六氯化二硅的精制方法和高纯度六氯化二硅

本发明的目的在于提供从含有硅烷醇作为杂质的六氯化二硅原料中高效的除去硅烷醇，得到高纯度的六氯化二硅的方法。本发明的六氯化二硅的精制方法包括含有六氯化二硅和作为杂质的硅烷醇的六氯化二硅原料与活性碳等吸附材料接触，将硅烷醇除去的工序。上述各工序优选在惰性气体气氛下进行。
1. 六氯化二硅的精制方法，其特征在于：具有使含有六氯化二硅和作为杂质的硅烷醇的六氯化二硅原料与吸附材料接触，将硅烷醇除去的接触工序，在上述接触工序后，还具有在140～150℃下进行蒸馏的蒸馏工序；上述吸附材料为活性炭。

2. 权利要求1所述的六氯化二硅的精制方法，其中，上述接触工序在惰性气体气氛下进行。

3. 权利要求1所述的六氯化二硅的精制方法，其中，上述蒸馏工序在惰性气体气氛下进行。

4. 高纯度六氯化二硅，其特征在于：采用权利要求1所述的精制方法得到。

5. 权利要求4所述的高纯度六氯化二硅，其中，硅烷醇量为1质量ppm以下。

6. 权利要求4所述的高纯度六氯化二硅，其中，硅烷醇量为0.05质量ppm以下。
六氯化二硅的精制方法和高纯度六氯化二硅

技术领域

本发明涉及六氯化二硅的精制方法和高纯度六氯化二硅。更具体地说，涉及含有硅烷醇作为杂质的六氯化二硅原料中高效地除去硅烷醇从而得到高纯度的六氯化二硅的方法以及由该方法得到的高纯度六氯化二硅。本发明的高纯度六氯化二硅能够作为半导体器件中氯化硅膜的形成材料等使用。

背景技术

目前为止，作为硅半导体原料，一直使用二氯硅烷等卤化硅。近年来，作为与该二氯硅烷相比能够在低温下形成氯化硅膜的CVD材料，六氯化二硅受到期待，关于其的研究在不断发展。

但是，任何制造方法得到的六氯化二硅，由于都含有硅烷醇作为杂质，因此为了稳定地形成氯化硅膜，需要高纯度的六氯化二硅，要求将硅烷醇等杂质除去的精制方法。如果杂质的含量增多，氯化硅膜的成膜速度极度变缓，而且杂质进入膜中，产生不能得到均匀的膜等问题。

作为氯化硅化合物的精制方法，例如在特开平2-153815号公报中已公开。该文献中公开了采用使氯化聚硅烷原料与活性炭接触，然后进行蒸馏的方法进行精制的例子。

发明内容

本发明的目的在于提供含含有硅烷醇作为杂质的六氯化二硅原料中高效地除去硅烷醇，从而得到高纯度的六氯化二硅的方法。

本发明如下所示。

本发明的六氯化二硅的精制方法，其特征在于，具有使含有六氯化二硅和作为杂质的硅烷醇的六氯化二硅原料与吸附材料接触，将硅烷醇除去的接触工序。

可以使上述吸附材料为活性炭。

在上述接触工序后，可以还具有进行蒸馏的蒸馏工序。

优选在惰性气体气氛下进行上述各工序。

本发明的高纯度六氯化二硅，其特征在于：采用上述精制方法得到。本发明的高纯度六氯化二硅能够成为硅烷醇量为1质量ppm以下。此外，本发明的高纯度六氯化二硅能够成为硅烷醇量为0.05质量ppm以下。

采用本发明的精制方法，能够高效地除去作为杂质的硅烷醇，得到将该化合物的浓度降低到规定量以下的六氯化二硅。

此外，采用本发明的高纯度六氯化二硅，适宜用作半导体器件中氯化硅膜的形成材料等。

具体实施方式

以下对本发明进行详细说明。
说明 书

[0015] 本发明的六氯化二硅的精制方法具有使含有六氯化二硅和作为杂质的硅烷醇的
六氯化二硅原料与吸附材料接触，将硅烷醇除去的接触工序。

[0016] 应予说明，本发明中，“六氯化二硅原料”包含六氯化二硅和硅烷醇等杂质。硅烷醇
的浓度通常为 4ppm 以上。此外，作为其他杂质，因六氯化二硅的制造方法而异，可以列举金
属成分，氯化铝，四氯化铁等。

