systems, is (in g):

- Ethanol...9.00
- Glycerol ..10.00
- PEG 40 Hydrogenated castor oil2.00
- Sodium saccharinate.........................0.15
- Aqua...100 c.s.p.

This formulation is completed with a suitable amount of the antimicrobial system of the invention and its antimicrobial activity is evaluated against formulations with traditional antimicrobial agents used alone.

The results are shown in the table 2.

<table>
<thead>
<tr>
<th>Streptococcus mutans</th>
<th>Lactobacillus acidophilus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant. sys. without LAE</td>
<td>Ant. sys. with LAE</td>
</tr>
<tr>
<td>Ant. sys. Zone vs. ant. Numb</td>
<td>Zon vs. Ant. Numb</td>
</tr>
<tr>
<td>2 ⇒ 20</td>
<td>22 ≈ 8</td>
</tr>
<tr>
<td>5 ⇒ 15</td>
<td>15 ≈ 11</td>
</tr>
<tr>
<td>6 ⇒ 10</td>
<td>12 ≈ 12</td>
</tr>
<tr>
<td>7 ⇒ 22</td>
<td>21 ≈ 13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staphylococcus aureus</th>
<th>Candida albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant. sys. without LAE</td>
<td>Ant. sys. with LAE</td>
</tr>
<tr>
<td>Ant. sys. Zone vs. ant. Numb</td>
<td>Zon vs. Ant. Numb</td>
</tr>
<tr>
<td>2 ⇒ 18</td>
<td>19 ≈ 8</td>
</tr>
<tr>
<td>5 ⇒ 12</td>
<td>13 ≈ 11</td>
</tr>
<tr>
<td>6 ⇒ 9</td>
<td>9 ≈ 12</td>
</tr>
<tr>
<td>7 ⇒ 15</td>
<td>17 ≈ 13</td>
</tr>
</tbody>
</table>
It is shown in the table 2 that the combination of LAE with the traditional antimicrobials leads to effects which are regularly higher than those displayed by these compounds used alone, with the advantages previously described.

EXAMPLES OF DENTIFRICES

- Example 2:

The general composition of a standard opaque dentifrice, is (in g):

- Glycerol ... 25,00
- Sodium saccharinate 0,15
- EDTA 4 NA 0,10
- Sodium monofluorophosphate 1,00
- Silica .. 5,00
- Sodium metaphosphate 30,00
- Titanium dioxide 0,20
- Hydroxyethylcellulose 0,75
- Sodium lauryl sulfate 0,80
- Aqua ... 100 c.s.p.

This formulation is completed with a suitable amount of the antimicrobial system of the invention and its antimicrobial activity is evaluated against formulations with traditional antimicrobial agents used alone.

The results are shown in the table 3.
Table 3.

<table>
<thead>
<tr>
<th>Streptococcus mutans</th>
<th>Lactobacillus acidophilus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant. sys. without LAE</td>
<td>Ant. sys. without LAE</td>
</tr>
<tr>
<td>Ant. sys. numbe r</td>
<td>Zone vs. ant. sys. 1</td>
</tr>
<tr>
<td>Zone vs. Ant. sys. 1</td>
<td>Zone vs. Ant. sys. 1</td>
</tr>
<tr>
<td>2 ⇒ 15</td>
<td>17 ≤ 8</td>
</tr>
<tr>
<td>5 ⇒ 12</td>
<td>14 ≤ 11</td>
</tr>
<tr>
<td>6 ⇒ 7</td>
<td>10 ≤ 12</td>
</tr>
<tr>
<td>7 ⇒ 12</td>
<td>13 ≤ 13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staphylococcus aureus</th>
<th>Candida albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant. sys. without LAE</td>
<td>Ant. sys. without LAE</td>
</tr>
<tr>
<td>Ant. sys. numbe r</td>
<td>Zone vs. ant. sys. 1</td>
</tr>
<tr>
<td>Zone vs. Ant. sys. 1</td>
<td>Zone vs. Ant. sys. 1</td>
</tr>
<tr>
<td>2 ⇒ 13</td>
<td>14 ≤ 8</td>
</tr>
<tr>
<td>5 ⇒ 9</td>
<td>10 ≤ 11</td>
</tr>
<tr>
<td>6 ⇒ 7</td>
<td>8 ≤ 12</td>
</tr>
<tr>
<td>7 ⇒ 9</td>
<td>12 ≤ 13</td>
</tr>
</tbody>
</table>

It is shown in the table 3 that the combination of LAE with the common antimicrobials is equal or higher than those displayed by these compounds used alone, with the advantages previously described.

Further preparation examples of dentifrice, where the antimicrobial systems were also assayed, are described in the examples 3 to 5. The experimental results obtained in the example 2 are representative for these examples.
- **Example 3:**

 The composition of a standard transparent dentifrice, is (in g):

 - Glycerol ... 19.00.
 - Sorbitol ... 63.00
 - Sodium saccharinate 0.15
 - EDTA 4 NA .. 0.10
 - Sodium fluoride 0.20
 - Silica .. 15.00
 - Hydroxyethylcellulose 0.75
 - Sodium lauryl sulfate 0.80
 - Aqua .. 100 c.s.p.

