(54) Titre: METHODE POUR DECOMPOSER DES HYDROPEROXYDE CYCLOALKYLIQUES
(54) Title: PROCESS FOR DECOMPOSING CYCLOALKYL HYDROPEROXIDE

(57) Abrégé/Abstract:
The invention relates to a process for decomposing a mixture comprising cycloalkyl hydroperoxide in the presence of an alkali metal hydroxide dissolved in an aqueous phase in which, besides the alkali metal hydroxide, also at least 10 wt.% of the aqueous phase of one or more alkali metal salts is present. The alkali metal salts are preferably alkali metal carbonates, or alkali metal salts of mono- and polycarboxylic acids, with the carboxylic acid containing 1-24 C-atoms.
ABSTRACT

The invention relates to a process for decomposing a mixture comprising cycloalkyl hydroperoxide in the presence of an alkali metal hydroxide dissolved in an aqueous phase in which, besides the alkali metal hydroxide, also at least 10 wt.% of the aqueous phase of one or more alkali metal salts is present.

The alkali metal salts are preferably alkali metal carbonates, or alkali metal salts of mono- and polycarboxylic acids, with the carboxylic acid containing 1-24 C-atoms.
PROCESS FOR DECOMPOSING CYCLOALKYL HYDROPEROXIDE

The invention relates to a process for decomposing a mixture comprising cycloalkyl hydroperoxide in the presence of an alkali metal hydroxide dissolved in an aqueous phase.

Such a process is already known from EP-A-4105, which discloses that the decomposition of cycloalkyl hydroperoxide is carried out in the presence of, particularly, sodium hydroxide. Although high conversions to cycloalkanones and cycloalkanols are achieved, the reaction velocity is relatively low.

The reaction velocity constant, a measure of the reaction velocity, is an important parameter to increase. The higher this constant, the more efficient the decomposition reaction. In many cases this also implies that side reactions take place to a lesser degree. In addition, the decomposition reaction can be carried out in a smaller reactor, which means a lower investment, or in an existing reactor more decomposition products, i.e. cycloalkanones and cycloalkanols, can be formed. The cycloalkanones and cycloalkanols can be used in the preparation of ε-caprolactam, which in turn can be used as a raw material in the production of nylon.

The object of the invention is to provide a process having a greater reaction velocity for decomposing cycloalkyl hydroperoxide into the desired products cycloalkanol/cycloalkanone.

This object is achieved in that, besides the alkali metal hydroxide, also at least 10 wt.%, relative to the aqueous phase, of one or more alkali metal salts is present.

The alkali metal salts that can be used for
this purpose are preferably soluble alkali metal salts. Suitable salts are alkali metal carbonates, and in particular alkali metal carboxylates. Alkali metal salts of mono- and polycarboxylic acids in which the carboxylic acid moiety preferably comprises 1-24 C-atoms are suitable; more preferably the carboxylic acid moiety comprises 1-12 C-atoms. Very suitable as alkali metal are sodium and potassium. Preferably, the alkali metal is sodium. Examples of suitable carboxylic acids are acetic acid, propionic acid, butyric acid, adipic acid, hexanoic acid, pentanoic acid, propane dicarboxylic acid, hexane dicarboxylic acid, stearic acid and decanoic acid. Special preference is given to the use of mixtures of different carboxylic acids, since these are simply obtainable.

The alkali metal salts are used in a quantity of at least 10 wt.% based on the aqueous phase that is present besides the organic phase containing the cycloalkyl hydroperoxide. The wt.% is calculated on the basis of the alkali metal salt. The salt concentration is preferably higher than 15 wt.% and preferably lower than 35 wt.% More preferably, use is made of a salt concentration between 20 and 35 wt.% calculated on the basis of the total salts. It is also possible to use a higher salt concentration, for instance 45 wt.%. However, this has the disadvantage that crystallization of the metal carboxylates may occur on cooling of this process stream. This can be prevented by diluting this process stream.

The mixture containing cycloalkyl hydroperoxide can be obtained by oxidation of a cycloalkane with 5-12 C-atoms in the ring f.e. in the liquid phase with an oxygen-containing gas. As cycloalkane use is preferably made of cyclopentane, cyclooctane, cyclododecane and in particular cyclohexane. The oxidation mixture formed may contain
other peroxides besides the cycloalkyl hydroperoxide, for instance dicycloalkyl peroxide.

