发明名称：流态稳定聚集体的制法
摘要：一种制备流态稳定聚集体的方法，它包括将（A）100重量份含有羧基的吸附树脂粉末，（B）0.01至30重量份交联剂，（C）0至50重量份水，和（D）0至60重量份有机溶剂，在一个具有实际上由衬底形成的表面的高速搅拌混合机中，在搅拌桨叶末端线速度不小于600米/分钟的搅拌条件下进行混合，该衬底与水的接触角不大于约60°，其热熔点不低于70°C，然后在反应过程施加于该混合物的动量满足下列公式的条件下，完成该吸附树脂粉末（A）与交联剂（B）的反应：

\[0 \leq F \leq 36000 \text{ 焦耳/公斤}\]

其中反应过程中每分钟施加的动量 Fa 不大于600 焦耳/公斤。
1. 一种制备流态稳定聚集体的方法，包括将（A）100重量份含有羧基的吸附树脂粉末，（B）0.01至30重量份含有至少两个与该吸附树脂粉末的羧基起反应的官能团的交联剂，（C）0至50重量份水，和（D）0至60重量份亲水有机溶剂，在一个具有实际上由衬底所构成的内表面的高速搅拌型混合机中，在搅拌桨叶末端线速度不小于600米／分钟的条件下，进行混合，而该衬底与水的接触角不小于约60°，其热焓变点不低于70°C，然后在反应过程中施加于该混合物的动能满足下列公式的条件下，结束该吸附树脂粉末（A）与交联剂（B）的反应：

$$ F \leq 36000 \text{焦耳／公斤} $$

其中，反应过程中每分钟施加的动能$F$不大于6000焦耳／公斤。

2. 根据权利要求1的方法，其中该搅拌桨叶末端线速度在1000～3000米／分钟的范围内。

3. 根据权利要求1的方法，其中实际上由高速搅拌型混合机衬底所形成的内表面厚度不小于5毫米。

4. 根据权利要求1的方法，其中该内表面是可装拆地插入该混合机中的衬底的成形材料。

5. 根据权利要求4的方法，其中该成形材料是圆筒状的。

6. 根据权利要求1的方法，其中该衬底（1）是选自由聚乙烯、聚丙烯、聚酯、聚酰胺、氯树脂、聚氯乙烯、环氧树脂和硅酮树脂所组成的一组中的一个。
7. 根据权利要求6的方法，其中该衬底（1）是一种氟树脂。

8. 根据权利要求1的方法，其中反应温度在40℃~250℃的范围内。

9. 根据权利要求1的方法，其中该交联剂（B）选自由多元醇化合物类，多水解甘油醚化合物类，聚烯烃化合物类和多胺化合物类所组成的一组。

10. 根据权利要求1的方法，其中反应结束的时间是满足下列公式（a-1）的时间：

\[
30 \leq \frac{100 + R}{100} \times \frac{Q}{P} \times 100 \leq 95 \quad (a-1)
\]

式中P是使用生理盐水时吸附树脂粉末（A）的吸附能力，Q是使用生理盐水时反应产物的吸附能力，而R是以100重量份吸附树脂粉末（A）计时所用的交联剂（B）的重量份数。

11. 根据权利要求10的方法，其中反应结束的时间是满足下列公式（a-2）的时间：

\[
40 \leq \frac{100 + R}{100} \times \frac{Q}{P} \times 100 \leq 85 \quad (a-2)
\]

式中P是使用生理盐水时吸附树脂粉末（A）的吸附能力，Q是使用生理盐水时反应产物的吸附能力，而R是以100重量份吸附树脂粉末（A）计时所用的交联剂（B）的重量份数。

12. 根据权利要求10至11的任何一个的方法，其中该交联剂（B）是多元醇类化合物。
13. 根据权利要求1的方法，其中该交联剂（B）的用量，以100重量份该吸附树脂粉末（A）计，在0.1～10重量份的范围内。

14. 根据权利要求1的方法，其中该水（C）的用量，以100重量份该吸附树脂粉末（A）计，在0.5～40重量份的范围内。

15. 根据权利要求1的方法，其中该亲水有机溶剂（D）的用量，以100重量份该吸附树脂粉末（A）计，在0.1～10重量份的范围内。

16. 根据权利要求1的方法，以100重量份该吸附树脂粉末（A）计，其中该水（C）的用量在0.5～40重量份的范围内，该亲水有机溶剂（D）的用量在0.1～10重量份的范围内。

17. 根据权利要求12的方法，其中反应温度在150℃～250℃的范围内。

18. 根据权利要求1的方法，其中组份（A）至（D）的混合是连续进行的。

19. 根据权利要求1、9、10或12所制备的实际上水不溶、有吸附性、形成水凝胶的聚合物流态稳定聚集体。

20. 根据权利要求1的方法，其中该吸附树脂粉末（A）与该交联剂（B）的混合，是在水不溶细粉末（E）的存在下进行的，后者的用量以100重量份该吸附树脂粉末（A）计，为0.01～10重量份。

21. 根据权利要求20的方法，以100重量份该吸附树脂粉末（A）计，该交联剂（B）的用量，在0.1～10重量份的范围内，该水（C）用量是在0.5～40重量份的范围内，该亲水有机溶剂（D）的用量，在0～20重量份的范围内，而该水不溶细粉末（E）
的用量，在0.01～1.0重量份的范围内。

2.2. 根据权利要求21的方法，其中该亲水有机溶剂（D）的用量，以100重量份吸附树脂粉末（A）计，在0.1～1.0重量份的范围内。

2.3. 根据权利要求20的方法，其中该不溶细粉末（E）的用量，以100重量份该吸附树脂粉末（A）计，在0.01～5重量份的范围内。

2.4. 根据权利要求20的方法，其中反应结束的时间，是满足下列公式（b-1）的时间：

\[
\frac{(100 + R + S)}{100} \times \frac{Q}{P} \times 100 \leq 95 \quad (b-1)
\]

式中P是使用生理盐水时吸附树脂粉末（A）的吸附能力，Q是使用生理盐水时反应产物的吸附能力，而R和S分别是以100重量份吸附树脂粉末（A）计时，该交联剂（B）的重量份数和该不溶细粉末（E）的重量份数。

2.5. 根据权利要求24的方法，其中反应结束的时间，是满足下列公式（b-2）的时间：

\[
\frac{(100 + R + S)}{100} \times \frac{Q}{P} \times 100 \leq 85 \quad (b-2)
\]

式中P是使用生理盐水时吸附树脂粉末（A）的吸附能力，Q是使用生理盐水时反应产物的吸附能力，而R和S分别是以100重量份吸附树脂粉末（A）计时该交联剂（B）的重量份数和该不溶细
粉末（E）的重量份数。

