

(12)

Oversættelse af
europæisk patentskriftPatent- og
Varemærkestyrelsen(51) Int.Cl.: **H 04 L 5/00 (2006.01)**(45) Oversættelsen bekendtgjort den: **2024-12-02**(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2024-11-13**(86) Europæisk ansøgning nr.: **19738790.5**(86) Europæisk indleveringsdag: **2019-01-10**(87) Den europæiske ansøgnings publiceringsdag: **2020-11-18**(86) International ansøgning nr.: **CN2019071103**(87) Internationalt publikationsnr.: **WO2019137411**(30) Prioritet: **2018-01-12 CN 201810031249**(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**(73) Patenthaver: **ZTE Corporation, ZTE Plaza , Keji Road South , Hi-Tech Industrial Park , Nanshan District, Shenzhen, Guangdong 518057, Kina**(72) Opfinder: **LI, Yu Ngok, ZTE Plaza, Keji Road South Hi-Tech Industrial , Park, Nanshan District, Shenzhen, Guangdong 518057, Kina**
LU, Zhaohua, ZTE Plaza, Keji Road South Hi-Tech Industrial , Park, Nanshan District, Shenzhen, Guangdong 518057, Kina
CHEN, Yijian, ZTE Plaza, Keji Road South Hi-Tech Industrial , Park, Nanshan District, Shenzhen, Guangdong 518057, Kina
HAN, Xianghui, ZTE Plaza, Keji Road South Hi-Tech Industrial , Park, Nanshan District, Shenzhen, Guangdong 518057, Kina
WU, Hao, ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong 518057, Kina(74) Fuldmægtig i Danmark: **Zacco Denmark A/S, Arne Jacobsens Allé 15, 2300 København S, Danmark**(54) Benævnelse: **Fremgangsmåde og indretning til afsendelse og modtagelse af oplysninger**(56) Fremdragne publikationer:
WO-A1-2016/163855
WO-A1-2017/142581
WO-A1-2017/187810
CN-A- 104 429 015
CN-A- 107 409 321
CN-A- 107 534 965
CN-A- 108 259 154
US-A1- 2014 233 419
US-A1- 2017 041 923

US-A1- 2017 332 374

SAMSUNG: "CSI Reporting and UCI Multiplexing", vol. RAN WG1, no. Prague, P.R. Czechia; 20170821 - 20170825, 20 August 2017 (2017-08-20), XP051316389, Retrieved from the Internet

<URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/> [retrieved on 20170820]

MEDIATEK INC: "Discussion on separate UCI encoding for long-PUCCH", 1 December 2017 (2017-12-01), pages 1 - 4, XP051369385, Retrieved from the Internet

<URL:<http://www.3gpp.org/ftp/tsg%5Fran/WG1%5FRL1/TSGR1%5F91/Docs/>>

DESCRIPTION

Description

[0001] The present disclosure claims priority to a Chinese patent application No. 201810031249.7 filed on January 12, 2018.

TECHNICAL FIELD

[0002] The present application relates to the field of communications and, for example, to an information transmission and receiving method and electronic apparatus.

BACKGROUND

[0003] In a wireless communication system, a transmitting end and a receiving end generally use multiple antennas for transmission and reception to obtain a higher communication rate. One principle of the multiple-input-multiple-output (MIMO) technology is to utilize some channel characteristics to form multi-layer transmission that matches the channel characteristics, so that effectively improving system performance is effectively improved, and the significant improvement on the system performance is achieved without increasing a bandwidth and power.

[0004] Generally speaking, a complete channel state information (CSI) includes a rank indicator (RI), a precoding matrix indicator (PMI), and a channel quality indicator (CQI) or a channel resource indicator (CRI). In a wireless system, the CSI is transmitted as a type of uplink control information (UCI), which can be transmitted on a physical uplink control channel (PUCCH) or on a physical uplink shared channel (PUSCH). In addition to the CSI, the UCI may also include hybrid automatic repeat request-acknowledge (HARQ-ACK) information and/or scheduling request (SR) information, where an ACK/NACK feedback is transmitted in the HARQ-ACK information, a scheduling request of the terminal is transmitted in the SR information.

[0005] In the related art, the terminal encodes and transmits the CSI through two modes. In a first mode, the channel encoding and transmission are performed on all CSI parameters in a CSI report. In a second mode, the CSI report is divided into two parts. The two parts are encoded and reported separately. In the two modes, there is no effective solution for multiplexing, encoding and transmitting the CSI and data information or the CSI and other UCI in the related art.

[0006] US 2014/233419 A1 relates to a method for transmitting control information including obtaining a resource occupied by first UCI, and obtaining a resource occupied by second UCI; performing channel encoding on the first UCI according to the resource occupied by the first UCI to obtain an encoded bit sequence of the first UCI, and performing channel encoding on the second UCI according to the resource occupied by the second UCI to obtain an encoded bit sequence of the second UCI.

[0007] WO 2016/163855 A1 relates to for multiplexing UCI in an uplink channel. 3GPP R1-1713589 relates to CSI Reporting and UCI Multiplexing. US 2017/332374 A1 relates to HARQ-ACK multiplexing in PUSCH.