The oxidation usually takes place in the liquid phase. As oxygen-containing gas use can be made for instance of air or pure oxygen. Suitable oxidation temperatures are between 120 and 200°C. Preferably, a temperature between 140 and 190°C is used.

The oxidation reaction is carried out for 5 minutes to 24 hours. The pressure must be such that a liquid phase is maintained in the system. The pressure is usually between 0.3 and 5 MPa, preferably between 0.4 and 2.5 MPa.

Preferably, the oxidation is operated continuously and preferably takes place in a system of series-arranged reactors or a compartmentalized tubular reactor. Usually the reaction is operated autothermally, or via temperature control. Temperature control usually takes place by discharging the reaction heat via a gas stream, intermediate cooling or using other methods known to one skilled in the art. To prevent transition metals (which promote the decomposition of cycloalkyl hydroperoxide) entering the mixture to be oxidized, preferably reactors with inert internal walls are chosen. For instance, use can be made of reactors with internal walls made of passivated steel, aluminium, tantalum, glass or enamel. This is important especially for small production capacities, in which case the ratio between wall area and liquid volume is unfavourable. For large capacities, a reactor with inert internal walls is not required. It should be clear that, if a negligible quantity of metal ions enters the oxidation mixture, this does not have any substantial effect on the reaction, and in the context of this invention non-catalyzed cycloalkane oxidation may be used.

In contrast to the non-catalyzed cycloalkane oxidation, the catalyzed oxidation by a metal such as
cobalt and chromium produces a reaction mixture with a relatively small quantity of cycloalkyl hydroperoxide compared with the quantity of cycloalkanone and cycloalkanol produced. Notwithstanding this, the process according to the invention is also advantageous in catalyzed oxidation where only a small quantity of cycloalkyl hydroperoxide remains.

Usually the product of the uncatalyzed oxidation of cyclohexane contains at least comparable quantities, in wt.% of cyclohexyl hydroperoxide and of cyclohexanol + cyclohexanone. Often, the mixture after the oxidation reaction contains a quantity of cyclohexyl hydroperoxide that is more than 2 times the quantity of cyclohexanol + cyclohexanone. In contrast, the catalyzed oxidation produces a mixture which contains less than 50% cyclohexyl hydroperoxide compared with the weight percentage of cyclohexanol + cyclohexanone. Often, there is even less than 40% cycloalkyl hydroperoxide compared with the weight percentage of cyclohexanol + cyclohexanone.

The cycloalkyl hydroperoxide concentration in the reaction mixture as it leaves the (last) oxidation reactor is generally between 0.1 and 8.0 wt.% The cycloalkanol concentration in this mixture is generally between 0.1 and 10 wt.% The cycloalkane conversion is generally between 0.5 and 25 wt.% The cyclohexane conversion is generally between 2 and 6 wt.%

For the decomposition of cycloalkyl hydroperoxide so much alkali metal hydroxide is added that the concentration of OH⁻, ([OH⁻]) of the water phase on completion of the decomposition is at least 0.1 N, preferably at least 0.6 N. In principle, an [OH⁻] higher than 2 N is possible, but this does not offer any advantages. Such a high concentration might result in side-reactions occurring, for instance aldol condensation of cycloalkanone. The quantity of alkali metal hydroxide used is therefore preferably such that
the [OH⁻] in the aqueous phase upon completion is
between about 0.1 N and about 2 N. In particular, such
a quantity of hydroxide is used that an [OH⁻] between
0.6 and 1 N is obtained. The most suitable alkali metal
hydroxides for the process according to the invention
are sodium hydroxide and potassium hydroxide.

The decomposition reaction is preferably
carried out in the presence of at least one catalyst, a
cycloalkyl hydroperoxide decomposition-promoting metal
salt. This is generally a salt of a transition metal.
Examples of suitable transition metals are cobalt,
chromium, manganese, iron, nickel, copper, or mixtures
of these, such as for instance a mixture of cobalt and
chromium. Preferably, the transition metal salt is
water soluble. Metal sulphones and metal acetates have
proved to be very suitable salts. The quantity of
transition metal salt may be 0.1 - 1000 ppm, calculated
as metal, relative to the weight of the aqueous phase.
However, it is also possible to use larger quantities
of transition metal salt. Preferably, use is made of
0.1 - 10 ppm of metal. The transition metal salt can be
added, optionally in combination with the alkali metal
hydroxide, as an aqueous solution to the mixture
containing the cycloalkyl hydroperoxide. It is also
possible to add the transition metal as an organic
salt, dissolved in an organic solvent, to the reaction
mixture. For example, the cycloalkane corresponding to
the cycloalkyl hydroperoxide may be used as an organic
solvent.

