(54) Title: ANALYTE DETECTION FROM STEADY-STATE LUMINESCENCE LIFETIME

(57) Abstract

Methods and apparatus determine analyte concentration in vivo and in vitro by the steady state determination of luminescence lifetime. A fluorophore that is quenched by the analyte is free to undergo Brownian rotation. The fluorophore (12) is irradiated with continuous linearly polarized light (24). Emitted luminescence is resolved into vector components parallel and perpendicular to the plane of polarization of the excitation light (36, 38). A mathematical function is employed which relates the luminescence anisotropy to quencher concentration. For analytes which do not quench excited states, a known quantity of the analyte is conjugated to a quencher molecule or energy transfer acceptor, and a competition reaction is set up in which labelled and unlabelled analyte compete for sites on a labelled carrier molecule. An empirically determined mathematical function is employed which relates luminescence anisotropy at the carrier label emission band to analyte concentration.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the FCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJK</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTE DETECTION FROM STEADY-STATE LUMINESCENCE LIFETIME

BACKGROUND OF THE INVENTION

Molecular oxygen is a critical requirement for cellular function in animals, while the protection from O_2 is required for the function of plant enzymes such as the nitrogenases. Animals, and mammals in particular, are critically dependent upon the continuous supply and utilization of O_2 in the processes which maintain life. This is particularly true for high O_2-consuming tissues such as neural tissues and muscle, both striated and smooth. Interruption of oxygen delivery to these tissues, for times as brief as minutes, can result in cell death and loss of functions critical to organ function. Moreover, it is the oxygen concentration within tissues, rather than within blood or other bodily fluids, which ultimately supports cellular function. Therefore, the measurement of bodily fluid and tissue oxygen concentrations is of pivotal importance to clinical medicine, with the compromise of oxygen delivery to tissues occurring in a host of vascular diseases, such as arteriosclerosis, diabetes, sickle cell disease, and impaired wound healing to name a few. It is therefore not surprising that numerous patents have been issued for methods and devices which measure blood and bodily fluid oxygen concentration, and this inventor's U.S. Patent No. 5,186,173 (hereinafter the Zuckerman '173 patent) for the first measurement of tissue oxygen concentration in vivo.

These patents, although each addressing problems involved in the noninvasive determination of bodily fluid or tissue PO_2, suffer from deficiencies which have precluded their widespread application in clinical medicine. To achieve the requirement of noninvasive measurement recent patents have turned to optical methods, which involve the quenching of phosphorescence or fluorescence of a dye by dioxygen. For example, patents such as that of U.S. Patent No. 4,476,870 (Peterson et. al.) have developed catheter designs in which a fluorescent substance, such as perylene, is housed within a sealed catheter which may be inserted into blood vessels and its fluorescence quenching by O_2 in blood measured by use of fiber optics. This device, although providing the ability to measure bodily fluid or blood PO$_2$, suffers from two deficiencies. First, the PO$_2$ of blood may be measured accurately only after the catheter probe is externally calibrated prior to its insertion into a blood vessel; and second, the technique provides no topographic information, as PO$_2$ is measured at a single locus, viz., at the
probe tip. In U.S. Patent No. 4,810,655, Khalil et al. purport to overcome the need for prior calibration of the catheter before its every usage by measuring phosphorescence lifetime instead of intensity. Although in theory a direct lifetime system should overcome the need for prior calibration, in practice, as shown in Table 4 of the Khalil et al. patent, the phosphorescence lifetimes of the porphyrins employed change with light exposure, making calibration prior to use still necessary. In addition, the time-resolved direct lifetime system would be cumbersome to implement, and less precise than a steady-state approach. Vanderkooi and Wilson (U.S. Patent No. 4,947,850) developed a procedure based upon the determination of the phosphorescence lifetime of an O₂-sensitive probe substance, such as a metallo-porphyrin bound tightly to albumin, which phosphoresces on a timescale of fractions of a millisecond (10⁻³ sec), and whose phosphorescence lifetime is reduced (quenched) by dioxygen. Here the O₂-sensitive probe is a phosphorescing molecule which may be injected into the blood stream, thereby permitting topographic determination of the PO₂ of blood within the vasculature of an imaged tissue. However, due to self-quenching of the metallo-porphyrins, as well as the other probes described by Vanderkooi, these probe molecules cannot be used alone. That is, self-quenching results in probe concentration dependent changes in decay time which are greater than those induced by molecular oxygen. Since it is impossible to know the precise probe concentration in the blood, due to leakage at the injection site and variations in blood volume in different animals or humans, they must modify the probe to eliminate self-quenching. As stated in U.S. Patent No. 4,947,850 (col. 3, line 15) "porphyrins are preferably employed and said compositions are preferably admixed with proteinaceous compositions which bind with the phosphorescent composition.... Albuminious...compositions are preferred." As described in their publication Vanderkooi, J. et al., "An Optical Method for Measurement of Dioxygen Concentration Based Upon Quenching of Phosphorescence", J. Biol. Chem., 262(12): 5476-5482 (April 1987), the technique will simply not work without albumin or some other large molecular mass protein bound to the probe molecule. When injected intravenously into the blood the large molecular mass protein (M.W. = 67,000) prevents the probe molecule from passing through the small junctions or lipid membranes of the blood vessel wall, and thereby limits the measurement to oxygen concentration in the blood. Similarly, U.S. Patent No. 4,579,430 (Bille) discloses an invention that allows the determination of oxygen
saturation, percentage binding of \(\text{O}_2 \) to blood hemoglobin, within retinal vessels. In a host of diseases the oxygen saturation and oxygen concentration of the blood, as revealed by previous patents, remains normal although the tissue is believed to become hypoxic. Such diseases include diabetes, retinopathy of prematurity, and hypertensive and arteriosclerotic diseases. Similarly, during long surgeries, such as bypass surgery, carotid artery surgery and during prolonged intensive care, the oxygen saturation and/or concentration of the blood is carefully monitored and maintained, yet moderate to severe brain damage due to hypoxia has been known to occur. It is the oxygen concentration within tissues which is relevant to its functioning and health, and tissue oxygen concentration depends upon tissue oxygen consumption rate, blood velocity, and vessel caliber, in addition to blood oxygen concentration or saturation. Therefore, it is of paramount importance to be able to measure the PO\(_2\) of tissue in space and time.

The noninvasive, topographic measurement of tissue PO\(_2\) was addressed in the Zuckerman '173 patent. In this patent, a highly lipid soluble probe substance, such as sodium pyrenobutyrate, is injected intravenously or intraperitoneally, or applied topically when appropriate. The lipid soluble, biocompatible probe substance leaves the blood and accumulates within the lipid bilayers of tissue cells. Here the probe is essentially the tissue itself, once pyrenobutyrate accumulates within the lipid bilayers of its cells. This and the digital imaging system detailed within the patent allows the first topographic determination of tissue oxygen concentration, which supports tissue health and function. The concentration of \(\text{O}_2 \) is determined in the Zuckerman '173 patent by the measurement of fluorescence intensity, according to the Stern-Volmer equation, written in terms of fluorescence intensities. The invention of the Zuckerman '173 patent, although allowing the first noninvasive determination of tissue PO\(_2\) in space and time, suffers from two deficiencies which preclude its clinical application, and which presently limits its utility to research applications on laboratory animals. The most significant limitation results from the fact that fluorescence intensity is determined by both the concentration of pyrenobutyrate in space within tissues, which varies due to spatial differences in lipid composition of the cells within tissues, as well as by the spatial distribution of tissue oxygen concentration. To circumvent this problem, and to extract the oxygen concentrations at a plurality of locations, the fluorescence intensity at each locus is ratioed against the fluorescence intensity of the same location when the tissue
is brought to a PO$_2$ of 0 mm Hg (in the absence of oxygen). This may be accomplished by breathing the animal on 100% N$_2$ at the end of the experiment. Such a procedure cannot be applied clinically on humans as it would undoubtedly result in cell death, evidenced in brain damage or death. The second deficiency in the invention of the Zuckerman '173 patent resides in the optical filtering effects of blood on the fluorescence intensities at the emission wavelength of pyrenebutyrate. This may similarly be corrected in a laboratory situation by the separate measurement of the optical density of blood within the vasculature of the imaged tissue.

Both of the deficiencies in the device and method of the Zuckerman '173 patent may be obviated by the direct measurement of fluorescence lifetime (decay) instead of fluorescence intensity. Measurement of fluorescence lifetime at a given PO$_2$ and within a given tissue, once determined in a laboratory calibration of the instrument, would obviate the need to bring the tissue to a PO$_2$ of 0 mm Hg in the clinic, as the fluorescence decay constant is independent of pyrenebutyrate concentration, and is similarly unaffected by the absorbance of blood within the vasculature. However, fluorescence lifetime occurs on the timescale of nanoseconds (10$^{-9}$ sec), and in addition to the cumbersome and expensive apparatus required directly to measure such short fluorescence lifetimes at a plurality of locations, would require intense pulsed laser excitation (pulse duration <20 nanoseconds) of the tissue at the ultraviolet excitation wavelength to achieve usable signal-to-noise ratios. Since the quantum efficiency of pyrenebutyrate and other fluorescent probe molecules is generally less than 0.5, photon absorption which is not converted into emitted radiation by fluorescence would be converted to heat, thereby causing tissue damage. Tissue damage subsequent to an intense laser pulse, used in a time-resolved direct fluorescence lifetime determination, is the major drawback to the use of this approach in vivo. Herein resides the need for a method for the topographic measurement of oxygen concentration in vivo by a steady-state, rather than time-resolved, procedure which provides an indirect determination of fluorescence lifetime.

In view of the deficiencies of the prior art, it would be desirable to have a method which can be applied in numerous forms and which allows the determination of bodily fluid, blood, and tissue PO$_2$ in space and time by an indirect determination of fluorescence lifetime. Such a method would allow the construction of an O$_2$-sensitive
catheter, which may be inserted into a blood vessel, and which does not require cumbersome external calibration prior to its every usage. Similarly, such a method would, by intravenous injection of a biocompatible lipid soluble fluorescent dye, and by the application of digital image processing techniques, allow the topographic determination of tissue PO₂, as well as the determination of blood PO₂ within the vasculature of the imaged tissue. By extension, the application of optical serial sectioning methodologies would allow the first determinations of tissue and blood PO₂ distributions in three dimensions, tomographically within a volume of imaged tissue. Most importantly, such a procedure would be eminently suitable for clinical applications involving diagnosis and treatment of vascular, metabolic and other diseases in humans. Moreover, a methodology for the indirect, steady-state determination of luminescence lifetimes would be equally applicable to the measurement of the concentrations of numerous other substances of biologic and physical importance, in addition to dioxygen, in time and space.

OBJECTS OF THE INVENTION

Accordingly, it is a general object of this invention to provide an apparatus and methods for the determination of the concentration and distribution in space of numerous substances of biologic and physical import in vivo and in vitro by the steady-state determination of luminescence lifetime.

It is a further object of the invention to provide a method and apparatus for the in vivo topographic determination of tissue and bodily fluid oxygen concentration or PO₂ within an imaged tissue, as well as a method and apparatus for measuring blood or bodily fluid PO₂ with a fiber optic catheter which overcomes the disadvantages of the prior art.

It is a further object of this invention to provide an in vivo method and apparatus for determining tissue and bodily fluid oxygen concentration using a fluorescent probe substance whose fluorescence lifetime is quenched by molecular oxygen, and oxygen concentration or PO₂ is determined by measuring the fluorescence anisotropy of the fluorescent probe substance.

It is another object of this invention to provide an in vivo method and apparatus for determining tissue and bodily fluid oxygen concentration which is accurate, non-intrusive and provides reproducible results.
SUMMARY OF THE INVENTION

These and other objects of this invention are achieved by providing an apparatus and methods for the determination of the concentration and distribution of numerous substances of biologic and physical import, in vivo and in vitro, by means of the steady-state determination of luminescence lifetime. In the general instance, a fluorophore whose excited state is quenched by the substance in question is free to undergo Brownian rotation alone or when conjugated to a carrier molecule within a medium of suitable viscosity. The analysis medium is irradiated with continuous linearly polarized light at a wavelength strongly absorbed by the fluorophore. The emitted fluorescence is resolved into its vector components parallel and perpendicular to the plane of polarization of the excitation light, thereby permitting the calculation of the fluorescence anisotropy of the irradiated specimen. The concentration of the quencher is determined by applying a mathematical function which relates the fluorescence anisotropy of the fluorophore to the concentration of the quencher. For the determination of the concentration of substances which do not themselves quench excited states a quantity of the substance under measurement is conjugated to a quencher molecule or an energy transfer acceptor molecule and a competition reaction is set up in which the luminescently labelled substance and the unlabelled substance within the sample compete for sites on a labelled carrier molecule. To the extent that the concentration of unlabelled substance in the sample increases and displaces labelled material on the carrier molecule the luminescence lifetime of the carrier fluorophore will increase. The fluorescence anisotropy is measured at the emission band of the luminescent label on the carrier molecule and the concentration of the substance under measurement is determined by applying an empirically determined mathematical function which relates fluorescence anisotropy to the concentration of the substance being measured.

In the specific instance of the quencher dioxygen the objects of the invention are met by providing an apparatus and methods for the in vivo topographic determination of tissue and bodily fluid oxygen concentration or \(\text{PO}_2 \) within an imaged tissue, as well as a method for measuring blood or bodily fluid \(\text{PO}_2 \) with a fiber optic catheter. In the first method, a lipid soluble, biocompatible fluorescent probe substance is administered to an animal body and accumulates within the lipid bilayers of its tissue cells. In the second method, the fluorescent probe substance is conjugated to a large molecular mass
protein which causes it to be retained within a bodily fluid such as blood. In the third method describing a catheter design, in which PO₂ is measured at the catheter tip, the tip contains the fluorescent probe substance dissolved in a viscous nonpolar solvent. In all methods described, a fluorescent probe substance is preferred whose fluorescence lifetime is quenched by molecular oxygen, and oxygen concentration or PO₂ is determined by measuring the fluorescence anisotropy of the fluorescent probe substance. The bodily fluid or tissue containing the biocompatible fluorescent probe substance, or the fluorescent probe substance in a nonpolar solvent within a catheter tip, is irradiated with continuous linearly polarized ultraviolet light at a wavelength strongly absorbed by the fluorophore. The emitted fluorescence is resolved into its vector components parallel and perpendicular to the plane of polarization of the excitation light, thereby permitting the calculation of the fluorescence anisotropy of the irradiated specimen. Tissue and/or bodily fluid PO₂ of the imaged specimen, or the PO₂ of a fluid at the tip of a sealed catheter, is determined by applying a mathematical function which relates the fluorescence anisotropy of an O₂-quenchable fluorophore to oxygen concentration or partial pressure.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and many attendant features of this invention will become readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

Fig. 1 is a theoretical plot of the fluorescence anisotropy of an O₂-quenchable fluorophore dissolved in a nonpolar solvent as a function of the oxygen partial pressure (PO₂) of the fluorophore-containing solution. A family of curves is derived from equation 6 for the range of Brownian rotational motions (R) known to occur in the lipids of living tissue cells. Fluorescence anisotropy increases monotonically with increasing PO₂ at all rotational rates.

Fig. 2 is a schematic illustration of an imaging apparatus used to determine the topographic distribution of tissue and bodily fluid PO₂ within an imaged specimen.