2.6. 根据权利要求20或21的方法，其中该交联剂（B）是多元醇化合物。

2.7. 根据权利要求20至26中的任一种方法所制得的实际上水不溶、有吸附性、生成水凝胶的聚合物流态稳定聚集体。
流态稳定聚集体的制法

本发明涉及一种没有聚集体结构破碎的流态稳定聚集体，在其中众多吸附树脂粉末颗粒被共价键互相交联在一起，而且也涉及其制法。

以前，人们曾试图使用一种吸附树脂作为卫生巾和卫生尿布这类卫生用品的一种组合材料，其作用是吸收体液。在现有技术中，这种性质的吸附树脂包括一种水解淀粉—丙烯腈接枝聚合物（美国专利3661815），一种已中和的淀粉—丙烯酸接枝聚合物（美国专利4076663），一种皂化的醋酸乙烯酯—丙烯酸酯共聚合物（日本公开特许公报，昭52（1977）—14689），一种水解丙烯腈共聚物或丙烯酰胺共聚合物（日本特许公报，昭53—（1978）—15959），它们的交联产物，一种部分中和的聚丙烯酸以及一种部分中和的交联聚丙烯酸（日本公开特许公报，昭57—（1982）—34101）。

这种吸附树脂的特性包括高吸附能力，高吸附速率，高液体渗透性，巨大的凝胶强度。然而同时改善这些性能是困难的。

人们曾试图提高吸附能力，方法是降低吸附树脂的粒度，将吸附树脂予以研磨，或将吸附树脂制成薄片状。一般来说，当吸附树脂制成较小尺寸的颗粒时，树脂颗粒与尿接触即变成湿面粉团状，在一定程度上降低了吸附速率。当吸附树脂做成丸粒状时，则产生这样一种现象，即与尿接触时，丸粒各自转变为湿团状，吸附速率下降相当多。
当吸附树脂做成薄片状时，其吸附速率得到相当大的改善。但是，因为生成了凝胶块，吸附速率并不太高，而且吸附剂的生产从工艺的观点看是受限制的。因为将吸附树脂做成薄片状是不经济的，这是因为所制成的吸附树脂不可避免的会变成块状，而且需要用较大的设备来运输和贮备。

另一方面，有这样一种技术，它能提高吸附速率和吸附后的凝胶强度，但不降低吸附能力，该方法是将位于吸附树脂表面交联附近的分子链进行交联。

这种技术公开在例如日本公开特许公报昭57(1982)－44627，日本公开特许公报昭58(1983)－42602，日本特许公报昭60(1985)－18609，美国专利4666983和美国专利4497930及美国专利4734478上。

然而，大多数用这些技术生产的吸附树脂含有能通过100目筛子的小粉末。在实际使用中，它们会引起下列的问题：

(1) 它们易于引起灰尘的飞扬，结果使工作环境受到损害，并使重量受到损失。

(2) 当它们与别的物质混合时，表现出差的可混合性和分散性。

(3) 特别是当细颗粒很多时，当它们与液体接触时，它们易于变成凝胶块，并使残留的液体透过性受到损害。

(4) 因为含细粉末的吸附树脂缺乏流动性，所以它们在料斗中易于引起架桥和粘平现象。

建议用来解决这一问题的方法是这样一种方法，该方法求助于除去吸附树脂的细粉末部分，及借助于吸附树脂的水聚集性，前一方法因为在经济上不合算，因而是不可取的。
用水使之聚集的方法在专利4734478中作了披露，此
方法包括用一种特别的混合机，例如高速旋转浆叶型混合机或气流型
混合机，将吸附树脂粉末与水混合，然后将所得的混合物进行粉碎和
研磨。

吸附树脂粉末的水聚集化（即颗粒增大）方法，使得吸附树脂粉
末作为一种颗粒物质获得了改进处理。然而，如此获得的聚集体仅使
得粉末彼此物理地联合在一起，因此聚集体的强度是很低的。由此制
得的吸附树脂聚集体在工厂加工或在运输过程中会被破裂成小颗粒。
即使这种聚集体能维持聚集体结构至它们被用作最终产品，当使用最
终产品时，也不能期望保持聚集体结构。例如，当在一次性尿布中使
用吸附树脂聚集体时，则聚集体与含水液体接触时，被碎裂为它们原
先的小基本颗粒，这些颗粒因为它们很小，因而易于生成湿块。此外，
由于吸附含水液体而生成的凝胶基本颗粒是很小的，因此阻塞了纸浆
纤维中的毛细管，并导致凝胶结块现象的发生。这就是说，液体透过
性降低了。

业已发现，在有吸附性的水凝胶生成的聚合物组合物中使用流态
稳定聚集体，能戏剧性地改善聚合物组合物的性能。流态稳定聚集体
可以吸附大量液体，具有迅速的膨胀速率，而且在吸附液体后能保持
其外形，结果是降低了所有聚合物组合物的凝胶结块效果，而同时提
高了吸附速率。

聚合物材料的膨胀速率指的是水凝胶形成的聚合物材料样品吸液
至给定量的平均速度。膨胀速率是全体物质的渗透性以扩散速率（凝
胶结块）表示的一种度量。因此，凝胶的浸透性变成了限制游离液体
能多么快到达混合物中别的颗粒的限制因素。膨胀速率以每秒钟每克
水凝胶形成的聚合物的合成尿素氧来测量和定义。膨胀速率可以用后面描述的方法来测量。

因为在聚合物组合物中使用流态稳定聚集体是需要的，因此需要找到一种制备这种流态聚集体的方法。此外，找到一种经济而有效地制备流态稳定聚集体的方法也是必要的。

因此，本发明的一个目的是提供一种制备流态稳定聚集体的方法。

本发明的又一目的是提供一种经济而有效地制备流态稳定聚集体的方法。

本发明的另一目的是提供一种制备含有相当大量流态稳定聚集体，并具有高膨胀速率的聚合物组合物的方法。

本发明还有另一目的，即提供一种制备其组末含量低的聚合物组合物的方法。

上述目的用一种制备流态稳定聚集体的方法来实现，这一方法包括将（A）100重量份含羧基的吸附树脂粉末、（B）0.01～30重量份含有至少两个能与该吸附剂上羧基起反应的官能团的交联剂、（C）0～50重量份水和（D）0～60重量份亲水有机溶剂，在一个具有实际上由衬底（I）所形成的内表面的高速搅拌型混合机中，在搅拌桨叶末端线速度不小于600米/分钟的条件下，进行混合，而该衬底与水的接触角不少于60°，其热传导点不低于70℃。然后该吸附树脂粉末（A）与交联剂（B）在反应过程中施加于该聚合物的总动能满足下列公式的条件下完成反应：

$$0 \leq F \leq 36000$$ 焦耳/公斤

其中反应过程中每分钟施加的动能 $F_a$ 不大于600焦耳/公斤。

根据本发明，吸附树脂粉末（A）与交联剂（B）的混合在上述
高速搅拌型混合机中进行，反应过程中施加的动能在上述的范围内，这样得到的聚合物组合物含有很少的细粉末，具有高膨胀速率以及相当大量的流态稳定聚集体，这种聚合物组合物不仅在吸附树脂粉末（A）表面区域的交联度提高了，而且也含有大量强劲聚集体，这种聚集体含众多被交联剂（B）共价键在颗粒间进行了交联的吸附树脂粉末（A）。所以可以获得很少含细粉末的聚合物组合物，而且当聚合物组合物与水接触时聚集体不会破裂，也不会发生凝胶结块现象。当这些聚合物组合物分散于纸浆纤维中，而且在这种状态下暴露于含水溶液并随之膨胀，凝胶化时，它起着使纸浆纤维中的毛管扩大而不是使它们被阻隔的作用。当这些聚合物组合物例如用于尿布中时，这种尿布具有满意的液体渗透性，而且漏漏少。如此制得的液态稳定聚集体可用于卫生领域，例如一次性尿布、卫生方巾和一次性毛巾，用于民用工程领域如水封剂、防霉剂和污泥凝结剂，用于建筑领域如混凝土，用于农业及畜牧业如种子及播种防护片，用于食品包装领域如保鲜材料、脱水剂及干燥剂，用于医药领域如吸血剂和外科海绵，用于电领域如电绝缘的水密封剂、湿度传感器，以及其他油水分高剂、吸汗剂、水胀玩具、离子交换树脂，而它们能吸收含水液体如水、尿、血、蒸气、肉汁、含离子水包括海水、水溶液分散的有机物，等等。