The decomposition reaction takes place by
allowing the cycloalkyl hydroperoxide containing
mixture to react for 5 to 300 minutes. Preferably, the
residence time in the decomposition reactor is 15 to
120 minutes, but the time needed can simply be
determined by one skilled in the art.

The decomposition reaction preferably takes
place in a stirred tank reactor, and with special
preference in a countercurrent column equipped with stirring gear.

To achieve an efficient cycloalkyl hydroperoxide decomposition, the volume ratio between the aqueous phase and the organic phase in the decomposition reactor is preferably higher than 0.02. Preferably, a ratio of 0.05 - 0.25 is used. However, these volume ratios are not critical and can, if desired, be adjusted by one skilled in the art.

The cycloalkyl hydroperoxide decomposition can take place at a temperature between 60 and 180°C. Preferably, the decomposition takes place at a temperature between 60 and 100°C.

The decomposition reaction can be carried out either at atmospheric or at elevated pressure. The decomposition of cycloalkyl hydroperoxide can advantageously be carried out at a pressure that is of the same order as the pressure used for oxidation of the corresponding cycloalkane; however, it may also be advantageous to evaporate part of the cycloalkane after oxidation by allowing a pressure reduction to take place (flashing). The pressure during the decomposition reaction is then preferably about 0.1-0.6 MPa, more in particular the decomposition reaction is carried out at atmospheric pressure.

After the decomposition the aqueous phase can be separated from the organic phase. The organic phase can then be washed to remove trace residues of salt contained in the aqueous phase. The aqueous phase can be reused in the decomposition reaction. In that case the aqueous phase already contains alkali metal salts of mono- or polycarboxylic acids. The carboxylic acids can be formed as by-product in the oxidation or in the decomposition, upon which, owing to the presence of alkali metal, a salt is formed with the carboxylic acid. Reuse of the aqueous phase has the advantage that the ratio between aqueous phase and organic phase can
be set and monitored in a simple manner. Distillation of the organic phase eventually yields a mixture of cycloalkanone and cycloalkanol. The decomposition reaction can be carried out both continuously and batchwise.

Example I

At a temperature of 70°C, 107 ml of an aqueous phase containing dissolved NaOH (1500 mmol NaOH/kg) and sodium acetate (15 wt.%) was added to 250 ml of a cyclohexane oxidation mixture containing, per kilogramme, 190 mmol cyclohexyl hydroperoxide (CHHP), 40 mmol cyclohexanone (ON) and 90 mmol cyclohexanol (OL). Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant was $11 \times 10^{-3} \text{ min}^{-1}$.

Comparative experiment A

Example I was repeated, this time 107 ml of an aqueous phase containing dissolved NaOH (1500 mmol NaOH/kg) being added. Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant was $8 \times 10^{-3} \text{ min}^{-1}$.

Example II

At a temperature of 70°C, 107 ml of an aqueous phase containing dissolved NaOH (1500 mmol NaOH/kg), sodium acetate (15 wt.%) and Cr(NO$_3$)$_3$ (10 ppm Cr) was added to 250 ml of a cyclohexane oxidation mixture containing, per kilogramme, 190 mmol cyclohexyl hydroperoxide (CHHP), 40 mmol cyclohexanone (ON) and 90 mmol cyclohexanol (OL). Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant was $13 \times 10^{-3} \text{ min}^{-1}$.

Comparative experiment B

Example II was repeated, this time 107 ml of
an aqueous phase containing dissolved NaOH (1500 mmol NaOH/kg) and Cr (NO₃)₃ (10 ppm Cr) being added. Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant was 8×10^{-3} min⁻¹.

Continuous experiments in a glass reactor

Procedure

The set-up consisted of two series-arranged, double-walled glass reactors with a liquid volume per reactor of 500 ml. Both were provided with baffles, stirrer, reflux cooler and an overflow. Fresh cyclohexane oxidation mixture and fresh aqueous phase were introduced through the first reactor. The temperature in both reactors was controlled by means of two independent thermostats.