Fig. 3 is an apparatus of the present invention used to measure the oxygen concentration or PO₂ of a fluid contacting the tip of a sealed fiber optic catheter.
Fig. 4 is a schematic illustration of a data processor (of microprocessor design) which may be used to implement the calculations necessary to determine PO\(_2\) at the catheter tip. MUX is a multiplexer; T is temperature, and G is an empirical constant used to correct for the dichroic mirror's transmission efficiency in the parallel and perpendicular planes for linearly polarized light. \(I_1\) and \(I_2\) are the resolved intensities of fluorescence emission respectively parallel and perpendicular to the plane of polarization of the excitation light.

Fig. 5 is a graphical illustration of PO\(_2\) levels measured parallel (upper) and perpendicular (lower) to a retinal arteriole within the retina of an isolated and perfused bovine eye. The longitudinal PO\(_2\) drop parallel to the arteriole is fit (solid line) by the indicated theoretical function, while the PO\(_2\) measured perpendicular to the arteriole is fit (solid curve) by the Krogh mathematical model. \(R^2\) is the coefficient of determination.

Exhibit A is the source code excerpted from "Software for the Acquisition, Manipulation and Analysis of Video Images", Copyright 1993, Biometric Imaging, Inc.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention addresses several problems inherent in the prior art. The invention is based upon the well-accepted physical principle that absorption and emission of photons by fluorophores occur via electric dipole transition moments which have well-defined orientations within the molecular frame of the fluorophore. In a nonpolar solvent or lipid bilayer containing randomly oriented fluorophores only suitably oriented molecules can be excited by linearly polarized light, thus creating a nonequilibrium orientation of excited and fluorescing molecules. This anisotropy, and its rotational relaxation, are reflected in the polarization of the emitted light. The case of time-resolved fluorescence anisotropy induced by a pulse of linearly polarized light may be described by the following equation:

\[
A(t) = A_0 e^{-dR_t}
\]

where \(A\) is fluorescence anisotropy, \(t\) is time of observation after pulsed excitation, \(\bar{R}\) is mean molecular rotation time in radians/sec, and \(A_0\) is the fluorescence anisotropy in the "frozen" state, in the absence of Brownian rotation. However, if fluorescence anisotropy
is measured with steady-state, continuous excitation, \(A \) is an average of the time-resolved decay over time weighted by the decay of intensity:

\[
A(\tau) = \frac{\int_0^\infty e^{-t/\tau} A(t) dt}{\int_0^\infty e^{-t/\tau} dt} = \frac{1}{\tau} \int_0^\infty e^{-t/\tau} A(t) dt
\]

where \(\tau \) is the fluorescence lifetime of the fluorophore.

Carrying out the transform results in the Perrin equation:

\[
A = \frac{A_0}{1 + 6\bar{R}\tau} \quad \text{or} \quad \frac{A_0}{A} = 1 + 6\bar{R}\tau
\]

which for an ideal spherical molecule becomes:

\[
\frac{A_0}{A} = \frac{1 + R_s T}{\eta V \tau}
\]

where \(R_s \) is the gas constant, \(T \) is temperature, \(\eta \) is viscosity, and \(V \) is the fluorophore's hydrodynamic volume.

The present invention considers, for the first time, the case of an \(O_2 \)-quenched fluorophore, such as sodium pyrenebutyrate, accumulated within a nonpolar solvent or lipid bilayer, such as those found in all tissue cells in the body. The fluorescence lifetime of the fluorophore may be related respectively to oxygen concentration or partial pressure by the following forms of the Stern-Volmer relation:

\[
\tau = \frac{\tau_o}{1 + K_D[O_2]} \quad \text{or} \quad \frac{\tau_o}{1 + \alpha K_D \text{PO}_2}
\]

where \(\alpha \) is the Bunsen solubility coefficient, \(K_D \) is the dynamic quench constant, and \(\tau_o \) is fluorescence lifetime in the absence of \(O_2 \). By combining equations 3 and 5, we derive a mathematical relationship which formally relates oxygen partial pressure to steady-state fluorescence anisotropy:

\[
\text{PO}_2 = \frac{A_o - A(6\bar{R}\tau_o + 1)}{\alpha K_D(A - A_o)}
\]
Equation 6, therefore, is the central and novel concept of the present invention, and demonstrates that steady-state fluorescence anisotropy measurements may be used as a precise procedure, which may be implemented in simple configurations, to determine (i) the PO$_2$ of tissues in space and time subsequent to the accumulation of an O$_2$-quenchable fluorophore within the lipid bilayers of its tissue cells, (ii) the topographic distribution of blood PO$_2$, subsequent to the accumulation of the fluorophore within the lipid bilayers of red blood cells, or for a fluorophore conjugated to a protein injected into the blood stream and (iii) the PO$_2$ at the tip of an insertable catheter whose tip contains a fluorophore such as pyrene in a nonpolar solvent or lipid such as mineral or paraffin oils, separated from the sample by an O$_2$-permeable membrane.

The mathematical relation expressed in equation 6 is plotted in Figure 1 for the range of Brownian rotational motions known to occur in the lipids of tissue cells. As shown in Fig. 1, steady-state fluorescence anisotropy increases in a systematic way with increasing values of PO$_2$ at all rotational rates. In other words, as PO$_2$ is raised the fluorescence lifetime of the fluorophore is shortened (equation 5), thereby reducing the angle swept out by the fluorophore during its lifetime. Fluorescence anisotropy, therefore, increases with increasing PO$_2$. The other variables which would affect fluorescence anisotropy in such a situation, in addition to PO$_2$, are temperature and viscosity of the lipid bilayer. However, it is well known that in the case of an imaged tissue and/or vasculature in vivo, the body superbly regulates these variables. Similarly, a catheter with an O$_2$-sensitive tip of small volume will quickly come into equilibrium with the temperature of the blood within a blood vessel into which it is inserted. Moreover, as demonstrated in equation 4, small variations in body or catheter tip temperature encountered in some disease states may be compensated for precisely by concomitant temperature measurement and the application of this equation to the calculation of PO$_2$ from steady-state fluorescence anisotropy measurements.

The present invention has all of the advantages of a direct fluorescence lifetime system, without the need for intense, pulsed laser excitation and its potentially damaging effects on the imaged specimen. In addition, the cumbersome and expensive equipment required to measure fluorescence decays in the 40-135 nanosecond range are avoided. Similarly, since steady-state, continuous fluorescence anisotropy determinations are the time average of a huge number of fluorescence decay events, such steady-state
measurements must be more precise than any time-resolved procedure. The present invention determines PO$_2$ by measurement of steady-state fluorescence anisotropy, while in U.S. Patent No. 4,476,870 (Peterson) as well as Zuckerman '173 patent, fluorescence intensity is the variable measured. Furthermore, the present invention differs from the invention disclosed in U.S. Patent No. 4,810,655 (Khalil et. al.) and that of U.S. Patent No. 4,947,850 (Vanderkooi) in that both patents determine PO$_2$ from direct measurements of the lifetimes of phosphorescent substances. Phosphorescing substances have much longer, and therefore easier to measure, lifetimes than the preferred fluorescing substances employed in this invention. In the present invention, an indirect measure of fluorescence lifetime, viz. fluorescence anisotropy, is employed in simple-to-implement configurations to provide measurements of tissue and bodily fluid PO$_2$ in vivo, without the limitations of the prior art.

Although presented above for the specific case of a methodology for the determination of oxygen concentration or partial pressure, the mathematical derivation which relates the concentration of the quencher dioxygen to fluorescence anisotropy may be rewritten for the general case of any fluorophore whose excited state may be quenched, and the concentration of the quencher thereby determined. Considering the more general case, equation 5 may be rewritten for any fluorophore whose fluorescence is quenched by a substance according to the Stern-Volmer relation, as shown below:

$$\tau = \frac{\tau_0}{1 + K_D [Q]}$$

(7)

where [Q] is the concentration of the quencher of a given fluorophore. Similarly, equation 6 may then be rewritten for the relationship of fluorescence anisotropy to quencher concentration as follows:

$$[Q] = \frac{A_o - A(6\bar{R}\tau_0 + 1)}{K_D(A - A_o)}$$

(9)

Consequently the present invention, although presented for the specific case of the quencher dioxygen, should be viewed as a general methodology for the determination of the concentration of any quencher of excited states. In practice, the resolution of the technique may be optimized for a given fluorophore and quencher by adjusting the
viscosity of the medium, and therefore the rotational velocity of the fluorophore, to the fluorescence lifetime of the fluorophore in the absence of quencher. This may be accomplished for a lipid soluble fluorophore by choosing a lipid of appropriate viscosity, or for a nonlipid soluble fluorophore by conjugating the fluorophore to a carrier molecule of sufficient hydrodynamic volume in a medium whose viscosity is manipulated by adjusting glycerol concentrations in a glycerol-water mixture or sucrose concentration in a sucrose-water medium. Although not meant to be an inclusive list of the classes of fluorophores and quenchers to which the invention may be applied, one might consider the steady-state measurement of pH for the fluorophore fluorescein, or a fluorescein derivative, whose fluorescence lifetime is quenched by protons. Similarly, chloride concentrations may be determined using the same steady-state methodology employing the fluorophore quinine, or the concentration of iodide determined using the fluorophore γ-pyrenebutyric acid. It will then be obvious to one skilled in the art that the general methodology presented herein may be applied for the detection of a host of ion and other quencher concentrations by selecting the appropriate fluorophore-quencher combination and, by manipulating viscosity, thereby adjusting the rotational velocity of the fluorophore to the range of fluorescence lifetimes encountered over the desired quencher concentration range.

In addition to the application of the present invention to the determination of the concentrations of quenchers of excited states, the methodology may be further extended to encompass the determination of the concentration of any substance of interest in a sample. In this embodiment of the invention, a fluorophore is conjugated to larger carrier molecule which has a high affinity for the the substance in question. Similarly, a quantity of the substance to be measured is conjugated to a quencher of the excited state of the carrier fluorophore. The fluorescently-labelled substance along with the sample, containing a quantity of the unlabelled substance to be determined, is added to the analysis mixture, resulting in a competition for sites on the carrier molecule. This competition will displace quencher-labelled molecules from the carrier, thereby increasing the fluorescence lifetime of the carrier fluorophore. An increase in the lifetime of the carrier fluorophore will in turn reduce the fluorescence anisotropy of the sample measured at the emission wavelength of the carrier fluorophore. Therefore, in this embodiment of the invention fluorescence anisotropy will decrease with increasing
sample concentrations of the substance whose concentration is to be determined. In
other words, as the concentration of the substance under analysis is raised the number
of quenchers on the carrier is reduced, thus increasing the fluorescence lifetime of the
carrier fluorophore (equation 7), thereby increasing the angle swept out by the carrier
fluorophore during its lifetime. Fluorescence anisotropy, therefore, decreases with
increasing concentration of the substance under measurement.

An interesting choice for the two fluorophores employed in this methodology
would represent energy donor and acceptor molecules capable of Förster energy transfer.
The basic paradigm of Förster energy transfer involves the excitation of the donor
molecule with light of a wavelength lying within the absorption region of the donor. A
small amount of the excitation energy is given up to the surroundings in the form of
vibrational energy of the molecule (transition to the lowest vibrational state of the
electronically excited molecule); the remainder can be given off either through emission
of fluorescent light or by energy transfer to the acceptor molecule. The efficiency of the
energy transfer depends upon the quantum yield of the donor, the degree of overlap
between the emission spectrum of the donor and the absorption spectrum of the
acceptor, and the orientation and distance between the donor and acceptor. Depending
upon the extent to which the above conditions are met, the approximation of the
acceptor and donor molecules in space will result in a shortening of the fluorescence
lifetime of the donor fluorophore. When donor-acceptor pairs are used according to the
method described above, fluorescence anisotropy measured at the emission wavelength
of the donor will decrease with increasing concentration of the measured substance in
the sample. A significant advantage of employing Förster energy transfer donor-acceptor
pairs is the ability to shift the absorption band of the donor to longer wavelengths,
thereby permitting the use of less expensive light sources such as light emitting diodes
(LEDS) and laser diodes.

The embodiment of the invention employing energy transfer donor-acceptor pairs
will be illustrated by two nonlimiting examples. Consider first a detection system
designed to detect the quantity of a hormone (protein). A polyclonal antibody raised
against the protein is labelled with FITC (fluorescein isothiocyanate), and thus serves as
the donor, while a quantity of the protein is labelled with malachite green isothiocyanate,
thereby providing a suitable acceptor. These labelled molecules, along with the
unlabelled protein within the sample, are admixed in a glycerol-water buffer to provide
the appropriate viscosity. The mixture is illuminated with linearly polarized light at the
absorption wavelength for FITC, and the fluorescence anisotropy of the sample
determined at the emission wavelength of FITC (donor emission). As the quantity of
the unlabelled protein (hormone) in question increases in the sample it will compete off
protein labelled with acceptor fluorophores, thereby increasing donor fluorescence
lifetime. Therefore, the fluorescence anisotropy at the FITC emission band (donor
wavelength) will decrease systematically as a function of increasing unlabelled protein
concentration in the sample. As a second example, consider a system designed to
measure blood glucose levels. In this case one might employ concanavalin A (ConA)
as the carrier molecule, which has a high affinity for glucose, labelled with Cascade Blue
as the donor fluorophore and a quantity of fluorophore-labelled glucose such as 6-NBD-
glucosamine (6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-deoxyglucose) as the
acceptor. In this system, glucose in the blood will compete off fluorescently labelled
glucose thereby resulting in a decrease in the fluorescence anisotropy measured at the
Cascade Blue emission band. Although two nonlimiting examples have been provided
it will be obvious to one skilled in the art that the basic method disclosed herein may be
adapted to determine the concentrations of a host of substances such as saccharides,
DNA fragments, hormones, drugs, and immunoglobulins.

The following figures depict embodiments of the present invention for the
topographic measurement of tissue PO₂ and the topographic determination of the
distribution of blood PO₂ within the vasculature of an imaged tissue. In addition, a
catheter design, which does not require calibration prior to every usage is also disclosed.
It would be readily appreciated by one skilled in the art that in view of this disclosure,
however, that other specimens, biologic or physical, might be assessed with respect to
their concentrations and distributions in space by variations of the designs herein
disclosed using the method of the present invention.

As shown below, fluorescence anisotropy is operationally defined in the general
case, and formally described in the specific case for the quencher dioxygen, by the
following equation:

\[A = \frac{I_G - I_\perp}{I_G + I_\perp} = \frac{A_0(\alpha K_0 P_O^2 + 1)}{6Rr_0 + \alpha K_0 P_O^2 + 1} \]

where \(I_G \) and \(I_\perp \) are the intensities of fluorescence emission with their electric vectors respectively parallel and perpendicular to that of the linearly polarized exciting radiation, and \(G \) is an empirical correction factor used to correct for the dichroic mirror's transmission efficiency in the parallel and perpendicular planes, and where additional symbols used in the formal definition of anisotropy are as described above.

Fig. 2 is a schematic of an apparatus 10 designed for the topographic mapping of tissue and blood \(P_O^2 \) in an imaged tissue. An \(O_2 \)-quenchable, biocompatible probe substance, such as sodium pyrenebutyrate in a suitable solvent or incorporated in liposomes, is injected intravenously into the host organism. The tissue 12 is illuminated with nonpolarized visible light by a fiberoptic illuminator 14 utilizing a tungsten source.