图1是用于本发明的一种具体混合机的剖面图。

图2是用于本发明的另一种混合机的剖面图。

用于本发明的吸附树脂粉末（A）需含有羧基。符合这一描述的吸附树脂粉末例如包括水解的淀粉—丙烯腈接枝共聚物，部分中和的淀粉—丙烯腈接枝共聚物，皂化的醋酸乙烯酯—丙烯酸酯共聚物，水解的丙烯腈共聚物或丙烯酸胺共聚物，此共聚物的交联产物，部分中
和的聚丙烯酸，部分中和聚丙烯酸的交联产物，它们的粉末形状是不变化的。这些吸附树脂粉末可以单独使用，也可以两个或多个混合使用。虽然吸附树脂粉末（A）最好具有交联结构，但是它也可以以不具有这种交联结构的形式而被有效地使用。

在上述的各种吸附树脂粉末（A）中，被证明是特别适合的是下列（1）至（5）所示的吸附树脂。

(1) 将凝胶状含水聚合物进行热干燥而得的粉末状丙烯酸胺金属盐聚合物，而此含水聚合物是由100重量份的含1～50%摩尔丙烯酸及99～50%摩尔丙烯酸胺金属盐的丙烯酸盐单体，0～5重量份其单体浓度不大于20%重量的交联单体水溶液，经共聚合而得的。

(2) 如下制得的粉末状树脂：在其HLB值为8～12的表面活性剂存在下，把含有水溶性游离基聚合引发剂，还可含有交联单体的丙烯酸和/或丙烯酸胺金属盐水溶液分散到脂环和/或脂芳族烃溶剂中，然后使所得的分散液进行悬浮聚合。

(3) 乙稀酯与烯属不饱和羧酸或其衍生物的粉末状皂化共聚物。

(4) 如下制得的粉末状吸附树脂：将淀粉和/或纤维素、带有羧基或在随后的水解中能生成羧基的单体，也可有交联单体，在含水介质中进行聚合而得到的聚合物，以及也可将所得聚合物进一步水解而得的聚合物。

(5) 如下制得的粉末状吸附树脂：使碱性物质与含有马来酸酐以及至少一种选自α-烯烃和乙烯基化合物单体的马来酸酐共聚物起反应而得的聚合物，也可以是使聚环氧化合物与所得反应产物反应而得聚合物。
虽然吸附树脂粉末（A）所含有的羧基数目不受特别限制，但羧基数目以100克吸附树脂粉末（A）计，最好不小于0.01当量。例如，在部分中和聚丙烯酸的情况下，未中和的聚丙烯酸的比例最好是在1～50%摩尔的范围，优选值为5～40%摩尔。

用于本发明的吸附树脂粉末（A）的外形不受特别限制，用反相悬浮聚合时可得到球形颗粒，用转鼓式干燥时得薄片状，或者将树脂块粉碎时得无规则状。

适用于本发明的交联剂（B）包括在其分子单元中至少包含两个可与羧基反应的基团的那些化合物。在本发明中适用作交联剂（B）的化合物包括例如多元醇类，例如乙二醇、二甘醇、三甘醇、四甘醇、聚乙二醇、甘油、丙二醇、二乙醇胺、三乙醇胺、聚环氧丙烷、环氧乙烷－环氧丙烷嵌段共聚物、季戊四醇和山梨醇、聚缩水甘油醚化合物类，例如乙二醇二缩水甘油醚、聚乙二醇缩水甘油醚、甘油多缩水甘油醚、二甘油多缩水甘油醚、多甘油多缩水甘油醚、山梨醇多缩水甘油醚、季戊四醇多缩水甘油醚、丙二醇二缩水甘油醚和聚丙二醇缩水甘油醚，卤代环氧化合物类，例如表氯醇和α－甲基氯代醇；多胺类化合物，如乙二胺、二乙三胺、三乙四胺、四乙五胺、五乙六胺和多乙亚胺。可以使用选自上述那组交联剂中的一个交联剂，或相互不作用的两个或多个交联剂。

在上述其他化合物中，特别希望使用至少一种选自下面的化合物：二甘醇、三甘醇、聚乙二醇、甘油、聚甘油、丙二醇、二乙醇胺、三乙醇胺、聚环氧丙烷、环氧乙烷－环氧丙烷嵌段共聚物，脱水山梨醇脂肪酸酯、聚环氧乙烷脱水山梨醇脂肪酸酯，三羟甲基丙烷、季戊四醇和山梨醇。
用于本发明的交联剂（B）的份数在0.01至3.0重量份之间，优选值为0.1至1.0份。只要在这一范围内，所制得的聚合物组合物便具有高含量的流态稳定性聚集体和高膨胀速率。如果份数超过3.0重量份，则超出的部分浪费了，也不产生任何经济效益，并招致超过适当的交联效应，而且降低了所得吸附剂的吸附能力。相反，如果份数少于0.01重量份，则发明的效果达到了，但有些困难。

在本发明中，在吸附树脂粉末（A）与交联剂（B）的混合过程中，可以使用水，水（C）的作用不但可促进交联剂（B）在吸附树脂粉末（A）表面的均匀分散，和交联剂（B）在吸附树脂粉末（A）颗粒表面区域的渗透，而且能促进吸附树脂粉末（A）颗粒间的交联反应。

根据本发明的流态稳定聚集体与不加水（C）比较最好是在将吸附树脂粉末（A）与交联剂（B）混合时加入水（C）而制备。这也就是说，在本发明中水（C）的用量以100重量份吸附树脂粉末（A）计算为0～50重量份，优选值为0.5～40重量份，更优选值为2～40重量份，这取决于吸附树脂粉末（A）的种类和颗粒大小。如果水（C）的数量超过50重量份，则热处理需要过长的时间，而且会使得交联剂（B）渗透到吸附树脂粉末（A）颗粒的核心，此外，所制得的流态稳定聚集体的吸附能力将降低太多，还有，吸附树脂粉末（A）易于生成湿块，而且混合也不均匀。

在本发明中也可使用的亲水有机溶剂（D），仅被用于与交联剂（B）均匀地混合，和抑制对吸附树脂粉末（A）质量的副作用。符合这种描述的亲水有机溶剂包括低级醇类，例如甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇及叔丁醇、酮类例如丙酮、甲乙酮
和甲基异丙基甲酮，醚类例如二氯亚砜、四氢呋喃和乙醚，酮类例如 N,N-二甲基甲酰胺和 N,N-二乙基甲酰胺。亚砜类例如二甲基亚砜。亲水有机溶剂(D)的作用是影响交联剂(B)以及还可以是所用的水(C)在吸附树脂粉末(A)表面上的均匀分散。