Example III

The first reactor was fed with 17.0 ml/min of a cyclohexane oxidation mixture containing, per kilogramme, 153 mmol cyclohexyl hydroperoxide (CHHP), 53 mmol cyclohexanone (ON) and 105 mmol cyclohexanol (OL). In addition, 1.95 ml/min of an aqueous phase was added which contained dissolved NaOH (750 mmol NaOH/kg), Na₂CO₃ (354 mmol/kg), CoSO₄ (4.3 ppm Co) and a mixture of sodium salts of mono- and dicarboxylic acids (C₁ through C₆) (20 wt.% in water). Decomposition of the CHHP took place at a temperature of 69°C in the first reactor and a temperature of 66°C in the second reactor. Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant, calculated over both reactors, was 140×10^{-3} min⁻¹. The CHHP conversion exceeded 95%.

Example IV

Example III was repeated, this time the first
reactor being fed with 16.7 ml/min of a cyclohexane oxidation mixture containing, per kilogramme, 182 mmol cyclohexyl hydroperoxide (CHHP), 42 mmol cyclohexanone (ON) and 86 mmol cyclohexanol (OL). In addition, 1.93 ml/min of an aqueous phase was added which contained dissolved NaOH (750 mmol NaOH/kg), Na₂CO₃ (365 mmol/kg Na₂CO₃), CoSO₄ (4.3 ppm Co) and a mixture of sodium salts of mono- and dicarboxylic acids (C₁ through C₆) (20 wt.% in water). Decomposition of the CHHP took place at a temperature of 67°C in the first reactor and a temperature of 66°C in the second reactor. Decomposition of the CHHP was monitored by means of an iodometric titration. The first-order velocity constant, calculated over both reactors, was 131 * 10⁻³ min⁻¹. The CHHP conversion exceeded 95%.

Example V

Example III was repeated, this time the first reactor being fed with 16.9 ml/min of a cyclohexane oxidation mixture containing, per kilogramme, 182 mmol cyclohexyl hydroperoxide (CHHP), 42 mmol cyclohexanone (ON) and 86 mmol cyclohexanol (OL). In addition, 1.90 ml/min of an aqueous phase was added which contained dissolved NaOH (750 mmol NaOH/kg), Na₂CO₃ (375 mmol/kg, CoSO₄ (4.3 ppm Co) and a mixture of sodium salts of mono- and dicarboxylic acids (C₁ through C₆) (15 wt.% in water). Decomposition of the CHHP took place at a temperature of 67°C in the first reactor and a temperature of 66°C in the second reactor. Decomposition of the CHHP was monitored by means of an iodometric titration. The first-order velocity constant, calculated over both reactors, was 110 * 10⁻³ min⁻¹. The CHHP conversion exceeded 93%.

Comparative experiment C

Example III was repeated, the first reactor being fed with 16.6 ml/min of a cyclohexane oxidation
mixture containing, per kilogramme, 153 mmol cyclohexyl hydroperoxide (CHHP), 53 mmol cyclohexanone (ON) and 105 mmol cyclohexanol (OL). In addition, 1.94 ml/min of an aqueous phase was added which contained dissolved NaOH (750 mmol NaOH/kg), Na₂CO₃ (365 mmol/kg) and CoSO₄ (4.3 ppm Co). Decomposition of the CHHP took place at a temperature of 69°C in the first reactor and a temperature of 66°C in the second reactor. Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant, calculated over both reactors, was 60 * 10⁻³ min⁻¹. The CHHP conversion was lower than 87%.

Continuous experiments at elevated pressure

Procedure

The set-up consisted of a Cr/Ni steel reactor with a liquid volume of 1000 ml. The reactor was provided with baffles, stirrer, reflux cooler and an overflow. Fresh cyclohexane oxidation mixture and fresh aqueous phase were introduced by two independent pumps. The temperature in the reactor was controlled by means of a thermostat.

Example VI

The reactor was fed with 75.3 ml/min of a cyclohexane oxidation mixture containing, per kilogramme, 153 mmol cyclohexyl hydroperoxide (CHHP), 53 mmol cyclohexanone (ON) and 105 mmol cyclohexanol (OL). In addition, 15.6 ml/min of an aqueous phase was added which contained dissolved NaOH (625 mmol NaOH/kg), Na₂CO₃ (445 mmol/kg), CoSO₄ (10 ppm Co) and a mixture of sodium salts of mono- and dicarboxylic acids (C₁ through C₆) (15 wt.% in water). Decomposition of the CHHP took place at a temperature of 85°C. Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant was 1.97
min\(^{-1}\) (2.63 min\(^{-1}\) at 90°C). The CHHP conversion exceeded 95%.