The radiant energy of a high pressure mercury bulb 18 is gathered by a collector lens 20, is shuttered by a shutter 22, and passes through a Glan-Thompson polarizer 24 (Ealing, Inc.). The UV light is spectrally shaped by an excitation filter 26 (340 nm peak, 25 nm half bandpass) and is then reflected by a dichroic mirror 28 (Omega Optical) which reflects wavelengths <400 nm through an objective lens 30 to the imaged tissue.

Emitted fluorescence (wavelengths >400 nm) from the excited tissue 12 is gathered by the objective lens 30 and passes through the dichroic mirror 28, and through an emission filter 32, which passes wavelengths from 400-420 nm to a Wollaston prism polarizer 34 which resolves the emitted fluorescence into its linearly polarized components parallel 36 and perpendicular 38 to the plane of excitation polarization. The vector components \(I_G \) and \(I_\perp \) are respectively and simultaneously detected by the CCD (charge coupled devices) chips of two video cameras 40A and 40B (e.g. Xybion model 250). It is obvious to one skilled in the art that alternative optical detectors with sufficient spatial resolution, such as slow scan chilled CCD cameras, SIT or ISIT tube cameras, or photodiode arrays (not shown) would also be suitable for the detection of the two-dimensional distributions of the parallel and perpendicular components of the emitted fluorescence. The outputs of the two video cameras are digitized by two digitizing boards 42A and 42B (such as sold by Imaging Technologies or under the designation
model DT3851 by Data Translation) within a microcomputer 44, (e.g., an IBM® or clone computer, preferably having a processing chip operating at 33 or 66 MHz). Such a device is sufficient for the task and for subsequent image processing prior to display on the monitor 46.

The computer utilizes the software which is produced and copyrighted by Biometric Imaging Inc. The source code for that software is attached hereto and allows the variation of the slopes and offsets at each pixel location within the CCD array to be corrected by a correction file, thereby ensuring uniform responsivity across the detector array. Similarly, the software package allows pixel intensities within the array to be quantified, filtered, averaged, and anisotropy to be calculated at a plurality of locations by means of equation 9 and converted to a two dimensional representation of tissue PO₂ by the application of equation 6 at each pixel locus. The present prototype apparatus allows the gathering of more than 300,000 values of tissue PO₂ in space within approximately 33 milliseconds. The values for the constants in equation 6 are determined during calibration experiments which involve the simultaneous measurement of tissue PO₂ by an oxygen microelectrode and by the indirect lifetime (anisotropy) system.

Should the autofluorescence of the tissue at the emission wavelength show some degree of anisotropy, due to the presence of endogenous fluorophores with short fluorescence lifetimes (< 20 nanoseconds), and which are therefore not quenched by physiologic levels of O₂, then such "auto-anisotropy" can be imaged and saved to disk prior to the injection of the biocompatible, O₂-quenchable fluorescent probe substance. In this case, subsequent to the injection of the O₂-quenchable probe substance, the total anisotropy (A_{total}) can be related to its component anisotropies ("auto-anisotropy" or A_{tissue}, and the O₂-dependent anisotropy, A_{probe}) by the following equation:

\[
A_{total} = \frac{a(A_{tissue}) + b(A_{probe})}{a + b}
\]

where \(a + b = 1\). The O₂-dependent anisotropy can then be separated from the total anisotropy by equation 11, where \(A(PO₂)\) is the PO₂-dependent anisotropy, and \(a\) is a constant determined empirically in experiments in which tissue PO₂ is measured
simultaneously by an O₂ microelectrode and by optical measurements of fluorescence anisotropy.

\[A_{\text{probe}} \text{ or } A(\text{PO}_2) = \frac{A_{\text{total}} - a(A_{\text{tissue}})}{1 - a} \]

(II)

This correction can be rapidly and conveniently implemented on a pixel-by-pixel basis by programs within the software package.

An immediate advantage of the present procedure over the invention of the Zuckerman '173 patent, which depends upon the measurement of fluorescence intensities rather than anisotropy, should be evident to those skilled in the art. That is, in that patent, tissue PO₂ measurements can only commence after the O₂-quenchable fluorescent probe substance has reached equilibrium (stable) concentrations within the imaged tissue since fluorescence intensity in space and time is related to the concentration of probe in the tissue as well as to tissue PO₂. In the indirect lifetime system herein depicted, fluorescence anisotropy, which is insensitive to probe concentration, rather than intensity is the determinant of tissue PO₂, thereby allowing PO₂ measurements to commence as soon as sufficient probe substance has accumulated to provide suitable signal-to-noise levels. Similarly, the anisotropy method is insensitive to the time-dependent degradation of the probe substance by metabolism, thereby permitting tissue PO₂ to be determined topographically for extended time periods.

It should be pointed out at this juncture that pseudocoloring programs are contained in the software package of Exhibit A to allow optical maps of tissue PO₂ to be depicted in two dimensional space by assigning different hues to different values of tissue PO₂, with an accompanying scale which would allow rapid interpretation of the distribution of tissue PO₂ by the clinician. The programs written to implement the indirect lifetime system can proceed essentially in "real time", thereby allowing the clinician to view immediately the effects of treatment modalities designed to increase tissue oxygenation (e.g. laser treatment employed to increase retinal tissue PO₂ used frequently in the treatment of diabetic retinopathy).

The power of the indirect lifetime system in imaging tissue PO₂ can be extended from two to three dimensions by the implementation of optical serial sectioning either by confocal techniques or by the application of digital deconvolution programs, such as those contained in Exhibit A. In this manner a topographic view of tissue PO₂ can be
effected, allowing tissue and blood PO₂ to be imaged in three dimensions within volumes of tissue. Such three-dimensional information could be conveniently pseudocolored, and by means of three-dimensional reconstruction algorithms, be depicted on the monitor screen. Optical serial sectioning and 3-D reconstruction would allow the clinician to detect and treat abnormal regions of tissue PO₂ located at various depths within the imaged tissue.

Fig. 3 shows an apparatus 50 constructed in accordance with the present invention to implement the indirect fluorescence lifetime system in a sealed catheter design which does not require calibration prior to its every usage. As in the previous embodiment the radiant energy of a high pressure mercury bulb 52 is gathered by a collector lens 54, is shuttered via shutter 56, and passes through a Glan-Thompson polarizer 58 (such as sold by Ealing, Inc. under the designation of catalog number 34-5223). The UV light is spectrally shaped by an excitation filter 60 (340 nm peak, 25 nm half bandpass) and is then reflected by a dichroic mirror 62 (such as sold by Omega Optical under the designation 400DCLP) which reflects wavelengths <400 nm through an objective lens 64. A single mode polarization-preserving glass fiber 66 (such as sold by Ealing, Inc., under the designation model HB450) is fixed at the focal point of the objective lens. The core diameter of such fibers is typically <10 microns, thereby permitting an exceedingly narrow catheter to be designed. In the case of a narrow submillimeter catheter, the linearly polarized light passes directly to the O₂-sensitive tip 68, whereas for larger diameter catheters the glass fiber 66 is mounted at the focal point of a collimating lens 70 which is used to provide uniform illumination of the catheter tip 68. The sealed O₂-sensitive tip 68 contains a quartz plate 72 which separates the optical components from the nonpolar viscous medium 74 in the tip 68. The catheter tip 68 contains a nonpolar viscous medium 74 such as paraffin or mineral oils in which pyrenebutyric acid or pyrene 76 is dissolved. Pyrene has a fluorescence lifetime approximately ten times that of pyrenebutyric acid or its salt form, thereby increasing the precision of the measurement, with an accuracy of PO₂ measurement of <1 mm Hg possible. The O₂-quenchable probe substance dissolved in a nonpolar viscous solvent is sealed within the catheter by an O₂ permeable membrane 78 such as polyethylene. A micro-thermistor 80 is also incorporated into the tip 68 of the catheter to allow simultaneous measurement of temperature, thus permitting temperature corrections to
be performed according to the relation described in equation 4. Since optics are reversible, the linearly polarized fluorescence emission from the probe tip 68 returns along the single mode polarization-preserving glass fiber and is collected by the objective lens 64. Wavelengths >400 nm pass through the dichroic mirror 62 and wavelengths from 400-420 nm pass through an emission filter 82 to a Wollaston prism polarizer 84, which resolves the emitted fluorescence into its linearly polarized components parallel 86A and perpendicular 86B to the plane of excitation polarization. The vector components (I\text{p} and I\text{v}) are respectively and simultaneously detected by two optical detectors 88A and 88B, which can be photodiodes or photomultiplier tubes.

Since the catheter design provides PO\textsubscript{2} measurement at a single locus, viz. at the catheter tip, anisotropy can be calculated from equation 9 and related to PO\textsubscript{2} according to equation 6, by means of a simple microprocessor design 90. Such a generic microprocessor design is illustrated in Fig. 4. Moreover, once the relations and constants employed in these equations are determined, they may be fixed and employed in every catheter manufactured, and each catheter need not be individually calibrated at the factory, or calibrated prior to its use in a clinical situation. This represents the considerable advantage of the present catheter design over previous designs which require constant recalibration in the factory as well as in the field.

EXAMPLE

To measure the topographic distribution of tissue PO\textsubscript{2} in retinal tissue, an imaging apparatus was set up as follows and as schematically illustrated in Fig. 2. A bovine eye was obtained from a local slaughterhouse and transported on ice to the laboratory. The isolated bovine eye was set up for normothermic arterial perfusion according to the procedures of de Coo, Zonnenberg and Trap (Current Eye Research, 12(4), 293-301, 1993), using oxygenated serum-free MEM (minimal essential medium) which was initially supplemented with 108 µM sodium pyruvate. After one hour of perfusion with MEM containing sodium pyruvate, the biocompatible, fluorescent probe substance reached equilibrium concentration in the retinal tissue, and the eye was subsequently perfused with oxygenated MEM alone during the period of time in which measurements of tissue PO\textsubscript{2} were performed. Corneal refraction was negated by a custom fundus lens made of UV transmitting glass (Optical Industries), and the retina was imaged first in visible light and a region of the retina selected which contained a retinal arteriole. Once
proper orientation was established visible light was discontinued, and the retinal tissue was illuminated with linearly polarized ultraviolet light (UV). The radiant energy of a high pressure mercury bulb was gathered by a collector lens, was shuttered, and passed through a Glan-Thompson polarizer (Ealing, Inc.). The UV light was spectrally shaped by an excitation filter (340 nm peak, 25 nm half bandpass) and was then reflected by a dichroic mirror (Omega Optical) which reflects wavelengths <400 nm through an objective lens to the imaged retinal tissue. Emitted fluorescence (wavelengths >400 nm) from the excited tissue was gathered by the objective lens and passed through the dichroic mirror, and through an emission filter, which passed wavelengths from 400-420 nm to a Wollaston prism polarizer which resolved the emitted fluorescence into its linearly polarized components parallel and perpendicular to the plane of excitation polarization. The vector components (I_1 and I_2) were respectively and simultaneously detected by the CCD (charge coupled devices) chips of two video cameras (Xybion model 250).

The vector components of fluorescence emission parallel and perpendicular to the plane of excitation polarization were digitized by the previously identified two digitizing boards within the previously identified computer operating at 66 MHz, and stored to hard disk (not shown). The computer software of Exhibit A was run on the computer to allow the variation of the slopes and offsets at each pixel location within the CCD arrays to be corrected by a correction file in the software, thereby ensuring uniform responsivity across the detector array. Similarly, the software allowed anisotropy to be calculated at a plurality of locations by means of equation 9 and converted to a two dimensional representation of tissue PO_2 by the application of equation 6 at each pixel locus. This procedure allowed the gathering of more than 300,000 values of retinal tissue PO_2 in space within approximately 33 milliseconds. The values for the constants used in equation 6 were previously determined during calibration experiments which involved the simultaneous measurement of tissue PO_2 by an oxygen microelectrode and by the indirect lifetime (anisotropy) system. To test the validity and precision of the system and the resultant optical map of retinal tissue PO_2, PO_2 gradients were measured both parallel and perpendicular to the retinal arteriole, as the mathematical functions describing these relationships can be predicted from oxygen diffusion mathematics, and are well established in the literature. The results of these measurements are shown in
Fig. 5. Oxygen diffusion mathematics predicts that the longitudinal PO$_2$ drop in the tissue parallel to the arteriole should follow a linear relationship, whose slope is directly proportional to the oxygen consumption rate of the tissue (M) and inversely proportional to the velocity (V) of oxygen-containing solution within the arteriole times the square of the arteriolar diameter (D). As shown in the upper part of Fig. 5, the tissue PO$_2$ measurements along the length of the arteriole conform excellently to this well-established linear relationship, with a coefficient of determination (R^2) for a linear fit of 0.96 obtained; i.e., 96% of the variance in the data is accounted for by the expected linear fit. Similarly, the PO$_2$ gradient perpendicular to an arteriole should conform to a monotonically decreasing function which is described mathematically by the Krogh model. In Fig. 5 (lower) a Krogh model fit has been applied to the data with a goodness of fit (R^2) of 0.99; i.e., 99% of the variance in the data is accounted for by the expected mathematical relation. The data of Fig. 5, then, demonstrate that the indirect fluorescence lifetime system provides a noninvasive and valid method for evaluating tissue PO$_2$ in space and time.