- **Example 4:**

 The composition of a liquid dentifrice, is (in g):

 - Glycerol ... 5.00
 - Sorbitol ... 56.00
 - Sodium saccharinate 0.15
 - EDTA 4 NA .. 0.10
 - Sodium fluoride 0.20
 - Silica .. 16.00
 - Hydroxyethylcellulose 0.50
 - Sodium lauryl sulfate 0.80
 - Aqua .. 100 c.s.p.

- **Example 5:**

 The composition of a baking soda based dentifrice, is (in g):

 - Glycerol ... 10.00
 - Sorbitol ... 20.00
 - Sodium saccharinate 0.20
 - EDTA 4 NA .. 0.10
 - Sodium monofluorophosphate 1.00
- Silica ... 15,00
- Sodium bicarbonate 15,00
- Hydroxyethylcellulose 0,50
- Sodium lauryl sulfate 1,50
- Aqua .. 100 c.s.p.

EXAMPLES OF DEODORANTS

- Example 6:

 The general composition of a stick deodorant without alcohol, is (in g)
 - Cyclomethicone 25,00
 - Stearyl alcohol 26,00
 - Octyl palmitate 23,00
 - Dioctyl adipate 21,70
 - C12-C15 alkyl benzoate 2,00
 - Glyceryl stearate 2,00

 This formulation is completed with a suitable amount of the antimicrobial system of the invention and its antimicrobial activity is evaluated against formulations with traditional antimicrobial agents used alone.

 The results are shown in the Table 4.

<table>
<thead>
<tr>
<th>Proplionibacterium acnes</th>
<th>Corynebacterium sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant. sys. without LAE</td>
<td>Ant. sys. with LAE</td>
</tr>
<tr>
<td>Ant. Zone vs. ant. Numbe r sys.</td>
<td>Zone Ant. vs. sys. ant. Numb er</td>
</tr>
<tr>
<td>2 ⇒ 9</td>
<td>10 ⇒ 8</td>
</tr>
<tr>
<td>3 ⇒ 8</td>
<td>8 ⇒ 9</td>
</tr>
<tr>
<td>4 ⇒ 5</td>
<td>6 ⇒ 10</td>
</tr>
<tr>
<td>6 ⇒ 8</td>
<td>7 ⇒ 12</td>
</tr>
</tbody>
</table>
It is shown in the table 4 that the activity of a combination of LAE with the common antimicrobials is equal or higher than those displayed by these compounds used alone, with the advantages previously described.

Further examples of deodorants, where the antimicrobial systems were also assayed, are described in the following preparation examples 1 to 5. The experimental results obtained in the example 6 are representative for these preparation examples as well.

- Preparation Example 1:

The composition of a stick deodorant with alcohol, is (in g):

- Ethanol..21,30
- Propylene glycol..............................68,90
- Stearic acid......................................6,10
- Octyl dodecanol...............................1,00
- Sodium hydroxide............................0,93
- Aqua..100 c.s.p.

- Preparation Example 2:

The composition of a deodorant aerosol, is (in g):

- Ethanol..51,93
- Isopropyl myristate1,50
- Propellant..100 c.s.p.
- Preparation Example 3:

The composition of a roll-on deodorant composition without alcohol, is (in g):

- CETEARETH-20 .. 3,00
- Ceteryl alcohol 2,00
- Glyceryl stearate 1,50
- Caprylic capric triglycerides 2,00
- Isopropyl myristate 2,00
- Aqua .. 100 c.s.p.

- Preparation Example 4:

The composition of a deodorant composition with alcohol for a roll-on, is (in g):

- Ethanol .. 41,00
- Dipropylene glycol 5,25
- Hydroxyethyl cellulose 0,45
- Aqua .. 100 c.s.p.

- Preparation Example 5:

The composition of a deodorant cream, is (in g):

- Cetearyl alcohol + sodium cetearyl sulfate 4,00
- CETEARETH-12 2,00
- Paraffinum 4,00
- Propylene glycol 3,00
- Caprilic capric triglycerides 5,00
- Dimethicone 1,00
- Isopropyl myristate 5,00
- Aqua .. 100 c.s.p.
1. Antimicrobial system which comprises a cationic surfactant, derived from the condensation of fatty acids and esterified dibasic amino acids, according to the following formula:

\[
\begin{align*}
R_3-(\text{CH}_2)_n & \quad \text{COOR}_2 \\
\text{NHR}_1 & \quad X^\ominus
\end{align*}
\]

where:

\(X^\ominus \) is \(\text{Br}^- \), \(\text{Cl}^- \), or \(\text{HSO}_4^- \).

\(R_1 \): is linear alkyl chain from an saturated fatty acid, or hydroxyacid from 8 to 14 atoms of carbon bonded to the \(\alpha \)- amino acid group through amidic bond.

\(R_2 \): is a linear or branched alkyl chain from 1 to 18 carbon atoms or aromatic.