在本发明中亲水有机溶剂(D)的用量范围以100重量份吸附树脂粉末(A)计算为0~60重量份，优选值为0.1~10重量份，虽然用量是随着所用吸附树脂粉末(A)的种类和颗粒大小的改变而改变的。如果亲水有机溶剂(D)的数量超过60重量份，则观察不到此超过的部分能成比例地增大所希望的效果。相反，因为增大了干燥所需的能耗而削弱了经济效益。在本发明中，经常不需要使用亲水有机溶剂，因为使用了一种后面将更详细描述的特种高速搅拌型混合机来混合吸附树脂粉末(A)和交联剂(B)。有时使用亲水有机溶剂(D)，本发明的效果将会提高若干倍，这取决于交联剂(B)的种类和数量或水(C)的数量，或所用的吸附树脂粉末的种类和颗粒大小。当混合吸附树脂粉末(A)与交联剂(B)时，以及(例如若所需的水(C)不足够时)当吸附树脂粉末(A)的粒度太小、或者当水的用量与交联剂(B)的数量相比太大时，若再使用比较少量的亲水有机溶剂，则能容易地取得本发明的效果。

在本发明中，吸附树脂粉末(A)与交联剂(B)的混合是用一个高速搅拌型混合机进行的。

用于本发明的高速搅拌型混合机能够使其搅拌浆叶以末端线速度不少于6000米/分钟，最好是在1000~3000米/分钟的范围，进行旋转。当需要取得本发明的效果时，如果搅拌浆叶末端线速度小于600米/分钟，则在工业制法中，吸附树脂粉末(A)不能
充分地与如此数量的交联剂（B）、水（C）以及亲水有机溶剂（D）相混合，而且由交联剂（B）所引起的吸附树脂粉末（A）的颗粒间交联会变得不充分。如果搅拌浆叶的末端线速度超过30 000 米／分钟，则搅拌作用的冲击会导致吸附树脂粉末（A）的破裂。

本发明中所用的高速搅拌型混合机至少有一个轴，而轴上至少有一个浆叶，而且该轴能以搅拌浆叶末端线速度不少于600 米／分钟。优选值为1000～3000 米／分钟，进行旋转。

高速搅拌型混合机包括那种在其搅拌罐内，在底部装有旋转浆叶的那一种混合机，例如Henschel混合机（由Mitsui Miike Machinery Co., Ltd.制造）New Speed混合机（由Okada Seiko K.K.制造），以及Heavy-Duty Matrix（由Nara Kikai Seisakusho K.K.制造），以及能用旋转器的高速旋转（连续地）使两种或多种粉末，或使一种粉末与一种液体进行混合的那种类型混合机，而此旋转器是装在圆筒型容器内的，带有多少浆叶的，这种混合机有例如Turbulator和Sand Turbo（它们均由Hosokawa Micron K.K.制造）。在这些高速搅拌型混合机中，连续型混合机的生产率高，是优选的。

用于本发明的高速搅拌型混合机有一个实质上由衬底（I）所形成的内表面，该衬底与水的接触角不少于60°，热畸变点不低于70℃，以便获得吸附树脂粉末（A）与交联剂（B）的足够混合作用。

在本发明中，特别是当水（C）的用量高于该范围时，吸附树脂粉末（A）与交联剂（B）及水（C）的混合变得不充分，除非按上述条件进行混合，在这种情况下，使用具有衬底内壁的混合机，而衬底的接触角不少于60°，则混合性能有时得到改善。如果热畸变点低于70℃，则衬底（I）不可能抵抗混合时所产生的热量，其后
果是不能继续进行稳定的混合。

适于作为形成混合机内表面的衬底（I）的物质包括合成树脂，例如聚乙烯、聚丙烯、聚酯、聚酰胺、氟树脂、聚氯乙烯、环氧树脂以及硅酮树脂，复合的及用无机填料及有机填料增进的上述合成树脂、无机填料包括例如玻璃、石墨、黄铜和硫化铝，有机填料如聚酰亚胺。在上述的其他物质中，氟树脂如聚四氟乙烯、聚三氟乙烯、聚三氟氯乙烯、四氟乙烯－乙烯共聚物、乙烯－三氯乙烯－乙烯共聚物、五氟丙烯－四氟乙烯共聚物，全氟烷基乙烯基醚－四氟乙烯共聚物，聚偏氟乙烯，以及聚氟乙烯是特别优选的。

本发明所用的高速搅拌型混合机本身可有上述衬底（I），一般来说混合机由金属材料制成，并有由衬底（I）的涂层构成的内壁，或用衬底（I）的套管覆盖成的内壁。

含有衬底（I）的成型材料，最好是圆筒状的材料插入高速搅拌型混合机中。

此外，衬底（I）的成型材料的厚度最好不小于5毫米，更好不小于10毫米。当吸附树脂粉末（A）与交联剂（B）长时间混合时，如果使用的是其内表面已用衬底（I）涂层的混合机，则在比较短的时间内，衬底层的表面将因厚度不够而被磨损，并露出底层，因而混合将变得不稳定。另外，涂层修理时需要更多的时间和费用。作为对比，当厚度不小于5毫米的衬底（I）成型材料被可拆卸地插入混合机中时，则甚至在长时间内也可稳定地获得混合物，而且维修也容易进行。

在本发明中，当吸附树脂粉末（A）与交联剂（B），若有必要的话还有水（C）和亲水有机溶剂（D）混合时，最好在上述条件下
使用高速搅拌型混合机，而假如不是在这种条件下进行混合，则不能达到本发明的目的，其理由不清楚，但据认为，因为事实上混合是在强剪切力下进行的，而且吸附树脂粉末（A）与交联剂（B）的混合是均匀进行的，所以吸附树脂粉末（A）之间发生了特殊的键合，而且颗粒间的反应效率变高了。

在本发明中，虽然吸附树脂粉末（A）与交联剂（B）之间的反应可以在搅拌或不搅拌条件下进行，但是，施加到吸附树脂粉末（A）、交联剂（B）、若必要还有水（C）、亲水有机溶剂（D），以及下面将予解释的水不溶细粉末（E）的混合物上的，直至使吸附树脂粉末（A）与交联剂（B）的反应完成的总动能，要满足下列公式：

\[ 0 \leq F \leq 36000 \text{焦耳/公斤} \]

这就是说，用本发明的方法所获得的流态稳定聚集体，是通过吸附树脂粉末（A）与交联剂（B）的反应，由众多吸附树脂粉末（A）的颗粒间交联而形成的。因此，假如在吸附树脂粉末（A）与交联剂（B）的反应结束之前施予过量动能的话，则基于物理键合的弱聚集体结构被破坏，因而不能获得所想要的流态稳定聚集体。最理想的状态在于，当吸附树脂粉末（A）与交联剂（B）反应时，在同一接触点众多的吸附树脂粉末（A）仍维持在物理接触状态。