While the present invention has been described in conjunction with preferred embodiments and illustrative examples, one skilled in the art after reading the foregoing specifications will be able to effect various changes, substitutions, and other alterations to the methods set forth herein. It is therefore intended that the protection granted by Letters Patent hereon be limited only by the definition contained in the appended claims and equivalents thereof.
/* initial grabber */

#include <stdio.h>
#include <dos.h>

#define BASEMEM 0xD000 /* memory base address */
#define RB 0x300 /* pcplus regster base address */

void ini_lut(void);
void ini_reg(void);

main()
{
 int i;

 ini_reg();
 ini_lut();

 ini_reg();
 ini_lut(); /* why does it need twice ? */
}

void ini_lut(void)
{
 int j;
 unsigned char i;

 outp(RB+1,0x00);
 for(j=0;j<=255;j++)
 { i=j;
 outp(RB+2,i); outp(RB+3,i); }

 outp(RB+1,0x01);
 for(j=0;j<=255;j++)
 { i=j;
 outp(RB+2,i); outp(RB+3,i); }

 outp(RB+1,0x02);
 for(j=0;j<=255;j++)
 { i=j;
 outp(RB+2,i); outp(RB+3,i); }

 outp(RB+1,0x03);
 for(j=0;j<=255;j++)
 { i=j;
 outp(RB+2,i); outp(RB+3,i); }
}

void ini_reg(void)
{
```c
outp(RB,0x16); outp(RB+1,3); outp(RB+2,0);
outp(RB+3,0); outp(RB+4,0x36); outp(RB+5,0x02);
outp(RB+6,0); outp(RB+7,0); outp(RB+8,0x40);
outp(RB+9,0); outp(RB+10,0); outp(RB+11,0);
}

/* clean the screen */

#include <stdio.h>
#include <dos.h>

#define BP 0x3F8 /* for com1. baseport register address*/
#define CONREG 0x300 /* pcplus register base address */

main()
{
    int i,j,k,line;
    unsigned int stat,ini_stat;
    unsigned char huge *mem;
    unsigned char huge *mem_keep;

    mem=mem_keep=(unsigned char huge *).MK_FP(0xD000,0);

    ini_stat=0x16;

    for(i=0;i<8;i++)
    {
        stat=(i<5)&0xe0;
        stat |=ini_stat;
        outp(CONREG,stat);
        line=64;
        if(i==7) line=32;
        for(j=0;j<line;j++)
        {
            for(k=0;k<640;k++)
            {
                *mem=0;
                mem++;
            }
            mem+=1024-640;
        }
        mem=mem_keep;
    }
}

/* This program is used to get integrating image from CCD camera.
Integrate signal is a positive impulse sent from port 0x3FC (modem
control register, DTR&RTS ON ), the snap signal from camera is sent
to port 0x3FD (modem status register ) */

#include <stdio.h>
#include <dos.h>
#include <time.h>
#include <string.h>
```

#include <alloc.h>
#include <dir.h>

#define BASEMEM 0XD000 /* memory base address */
#define BP 0x3F8 /* for com1. baseport register address*/
#define RB 0x300 /* pcplus register base address */

main()
{
 int m,j,test_times,x1,y1,x2,y2,th,tm,ts,sv1,sv2,img_num,real_openfile,time_delay;
 float i,ii,sample_value,test_value,sv,zeit_interval,zeit;
 char imname[30],datname[30],s1[30],s2[30],s3[30],c,overwr;
 FILE *fp,*datfile;
 unsigned char *pixel,n,value;
 unsigned char huge *mem;
 long zz,zzz;
 time_t anf_zeit,jetzt_zeit;
 int odd,even,k;
 struct fbblk ffbklk;

 printf("The datafile saves the information about your images,");
 do{
 overwr='y';
 printf("Uninput the datafile name-->");
 scanf("%s",datname);
 printf("\n");
 if(findfirst(datname,&ffblk,0)==0)
 {
 printf("--- Warning: the file already exists, overwrite it? (y) ");
 overwr=getche();
 }
 }while(overwr!="y");

 printf("\nThe name of your image has two attributes,\n");
 printf("the first is the NAME (e.g. 'myimage') given by user, \n");
 printf("the second is the IMAGE ORDER,(1,2,3,...) determined by the program.\n");
 printf("The image sequence will be myimage1,myimage2,......\n");
 scanf("%s",s1);
 printf("\n");

 datfile=fopen(datname,"wt"); /* set output signal low */
 mem=(unsigned char huge *)MK_FP(BASEMEM,0);
 outp(BP+4,0);
 /* initiate grabber's registers */

 /*
 **
 */
 inigrab();