\(R_3 \): is:

\[
\begin{align*}
\text{--NH}_3 \\
\text{--NH--NH}_2 \\
\text{---NH--NH}_2 \\
\text{----NH}
\end{align*}
\]

where \(n \) can be from 0 to 4, and at least one antimicrobial agent characterised for its enhanced activity.
2. Antimicrobial system as claimed in Claim 1, wherein the cationic surfactant is the ethyl ester of the lauramide of arginine hydrochloride (LAE).

3. Antimicrobial system as claimed in Claim 1 or 2, wherein the main antimicrobial is selected from the group consisting of 2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan) and/or 3,4,4-trichlorocarbanilid (triclocarban) and/or 2-phenoxyethanol and/or chlorhexidine salts and/or hexetidine and/or cetlypyridinium salts.

4. Antimicrobial system according to any one of the preceding claims wherein the concentration of the cationic surfactant is from 0.001 to 1 % by weight and the concentration of the antimicrobial agent from 0.0001% to 2 % by weight relative to the total weight of the antimicrobial system.

5. Antimicrobial system according to Claim 4, wherein the amount of the antimicrobial agent in deodorant applications is from 0.001 to 0.5% by weight of 2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan) and/or from 0.001 to 1.5% by weight of 3,4,4-trichlorocarbanilid (triclocarban) and/or from 0.001 to 1% by weight of 2-phenoxyethanol and/or 0.001 to 1% by weight of chlorhexidine salts.

6. Antimicrobial system according to Claim 4, wherein the amount of the antimicrobial agent in oral care applications is from 0.001 to 0.3% by weight of 2,4,4'-trichloro-2'-hydroxy-diphenylether (triclosan) and/or from 0.001 to 0.15% by weight of chlorhexidine gluconate and/or from 0.001 to 0.1% by weight of hexetidine and/or from 0.001 to 0.05% by weight of cetypyridinium salts in oral care applications.

7. Antimicrobial system according to any of the claims 1 to 6, further containing fatty compounds such as mineral oil, animal oil, vegetable oil, synthetic oil and silicon oil, and also alcohol, fatty acids and waxes; organic solvents, surface active agents, solubilizers and ionic and non-ionic emulsifiers, thickening agents and jellying hydrophilic agents such as carboxyvinyllic polymers (eg. carbomer), acrylic copolymers (ex. acrylates and alkylacrylates), polyaclaylamides, polysaccharides, natural gums (eg. xanthan gum); thickening agents and jellying lipophilic agents such as modified clays (ex. bentonite), fatty acid metallic salts, hydrophobic silica and polyethylene; perfumes and essential oils; astringents; antiperspirants;
fluorides; humectants; sweeteners; softeners; excipients; antioxidants; sequestrant agents; opacifiers; filters; colouring compounds, and pigments; and hydrophilic or lipophilic active ingredients.

8. Cosmetic and/or dermatological composition comprising the antimicrobial system defined in any one of claims 1 to 7.

9. Cosmetic compositions for skin or oral care comprising the antimicrobial system of any one of the preceding claims from 4 to 8.

10. Composition according to claim 8 or 9 formed as an aqueous solution, hydro-alcoholic, hydro-glycolic emulsion, micro-emulsion, aqueous or anhydride gel of a vesicles dispersion.

11. Use of the antimicrobial system according to the claims 1 to 7 in and/or for the preparation of a cosmetic and/or dermatological composition to avoid the body odour or to take oral care.

12. Use of the antimicrobial system according to the claims 1 to 7 in a cosmetic and/or dermatological composition against micro-organisms.

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

|-------|-----------|-----------|-----------|-----------|-----------|

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC 7</th>
<th>A61K</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

CHEM ABS Data, EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | DATABASE CA 'Online!
CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; IMAHORI, ATSUKO: "Anti-microbial cosmetics having low irritability" retrieved from STN
Database accession no. 128:221442 CA XP002205768 abstract
& JP 10 045557 A (NOEVIR CO., LTD., JAPAN) 17 February 1998 (1998-02-17) | 1, 4, 7-12 |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L later document published after the international filing date

P document published prior to the International filing data but later than the priority data claimed

I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

S document member of the same patent family

Date of the actual completion of the international search

12 July 2002

Date of mailing of the international search report

31/07/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5318 Patentlaan 2
NL-2280 HV Rijswijk
Tel: (+31-70) 340-0040, Tx: 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Sierra Gonzalez, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP 0 749 960 A (MIRET LAB) 27 December 1996 (1996-12-27) the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>FR 2 143 557 A (AJINOMOTO KK) 9 February 1973 (1973-02-09) the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>JP 10045557 A</td>
<td>17-02-1998</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 9255518 A</td>
<td>30-09-1997</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4036231 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6084294 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69111985 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69111985 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0485616 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3017090 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1001670 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 126051 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 633217 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7893891 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2060895 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1057582 A , B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 485616 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2078523 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9118585 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5266306 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69521499 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69521499 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0749960 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2185165 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9621642 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 749960 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5780658 A</td>
</tr>
<tr>
<td>FR 2143557 A</td>
<td>09-02-1973</td>
<td>FR 2143557 A1</td>
</tr>
</tbody>
</table>