如果在吸附树脂粉末（A）与交联剂（B）的交联反应结束之前，给吸附树脂粉末（A）与交联剂（B）的混合物施加太大的动能，则不可能获得流态稳定聚集体含量高，细粉末含量很低，膨胀速率极好的聚合物组合物。

说明书中的术语“总动能”是指在把吸附树脂粉末（A）、交联剂（B）、以及如果需要时还有水（C）、亲水有机溶剂（D）和水
不溶细粉末（A）的混合物加至反应器，到反应结束这一过程，所施加到混合物上的动能。此外，“总动能”仅指为搅拌混合物所施加的动能，而不包括例如把含混合物的桶挪动位置所用的动能。

如果上述条件得到满足，更普通的干燥器或加热炉可用作热处理设备，这就是用来获得本发明流态稳定聚集体的反应器。

可以用普通的干燥器或加热炉来进行热处理。适用作热处理的干燥器包括水平搅拌干燥器、旋转干燥器、盘状干燥器、流态化床干燥器、气流干燥器和红外干燥器。热处理可在混合结束后，或者混合产物已放置一段规定时间后，马上开始。

在本发明中，当吸附树脂粉末（A）交联剂（B）用高速搅拌型混合机混合时，它们可与水不溶细粉末（以下称作“粉末（E）”）一道混合。还使用粉末（E）的目的是充分提高混合的效果和改善聚集体的性能。因此，反应产物，即合流态稳定聚集体的聚合物组合物在膨胀速率方面是优异的。

适用的水不溶细粉末（E）包括有机粉末，例如能有效地改善吸附树脂粉末光牢度，也能产生增味效果的炭黑和活性炭、纸浆粉末；无机粉末例如滑石、叶蜡石、高岭土、黑硼铁矿以及其他相似的粘土矿，硅二氧化硅，如主要包括含粒度不大于 50 微米二氧化硅颗粒的Aerosil 200（由Nippon Aerosil K.K.制造）和Carp lex #80（由Shionogi & Co., Ltd. 制造）。

这些水不溶细颗粒（E）的直径不大于 1000 微米，优选值不大于 100 微米，更优选值不大于 50 微米。

水不溶细颗粒（E）的用量以100 重量份吸附树脂粉末（A）计算，为0.01至10 重量份的范围，优选值为0.01至5重量
份的范围。只要此数在这一范围内，则可有效地得到膨胀速率高，流
d态稳定聚集体含量高，细粉末含量足够低的聚合物组合物。如果此数
量超过10重量份，则超过的部分不能成比例地增加效应，相反却削
弱了吸附能力，并成倍地增加了聚合的困难。
当吸附树脂粉末（A）、交联剂（B）及水不溶细粉末（E）一
起混合时，粉末（E）可以像吸附树脂粉末（A）和交联剂一样，直
接加到高速搅拌型混合机内，以便从一开始就参与混合。粉末（E）
也可先与吸附树脂粉末（A）在另一混合机中混合，然后将所得的于
混物和交联剂（B）送至进行混合的高速搅拌型混合机中。同样粉末
（E）也可与交联剂（B）混合得一混合物，然后可将此混合物与吸
附树脂粉末（A）混合。混合可在水（C）和/或水有机关溶剂（D）
存在下进行。使用水不溶细粉末（E）时，吸附树脂粉末（A）颗粒
间的键合强度成倍地提高。
另外，当吸附树脂粉末（A）与交联剂（B）混合时，用交联剂
（B）使吸附树脂粉末起反应，直至反应结束，则可以提高本发明的
效果。反应完成时间是满足下列（a-1）、（a-2）、（b-1）、
（b-2）公式的时间：
（其中在混合过程中未使用水不溶细粉末（E））

\[
30 \leq \frac{(100 + R)}{100} \times \frac{Q}{P} \times 100 \leq 95 \quad (a-1)
\]
优选式：
\[
\frac{100 + R}{40} \times \frac{Q}{100} \times 100 \leq 85 \quad (a - 2)
\]

式中 P 是使用生理盐水时吸附树脂粉末 (A) 的吸附能力，Q 是使用生理盐水时反应产物的吸附能力，而 R 是以 100 重量份吸附树脂粉末 (A) 计算的所用交联剂 (B) 的重量份数，或者（其中，在混合过程中使用了水溶细粉末 (E)）

\[
\frac{100 + R + S}{30} \times \frac{Q}{100} \times 100 \leq 95 \quad (b - 1)
\]

优选式：
\[
\frac{100 + R + S}{40} \times \frac{Q}{100} \times 100 \leq 85 \quad (b - 2)
\]

式中 P 是使用生理盐水时吸附树脂粉末 (A) 的吸附能力，Q 是使用生理盐水时反应产物的吸附能力，R 是以 100 重量份吸附树脂粉末 (A) 计算的所用交联剂 (B) 的重量份数，而 S 是以 100 重量份吸附树脂粉末 (A) 计算的所用水不溶细粉末 (E) 的重量份数。

如果上面（a - 1）式或（b - 1）式的计算值不小于 95，则仅是吸附树脂粉末 (A) 表面区域的交联密度提高了，因而确认，基于表面区域交联密度升高导致了凝胶强度的提高，但很难获得具有一定的或更高的膨胀速率和流态稳定聚集体含量的聚合物组合物。另一方面，如果上面（a - 1）式或（b - 1）式的计算值小于 30，则
交联密度可能会超过中等密度，因而所制得的聚合物组合物降低了其吸附能力。

将吸附树脂粉末（A）与交联剂（B）反应，直到反应结束，即直到满足了（a - 1）式或（b - 1）式的时候，则能优选地制得膨胀速率高，流态稳定聚集体含量高的聚合物组合物。

吸附树脂粉末（A）与交联剂（B）的反应，在将吸附树脂粉末（A）与交联剂（B）混合后即开始进行。当反应所需热量时，例如当用多元醇、多元醇甘油基化合物、多胺化合物或多烯化合物作为交联剂（B）时，吸附树脂粉末（A）与交联剂（B）混合好后，需进行热处理。热处理温度一般为40°C ~ 250°C的范围，优选值为90°C ~ 250°C的范围。

当用多元醇作为交联剂（B）时，加热温度选择在90°C ~ 250°C之间，优选在170°C ~ 220°C之间，则能迅速影响充分显示本发明效果的交联反应，而不会导致吸附树脂可能变色或变劣。应附带注意，当热处理在高于250°C的高温下进行时，吸附树脂可能会遭到热劣化，这取决于树脂的种类。

在本发明中，如果需要，可以将吸附树脂粉末（A）与交联剂（B）的反应产物进行粉碎或研磨。可以用普通的粉碎研磨机进行粉碎和研磨。适用的粉碎研磨机包括New Speed Mill（由Okada Seiko K.K.制造），Flush Mill（由Fuji Powder K.K.制造）或Speed Mill（由Showa Engineering K.K.制造）。

用本发明方法制得的聚合物组合物具有高的膨胀速率、高的流稳定聚集体含量，而且细粉末的含量很低。因此本发明解决了上述惯用吸附树脂所引起的各种问题。此外，可以得到这样一种聚合物组合
物，它含有大量的其结构在吸附液体后难于崩解的坚韧聚集体。这种含有大量聚集体的聚合物组合物突出地显示出明显改进的液体浸透性。