 c="
 do{
 if(c==3) exit();
 printf("\n------------------------\n");

  ```
/* image grab */

value=inp(RB+5);
outp(RB+5,value|0xc0); /* for(j=0;j<10000;j++){ */

/* get area of interested */

printf("if ready, type 'I' to freeze image and get AOI: ");
while((c=getche())!=T) {
   if(c==3) exit();
};
printf("a");
outp(RB+5,0x82); /* do snap */

gtaoi(&x1,&y1,&x2,&y2);
x1++; y1++; x2--; y2--;
area_ave(x1,y1,x2,y2,&av);
printf("the area size is %dx%d. average value is %f.\n", 
x2-x1+1,y2-y1+1,av);
printf("AIO is OK?(y)");
} while((c=getche())!=y);

fprintf(datfile,"AOI size:(%d x %d); rectangular position: [(%d,%d),(%d,%d)].\n", 
x2-x1+1,y2-y1+1,x1-1,y1-1,x2+1,y2+1);
printf("\n");

img_num=0;
time_delay=0;
do{

/* inigrab(); */
outp(BF+4,0);
value=inp(RB+5);
outp(RB+5,value|0xc0); /* do grab again */

/* input integrated duration */

printf("-----------------------------------------\n");
if(time_delay==0)
{
   printf("Delay time(sec.): ");
   scanf("%f",&zeit); printf("\n");
   time_delay=1;
}
else {
   printf("delay time: %f sec., change it?(y): ",zeit);
   if(getche()==='y')
   {
      printf("undelay time(sec.): ");
      scanf("%f",&zeit);
   }
   printf("\n");
}
i=zeit;
ii=i;
test_times=0;
do{
    i=ii;
    outp(RB,0x16); value=inp(RB+5); outp(RB+5,value |0xc0);

    /* output integrating impulse */

    /* printf("integrating......."));
    i*=25000;
    */

    i*=100000;
    while(i>0)
    {
        outp(BP+4,3); /* set output signal high */
        i--;
    }

    outp(RB+5,0x82);
    for(i=0;i<10000;i++){} /* for 386 i<1000 */

    outp(BP+4,0); /* set output signal low */

    /* wait for grab signal */
    while(inp(BP+6)==1) {};

    /* get test value, if integrate not successful, do again */

    outp(RB,((5<<5)&0x0e0) | 0x16);
    test_value=100;
    test_times++;
} while(test_value<10 & & test_times<=2.);

/* store image into disk*/
show_time(&th,&tm,&ts,&jetzt_zeit);
area_ave(x1,y1,x2,y2,&av);
rectangular_show(x1-1,y1-1,x2+1,y2+1,255);
av=(2*av<255)? 2*av:255;
av1=av;
av1*=100;
av2=av;
av2/=100;
av=av;
outp(RB,(((1<<5)&0xe0)|0x16));

/*
     for(k=0;k<40;k++)
     {
         zz=1024;
         zz*=k;
         zz+=10;
         printf("%d ",* (mem+zz+10));
     }

     printf("un");
     */
odd=even=0;
for(k=0;k<50;k++)
{
    odd+="(mem+k);
    even+="(mem+k+1024);
}

if(odd>even) printf("-------this is the ODD field image: in",odd,even);
else printf("-------this is the EVEN field image: in",odd,even);
printf("-------average value is %d.%d, store image?(y) ",av2,av1);
if(getche()=='y')
{
    img_num++;
    printf("n");
    if(img_num==1) anf_zeit=jetzt_zeit;
    zeit_interval=jetzt_zeit-anf_zeit;
    zeit_interval/=60;
    do{
        overwr='y';
        strcpy(imname,s1);
        strcat(imname,s2);
        re_openfile=0;
        printf("the name of image %d is < %s >, change it(y):
        img_num.imname);
        if(getche()=='y')
        {
            printf("new name:");
            scanf("%s",imname);
        }
        printf("a");
        if((findfirst(imname,&fblk,0)==0))
        {
            printf("--- Warning: the file already exists, overwrite it(y) ");
            overwr=getche();
        }
    }while(overwr!='y');

    fp=fopen(imname,"wb");
    im_store=(fp,x1,y1,x2,y2);
    fclose(fp);
    if((odd>even)
        fprintf(datfile,"-- %s: mean_value(%f), time(%f min.), odd field\n", imname,av,zeit_interval);
    else
        fprintf(datfile,"-- %s: mean_value(%f), time(%f min.), even field\n", imname,av,zeit_interval);
    }

    printf("a");
    printf("Press q to quit, any other key to continue.a");
}

while(getche()!='q');

fclose(datfile);
printf("a");

}

inigrab()
{
    outp(RB,0x16); outp(RB+1,3); outp(RB+2,0);
    outp(RB+3,0); outp(RB+4,36); outp(RB+5,0x02);
    outp(RB+6,0); outp(RB+7,0); outp(RB+8,0x40);
    outp(RB+9,0); outp(RB+10,0); outp(RB+11,0);
}
#define CONREG 0x300

getaoi(x1,y1,x2,y2)
int *x1,*y1,*x2,*y2;
{
float xx1,yy1,xx2,yy2;

start_end_point(&xx1,&yy1,&xx2,&yy2);

*x1=xx1;  *y1=yy1;  *x2=xx2;  *y2=yy2;
rectangular_show(*x1,*y1,*x2,*y2,255);
}

rectangular_show(x1,y1,x2,y2,br)
int x1,y1,x2,y2,br;
{
line_show(x1,y1,x2,y1,br);
line_show(x2,y1,x2,y2,br);
line_show(x2,y2,x1,y2,br);
line_show(x1,y1,x1,y2,br);
}

area_ave(x1,y1,x2,y2,av)
int x1,y1,x2,y2;
float *av;
{
int i,j,x,y,k,start_line,end_line,start_blc,end_blc,
     start_y_offset,end_y_offset,line_offset;
unsigned char huge *mem;
unsigned char huge *mem_keep;
unsigned char ini_stat,stat;
unsigned char p;
long zz,zzz,testv1,testv2;

mem=(unsigned char huge *)MK_FP(BASEMEM,0);
x=x2-x1+1;
start_blc=y1/64;  end_blc=(y2+1)/64;
start_y_offset=y1%64;  end_y_offset=(y2+1)%64;
mem_keep=mem+x1;
zz=start_y_offset;  zz*1024;  zz+=x1;
mem +=zz;

/* fine the data line */
testv1=testv2=0;
for(i=0;i<x;i++)
{
testv1 +=*(mem+i);  testv2 +=*(mem+1024+i);
}
line_offset=(testv1>testv2)?0:1;

ini_stat=0x16;
zzz=zz=0;
for(i=start_blc;i<=end_blc;i++)
{
    stat=(i<5)&0x0c;
    stat |=ini_stat;
outp(CONREG, stat);

if(i == start_blk)
    start_line=start_y_offset+line_offset;
else
    start_line=0+line_offset;
if(i == end_blk) end_line=end_y_offset;
else
    end_line=64;

for(j=start_line;j<end_line;j+=2)
{
    for(k=0;k<x;k++)
    {
        zzz+=*mem;  zz++;  
        mem++;  
    }
    mem+=(1024-x);
}

mem=mem_keep;

}

*a+=zz;  *av+=zz;

}

point_show(xp,yp,br)
int xp, yp, br;
{
    unsigned char huge *mem;
    int block, y_offset;
    unsigned char status;
    long zz;

    mem=(unsigned char huge *)MK_FP(BASEMEM, 0);
    block=yp/64;  y_offset=yp%64;
    zz=1024;  zz*=y_offset;  zz+=xp;  mem+=zz;
    status=((block << 5) & 0x0f) | 0x16;
    outp(CONREG, status);  *mem=br;
}

line_show(x1,y1,x2,y2,br)
int x1, y1, x2, y2, br;
{
    /* start(small address)-----------> end(big address) */

    int pxx, yx, qx, ax, deltax, deltay;
    float qdx, dy;
    long zzz, zz;

    zz=y1;  zz*=1024;  zz+=x1;
    zzz=y2;  zzz*=1024;  zzz+=x2;
    if(zz>zzz)
    {
        x=x1;  x1=x2;  x2=x;
        y=y1;  y1=y2;  y2=y;
    }
    deltax=x2-x1;  deltay=y2-y1;
/*
 * printf("delta_x: %f %d %d ,delta_y: %f %d %d.");
 * 
 */

if(delta_x==0)
    for(p=0;p<=delta_y;p++)
        point_show(x1,y1+p,p,br);
if(delta_y==0)
    for(p=0;p<=delta_x;p++)
        point_show(x1+p,y1,p,br);
if(delta_x!=0 & & delta_y!=0)
    {
        a = (delta_x > 0) ? 1 : -1;
        dx = delta_x;
        dy = delta_y;
        if(a*delta_x >= delta_y)
            for(p=0;p<=aa*delta_x;p++)
                {
                    q = (dy*p)/(dx*aa) + 0.5;
                    q = q;
                    point_show(x1+aa*p,y1+q,br);
                }
        else
            for(p=0;p<delta_y;p++)
                {
                    q = (dx*p)/(aa*dy) + aa*0.5;
                    q = q;
                    point_show(x1+q,y1+p,br);
                }
/*
 * --draw show ok.
 */
}
}

#define CONREG 0x300

start_end_point(x1,y1,x2,y2)
float *x1,*y1,*x2,*y2;
{
    unsigned char huge *cross_buf;
    char b[4];
    int a,i,j,x,xx,yy,xx,yy,xx,yy,ey;

    x=320; y=240;
    cross_buf=(unsigned char huge *)calloc(41,1);

    for(i=0;i<2;i++)
        {
            xx=x; yy=y;
            do{
                if(i==0)
                    printf("current position---(%.1d,%.1d).\r",xx,yy);
                if(i==1)
                    {
                        printf("current position---(%.1d,%.1d), AOI size (%.1d,%.1d).\r",xx,yy,xx,yy,xx,yy,xy,xy,xy,xy);
                        if(xx-xy<0 || yy-yy<0)
                            {
                                sound(600); delay(100); nosound();
                            }
                    }
            }while(1);
        }
}
move_cross(kx,ky,cross_buf);
a=getch();
if(a==56) yy--;
if(a==57) yy+=10;
if(a==50) yy+=10;
if(a==49) yy+=10;
if(a==52) xx--;
if(a==55) xx+=10;
if(a==54) xx+=10;
if(a==51) xx+=10;
if(a==48) {   xx=320;   yy=240;   }
if(a>=48 && a<=57) recover_cross(kx,ky,cross_buf);
}while(a!=43);
if(i==0)
{
    sx=xx; sy=yy; point_show(sx,sy,255);
    *x1=xx;   *y1=yy;
    printf("\nup-left point(%d,%d).\n",sx,sy);
}
if(i==1)
{
    ex=xx; ey=yy; point_show(ex,ey,255);
    *x2=xx;   *y2=yy;
    printf("\nlow-right point(%d,%d).\n",ex,ey);
}

move_cross(xp,yp,cross_buf)
int xp,yp;
unsigned char huge *cross_buf;
{
    int i,xx,yy;
    unsigned char huge *mem;
    unsigned char huge *mem_keep;
    int block,y_offset;
    unsigned char status;
    long zz;

    mem=mem_keep=(unsigned char huge *)MK_FP(BASEMEM,0);
    for(i=-10;i<=10;i++)
    {
        yy=yp+i;   xx=xp;
        block=yy/64;   y_offset=yy%64;
        zz=1024;   zz+=y_offset;   zz+=xx;   mem+=zz;
        status=((block<=5)＆＆(0xe0)>5120);
        outp(CONREG,status);
        *cross_buf=*mem;   *mem=255;   cross_buf++;
        mem=mem_keep;
    }
mem=mem_keep;
block=yp/64;  y_offset=yp%64;
status=((block<5)&0xe0)|0x16;
outp(CONREG,status);
for(i=-10;i<=10;i++)
{
    mem=mem_keep;  xx=xp+i;
    zz=1024;  "zz"=y_offset;  zz+=xx;  mem+=zz;
    if(i!=0)
        {
            *cross_buf=*mem;  *mem=255;  cross_buf++;
        }
}

recover_cross(xp,yp,cross_buf)
int xp,yp;
unsigned char huge *cross_buf;
{
    int i,xx,yy;
    unsigned char huge *mem;
    unsigned huge *mem_keep;
    int block,y_offset;
    unsigned char status;
    long zz;

    mem=mem_keep=(unsigned char huge *)MK_FP(BASEMEM,0);
    for(i=-10;i<=10;i++)
        {
            mem=mem_keep;
            yy=yp+i;  xx=xp;
            block=yy/64;  y_offset=yy%64;
            zz=1024;  "zz"=y_offset;  zz+=xx;  mem+=zz;
            status=((block<5)&0xe0)|0x16;
            outp(CONREG,status);
            *mem=*cross_buf;  cross_buf++;
        }

    mem=mem_keep;
    block=yp/64;  y_offset=yp%64;
    status=((block<5)&0xe0)|0x16;
    outp(CONREG,status);
    for(i=-10;i<=10;i++)
        {
            mem=mem_keep;
            xx=xp+i;
            zz=1024;  "zz"=y_offset;  zz+=xx;  mem+=zz;
            if(i!=0)
                {
                    *mem=*cross_buf;  cross_buf++;
                }
        }

im_store(fp,x1,y1,x2,y2)
FILE *fp;
int x1,y1,x2,y2;
{  
  int i,j,x,y,k,start_line,end_line,start_blc,end_blc,  
  start_y_offset,end_y_offset;  
  unsigned char huge *mem;  
  unsigned char huge *mem_keep;  
  unsigned char ini_stat,stat;  
  unsigned char p;  
  long zz;  
  char ix[8],iy[8];  
  
  mem=(unsigned char huge *)MK_FP(BASEMEM,0);  
  x=x2-x1+1;  
  y=y2-y1+1;  
  itoa(x,ix,10);  
  itoa(y,iy,10);  
  for(i=0;i<8;i++)  
    fputc(ix[i],fp);  
  for(i=0;i<8;i++)  
    fputc(iy[i],fp);  
  start_blc=y1/64;  
  end_blc=(y2+1)/64;  
  start_y_offset=y1%64;  
  end_y_offset=(y2+1)%64;  
  mem_keep=mem+x1;  
  zz=start_y_offset;  
  zz*=1024;  
  zz+=x1;  
  mem+=zz;  
  ini_stat=0x16;  
  for(i=start_blc;i<=end_blc;i++)  
  {  
    stat=(i<5)&0xe0;  
    stat |=ini_stat;  
    outp(CONREG,stat);  
    
    if(i==start_blc)  
      start_line=start_y_offset;  
    else  
      start_line=0;  
    if(i==end_blc)  
      end_line=end_y_offset;  
    else  
      end_line=64;  
    for(j=start_line;j<end_line;j++)  
    {  
      for(k=0;k<x;k++)  
      {  
        p=*mem;  
        fputc(p,fp);  
        mem++;  
      }  
      mem=(1024-x);  
    }  
    mem=mem_keep;  
  }  
  
  printf("------ a %d X %d image is saved in",x,y);  
}  

#include <time.h>  

show_time(th,tm,ts,jetztzeit)  
int *th,*tm,*ts;  
time_t *jetztzeit;  
{  
  struct tm *timeptr;  
  time_t secssnow;  
  
  time(&secssnow);  
  *jetztzeit=secssnow;  
}
timeptr=localtime(&secnow);
printf("-----current time is %02d:%02d:%02d\n",
       *th=timeptr->tm_hour,*tm=timeptr->tm_min,*ts=timeptr->tm_sec);

#include "ypdef.h"
#include <stdio.h>
#include <string.h>
#include <dos.h>
#include <alloc.h>

#define BASEMEM 0xD000
#define CONREG 0x300

main()
{
    char imname[30],outname[30],calname1[30],calname2[30];
    unsigned char huge *image;
    unsigned char huge *stimage1;
    unsigned char huge *stimage2;
    long zz;
    int x,y,i,j,pp,field;
    float ave0,ave1,ave2,ave3,po,p1,p2,k,b;

do{
    printf("1. image with one field:\n");
    printf("2. image with both fields:\n");
    scanf("%d",&field);      printf("\n");
    while(field!=1 && field!=2);
    printf("image name: ");
    scanf("%s",imname);      printf("\n");
    printf("calibration image 1: ");
    scanf("%s",calname1);    printf("\n");
    printf("calibration image 2: ");
    scanf("%s",calname2);    printf("\n");

    /*
       image=(unsigned char huge *)farcalloc(zz,1);
       stimage1=(unsigned char huge *)farcalloc(zz,1);
       stimage2=(unsigned char huge *)farcalloc(zz,1);
       if(image==NULL || stimage1==NULL || stimage2==NULL )
           {
           printf("fail to allocate..\n"); exit(1); }
    */
    stimage1=(unsigned char huge *)read_image(calname1,&x,&y);
    image_show(stimage1,0,0,x,y);
    stimage2=(unsigned char huge *)read_image(calname2,&x,&y);
    image_show(stimage2,50,50,x,y);
    image=(unsigned char huge *)read_image(imname,&x,&y);
    image_show(image,100,100,x,y);
    ave1=ave2=0;
}
for(j=0;j<y;j++)
    for(i=0;i<x;i++)
    {
        zz=j; z*z=x; zz+=i;
        ave1+= *(stdimage1+zz);
        ave2+= *(stdimage2+zz);
    }
ave1/=x;
ave1/=y;
ave2/=x;
ave2/=y;
if(field==1)
    {
        ave1*=2; ave2*=2;
        printf("the average value of cal-image 1: %f\n",ave1);
        printf("the average value of cal-image 2: %f\n",ave2);
        if(ave1 == ave2)
        {
            printf("same average value.\n");
            exit();
        }
    }
ave0=ave3=0;
for(j=0;j<y;j++)
    for(i=0;i<x;i++)
    {
        zz=j; z*z=x; zz+=i;
        p0= *(image+zz);
        p1= *(stdimage1+zz);
        p2= *(stdimage2+zz);
        k=(p1-p2)/(ave1-ave2);
        b=p2-k*ave2;
        if(kl=0) p0=(p0-b)/k+0.5;
        ave0+=p0;
        pp=0;
        if(pp>255) pp=255;
        if(pp<0) pp=0;
        point_show(i+150,j+150,pp);
    }
ave0/=x;
ave0/=y;
ave3/=x;
ave3/=y;
printf("the average value of the image to be calibrated: %f\n",ave3);
printf("the average value of the calibrated image: %f\n",ave0);
printf("\n");

printf("save image?(y): ");
if(getche()=='y')
    {
        printf("\noutput image name: ");
        scanf("%s",outname); printf("\n");
        save_image(outname,150,150,150+x-1,150+y-1);
    }
#include <dos.h>
#include <alloc.h>
#include <dir.h>

#define BASEMEM 0xD000
#define CONREG 0x300

main()
{
    char imgname1[50],imgname2[50],outname[50],overwr;
    unsigned char huge *image;
    unsigned char huge *board;
    unsigned char huge *p;
    int choice,c,i,j,x,y,ws,wrongname,pp,ppp;
    long size,zz;
    int n;
    float s1,s2,s3;
    struct fblk ffbkl;

    /* read an image from disk into memory */

    printf("%lu bytes free in ram\n",farcreeleft());
    printf("     Image1 - Image2  \n");
    printf("     Polarization = -------------- X Scale_factor  \n");
    printf("     Image1 + Image2  \n");
    printf("\n");
    printf("the names of image1, image2, and scale_factor: ");
    scanf("%s %s %f",imgname1,imgname2,&s);
    printf("\n");

    image=(unsigned char huge *)read_image(imgname1,&x,&y);
    image_show(image,0,0,x,y);
    farfree((unsigned char far *)image);

    p=(unsigned char huge *)farcalloc(1,1);
    image=(unsigned char huge *)read_image(imgname2,&x,&y);
    for(j=0;j<yy;j++)
        for(i=0;i<xx;i++)
        {
            zz=j;  zz*=x;  zz+=i;
            get_point_value(i,j,p);  pp=*p;
            ppp=*(image+zz);
            s1=pp;  s2=ppp;  s3=s*(s1-s2)/(s1+s2)+0.5;
            pp=s3;
            if(pp>255)  pp=255;  if(pp<0)  pp=0;
            point_show(i,j,pp);
        }
    printf("save image? (y): ");
    if(getche()=='y')
        { do{
            overwr='y';
            printf("no output image name: ");
            scanf("%s",outname);
            printf("\n");
            if(findfirs(outname,&ffblk,0)==0)
            {
printf("--- Warning: the file already exists, overwrite it? (y) ");
overwr=getche();
}
}while(overwr!='y');
printf("n");
save_image_screen(outname,0,0,x-1,y-1);
}

save_image_screen(inname,x1,y1,x2,y2)