SUMMARY

[0008] The present invention is defined by the independent claims. Dependent claims refer to preferred embodiments.

[0009] Embodiments of the present disclosure provide an information transmission and receiving method and corresponding electronic apparatuses to at least solve the problem of low transmission efficiency of control information and data information in the related art.

BRIEF DESCRIPTION OF DRAWINGS

[0010]

FIG. 1 is a block diagram showing hardware structures of a mobile terminal of an information transmission method according to an embodiment of the present application;

FIG. 2 is another block diagram showing hardware structures of a mobile terminal of an information transmission method according to an embodiment of the present application;

FIG. 3 is a flowchart of an information transmission method according to an embodiment of the present disclosure;

FIG. 4 is a flowchart of an information receiving method according to an embodiment of the present disclosure;

FIG. 5 is a block diagram of an information transmission device according to an embodiment of the present application;

FIG. 6 is a schematic diagram of adjusting a data code rate according to an example two of the present application;

FIG. 7 is a schematic diagram of conditionally adjusting a data code rate according to the

example two of the present application; and

FIG. 8 is a schematic diagram of adjusting UCI code rate according to the example two of the present application.

DETAILED DESCRIPTION

[0011] The present application will be described hereinafter in detail with reference to the drawings and in conjunction with embodiments. It is to be noted that if not in collision, the embodiments described herein and the features in the embodiments may be combined with each other.

[0012] It is to be noted that the terms "first", "second" and the like in the description, claims and drawings of the present application are used to distinguish between similar objects and are not necessarily used to describe a particular order or sequence.

Embodiment one

[0013] A method embodiment provided by the embodiment one of the present application may be executed on an electrical apparatus, such as a mobile terminal, a computer terminal or other similar computing apparatuses. Taking the method to be executed by the mobile terminal as an example, FIG. 1 is a block diagram showing hardware structures of a mobile terminal for an information transmission method according to an embodiment of the present application. As shown in FIG. 1, a mobile terminal 10 may include one or more (only one is shown in FIG. 1) processors 102 (the processor 102 may include, but is not limited to, a processing apparatus such as a micro-controller unit (MCU) or a field-programmable gate array (FPGA)), a memory 104 used for storing data.

[0014] As shown in FIG. 2, optionally, the mobile terminal may further include a transmission device 106 for a communication function and an input and output device 108. It is to be understood by those skilled in the art that the structure shown in FIGS. 1 and 2 is merely illustrative and not intended to limit the structure of the preceding mobile terminal. For example, the mobile terminal 10 may further include more or fewer components than the components shown in FIGS. 1 and 2 or may have a configuration different from the configuration shown in FIGS. 1 and 2.

[0015] The memory 104 may store computer programs, such as modules and software programs of application software, such as computer programs corresponding to the information transmission method in the embodiment of the present application. The processor 102 executes various functional applications and data processing by running the computer

programs stored in the memory 104, i.e., to implement the above-mentioned method. The memory 104 may include a high-speed random access memory, and may further include a nonvolatile memory, such as one or more magnetic storage apparatuses, flash memories or other nonvolatile solid-state memories. In some examples, the memory 104 may further include memories which are remotely configured with respect to the processor 102. These remote memories may be connected to the mobile terminal 10 via a network. Examples of the preceding network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network and a combination thereof.

[0016] The transmission apparatus 106 is configured to receive or send data via the network. Examples of such a network may include a wireless network provided by a communication provider of the mobile terminal 10. In one example, the transmission apparatus 106 includes a network interface controller (NIC), which may be connected to other network devices via a base station, thereby communicating with the Internet. In an example, the transmission apparatus 106 may be a radio frequency (RF) module. The RF module is configured to communicate with the Internet in a wireless way.

[0017] This embodiment provides an information receiving method executed by the mobile terminal described above. FIG. 3 is a flowchart of the information receiving method according to the embodiment of the present application. As shown in FIG. 3, the method includes steps S202 and S204 described below.

[0018] In step S202, at least two pieces of information in the following information are acquired: CSI, first control information or data information; where the first control information includes at least one of: hybrid automatic retransmission request acknowledgement (HARQ-ACK) information or scheduling request (SR) information.

[0019] In step S204, the acquired at least two pieces of information are transmitted in a multiplexing manner on a physical channel.

[0020] Through the above steps, at least two pieces of the following information are transmitted in the multiplexing manner on a physical channel: the CSI, the first control information or the data information, i.e., transmitting the data information and the second control information (including the CSI and/or the first control information) in the multiplexing manner or transmitting the CSI and the first control information in the multiplexing manner on a physical channel. Therefore, the transmission efficiency of the control information and the data information may be increased, and the problem of low transmission efficiency of the control information and the data information in the related art may be solved.

[0021] It should be noted that the above S202 may be omitted, but it is not limited thereto.

[0022] It should be noted that the above physical channel may include at least one of: a physical uplink control channel (PUCCH) and a physical uplink shared control channel (PUSCH).