因此用本发明方法制得的聚合物组合物适用作卫生物品的吸附剂，例如卫生巾、卫生尿布，也适用作多种产品，例如淤泥凝结剂、建材防雾滴剂、农业和园艺业的保水剂或干燥剂。

以根据本发明的方法制得的聚合物组合物，含有上述流态稳定聚集体，其数量优选不小于 30% 重量，更优选不小于 40% 重量，特别优选不小于 50% 重量，它显示极好的膨胀速率，细颗粒也少。

在原来单独的吸附树脂粉末颗粒的聚合物链之间生成交联键表现在所得流态稳定聚集体是流态（即液态）稳定的。这里“流态稳定的”用来表示这样一种聚集体单元，它与含水液体接触，或在含水液体中膨胀（受和／或不受力）时，实际上仍保持不受影响（即至少两个原来单独的成分吸附树脂粉末颗粒仍连结在一起）。虽然流态稳定性的定义承认至少两个吸附树脂粉末颗粒仍连结在一起，最好是所有用于制成特殊流态稳定聚集体的吸附树脂粉末颗粒都保持不受影响，但是应该承认，当例如某些颗粒随后已被水聚集成流态稳定聚集体时，则某些吸附树脂粉末颗粒可以自由流态稳定聚集体分离出来。

本发明流态稳定聚集体的流态稳定性，使得流态稳定聚集体无论在干燥或潮湿（膨胀）状态下，它们的结构均维持不变，从而使吸附树脂粉末成分的颗粒很少移动，而又保持吸液的快速。在最终产品例如吸附剂中，流态稳定性对减少凝胶的结块是有利的，因为甚至当与过量液体接触时，前体颗粒仍保持聚集体状态，这就使得人们能以聚集体来使用原来单独的细颗粒，这也提高了所得聚合物组合物吸液的速率而又不导致凝胶结块。此外，流态稳定聚集体的大颗粒打开了吸
附成分的毛细管通道，这产生了改进的液体使用性能。聚集体的流态
稳定性可如下测量。选择具有聚集特性（例如包括多个吸附树脂粉末
颗粒）的比较大颗粒（例如大于 300 微米），往聚集体颗粒加入合
水液体（合成尿），然后观察聚集体的完全膨胀平衡条件。

如果聚集体颗粒具有大量破碎的吸附树脂粉末颗粒，则这种颗粒
被认为是不稳定的。将主要的聚集体颗粒（如果还存在的话）用调药
刀小心地拔出来，以断定是否有颗粒从主要的聚集体颗粒上分离出来。
如果小心取样时主要的聚集体颗粒破裂开，或有很多颗粒分裂出来，
则这种颗粒被认为是不稳定的。如果每次检测后聚集体颗粒仍保持相
当稳定，则这种聚集体颗粒被认为是稳定的。

下面将参考实施例具体地描述本发明。然而应该指出，本发明
不局限于这些实施例。在这些实施例中，术语“％”指的是“％重量”，
而术语“份”指的是“重量份”，除非另有指出。

实施例 1

将一个其内部容积为 10 升，开孔为 220 毫米×240 毫米、
深度为 240 毫米，装有两个曲拐式浆叶，旋转直径为 120 毫米，
装有夹套的双臂型不锈钢捏和机，用盖子盖上。往此捏和机中，加入
合 5500 克丙烯酸钠水溶液（其中和率为 75％摩尔）和 3.4 克
三羟甲基丙烷三丙烯酸酯（以中和率为 75％摩尔的丙烯酸钠计为
0.05％摩尔）的单体组分（此水溶液中单体浓度为 37％重量），
并吹入氮气以便把反应体系内的空气置换掉。然后，将曲拐式浆叶以
46 rpm 的速率进行旋转，而在同时，通入 35℃的热水使夹套被加
热。将作为聚合引发剂的 2.8 克过硫酸钠和 0.14 克 L-抗坏血
酸加入。聚合引发剂加入 4 分钟后，聚合反应开始，自聚合引发剂加
入后再过15分钟，反应体系内部的最高温度达到82℃。将水化的凝胶聚合物研碎成约5毫米大小的颗粒，继续搅拌。聚合反应开始60分钟后将盖子自捏合机上取下，并自捏合机中取出凝胶。

将如此制得的水化凝胶聚合物小颗粒摊在一个50目金属网上，并用150℃热空气干燥90分钟，用锤形粉碎机将已干的水化凝胶聚合物小颗粒予以粉碎，并用20目金属网进行过筛，得到20目的筛分（吸附树脂粉末（A－1））。

往一个如图1所示的装有用10mm厚聚四氟乙烯（接触角114°，热畸变点121℃）制的内管5的湍流器1（由Hosokawa Micron K.K.制造）中，通过粉末入口2连续加入吸附树脂粉末（A－1），自液体入口4连续加入甘油与水的液态混合物，加入比例是每100份吸附树脂粉末（A－1）加2份甘油及4份水，并将此混合物予以混合。湍流器中的搅拌浆叶3的末端线速度为1280米／分钟，自出口6把所得的混合物700克取出，加至一个浸在油浴（220℃）中的碗内，在灰浆混合器（由Nishinihon Testing Machine Co.制造）的搅拌下（60rpm）进行80分钟的热处理，得到聚集体聚合物组合物。输入的电功用功率分析仪PA－1000（由K.K. Musashi Denkeiki Seisakusho制造）进行测量，它稳定为165瓦。另一方面，在没有该混合物的情况下也将该灰浆混合器操作80分钟，则输入的电功率稳为163瓦。由马达的性能表可以查到其效率，而交联反应过程中加至混合物的动能按下式计算出：

\[ F = 4.8 \text{瓦·小时} / \text{公斤} = 17280 \text{焦耳} / \text{公斤} \]

将所得的聚集体聚合物组合物挤压通过一个18目金属网（ASTM），以得到流态稳定聚集体（FSＡ）（1）。

25
按下述方法测定上述得到的吸附树脂粉末 \((A - 1)\) 和 \((FSA)\) (1) 的 (i) 吸附能力；(ii) 膨胀率；(iii) FSA 含量和 (iv) 粒度分布。所得结果如表 1 所示。

(i) 吸附能力：将一个做成茶袋状并均匀填入约 0.2 克吸附树脂粉末 (A - 1) 或流态稳定聚集体 (1) 的无纺布袋子 (40毫米×150毫米) 浸没于 0.9% 的 NaCl 水溶液中 60 分钟，然后从溶液中取出并滴于 5 秒钟，再放在厚 60 厘米共 24 层卫生纸上 10 秒钟，进一步除去水份，并称重之。

<table>
<thead>
<tr>
<th>吸附后的重量 (克)</th>
<th>空白值 (克)</th>
</tr>
</thead>
<tbody>
<tr>
<td>样品聚合物重量 (克)</td>
<td></td>
</tr>
</tbody>
</table>

(ii) 膨胀速率：按照制造厂家的指示，用分格缩分铲铲入吸附树脂粉末 (A - 1) 或流态稳定聚集体 (1) 并过筛，得到 20 目 (850 微米) 至 30 目 (600 微米) 的筛分或 30 目至 50 目 (300 微米) 的筛分。