char inname[50];
int x1,y1,x2,y2;
{
int wrongname,i,j,x,y,k,start_line,end_line,start_blk,end_blk,
    start_y_offset,end_y_offset;
unsigned char huge *mem;
unsigned char huge *mem_keep;
unsigned char ini_stat,stat;
unsigned char p;
long zz;
FILE *fp;
char ix[8],iy[8];

do{
    wrongname=0;
    if((fp=fopen(inname,"wb"))===NULL)
    {
        wrongname=1;
        printf("Wrong name: try again: ");
        scanf("%s",inname); printf("n");
    }
}while(wrongname==1);
mem=(unsigned char huge *)MK_FP(BASEMEM,0);
x=x2-x1+1; y=y2-y1+1;
toa(x,i,x,10); toa(y,i,y,10);
for(i=0;i<8;i++) fpct(ix[i],fp);
for(i=0;i<8;i++) fpct(iy[i],fp);

start_blk=y1/64; end_blk=(y2+1)/64;
start_y_offset=y1%64; end_y_offset=(y2+1)%64;
mem_keep=mem+x1;
zz=start_y_offset; zz*=1024; zz+=x1;
mem +=zz;
ini_stat=0x16;
for(i=start_blk;i<=end_blk;i++)
{
    stat=(i<<5)&0x0;
    stat |=ini_stat;
    outp(CONREG,stat);

    if(i=start_blk) start_line=start_y_offset;
    else start_line=0;
    if(i(end_blk) end_line=end_y_offset;
    else end_line=64;
    for(j=start_line;j<end_line;j++)
    {
for(k=0;k<x;k++)
{
    p=*mem;  fputc(p,fp);
    mem++;
}
mem+=(1024-x);
mem=mem_keep;

printf("------- a %dx%d image %s is saved.\n",x,y,imname);

#include "ypdef.h"
#include <stdio.h>
#include <alloc.h>
#include <dos.h>
#include <math.h>

#define BASEMEM 0xD000
#define CONREG 0x300

#define X0 320
#define Y0 240

main()
{
    char imname[30], outname[30];
    unsigned char huge *image;
    int i,j,x,y,t1,t2;
    long size,*hist;

    hist=(long*)calloc(256,sizeof(long));
    printf("%lu bytes free.\n",farcrcsrleft());
    printf("image name: ");
    scanf("%s",imname);  printf("\n");
    ini_reg();
    ini_lut();
    image=(unsigned char huge *)read_image(imname,&x,&y);
    image_show(image,XO-x/2,YO-y/2,x,y);
    histogram_image(image,x,y,hist);
    /*
    for(j=0;j<480;j++)
        for(i=533;i<567;i++)  point_show(i,j,0);
    grey_level_show();
    show_hist_vertical(hist);  */
    move_cursor_equalize(image,x,y,&t1,&t2,hist);
    equalize_mem(image,x,y,t1,t2);
    printf("unsave image?\n(y): ");
    if(getche()=='y')
    {
        printf("noutput equalized image name: ");
        scanf("%s",outname);  printf("\n");
        save_image(outname,XO-x/2,YO-y/2,XO-x/2+x-1,YO-y/2+y-1);
    }
printf("\n");
}

#define CONREG 0x300

move_cursor_equalize(image,x,y,t1,t2,hist)
unsigned char huge *image;
int x,y,*t1,*t2;
long *hist;
{
unsigned char huge *cross_buf;
char b[4];
int a,i,j,xx,yy,kx,ky,sx,sy,ex,ey,k1,k2;
float tt;
cross_buf=(unsigned char huge *)calloc(41,1);
xx=610;    yy=240;
printf("move cursor to get threshold.\n");

do{
    for(k2=0;k2<480;k2++)
        for(k1=533;k1<639;k1++)  point_show(k1,k2,0);
    grey_level_show();
    show_hist_vertical(hist);
    printf("\n");
    for(i=0;i<2;i++)
    {
        if(i==0)     printf("move cursor to LOW cut-off grey level.\n");
        else         printf("move cursor to HIGH cut-off grey level.\n");
        do{
            tt=255;  tt*=yy;  tt/=480;  t=tt;
            printf("current threshold--- \%d \%d",t);
            kx=xx;  ky=yy;
            save_move_cross(kx,ky,cross_buf);
            a=getch();
            if(a==56) yy--;    
            if(a==57) yy=10;
            if(a==50) yy+=5;
            if(a==49) yy+=10;
            if(a==48) yy=240;
            recover_cross(kx,ky,cross_buf);
        }while(a!="43");
        if(i==0)    *t1=yy;
        else         *t2=yy;
        printf("\n");
    }
    tt=255;  tt=*t1;  tt/=480;  *t1=tt;
    tt=255;  tt=*t2;  tt/=480;  *t2=tt;
equalize_screen(image,x,y,*t1,*t2);
printf("\nOK? (y): ");
}while(getche()!="y");

save_move_cross(xp,yp,cross_buf)
int xp,yp;
unsigned char huge *cross_buf;
{
  int i,xx,yy;
  unsigned char huge *mem;
  unsigned char huge *mem_keep;
  int block,y_offset;
  unsigned char status;
  long zz;

  mem=mem_keep=(unsigned char huge *)MK_FP(BASEMEM,0);
  for(i=-10;i<=10;i++)
    {
      yy=yp+i; xx=xp;
      block=yy/64; y_offset=yy%64;
      zz=1024; zz*=y_offset; zz+=xx; mem+=zz;
      status=((block<5)&0xe0)|0x16;
      outp(CONREG,status);
      *cross_buf=*mem; *mem=255; cross_buf++;
      mem=mem_keep;
    }
}

mem=mem_keep;
block=yp/64; y_offset=yp%64;
status=((block<5)&0xe0)|0x16;
outp(CONREG,status);
for(i=-10;i<=10;i++)
  {
    mem=mem_keep; xx=xp+i;
    zz=1024; zz*=y_offset; zz+=xx; mem+=zz;
    if(i<0)
      {
        *cross_buf=*mem; *mem=255; cross_buf++;
      }
  }
}

recover_cross(xp,yp,cross_buf)
int xp,yp;
unsigned char huge *cross_buf;
{
  int i,xx,yy;
  unsigned char huge *mem;
  unsigned char huge *mem_keep;
  int block,y_offset;
  unsigned char status;
  long zz;

  mem=mem_keep=(unsigned char huge *)MK_FP(BASEMEM,0);
  for(i=-10;i<=10;i++)
    {
      mem=mem_keep;
      yy=yp+i; xx=xp;
block=yy/64;  y_offset=yy%64;
zz=1024;   zz*=y_offset;  zz+=xx;     mem+=zz;
status=((block<<5)&0x000)|0x16;
outp(CONREG,status);
*mem=*cross_buf;  cross_buf++; }

mem=mem_keep;
block=yp/64;  y_offset=yp%64;
status=((block<<5)&0x000)|0x16;
outp(CONREG,status);
for(i=-10;i<=10;i++)
{
  mem=mem_keep;
  xx=xp+i;
  zz=1024;   zz*=y_offset;  zz+=xx;     mem+=zz;
  if(i<0)
    {
      *mem=*cross_buf;  cross_buf++; 
    }
}

grey_level_show()
{
  int i,j, grey;
  float g;

  for(j=0;j<480;j++)
    {
      g=j;  g*=255;  g/=480;  grey=g;
      for(i=610;i<640;i++)
        {
          point_show(i,j, grey);
        }
    }

  number_display(0, 578, 6, 7, 9, 255);
  line_show(567, 0, 571, 0, 255);
  number_display(3, 578, 60, 7, 9, 255);
  line_show(606, 0, 609, 0, 255);
  number_display(1, 587, 60, 7, 9, 255);
  line_show(567, 60, 571, 60, 255);
  number_display(6, 578, 120, 7, 9, 255);
  line_show(567, 120, 571, 120, 255);
  number_display(3, 578, 120, 7, 9, 255);
  line_show(606, 120, 609, 120, 255);
  number_display(9, 578, 180, 7, 9, 255);
  line_show(567, 180, 571, 180, 255);
  number_display(5, 587, 180, 7, 9, 255);
  line_show(606, 180, 609, 180, 255);
  number_display(1, 578, 240, 7, 9, 255);
  line_show(567, 240, 571, 240, 255);
  number_display(2, 587, 240, 7, 9, 255);
  line_show(606, 240, 609, 240, 255);
  number_display(7, 596, 240, 7, 9, 255);
  line_show(567, 240, 571, 240, 255);
  number_display(1, 578, 300, 7, 9, 255);
  number_display(5, 587, 300, 7, 9, 255);
number_display(9,596,300,7,9,255);
number_display(1,578,360,7,9,255);
number_display(9,587,360,7,9,255);
number_display(1,596,360,7,9,255);
number_display(2,578,420,7,9,255);
number_display(2,587,420,7,9,255);
number_display(3,596,420,7,9,255);
number_display(2,578,474,7,9,255);
number_display(5,587,474,7,9,255);
number_display(5,596,474,7,9,255);

}

equalize_screen(image,x,y,t1,t2)
unsigned char huge *image;
int x,y,t1,t2;
{
int i,j,p,t;
long zz;
float k,b,w;

/*
function w=[255/(t2-t1)] *(b-t1)
*/
if(t1>t2) { t=t1; t1=t2; t2=t; } 
k=255; k=(t2-t1);

for(j=Y0-y/2;j<Y0-y/2+y/2;++j)
{
for(i=X0-x/2;i<X0-x/2+x/2;++i)
{
zz=j-(Y0-y/2); zz*=x; zz+=(i-(X0-x/2));
p=*image+zz;
if(p<=t1) point_show(i,j,0);
if(p>=t2) point_show(i,j,254);
if(p>t1 && p<t2)
{
b=p-t1; b*=k; p=b;
point_show(i,j,p);
}
}

printf("unpress any key to display new color scale.
");
getch();
equalized_grey_level_show(t1,t2);
}
equalize_mem(image,x,y,t1,t2)
unsigned char huge *image;
int x,y,t1,t2;
{
    int i,j,t,p;
    long zz;
    float k,w,b;

    if(t1>t2) { t=t1; t1=t2; t2=t; }
k=255; k/=(t2-t1);

    for(j=0;j<y;j++)
    {
        for(i=0;i<x;i++)
        {
            zz=j; zz*=x; zz+=i;
            p=*(image+zz);
            if(p<=t1) *(image+zz)=0;
            if(p>=t2) *(image+zz)=254;
            if(p>t1 && p<t2)
            {
                w=p-t1; w*=k; p=w;
                *(image+zz)=p;
            }
        }
    }

    #define BASEMEM 0xD000 /* memory base address */
    #define RB 0x300      /* pcplus register base address */

    ini_lut(void)
    {
        int j;
        unsigned char i,ii;

        /* initialize bank 0 to linear */

        outp(RB+1,0x00);
        for(j=0;j<=255;j++)
        {
            i=j;
            outp(RB+2,i); outp(RB+3,i);
        }

        outp(RB+1,0x01);
        for(j=0;j<=255;j++)
        {
            i=j;
            outp(RB+2,i); outp(RB+3,i);
        }

        outp(RB+1,0x02);
        for(j=0;j<=255;j++)
        {
            i=j;
            outp(RB+2,i); outp(RB+3,i);
        }

        outp(RB+1,0x03);
        for(j=0;j<=255;j++)
        {
            i=j;
        }
    }
/* initialize bank 4 to bit-plane-oriented */

outp(RB+1,0x82);
for(j=0;j<=255;j++)
{
    i=j;
    ii=0;
    if(i<64 && i>0) ii=128;
    if(i>=64 && i<=128) ii=128-2*(i-64);
    if(i==255) ii=128;
    /*
    if( i & 0x01)==1 ii=36;
    if( i & 0x02)==2 ii=72;
    if( i & 0x03)==3 ii=103;
    if( i & 0x04)==4 ii=144;
    if( i & 0x05)==5 ii=180;
    if( i & 0x06)==6 ii=216;
    if( i & 0x07)==7 ii=252;
    */
    outp(RB+3,ii);
}

printf("\n");

outp(RB+1,0x81);
for(j=0;j<=255;j++)
{
    i=j;
    ii=0;
    if(i<64 && i>0) ii=i+2;
    if(i>=64 && i<192) ii=128;
    if(i==192) ii=128-2*(i-192);
    if(i==254) ii=0;
    if(i==255) ii=128;
    /*
    if( i & 0x08)==0x08 ii=36;
    if( i & 0x10)==0x10 ii=72;
    if( i & 0x18)==0x18 ii=108;
    if( i & 0x20)==0x20 ii=144;
    if( i & 0x28)==0x28 ii=180;
    if( i & 0x30)==0x30 ii=216;
    if( i & 0x38)==0x38 ii=252;
    */
    outp(RB+3,ii);
}

printf("\n");

outp(RB+1,0x80);
for(j=0;j<=255;j++)
{
    i=j;
    ii=0;
    if(i>=128 && i<192) ii=2*(i-128);
    if(i==192) ii=128;
    if(i==254) ii=220;
    /*
    if( i & 0x08)==0x08 ii=36;
    if( i & 0x10)==0x10 ii=72;
    if( i & 0x18)==0x18 ii=108;
    if( i & 0x20)==0x20 ii=144;
    if( i & 0x28)==0x28 ii=180;
    if( i & 0x30)==0x30 ii=216;
    if( i & 0x38)==0x38 ii=252;
    */
if( (i & 0x40) == 0x40) ii=85;
if( (i & 0x80) == 0x80) ii=170;
if( (i & 0xc0) == 0xc0) ii=255;
*/
outp(RB+3,ii);
}

ini_reg(void)
{
    outp(RB,0x16); outp(RB+1,3); outp(RB+2,0);
    outp(RB+3,0); outp(RB+4,0x36); outp(RB+5,0x02);
    outp(RB+6,0); outp(RB+7,0); outp(RB+8,0x40);
    outp(RB+9,0); outp(RB+10,0); outp(RB+11,0);
}

/* display a number at (x,y), size is (size_x X size_y) */

number_display(number,x,y,size_x,size_y,brightness)
int number,x,y,size_x,size_y,brightness;
{
    int hx,hy,i,j,b;
    b=brightness; hx=size_x/2; hy=size_y/2;
    switch(number)
    {
    case 0: line_show(x-hx,y-hy,x+hx,y-hy,b);
            line_show(x-hx,y-hy,x-hx,y+hy,b);
            line_show(x-hx,y+hx,x-hx,y+hy,b);
            line_show(x+hx,y-hy,x+hx,y+hy,b);
            break;
    
    case 1: line_show(x,y-hy,x+y+hy,b);
            break;

    case 2: line_show(x-hx,y-hy,x+hx,y-hy,b);
            line_show(x+hx,y-hy,x+hx,y+hx,b);
            line_show(x-hx,y+hx,x-hx,y+hy,b);
            line_show(x+hx,y+hx,x+hx,y+hy,b);
            break;

    case 3: line_show(x-hx,y-hy,x+hx,y-hy,b);
            line_show(x+hx,y-hy,x+hx,y+hx,b);
            line_show(x-hx,y+hx,x-hx,y+hy,b);
            line_show(x+hx,y+hx,x+hx,y+hy,b);
            break;

    case 4: line_show(x-hx,y-hy,x-hx,y,b);
            line_show(x-hx,y,x+hx,y,b);
            line_show(x+hx,y-hy,x+hx,y+hy,b);
            break;
    }
case 5:    line_show(x-hx,y-hy,x+hx,y-hy,b);  
    line_show(x-hx,y-hy,x-hx,y,b);  
    line_show(x-hx,y,x+hx,y,b);  
    line_show(x+hx,y,x+hx,y+hy,b);  
    line_show(x-hx,y,x+hx,y+hy,b);  
    break;  

case 6:    line_show(x-hx,y-hy,x+hx,y-hy,b);  
    line_show(x-hx,y-hy,x-hx,y+hy,b);  
    line_show(x-hx,y,x+hx,y,b);  
    line_show(x+hx,y,x+hx,y+hy,b);  
    line_show(x-hx,y,x+hx,y+hy,b);  
    break;  

case 7:    line_show(x-hx,y-hy,x+hx,y-hy,b);  
    line_show(x+hx,y-hy,x+hx,y+hy,b);  
    break;  

case 8:    line_show(x-hx,y-hy,x+hx,y-hy,b);  
    line_show(x-hx,y,x+hx,y,b);  
    line_show(x-hx,y+hy,x+hx,y+hy,b);  
    line_show(x-hx,y-hy,x-hx,y+hy,b);  
    line_show(x+hx,y-x+hx,y+hy,b);  
    break;  

case 9:    line_show(x-hx,y-hy,x+hx,y-hy,b);  
    line_show(x-hx,y,x+hx,y,b);  
    line_show(x-hx,y+hy,x+hx,y+hy,b);  
    line_show(x-hx,y-hy,x-hx,y,b);  
    line_show(x+hx,y-hy,x+hx,y+hy,b);  
    break;  

}  
}  

histogram_image(image,x,y,hist)  
unsigned char huge *image;  
int x,y;  
long *hist;  
{  
    int i,j,z;  
    long zzz;  

    for(i=0;i<256;i++) *(hist+i)=0;  
    for(j=0;j<y;j++)  
        for(i=0;i<x;i++)  
            {  
            zzz=j;  zzz*=x;  zzz+=i;  
            z=*(*(image+zzz));  
            *(hist+z)+=1;  
            }  

    show_hist_vertical(hist)  
    long *hist;  
    {  

int i,ii,j,a,d;
float max,rate,g,gg;
double buf;

max=0; /* ii=0 */
for(i=0;i<256;i++)
  if(*hist+i)>max) { max=*hist+i; /* ii=i; */ }
rate=34/max;  a=max;
/* printf("max=%d, grey level=%d, ii*%n",a,ii); */
line_show(566,0,566,470,255);
g=479; g'=255;
for(i=0;i<256;i++)
  { buf=*hist+i;  buf*=rate;
    if(buf>0) && buf<2) a=2;
    else a=buf;
    gg=i*g;  d=gg;
    line_show(566-a,d,567,d,255);
  }

/* get digits from a integer, nd is the number of the digits */

integer_to_digit(integer,nd,d)
int integer,nd,*d;
{
int i,n;

n=integer;
for(i=0;i<nd;i++)
  { n+=10;  n*=10; *(d+i)=integer-n;  integer/=10;  n/=10;
  }

equalized_grey_level_show(t1,t2)
int t1,t2;
{
int i,j,grey,d[3],t;
float g,d,t;

dt=t2-11;  dt/=8;
for(j=0;j<480;j++)
  { g=j;  g*=255;  g/=480;  grey=g;
    for(i=610;i<640;i++)
      { point_show(i,j,gre)
      }
  }
for(j=0;j<480;j++)
  { for(i=532;i<610;i++) point_show(i,j,0);
    line_show(567,0,567,480,255);
  }
t=t1;
integer_to_digit(t,3,&d[0]);
number_display(d[2],578,6,7,9,255);
number_display(d[1],587,6,7,9,255);
number_display(d[0],596,6,7,9,255);

for(i=60;i<=420;i+=60)
{
    j=i/60;
    t=t1+j*dt;
    integer_to_digit(t,3,&d[0]);
    number_display(d[2],578,i,7,9,255);
    number_display(d[1],587,i,7,9,255);
    number_display(d[0],596,i,7,9,255);
    line_show(567,i,571,i,255);
    line_show(606,i,609,i,255);
}

/*
t=t1+2*dt;
integer_to_digit(t,3,&d[0]);
number_display(d[0],578,120,7,9,255);
number_display(d[1],587,120,7,9,255);
number_display(d[2],596,120,7,9,255);
number_display(9,578,180,7,9,255);
number_display(5,578,180,7,9,255);
number_display(1,578,240,7,9,255);
number_display(2,587,240,7,9,255);
number_display(7,596,240,7,9,255);
number_display(1,578,300,7,9,255);
number_display(5,587,300,7,9,255);
number_display(9,596,300,7,9,255);
number_display(1,578,360,7,9,255);
number_display(9,587,360,7,9,255);
number_display(1,596,360,7,9,255);
number_display(2,578,420,7,9,255);
number_display(2,587,420,7,9,255);
number_display(3,596,420,7,9,255);

*/
t=t2;
integer_to_digit(t,3,&d[0]);
number_display(d[2], 578, 474, 7, 9, 255);
number_display(d[1], 587, 474, 7, 9, 255);
number_display(d[0], 596, 474, 7, 9, 255);

line_show(567, 479, 571, 479, 255);
line_show(606, 479, 609, 479, 255);

} /* the PSF is a image file */
/* maximum neighbor: I = c2 [O(j) - c1 max(s1*O(j-1), s1*O(j+1))] */
/* convolution: I = H*O;
NO! deconvolution: O(n) = O(n-1)*a(I-O(n-1)*H); */
/* modified maxnb2.c, after convolution, the convolved image will be saved into hard disk, the memory requirement can be reduced, the saved convolved images will be named after original image with wild card '.cv1' and '.cv2' */

#include "ypdef.h"
#include <stdio.h>
#include <alloc.h>
#include <dos.h>
#include <math.h>

#define XO 320
#define YO 240

/*
 void deconvolution(double huge *im, double huge *ob, int x, int y,
   double huge *h, int hx, int hy);
 */
void convolution(unsigned char huge *im, double huge *ob, int x, int y,
  double huge *h, int hx, int hy);
void matrix_sub(double huge *a, double huge *b, double huge *c, int x, int y);
void matrix_scale(double huge *a, int x, int y, float c);
void readdat_double(char datfile[30], double huge *c, long size);
void savedat_double(char datfile[30], double huge *c, long size);

void image_show_double(double huge *img, int sx, int sy, int x, int y);

main()
{
  char cname[30], uname[30], lname[30], hname1[30], hname2[30], outname[30],
  convname1[30], convname2[30];
  unsigned char huge *im1;
  unsigned char huge *im2;
  unsigned char huge *im3;