Example VII

The reactor was fed with 75.3 ml/min of a cyclohexane oxidation mixture containing, per kilogramme, 153 mmol cyclohexyl hydroperoxide (CHHP), 53 mmol cyclohexanone (ON) and 105 mmol cyclohexanol (OL). In addition, 15.6 ml/min of an aqueous phase was added which contained dissolved NaOH (935 mmol NaOH/kg), CoSO\(_4\) (10 ppm Co) and sodium acetate (12 wt.% in water). Decomposition of the CHHP took place at a temperature of 105°C. Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant was 5.65 min\(^{-1}\) (2.49 min\(^{-1}\) at 90°C). The CHHP conversion exceeded 98%.

Example VIII

The reactor was fed with 76.5 ml/min of a cyclohexane oxidation mixture containing, per kilogramme, 153 mmol cyclohexyl hydroperoxide (CHHP), 53 mmol cyclohexanone (ON) and 105 mmol cyclohexanol (OL). In addition, 15.3 ml/min of an aqueous phase was added which contained dissolved NaOH (750 mmol NaOH/kg), Na\(_2\)CO\(_3\) (315 mmol/kg), CoSO\(_4\) (10 ppm Co) and a mixture of sodium salts of mono- and dicarboxylic acids (C\(_1\) through C\(_6\)) (25 wt.% in water). Decomposition of the CHHP took place at a temperature of 85°C. Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant was 1.78 min\(^{-1}\) (2.37 min\(^{-1}\) at 90°C). The CHHP conversion exceeded 95%.

Comparative experiment D

The reactor was fed with 74.5 ml/min of a cyclohexane oxidation mixture containing, per kilogramme, 153 mmol cyclohexyl hydroperoxide (CHHP),
53 mmol cyclohexanone (ON) and 105 mmol cyclohexanol (OL). In addition, 15.0 ml/min of an aqueous phase was added which contained dissolved NaOH (660 mmol NaOH/kg), Na₂CO₃ (420 mmol/kg) and CoSO₄ (10 ppm Co). Decomposition of the CHHP took place at a temperature of 96°C. Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant was 0.45 min⁻¹ (0.32 min⁻¹ at 90°C). The CHHP conversion was lower than 85%.

Comparative experiment E

The reactor was fed with 74.5 ml/min of a cyclohexane oxidation mixture containing, per kilogramme, 153 mmol cyclohexyl hydroperoxide (CHHP), 53 mmol cyclohexanone (ON) and 105 mmol cyclohexanol (OL). In addition, 15.0 ml/min of an aqueous phase was added which contained dissolved NaOH (1600 mmol NaOH/kg), Na₂CO₃ (630 mmol/kg) and CoSO₄ (10 ppm Co). Decomposition of the CHHP took place at a temperature of 95°C. Decomposition of the CHHP was monitored by means of a iodometric titration. The first-order velocity constant was 0.97 min⁻¹ (0.73 min⁻¹ at 90°C). The CHHP conversion was lower than 92%.
1. Process for decomposing a mixture comprising cycloalkyl hydroperoxide in the presence of an alkali metal hydroxide dissolved in an aqueous phase, characterized in that, besides the alkali metal hydroxide, at least 10 wt.% relative to the aqueous phase, of one or more alkali metal salts is present.

2. Process according to claim 1, characterized in that the alkali metal salts are alkali metal carbonates or alkali metal salts of mono- and polycarboxylic acids, the carboxylic acid moiety of the monocarboxylic acid or the polycarboxylic acid containing 1-24 C-atoms.

3. Process according to either of claims 1 or 2, characterized in that the alkali metal is sodium or potassium.

4. Process according to any one of claims 1-3, characterized in that the salt concentration is lower than 45 wt.%, based on the aqueous phase that is present besides the phase containing cycloalkyl hydroperoxide.

5. Process according to any one of claims 1-4, characterized in that the salt concentration is 20-35 wt.%.

6. Process according to any one of claims 1-5, characterized in that such a quantity of alkali metal hydroxide is used that at the end of the decomposition reaction a concentration of OH⁻ of between 0.1 and 2 N is present.

7. Process according to any one of claims 1-6, characterized in that during the decomposition also between 0.1 and 1000 ppm of a decomposition-promoting salt of a transition metal is present.

8. Process according to any one of claims 1-7, characterized in that the mixture containing
cycloalkyl hydroperoxide has been obtained by oxidation of a corresponding cycloalkane at a temperature between 120 and 200°C, a pressure between 0.3 and 5 MPa, in the absence of an oxidation catalyst.

Fetherstonhaugh & Co.,
Ottawa, Canada
Patent Agents