称出 0.450 克 20/30 筛分或 30/50 筛分的样品，放至 0.5 英时标准试管的底部，将 1.26 克 Jayco 合成尿 (含 0.2% KCl, 0.2% Na₂SO₄, 0.085% (NH₄)H₂PO₄, 0.015% (NH₄)₃PO₄, 0.025% CaCl₂·2H₂O 和 0.050% MgCl₂·6H₂O) 加至直立着的试管中，并同时按动计时表。

当凝胶物达到试管中液体弯月面的下方时使计时表停止。每克聚合物样品每克合成尿的 2.8 克，除以消耗时间的秒数，即得到膨胀速率。
(iii) FSA含量：按照制造厂家的指示，用分格缩分铲铲入吸附树脂粉末的样品或流态稳定聚集体（1）样品，过筛，得到20目（850微米）至30目（600微米）的筛分或30目至50目（300微米）的筛分。

如此测定FSA含量：从20/30筛分中取50个颗粒，分出单一的颗粒，往每个余下的多颗粒（这就是聚集体）上滴上约0.1克合成尿，并让多颗粒吸附合成尿10分钟，然后用网状纸将过量的合成尿除去，找出不再分裂为两个或多个凝胶颗粒碎片的凝胶颗粒数（m），又用30/50筛分的颗粒重复上述过程，并找出数目（n）。

\[
\text{FSA含量（％）} = \left\{ \frac{(m+n)}{(50+50)} \right\} \times 100
\]

(iv) 粒度分布：将20目、50目和100目的标准筛（直径70毫米）和作为分级板的接收板叠放起来。往最上层的筛中，放入30克吸附树脂粉末（A-1）或流态稳定聚集体的样品。将此复合筛用分级器摇动10分钟，将收集在分级板上的样品称重并以％重量表示。

(V) 表面接触角：以CA-DT-A型接触角仪（由Kyowa Interface Science Co., Ltd制造）用液滴法测定表面接触角。

(Vi) 表面的热解变点：用ASTMD-648（4.6公斤·厘米⁻²）的方法测定。

(Vii) 通式的计算值：吸附粉末（A-1）的水分（105℃, 3小时）为2％（湿基），取数值P/0.98=P'插入到公式（a-1）中以计算公式的值。此外，流态稳定聚集体（1）的水分为0％。
实施例 2

重复与实施例 1 相似的方法以获得 FSA（2），不同的是，将500克自出口6的反应所得混合物加进去，并且灰浆混合器的转数是120rpm，用与实施例1相似的方法进行检测，结果列于表1。

实施例3

用V型混合器将得自实施例1的100重量份吸附树脂粉末（A-1）以及0.3重量份水不溶细二氧化硅（“Aerosil 200”，Aerosil Co.Ltd产品的名称）进行混合，以制得吸附树脂粉末B。重复与实施例2相似的方法以得到FSA（3），不同的是使用了吸附树脂粉末B，而不是使用吸附树脂粉末（A-1）。用与实施例1相似的方法进行检测，结果列于表1。

实施例4

重复与实施例1相似的方法，不同的是使用了由8重量份异丙醇加至2重量份甘油及4重量份水而得的液体混合物，而且热处理时间是40分钟。用与实施例1相似的方法进行检测，结果列于表1。

对比例1

重复与实施例1相似的方法以制得吸附剂（1），不同的是使用80℃的热风炉进行热处理，而不是用灰浆混合器，用与实施例1相似的方法进行检测，结果列于表1。

承认产生了凝固，但在吸附剂（1）中没有流态稳定聚集体，而且膨胀速率极低。

对比例2

重复与实施例1相似的方法以制得吸附剂（2），不同的是使用了一个在内壁衬有四氟乙烯－全氟烷基乙烯基醚共聚物的捏和机（浆
叶转数为 4 6 r p m），以间歇方式，把 3 0 0 0 重量份吸附树脂粉末（A - 1），6 0 重量份甘油和 1 2 0 重量份水进行混合，而不是使用搅拌器。浆叶末端的线速度为 5 2 米／分钟，用与实施例 1 相似的方法进行检测，结果列于表 1。

对比例 3

重复与实施例 1 相似的方法以制得吸附剂（3），所不同的是使用了捏和器而不是搅拌器。用与实施例 1 相似的方法进行检测，结果列于表 1。

对比例 4

重复与实施例 4 相似的方法以制得吸附剂（4），不同的是使用了其内壁衬了四氟乙烯 - 全氟烷基乙烯基醚共聚物的搅拌器，而不是使用搅拌器。搅拌浆叶末端的线速度为 9 2 米／分钟，用与实施例 1 相似方法进行检测，结果列于表 1。

实施例 5

重复与实施例 1 相似的方法以制得 F S A （5）不同的是使用了具有一个用高密度聚乙烯制的内管 5 的搅拌器。用与实施例 1 相似的方法进行检测，结果列于表 1。

实施例 6

按照实施例 1 的方法制得 F S A （6），不同的是，使用了如图 2 所示的内壁衬有厚度为 1 0 毫米聚四氟乙烯（接触角为 1 1 4 ° C，热膨胀点为 1 2 1 ° C）的 HEAVY DUTY MATRIX（由Nara Kikai Seisakusho K.K.制造），而不是使用搅拌器。HEAVY DUTY MATRIX 安有一个具有盖子 1 2 a 的粉末入口 1 2，以及一个液体入口（2 - 流体喷嘴）1 4，在底部装有一个搅拌用浆叶 1 3，在侧壁装有一个粉碎用浆叶 1 7，
还有一个出口16。搅拌用浆叶13末端的线速度为约700米/分钟。

FSA（6）的物理性能与实施例1的相似。

实施例7

按照实施例1的方法制得粉碎的水化凝胶，不同的是使用了1.7克三羟甲基丙烷三丙烯酸酯（以中和率为7.5％摩尔的丙烯酸钠计为0.025％摩尔）。用与实施例1相似的方法将凝胶干燥，并在比实施例1更严格的条件下用锤型粉碎机将已干燥的凝胶进行粉碎，制得通过20目金属网的粉末（吸附树脂粉末（A-2））。

在一个与实施例1相似的装置中，将100份吸附树脂粉末（A-2）与含有4份甘油、8份水及2份异丙醇的液体混合物进行混合。把如此制得的混合物1000克摊在一个盘（30厘米×60厘米）上，把此盘放入热风干燥器内，在710℃温度下进行热处理30分钟，得到聚集体聚合物组合物。用18目金属网把所得的聚集体聚合物组合物过筛，得到FSA（7）。

用与实施例1相似的方法检测吸附树脂粉末（A-2）和FSA（7），结果列于表1。

实施例8

按照实施例1的方法制得吸附树脂粉末C，不同的是，用比实施例1更严格的条件下用锤型粉碎机把已干燥的凝胶进行粉碎，得到通过20目金属网的吸附树脂粉末C（吸附树脂粉末（A-3）），在一个V型混合机中，将1000重量份吸附树脂粉末（A-3）与1重量份Aerosil 200进行混合。