[0017] 此外，所谓“硅烷醇”，是指具有硅烷醇基的氯化硅化合物。

[0018] 作为接触工序中使用的吸附材料，对形状、大小等并无限定，可以使用目前为止公
知的吸附材料。作为该吸附材料，可以列举活性炭，硅胶，分子筛等。其中，活性炭对于具有
硅烷醇基的化合物的吸附性能高，因此适合。此外，在除去金属成分等方面也适合。

[0019] 活性炭通常由碳沥青、石油沥青等制造，可以列举粉末状活性炭（气体吸活性炭、氯
化锌吸活性炭和磷酸酯活性炭），粒状活性炭（粉状炭，颗粒炭和成型炭），纤维状活性炭，特殊
成型活性炭等。其中，优选粒状活性炭和/或纤维状活性炭。从操作性等观点出发，优选
5 ～ 500 目的粒状物。

[0020] 使用吸附材料时，优选极在水分少的状态下使用。因此，优选预先将吸附材料干
燥。干燥方法因吸附材料的种类而选择，但在活性炭的情况下，优选在氮、氢、氧等惰性气体
的条件下或通下（以下统称为“惰性气体气氛下”）或减压下进行热处理。

[0021] 热处理的条件，可以根据吸附材料的种类和使用选择，但在惰性气体气氛下对
活性炭进行热处理时，一般为在温度 120℃以上（优选为 140℃以上，上限通常为 500℃）下
进行 4 小时以上（优选为 8 小时以上，上限通常为 72 小时）。在减压下进行处理时，可以在
温度 120℃以上（优选为 140℃以上，上限通常为 500℃）下进行 1 小时以上（上限通常为
24 小时），在更短时间内进行干燥。

[0022] 作为接触工序的具体方法，可以列举例如（1）使吸附材料添加、分散到六氯化二
硅原料中进行的方法（间歇法），（2）将吸附材料填充到柱等筒状物中，由该筒状物的一侧
通入六氯化二硅原料液体的方法（连续法）等。其中，优选（2）的方法。

[0023] 再者，六氯化二硅原料和吸附材料的接触时的使用比例和接触时间并无特别限
定。

[0024] 接触工序优选在氮、氢、氧等惰性气体气氛下进行，特别优选在水分量为 0.5 质量
ppm 以下的惰性气体气氛下进行。水分量越少，在接触工序时越能够防止六氯化二硅变为硅
烷醇。

[0025] 作为成为惰性气体气氛下的方法，可以列举单纯将惰性气体导入体系内后的方
法，边将体系内减压边从另一方导入惰性气体的方法等。惰性气体的导入时和/或导入前，通
过将填充六氯化二硅原料的容器、筒状体、管状体等加热，能够形成水分更少的气氛。在下
述的蒸馏工序中也是同样。

[0026] 在上述（2）的方法中，通入六氯化二硅原料液体时的送液量根据筒状体的内径等
选择，并无特别限定，通常为 0.1 ～ 100 升/小时，优选为 0.5 ～ 20 升/小时。如果为上
述范围，六氯化二硅原料和吸附材料充分接触，硅烷醇等杂质吸附在吸附材料上，能够回收
更高纯度的六氯化二硅。

[0027] 再者，在上述（2）的方法中，筒状体具有耐热性时，在该筒状体中填充吸附材料，
在惰性气体气氛下进行热处理，使吸附材料充分干燥后，直接在相同的气氛下通入六氯化
二硅原料液体，从而能够有效地进行接触工序。

[0028] 本发明的六氯化二硅的精制方法，在接触工序后可以具有进行蒸馏的蒸馏工序。

[0029] 作为蒸馏工序的具体方法，可以应用简单蒸馏和将其反复进行的多段蒸馏，具备精馏塔的间歇式蒸馏、具备精馏塔的连续式蒸馏等。蒸馏温度通常为 140～150℃，优选为 142～148℃。通过该蒸馏，还能够除去四氯化硅、三氯化硅、四氯化二硅烷等氯化硅化合物。

[0030] 蒸馏工序也优选在氮、氩、氯等惰性气体气氛下进行。

[0031] 更高效的六氯化二硅的精制方法，可以在成为了惰性气体气氛的相同的体系内进行该蒸馏工序和上述接触工序。

[0032] 从减压的容易性、加热容易性等观点出发，上述接触工序和蒸馏工序中使用的筒状体、容器等优选为不锈钢制。特别是通过使用将内面进行了电解抛光的筒状体，能够以短时间进行附着在内面的水分的去除。