  double huge *im;
  double huge *h1;
  double huge *h2;

double max1, max2, weight1, weight2;
float kx, ky, x, y, pp1, pp2, c1, c2;
unsigned int xx, yy;
int lx, hy, x, y, i, j, redo, pp, pp1, p2;
char sv;
long zz, size;
unsigned char huge *psf1;
unsigned char huge *psf2;

printf("%lu bytes free in ram:\n",farc/releases/());
printf("center, upper, lower image names; ");
scanf("%s %s %s",cname,uname,lname);  printf("\n");
printf("up/down PSF image name: ");
scanf("%s %s",hname1,hname2);  printf("\n");
im1=(unsigned char huge *)&read_image(uname,&x,&y);
image_show(im1,0,0,x,y);

psf1=(unsigned char huge *)&read_image(hname1,&hx,&hy);
psf2=(unsigned char huge *)&read_image(hname2,&hx,&hy);

size=x;  size=y;

im=(double huge *)&calloc(size,sizeof(double));

/*
ob=(double huge *)&calloc(size,sizeof(double));
*/

size=hx;  size=hy;
h1=(double huge *)&calloc(size,sizeof(double));
h2=(double huge *)&calloc(size,sizeof(double));
for(zz=0;zz<size;zz++)
  { *(h1+zz) = *(psf1+zz);  *(h2+zz) = *(psf2+zz);  }
weight1=weight2=0;
for(zz=0;zz<size;zz++)
  {
    if(*(h1+zz)<0)  *(h1+zz)=-1;
    if(*(h2+zz)<0)  *(h2+zz)=-1;
    weight1+=*(h1+zz);
    weight2+=*(h2+zz);
  }
printf("weight=%lf\n",weight1);
for(zz=0;zz<size;zz++)
  {
    *(h1+zz)=weight1;  *(h2+zz)=weight2;
    printf("%lf,*((h1+zz));
  }

/*
if( im==NULL | | ob==NULL)
  {
    printf("no enough memory.\n");
    exit(0);
  }
else
  printf("%lu bytes allocated.\n",size);
*/

printf("\n");
for(i=0;i<y;++i)
  for(i=0;i<x;i++)
    {

convolution(im1,im,x,y,h1,hx,hy);
/*
image_show_double(im,0,y,x,y);
*/
strcpy(convname1,uname); strcat(convname1,".cv1");
save_image(convname1,XO-x/2,YO-y/2,XO-x/2+x-1,YO-y/2+y-1);
im2=(unsigned char huge *)read_image(iname,&x,&y);

image_show(im2,x,0,x,y);
for(j=0;j<y;j++)
    for(i=0;i<x;i++)
    {
        zz=j; zz*=x; zz+=i;
        *(im+zz)=*(im1+zz);
    }
convolution(im2,im,x,y,h2,hx,hy);

strcpy(convname2,uname); strcat(convname2,".cv2");
save_image(convname2,XO-x/2,YO-y/2,XO-x/2+x-1,YO-y/2+y-1);
free((double far *)im);
im3=(unsigned char huge *)read_image(cname,&x,&y);
image_show(im3,2*x,0,x,y);

do{
    printf("Uninput c1, c2: "); scanf("%f %f",&c1,&c2);
    printf("n");
    for(j=0;j<y;j++)
        for(i=0;i<x;i++)
        {
            zz=j; zz*=x; zz+=i;
            p1=*(im1+zz); p2=*(im2+zz);
            pp1=(p1>p2)? p1:p2; pp1*=c1;
            pp2=*(im3+zz);
            pp2-=pp1; pp2*=c2;
            if(pp2<0) pp2=0;
            if(pp2>255) pp2=255;
            pp=pp2;
            point_show(XO-x/2+i,YO-y/2+j,pp);
        }
    printf("OK? (y) ");
    while(getche()!='y');
    printf("Unsave image? (y) ");
    if(getche()=='y')
        {
            printf("Unoutput image name: ");
            scanf("%s",outname); printf("n");
            save_image(outname,XO-x/2,YO-y/2,XO-x/2+x-1,YO-y/2+y-1);
        }
    printf("n");
}
/*
deconvolution:
O(n) = O(n-1) - a(I - O(n-1)*H);

void deconvolution(double huge *im, double huge *ob, int x, int y,
                  double huge *h, int hx, int hy)
{
    int i,j,p,k1,k2;
    long zz,z;
    double huge *c;

    zz=x;  zz*=y;
    c=(double huge *)farcalloc(zz,sizeof(double));

    for(j=0;j<y;j++)
        for(i=0;i<x;i++)
            
            {
                zz=j;  zz*=x;  zz+=i;
                *(ob+zz)=*(im+zz);
            }

    for(i=0;i<1;i++)
    {
        printf("\n--- %d\n",i);
        convolution(c,ob,x,y,hx,hy);
        image_show_double(c,0,0,x,y);
        matrix_sub(im,c,c,x,y);
        image_show_double(c,x+10,0,x,y);
        matrix_scale(c,x,y,1.2);
        matrix_sub(ob,c,ob,x,y);
        matrix_scale(ob,x,y,0.9);
        image_show_double(ob,2*(x+10),0,x,y);
    }

    farfree((double far *)c);
}

*/
/

convolution:  IM=OB*H;

IM and OB have the same dimension (x,y),
H's dimension is (hx,hy), if hx or hy is even
number, it will be minus 1.

*/

void convolution(unsigned char huge *img, double huge *ob, int x, int y,
                  double huge *h, int hx, int hy)
{
    int hhx,hhy,i,j,k1,k2,yy,p;
    double c1,c2;
    long z1;

    hhx=(hx-1)/2;  hhy=(hy-1)/2;
    z1=hhy;  z1*=hx;  z1+=hhx;
    h+=z1;

    if(y>36)  yy=y/3;
else
    yy=y;
for(i=0;i<y;i++)
    printf("\n");
for(j=0;j<y;j++)
    {
      if(y==yy)
        printf("+");
      else
        if(j==(j/3)*3)
          printf("+");
      for(i=0;i<x;i++)
        {
          z1=j; z1*=x; z1+=i;
          c=0;
          for(k2=-hhy;k2<=hhy;k2++)
            for(k1=-hhx;k1<=hhx;k1++)
              if((j+k2)>0 & & (j+k2)<y & & (i+k1)>0 & & (i+k1)<x)
                {
                  c1=(ob+z1+k2*x+k1);
                  c2=(h+k2*hx+k1);
                  c+=(c1*c2);
                }
          p=c;
          *(img+z1)=p;
          point_show(XO-x/2+i,YO-y/2+j,p);
        }
    }
}

void matrix_sub(double huge *a, double huge *b, double huge *c, int x, int y)
{
  int i,j;

  for(j=0;j<y;j++)
    for(i=0;i<x;i++)
      {
        *c=*a-*b; a++; b++; c++;
      }
}

void matrix_scale(double huge *a, int x, int y, float c)
{
  int i,j;

  for(j=0;j<y;j++)
    for (i=0;i<x;i++)
      { (*a)*=c; a++; }
}

#define SPEC_RANG 16

void savedat_double(char datfile[30], double huge *c, long size)
{  
  FILE *fp;
  double *buf;
  int fnum,bufsize,i,j;
  char fname[30],s0[30];

  bufsize=SPEC_RANG*16;
  fnum=size(bufsize);
if(NULL == (buf=(double *)malloc(bufsize,sizeof(double))))
    {
        printf("no enough memory, exit\n"); exit(1);
    }
for(i=0;i<fnum;i++)
    {
        for(j=0;j<bufsize;j++)
            {
                *(buf+j)="c; c++;
            }
        itoa(i,s0,10);
        strcpy(fnamelen,datfile);
        strcat(fnamelen,s0);
        if((fp=fopen(fnamelen,"wb")) == NULL)
            {
                printf("data file open failure\n"); exit(1);
            }
        fwrite((double *)buf,sizeof(double),bufsize,fp);
        fclose(fp);
    }
free((double *)buf);
}

void readdat_double(char datfile[30], double huge *c, long size)
{
    FILE *fp;
    double *buf;
    int fnum,bufsize,i,j;
    char fnamen[30],s0[30];

    bufsize=SPEC_RANG*16;
    fnum=size/bufsize;
    if(NULL == (buf=(double *)malloc(bufsize,sizeof(double))))
        {
            printf("no enough memory, exit\n"); exit(1);
        }
    for(i=0;i<fnum;i++)
        {
            itoa(i,s0,10);
            strcpy(fnamelen,datfile);
            strcat(fnamelen,s0);
            if(((fp=fopen(fnamelen,"rb")) == NULL)
                {
                    printf("data file open failure\n"); exit(1);
                }
            fread((double *)buf,sizeof(double),bufsize,fp);
            fclose(fp);
            for(j=0;j<bufsize;j++)
                {
                    *(buf+j)="c; c++;
                }
        }
    free((double *)buf);
}
void image_show_double(double *img, int sx, int sy, int x, int y)
{
    int k1, k2, p;
    long zz;
    for (k2 = 0; k2 < y; k2++)
        for (k1 = 0; k1 < x; k1++)
            { zz = k2; zz *= x; zz += k1;
              p = *(img + zz); if (p < 0) p = -p; if (p > 255) p = 255;
              point_show(sx + k1, sy + k2, p);
            }
/* .............image division, can save results as float number .......... */

#include "ypdef.h"
#include <stdio.h>
#include <dos.h>
#include <alloc.h>
#define BASEMEM 0xD000
#define CONREG 0x300

main()
{
    char imagename1[50], imagename2[50], outname[50], ffile[50];
    unsigned char huge *image;
    unsigned char huge *board;
    unsigned char huge *p;
    int choice, c, i, j, x, y, ws, wrongname, pp, ppp;
    long size, zz;
    int n;
    float s, p1, p2, p3;
    FILE *fp;
    /* read an image from disk into memory */
    printf("%lu bytes free in ram\n", farcoreleft());
    printf("div.=(image1/image2)*scale_factor.\n");
    printf("the names of image1, image2, scale_factor: ");
    scanf("%s %s %s", imagename1, imagename2, &s);
    printf("\n");
    printf("do you want to save division results as float number: (y) ");
    if (getche() == 'y')
        { printf("unfloat data file name: ");
          scanf("%s", ffile); printf("\n");
        }
    fp = fopen(ffile, "wb");
    image = (unsigned char huge *)read_image(imagename1, &x, &y);
    printf("display image1.\n");
    image_show(image, 0, 0, x, y);
    free((unsigned char far *)image);
    p = (unsigned char huge *)farcalloc(1, 1);
    image = (unsigned char huge *)read_image(imagename2, &x, &y);
    for (j = 0; j < y; j++)
for(i=0;i<x;i++)
{
    zz=j;  zz*=x;  zz+=i;
    get_point_value(i,j,p);  pp=*p;  p1=pp;
    ppp=*(image+zz);  p2=ppp;
    p3=(p1/p2);
    fwrite(&p3,sizeof(float),1,fp);
    p3*=s;  pp=p3;
    if(pp>255)  pp=255;
    point_show(i,j,pp);
}

fclose(fp);
printf("save image? (y): ");
if(getche()=='y')
{
    printf("noutput image name: ");
    scanf("%s",outname);  printf("n");
    save_image_screen(outname,0,0,x-1,y-1);
}

save_image_screen(imname,x1,y1,x2,y2)
char imname[50];
int x1,y1,x2,y2;
{
    int wrongname,i,j,x,y,k,start_line,end_line,start_blk,end_blk,
        start_y_offset,end_y_offset;
    unsigned char huge *mem;
    unsigned char huge *mem_keep;
    unsigned char ini_stat,stat;
    unsigned char p;
    long zz;
    FILE *fp;
    char ix[8],iy[8];

do{
    wrongname=0;
    if((fp=fopen(imname,"wb"))!=NULL)
    {
        wrongname = 1;
        printf("wrong name! try again: ");
        scanf("%s",imname);  printf("n");
    }
}while(wrongname == 1);
mem=(unsigned char huge *)MK_FP(BASEMEM,0);
x=x2-x1+1;  y=y2-y1+1;
itoa(x,ix,10);  itoa(y,iy,10);
for(i=0;i<x;i++)  fputc(ix[i],fp);
for(i=0;i<y;i++)  fputc(iy[i],fp);

start_blk=y1/64;  end_blk=(y2+1)/64;
start_y_offset=y1%64;  end_y_offset=(y2+1)%64;
mem_keep=mem+x1;
zz=start_y_offset;  zz*=1024;  zz+=x1;
mem +=zz;
init_stat=0x16;
for(i=start_blc;i<=end_blc;i++)
{
    stat=(i<<5)&0xe0;
    stat |=init_stat;
    outp(CONREG,stat);

    if(i==start_blc) start_line=start_y_offset;
    else start_line=0;
    if(i==end_blc) end_line=end_y_offset;
    else end_line=64;
    for(j=start_line;j<end_line;j++)
    {
        for(k=0;k<x;k++)
        {
            p=*mem; fputc(p,fp);
            mem++;
        }
        mem+=(1024-x);
    }
}

printf("----- a %dx%d image %s is saved\n",x,y,imname);
}

#include <stdio.h>
#include <alloc.h>
#include <dos.h>

#define BP 0x3F8  /* for com1. baseport register address*/
#define CONREG 0x300  /* pplus register base address */

unsigned char huge *read_image(char imname[30], int *x, int *y);
void image_show(unsigned char huge *im_ad, int sx, int sy, int x, int y);

main()
{
    int x,y,sx,sy;
    char imname[30];
    unsigned char huge *mem;

    printf("%lu bytes free\n",farcoreleft());
    printf("Input image file name, upper-left corner (sx,sy):" $('[a-zA-Z0-9_ ]*\n
    scanf("%s %d %d",imname,&sx,&sy);
    printf("%d\n",imname);
    mem=(unsigned char huge *)read_image(imname,&x,&y);
    image_show(mem,sx,sy,x,y);
    printf("\n");
}
CLAIMS

I claim:

1. Use of a luminescent probe substance having a luminescence lifetime which is quenched by a given analyte to measure the concentration of that analyte in a viscous medium, comprising the steps of:

   (a) introducing a luminescent probe substance having a luminescence lifetime (\(\tau\)) which is quenched by a given analyte to a location within a viscous medium where the luminescent probe molecule is free to undergo Brownian rotation and where the concentration of the quencher analyte is to be determined;

   (b) irradiating the medium with continuous, linearly polarized light at wavelengths strongly absorbed by the luminescent probe substance to result in luminescence having vector components parallel and perpendicular to the plane of polarization of the excitation light;

   (c) resolving the luminescence emitted from the irradiated medium into vector components parallel and perpendicular to the plane of polarization of the excitation light;

   (d) calculating luminescence anisotropy in space or in time of the medium so irradiated; and

   (e) applying a mathematical function which relates luminescence anisotropy to concentration of the quencher analyte, the mathematical function being in the form of an equation.

2. The use of a luminescent probe substance as set forth in claim 1 additionally comprising the step of selecting the equation as follows:

   \[ \tau = \frac{\tau_o}{1 + K_D[Q]} \] (I)

   wherein [Q] is the concentration of the quencher substance, \(K_D\) is the dynamic quench constant, and \(\tau_o\) is the luminescence lifetime in the absence of quencher.
3. The use of a luminescent probe substance as set forth in claim 1 additionally comprising the step of selecting the equation as follows:

\[
[Q] = \frac{A_0 - A(6\bar{R}\tau_o + 1)}{K_D(A - A_0)}
\]

wherein A is fluorescence anisotropy, defined as

\[
A = \frac{I_G - I_\perp}{I_G + I_\perp}
\]

wherein \(I_G\) and \(I_\perp\) are the intensities of luminescence emission with their electric vectors respectively parallel and perpendicular to that of the linearly polarized exciting radiation, \(G\) is an empirical correction factor used to correct for transmission efficiency in the parallel and perpendicular planes, \(\bar{R}\) is mean molecular rotation time in radians/sec, \(A_0\) is the luminescence anisotropy in the "frozen" state, in the absence of Brownian rotation, \(K_D\) is the dynamic quench constant, \(\tau_o\) is the luminescence lifetime in the absence of quencher, and \([Q]\) is the concentration of quencher which is to be determined.

4. The use of a luminescent probe substance as set forth in any one of claims 1, 2, or 3 wherein the quencher substance is molecular oxygen.

5. The use of a luminescent probe substance as set forth in any one of claims 1 or 2 wherein the quencher substance is dioxygen and selecting the equation as follows:

\[
\tau = \frac{\tau_o}{1 + K_D[O_2]} \quad \text{or} \quad \frac{\tau_o}{1 + \alpha K_D P_{O_2}}
\]

wherein \([O_2]\) is the concentration of oxygen, \(P_{O_2}\) is the partial pressure of oxygen, \(\alpha\) is the Bunsen solubility coefficient, \(K_D\) is the dynamic quench constant, and \(\tau_o\) is luminescence lifetime in the absence of \(O_2\).
6. The use of a luminescent probe substance as set forth in any one of claims 1, 3, 4 or 5 additionally comprising the step of selecting the equation as follows:

\[ \text{PO}_2 = \frac{A_0 - A(6\overline{R}\tau_o + 1)}{\alpha K_0(A - A_0)} \]  

\[(4)\]  

wherein \(A\) is luminescence anisotropy, \(\overline{R}\) is mean molecular rotation time in radians/sec, \(A_0\) is the luminescence anisotropy in the "frozen" state, in the absence of Brownian rotation, \(\alpha\) is the Bunsen solubility coefficient, \(K_0\) is the dynamic quench constant, and \(\tau_o\) is the luminescence lifetime in the absence of \(O_2\), and \(PO_2\) is the partial pressure of dioxygen.

7. The use of a luminescent probe substance as set forth in claim 1 to determine the concentration of an analyte which itself is not a quencher of the luminescence lifetime of the probe substance, comprising the steps of:

(a) conjugating luminescent probe molecules to a carrier which has a high affinity for the analyte, and adding such carriers to a viscous medium in which the carrier is free to undergo Brownian rotation;

(b) adding to the medium a known quantity of the analyte conjugated with a quencher or energy transfer acceptor of the luminescence energy of the probe molecules on the carriers;

(c) adding to the medium a sample to be analyzed which contains an unknown quantity of the analyte;

(d) irradiating the medium with continuous, linearly polarized light at wavelengths strongly absorbed by the luminescent probe substance bound to the carriers, to result in luminescence having vector components parallel and perpendicular to the plane of polarization of the excitation light;

(e) resolving the luminescence emitted from the irradiated medium into vector components parallel and perpendicular to the plane of polarization of the excitation light;