按照实施例1的方法制取FSA（8），不同的是，在表1所述
条件下，在一个与实施例1相似的湍流器中，把101重量份吸附树脂粉末C与含0.5重量份乙二醇二缩丙二醇、30重量份水及4重量份甲醇的液体混合物进行混合，用相似的方法进行检测，结果列于表1。
<table>
<thead>
<tr>
<th>表 1</th>
<th>吸附树脂粉末A-1</th>
<th>实施例1FSA(1)</th>
<th>实施例2FSA(2)</th>
<th>实施例3FSA(3)</th>
<th>实施例4FSA(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>前体</td>
<td>A-1</td>
<td>A-1</td>
<td>A-1</td>
<td>A-1</td>
<td>A-1</td>
</tr>
<tr>
<td>吸附能力（克/克）</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>前体（份）</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>交联剂</td>
<td>甘油</td>
<td>甘油</td>
<td>甘油</td>
<td>甘油</td>
<td>甘油</td>
</tr>
<tr>
<td>交联剂（份）</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>水（份）</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>亲水有机溶剂（份）</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>SiO₂0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>混合机</td>
<td>Turb</td>
<td>Turb</td>
<td>Turb</td>
<td>Turb</td>
<td>Turb</td>
</tr>
<tr>
<td>内衬</td>
<td>PTFE</td>
<td>PTFE</td>
<td>PTFE</td>
<td>PTFE</td>
<td>PTFE</td>
</tr>
<tr>
<td>接触角（度）</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>热畸变点（℃）</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>线速度（米/分钟）</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
<td>1280</td>
</tr>
<tr>
<td>加热器</td>
<td>灰浆/60rpm</td>
<td>灰浆/120rpm</td>
<td>灰浆/120rpm</td>
<td>灰浆/120rpm</td>
<td>灰浆/60rpm</td>
</tr>
<tr>
<td>动能（焦耳/公斤）</td>
<td>17,280</td>
<td>28,800</td>
<td>28,800</td>
<td>8,640</td>
<td></td>
</tr>
<tr>
<td>温度（℃）</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>时间（分钟）</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>FSA性能</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸附能力（克/克）</td>
<td>46</td>
<td>36</td>
<td>38</td>
<td>39</td>
<td>41</td>
</tr>
<tr>
<td>公式的计算值</td>
<td>77</td>
<td>82</td>
<td>84</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>膨胀速率（克/克秒）</td>
<td>0.12</td>
<td>0.24</td>
<td>0.26</td>
<td>0.29</td>
<td>0.30</td>
</tr>
<tr>
<td>FSA含量（%） #20-50</td>
<td>0</td>
<td>72</td>
<td>60</td>
<td>62</td>
<td>41</td>
</tr>
<tr>
<td>粒度分布（%） #20</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>#50</td>
<td>50</td>
<td>64</td>
<td>66</td>
<td>67</td>
<td>66</td>
</tr>
<tr>
<td>#100</td>
<td>29</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>#100通过</td>
<td>21</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>对比例1吸附剂(1)</td>
<td>对比例2吸附剂(2)</td>
<td>对比例3吸附剂(3)</td>
<td>对比例4吸附剂(4)</td>
<td>实施例5FSA(5)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>前体</td>
<td>A-1</td>
<td>A-1</td>
<td>A-1</td>
<td>A-1</td>
<td>A-1</td>
</tr>
<tr>
<td>吸附能力（克/克）</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>前体（份）</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>交联剂</td>
<td>甘油</td>
<td>甘油</td>
<td>甘油</td>
<td>甘油</td>
<td>甘油</td>
</tr>
<tr>
<td>交联剂（份）</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>水（份）</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>亲水有机溶剂（份）</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>混合机</td>
<td>Turb</td>
<td>搅和机</td>
<td>Turb</td>
<td>灰浆</td>
<td>Turb</td>
</tr>
<tr>
<td>内衬</td>
<td>PTFE</td>
<td>PFA</td>
<td>PTFE</td>
<td>PFA</td>
<td>HDPE</td>
</tr>
<tr>
<td>接触角（度）</td>
<td>114</td>
<td>115</td>
<td>114</td>
<td>115</td>
<td>88</td>
</tr>
<tr>
<td>热畸变点（℃）</td>
<td>121</td>
<td>75</td>
<td>121</td>
<td>75</td>
<td>82</td>
</tr>
<tr>
<td>线速度（米/分钟）</td>
<td>1280</td>
<td>52</td>
<td>1280</td>
<td>92</td>
<td>1280</td>
</tr>
<tr>
<td>加热器</td>
<td>炉</td>
<td>灰浆/60rpm</td>
<td>搅和机/60rpm</td>
<td>灰浆/60rpm</td>
<td>灰浆/60rpm</td>
</tr>
<tr>
<td>动能（焦耳/公斤）</td>
<td>0</td>
<td>17,280</td>
<td>61,200</td>
<td>8,840</td>
<td>17,280</td>
</tr>
<tr>
<td>温度（℃）</td>
<td>80</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>时间（分钟）</td>
<td>80</td>
<td>80</td>
<td>70</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>PSA性能</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸附能力（克/克）</td>
<td>46</td>
<td>38</td>
<td>33</td>
<td>41</td>
<td>36</td>
</tr>
<tr>
<td>公式的计算值</td>
<td>82</td>
<td>71</td>
<td>88</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>膨胀速率（克/克秒钟）</td>
<td>0.01</td>
<td>0.14</td>
<td>0.14</td>
<td>0.19</td>
<td>0.34</td>
</tr>
<tr>
<td>#20-30</td>
<td>0.02</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td>#30-50</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>PSA含量（%）#20-50</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>粒度分布（%）</td>
<td>65</td>
<td>65</td>
<td>58</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>#20</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>#50</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>#100</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>通过#100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>吸附树脂粉末A-2</td>
<td>实施例7FSA(7)</td>
<td>吸附树脂粉末A-3</td>
<td>实施例8FSA(8)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>前体</td>
<td>A-2</td>
<td>A-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸附能力（克/克）</td>
<td>54</td>
<td>54</td>
<td>46</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>前体（份）</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>交联剂</td>
<td>甘油</td>
<td>甘油</td>
<td>EGDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>交联剂（份）</td>
<td>4</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水（份）</td>
<td>8</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>亲水有机溶剂（份）</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>混合机</td>
<td>Turb</td>
<td>Turb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>内衬</td>
<td>PTFE</td>
<td>PTFE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>接触角（度）</td>
<td>114</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>热阻变点（℃）</td>
<td>121</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>线速度（米/分钟）</td>
<td>1280</td>
<td>1280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>加热器</td>
<td>炉</td>
<td>炉</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>动能（焦耳/公斤）</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>温度（℃）</td>
<td>210</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>时间（分钟）</td>
<td>30</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSA性能</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸附能力（克/克）</td>
<td>54</td>
<td>36</td>
<td>46</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>公式的计算值</td>
<td>67</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>膨胀速率（克/克秒）</td>
<td>#20-30 0.21</td>
<td>#30-50 1.1</td>
<td>#30-50 0.24</td>
<td>0.31</td>
<td>0.20</td>
</tr>
<tr>
<td>FSA含量（%） #20-50</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>粒度分布（%） #20</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>5</td>
<td>50</td>
<td>9</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>34</td>
<td>22</td>
<td>39</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>61</td>
<td>11</td>
<td>52</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>