[0033] 在本发明的精制方法中，各工序结束后，回收的六氯化二硅优选保存在水分少的气氛下。

[0034] 采用本发明的精制方法能够得到将硅烷醇以及四氯化硅、三氯化硅、四氯化二硅烷等氯化硅化合物、金属成分等的含量降低的本发明的高纯度六氯化二硅。

[0035] 本发明的高纯度六氯化二硅，优选硅烷醇量为 1 质量 ppm 以下，更优选为 0.05 质量 ppm 以下。该硅烷醇量可以采用 FT-IR 测定。上述硅烷醇量可以使用以三甲基硅醇作为标准物质而作成的校正曲线进行定量。

[0036] 本发明的高纯度六氯化二硅适合用作例如半导体器件中氨基硅膜的形成材料等。

[0037] 实施例

[0038] 以下将实施例对本发明进行具体说明。应予说明，本发明并不受这些实施例的任何制约。

[0039] 实施例 1

[0040] 作为精制原料，使用六氯化二硅原料 (I)，该原料使用三甲基硅醇作为标准物质的 FT-IR 测定的硅烷醇量为 4.88 质量 ppm。

[0041] 在内径 36mm、长 200mm 的不锈钢制柱中填充预先在氮气气氛下、150℃下真空干燥了 8 小时的活性炭 (二村化学社制、商品名 “CP460B”) 30g。然后，在氮气气氛下以给液速度 2 升 / 小时向柱内通入上述六氯化二硅原料 (I) 液体 1 升，进行回收。对得到的六氯化二硅的硅烷醇量进行分析，结果为 0.55 质量 ppm。

[0042] 实施例 2

[0043] 作为精制原料，使用 FT-IR 测定的硅烷醇量为 5.34 质量 ppm 的六氯化二硅原料 (II)。

[0044] 在内径 36mm、长 200mm 的不锈钢制柱中填充预先在氮气气氛下、150℃下真空干燥了 12 小时的活性炭 (二村化学社制、商品名 “CP460B”) 80g。然后，在氮气气氛下以给液速度 1 升 / 小时向柱内通入上述六氯化二硅原料 (II) 液体 5 升，进行回收。对得到的六氯化二硅的硅烷醇量进行分析，结果为 0.29 质量 ppm。

[0045] 然后，将得到的液体转移到不锈钢制烧瓶中，安装到不锈钢制蒸馏装置中。利用用于加热烧瓶的覆套式电阻加热器升温到 170℃，在该温度下边使氮气冒泡边进行蒸馏。初馏
得到500mL的六氯化二硅，主馏得到4L的六氯化二硅。对得到的主馏六氯化二硅的硅烷醇量进行分析，结果为0.07质量ppm。

[0046] 实施例3

[0047] 作为精制原料，使用FT-IR测定的硅烷醇量为4.51质量ppm的六氯化二硅原料（III）。

[0048] 在充分地进行了氮气置换的手提箱中，将预先在氮气气氛下、150℃下真空干燥了12小时的活性炭（二村化学社制、商品名“CW480B”）10g填充到内径10mm、长300mm的不锈钢制柱中。使用不锈钢制配管和导管将柱下端（通入的六氯化二硅原料（III）液体的出口）和不锈钢制蒸馏装置（不锈钢制烧瓶）连接，对整个装置的内部进行抽真空和氮气置换。氮气置换后，采用水分计测定体系内的水分浓度，结果为0.3质量ppm。

[0049] 然后，以给液速度1升/小时向柱内通入上述六氯化二硅原料（III）液体1升，通过不锈钢制配管转移到不锈钢制烧瓶中。然后，与实施例2同样地进行蒸馏，初馏得到40mL的六氯化二硅，主馏得到850mL的六氯化二硅。对得到的主馏六氯化二硅的硅烷醇量进行分析，结果为0.04质量ppm。

[0050] 本发明的高纯度六氯化二硅，由于硅烷醇量为极微量，因此适宜用作半导体器件中氯化硅膜的形成材料等，该氯化硅膜也几乎不含杂质，因此能够制作高性能的半导体器件。