(f) calculating luminescence anisotropy in space or in time of the medium so irradiated; and
(g) applying an empirically determined mathematical function which relates luminescence anisotropy to the concentration of the analyte in the sample.

8. The use of a luminescent probe substance as set forth in any one of claims 4, 5, or 6 wherein a topographic distribution of tissue or blood PO₂ of an imaged tissue and vasculature is determined.

9. The use of a luminescent probe substance as set forth in claim 8 wherein the biocompatible, luminescent probe substance accumulates within lipid bilayers of tissue and red blood cell membranes.

10. The use of a luminescent probe substance as set forth in claim 8 wherein the luminescent probe substance is conjugated to a large molecular mass protein and is retained within the vasculature of the imaged tissue, or is retained within a bodily fluid other than blood.

11. The use of a luminescent probe substance as set forth in claim 8 wherein the biocompatible, lipid soluble fluorescent probe substance is pyrenebutyric acid or a salt form thereof.

12. The use of a luminescent probe substance as set forth in claim 8 wherein the lipid soluble fluorescent probe substance is administered intravenously in solution.

13. The use of a luminescent probe substance as set forth in claim 8 wherein the lipid soluble fluorescent probe substance is administered intravenously incorporated in liposomes.

14. The use of a luminescent probe substance as set forth in claim 8 wherein the biocompatible, lipid soluble fluorescent probe substance is applied topically in a solution.

15. The use of a luminescent probe substance as set forth in any one of claims 1, 2, 3, 4, 5, 6, or 7 in which the luminescent probe substance, viscous medium, and any additional substance conjugated with a quencher or energy transfer acceptor is separated from the analyte by a membrane permeable to the analyte, thereby comprising an optical sensor.

16. The use of a luminescent probe substance as set forth in claim 15 wherein the luminescent probe substance is selected to be pyrene dissolved in a nonpolar solvent, and the analyte is dioxygen.
17. The use of a luminescent probe substance as set forth in claim 15 wherein the luminescent probe substance is selected to be pyrenebutyric acid or a salt form thereof dissolved in a nonpolar solvent, and the analyte is dioxygen.

18. The use of a luminescent probe substance as set forth in any one of claims 15, 16, or 17 additionally comprising the step of irradiating the sensor composition with linearly polarized light by means of a single mode polarization-preserving glass fiber.

19. The use of a luminescent probe substance as set forth in any one of claims 15, 16, 17, or 18 additionally comprising the step of selecting the sensor to comprise a tip and a thermistor to correct anisotropy measurements for the temperature of the sensor tip according to Equation 4:

\[
\frac{A_o}{A} = \frac{1 + R_s T}{\eta V \tau}
\]

wherein \( R_s \) is the gas constant, \( T \) is temperature, \( \eta \) is viscosity, \( V \) is the fluorophore's hydrodynamic volume, \( A \) is luminescence anisotropy, \( A_o \) is the luminescence anisotropy in the "frozen" state, in the absence of Brownian rotation, and \( \tau \) is fluorescence lifetime.

20. The use of a luminescent probe substance as set forth in claim 18 additionally comprising the step of selecting the sensor to comprise multiple sensors formed from a bundle of single mode polarization-preserving glass fibers, thereby allowing the spatial distribution of the analyte within a surface to be determined.

21. The use of a luminescent probe substance as set forth in any one of claims 1, 2, 3, 4, 5, or 6 wherein the topographic distribution of tissue or fluid \( \text{PO}_2 \) or other analyte concentration is determined tomographically within the volume of an imaged tissue by means of optical serial sectioning methodologies.

22. The use of a luminescent probe substance as set forth in claim 21 in which the optical serial sectioning methodology is confocal microscopy.

23. The use of a luminescent probe substance as set forth in claim 21 in which the optical serial sectioning methodology is digital deconvolution procedures.

24. The use of a luminescent probe substance as set forth in any one of claims 1, 2, 3, 15, 18, 19, or 20 in which the luminescent probe substance is fluorescein or a fluorescein derivative and the analyte is pH.
25. The use of a luminescent probe substance as set forth in any one of claims 1, 2, 3, 15, 18, 19, or 20 in which the luminescent probe substance is quinine and the analyte is chloride ions.

26. The use of a luminescent probe substance as set forth in any one of claims 1, 2, 3, 15, 18, 19, or 20 in which the luminescent probe substance is γ-pyrenebutyric acid and the analyte is iodide ions.

27. The use of a luminescent probe substance as set forth in claim 7 in which the analyte is a protein and the carrier is an antibody raised against that protein.

28. The use of a luminescent probe substance as set forth in any one of claims 7 or 27 in which fluorescein isothiocyanate is conjugated to the carrier and malachite green isothiocyanate is conjugated to a known quantity of the analyte.

29. The use of a luminescent probe substance as set forth in claim 7 in which the carrier is concanavalin A (ConA) and the analyte is glucose.

30. The use of a luminescent probe substance as set forth in any one of claims 7 or 29 in which Cascade Blue is conjugated to the carrier concanavalin A and a known quantity of NBD-glucosamine serves as the luminescently conjugated analyte.

31. An optical assembly (50) for measuring oxygen concentration or partial pressure, or the concentration of another analyte, in a fluid or tissue, the assembly comprising in series:

(a) a source of light (52);
(b) a collector lens through which the excitation light passes (54);
(c) first polarizer means for polarizing the excitation light (58);
(d) excitation filter means for filtering the excitation light (60);
(e) a dichroic mirror to direct the excitation light (62);
(f) an objective lens having a focal point through which the excitation light passes (64);

(g) a single mode polarization-preserving glass fiber (66) fixed at the focal point of the objective lens through which the excitation light passes; and

(h) a catheter comprising a distal and a proximal portion, the glass fiber (66) terminating adjacent the distal portion, and wherein the distal portion comprises:
(i) an O₂- or other analyte-sensitive tip comprising a quartz plate (72) secured adjacent the tip;
(ii) an O₂- or other analyte-permeable membrane (78) secured at the distal end of the tip;
(iii) probe means for measuring the oxygen or other analyte concentration or partial pressure of a fluid, wherein the probe means is a substance having a luminescence lifetime which is quenched by the analyte, the probe means being located between the quartz plate (72) and the membrane (78); and
(iv) means for measuring temperature (80);
(i) the objective lens (64) to focus luminescence light emitted from the fluid or tissue when the excitation light impinges on the fluid or tissue;
(j) the dichroic mirror (62) for directing the emitted luminescence light;
(k) filter means (82) for filtering the emitted luminescence light;
(l) second polarizing means (84) for resolving the emitted ultraviolet light which passes through the filter means (82) into vector components parallel (86A) and perpendicular (86B) to the first polarizer means (58);
(m) optical detector means for detecting the parallel (88A) and perpendicular (88B) vector components of the emitted luminescence light; and
(n) processing means (90) for processing outputs from the optical detector means (88A and 88B).

32. The assembly of claim 31 wherein the substance is selected from the group consisting of pyrenebutyric acid and pyrene.

33. The assembly of claim 32 wherein the substance is dissolved in a nonpolar viscous solvent.

34. The assembly of claim 31 additionally comprising a collimating lens (70) located between the fiber (66) and the quartz plate (72) of the catheter.

35. The assembly of claim 31 wherein the excitation light is continuous, linearly polarized ultraviolet light having a plane of polarization and a wavelength strongly absorbed by the luminescent probe substance to emit luminescence having vector components parallel and perpendicular to the plane of polarization of the excitation light.
36. The assembly of claim 31 additionally comprising shutter means (56) for shuttering the excitation light, the shutter means being located between the collector lens (54) and the first polarizing means (58).

37. An optical assembly (10) for measuring oxygen concentration or partial pressure or the concentration of another analyte within a fluid or tissue, the assembly comprising in series:

(a) a source of excitation light (18);
(b) a collector lens (20) through which the excitation light passes;
(c) first polarizer means (24) for polarizing the excitation light;
(d) excitation filter means (26) for filtering the excitation light;
(e) a dichroic mirror (28) to direct the excitation light;
(f) an objective lens (30) having a focal point through which the excitation light passes;
(g) a fiber optic illuminator (14) comprising a collector lens and a source of visible light (16); and
(h) the objective lens (30) to focus luminescence light emitted from the fluid or tissue when the excitation light impinges on the fluid or tissue (12);
(i) the dichroic mirror (28) for directing the emitted luminescence light;
(j) filter means (32) for filtering the emitted luminescence light;
(k) second polarizing means (34) for resolving the emitted luminescence light which passes through the filter means (32) into vector components parallel (36) and perpendicular (38) to the first polarizer means (24);
(l) optical detector means for detecting the parallel (40A) and perpendicular (40B) vector components of the emitted luminescence light; and
(m) processing means (42A, 42B, 44) for processing outputs from the optical detector means (40A, 40B).

38. An optical assembly for measuring the concentration of an analyte by means of an optical sensor, the assembly comprising in series:

(a) a source of light;
(b) a means for collecting and directing the excitation light;
(c) first polarizer means for polarizing the excitation light;
(d) a means for selecting the appropriate wavelengths of excitation light;
(e) a means for directing the polarized excitation light to the sensor;
(f) an optical sensor wherein a luminescent analyte-sensitive probe substance is free to undergo Brownian rotation;
(g) a means for collecting the luminescence light emitted by the sensor probe substance;
(h) a means for selecting the appropriate wavelengths of luminescence emission light;
(i) a second polarizer means for resolving the emitted luminescence light into vector components parallel and perpendicular to the plane of polarization of the excitation light;
(j) optical detector means for detecting the parallel and perpendicular vector components of the emitted luminescence light; and
(k) processing means for processing outputs from the detector means.

39. An optical assembly for measuring the concentration of an analyte in the viscous medium of a specimen, the assembly comprising in series:

(a) a source of light;
(b) a means for collecting and directing the excitation light;
(c) first polarizer means for polarizing the excitation light;
(d) a means for selecting the appropriate wavelengths of excitation light;
(e) a means for directing the polarized excitation light to the specimen;
(f) a means for collecting the luminescence light emitted by the luminescent probe substance within the specimen;
(g) a means for selecting the appropriate wavelengths of luminescence emission light;
(h) a second polarizer means for resolving the emitted luminescence light into vector components parallel and perpendicular to the plane of polarization of the excitation light;
(i) optical detector means for detecting the parallel and perpendicular vector components of the emitted luminescence light; and
(j) processing means for processing outputs from the detector means.
40. A composition for measuring oxygen concentration comprising a biocompatible, lipid soluble fluorescent probe substance selected from the group consisting of pyrenebutyric acid or a salt form thereof in a physiologically acceptable carrier liquid.

41. The composition of claim 40 wherein the carrier liquid is physiologic saline or dimethyl sulfoxide.

42. A composition for measuring oxygen composition, the composition comprising a biocompatible, lipid soluble fluorescent probe substance selected from the group consisting of pyrenebutyric acid or a salt form thereof incorporated in liposomes.

43. A composition for measuring oxygen concentration, the composition comprising a biocompatible, lipid soluble fluorescent probe substance selected from the group consisting of pyrenebutyric acid or a salt form thereof conjugated to a large molecular mass protein to act as a carrier molecule.

44. A composition for measuring oxygen concentration, the composition comprising a biocompatible fluorescent probe substance that has an O₂-quenchable fluorescence lifetime ranging between about 30 to 135 nanoseconds and a physiologically acceptable carrier liquid.

45. A composition for measuring oxygen concentration, the composition comprising a biocompatible fluorescent probe substance that has an O₂-quenchable fluorescence lifetime ranging between about 30 to 135 nanoseconds incorporated in liposomes.
Figure 1
Figure 4
Figure 5A

Figure 5B
### A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC(6)</th>
<th>US CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61B 5/00</td>
<td>128/633</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

### B. FIELDS SEARCHED

- **Minimum documentation searched** (classification system followed by classification symbols)
  - U.S. : 128/633-665; 356/41
- **Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched**
  - NONE
- **Electronic database consulted during the international search** (name of database and, where practicable, search terms used)
  - NONE

### C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4,115,699 (MIZUTA ET AL.) 19 September 1978, see column 2 line 13 to column 4 line 50.</td>
<td>1-5, 7, 27-39</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,476,870 (PETerson ET AL.) 16 October 1984, see column 3 line 12 to column 4 line 47, and column 5 lines 4-35.</td>
<td>31-39</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 5,186,173 (ZUCKERMAN) 16 February 1993, see column 3 line 60 to column 5 line 5.</td>
<td>40-42, 44, 45</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>43</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.  
* See patent family annex.

- **Special categories of cited documents:**
  - "A": document defining the general state of the art which is not considered to be part of particular relevance
  - "E": earlier document published on or after the international filing date
  - "L": document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  - "O": document referring to an oral disclosure, use, exhibition or other means
  - "P": document published prior to the international filing date but later than the priority date claimed

- **Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention**
- **Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone**
- **Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art**
- **Document member of the same patent family**

### Date of the actual completion of the international search

01 JUNE 1995

### Date of mailing of the international search report

25 SEP 1995

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer

ERIC F. WINAKUR
Telephone No. (703) 308-3940

Form PCT/ISA/210 (second sheet)(July 1992)