[0023] In an embodiment of the present application, in condition that the at least two pieces of information include the CSI or the first control information, the above S204 may be expressed as one of: manner one, performing a jointly encoding transmission on the first control information and all information of the channel state information (CSI) on the physical channel; manner two, performing the jointly encoding transmission on the first control information and first part of information of the channel state information (CSI) on the physical channel, and performing a separately encoding transmission on second part of information of the channel state information (CSI) on the physical channel.

[0024] It is to be noted that the first part of information may include at least one of: a rank indicator, a channel quality indicator corresponding to a first transmission codeword, a number of non-zero amplitude coefficients, a reference signal resource indicator, a layer-1 reference signal received power (L1-RSRP), or layer indicator (LI) information. The second part of information includes at least one of: a precoding matrix indicator and a channel quality indicator corresponding to a second transmission codeword.

[0025] It is to be noted that the CSI includes at least one of: the PMI, the CQI, the RI, reference signal resource indication information, the L1-RSRP and the LI.

[0026] It is to be noted that in response to satisfying at least one of conditions, transmission is performed in the manner one: the CSI transmitted on the physical channel being wideband CSI or partial-band CSI; a feedback mode of the PMI being configured to one of: a wideband PMI, a partial-band PMI or a single PMI; a feedback mode of the CQI being configured to one of: a wideband CQI, a partial-band CQI and a single CQI; transmitting, by a terminal, the first control information by using a physical uplink control channel format 3 (PUCCH format 3) or a physical uplink control channel format 4 (PUCCH format 4); and the terminal being configured to allow the terminal to simultaneously transmit the CSI and the first control information on the physical channel.

[0027] It is to be noted that configuring the feedback mode of the PMI to the wideband PMI means that the fed back PMI represents PMI information of an entire CSI feedback bandwidth; configuring the feedback mode of the PMI to the partial-band PMI means that the fed back PMI represents a part of all subbands included in an entire activated downlink bandwidth; configuring the feedback mode of the PMI to the single PMI means that the fed back PMI represents an entire CSI reporting bandwidth reporting a single PMI.

[0028] It is to be noted that configuring the feedback mode of the CQI to the wideband PMI means that the fed back PMI represents CQI information of an entire CSI feedback bandwidth; configuring the feedback mode of the CQI to the partial-band CQI means that the fed back CQI represents a part of all subbands included in an entire activated downlink bandwidth; configuring the feedback mode of the CQI to the single PMI means that the fed back CQI represents an entire CSI reporting bandwidth reporting a single CQI.

[0029] It is to be noted that in response to satisfying at least one of conditions, transmission is performed in the manner two: transmitting subband CSI on the physical channel; the feedback mode of the PMI being configured to at least one of: a subband PMI or multiple PMIs; the feedback mode of the CQI is configured to at least one of: a subband CQI or multiple CQIs; transmitting, by a terminal, the first control information by using a PUCCH format 3 or a PUCCH format 4; and the terminal being configured to allow the terminal to simultaneously transmit the CSI and the first control information on the physical channel.

[0030] It is to be noted that the feedback mode of the PMI being configured to the subband PMI or the multiple PMIs means that when the number of antenna ports corresponding to the PMI is greater than 2, wideband indication information is fed back for the entire CSI feedback bandwidth, and subband indication information is fed back for the subbands of the CSI feedback bandwidth; when the number of antenna ports corresponding to the PMI is equal to 2, the PMI information is fed back for the subbands of the CSI feedback bandwidth.

[0031] It is to be noted that the feedback mode of the CQI being configured to a subband CQI or multiple CQIs means that the CQI information corresponding to each transmission codeword is fed back for the subbands of the CSI feedback bandwidth.

[0032] The above manner limits conditions for transmission in the manner one and conditions for transmission in the manner two, thereby overcoming defects in the related art that how to transmit the CSI and the first control information is not configured, and the transmission efficiency of the control information is improved.

[0033] In an embodiment of the present disclosure, in condition that the second control information includes the CSI and/or the first control information, and the at least two pieces of information include the data information and the second control information, the S204 in which transmitting the second control information and the data information in the multiplexing manner on the physical channel includes: transmitting the second control information and the data information in the same time slot on the physical channel.

[0034] It is to be noted that transmitting the second control information and the data information in the same time slot on the physical channel includes: determining a transmission mode for transmitting at least one of the second control information or the data information; and transmitting the second control information and the data information in the same time slot in the multiplexing manner on the physical channel according to the determined transmission mode.

[0035] It is to be noted that the transmission mode includes at least one of: a code rate for transmitting the data information not exceeding a data code rate upper limit configured by a base station; an overhead for transmitting the second control information or partial control information of the second control information not exceeding a control information overhead upper limit configured by the base station; matching a code rate for transmitting part or all of control information of the second control information with allocated channel resources; or

matching the code rate for transmitting the data information with the allocated channel resources.

[0036] It is to be noted that the data code rate upper limit may include at least one of: a data code rate upper limit corresponding to each transmission of the data information; or a data code rate upper limit corresponding to each redundancy version value of the data information.

[0037] It is to be noted that the control information overhead upper limit may include at least one of: a control information overhead upper limit corresponding to each transmission of the data information; or a control information overhead upper limit corresponding to each redundancy version value of the data information.

[0038] Through determining the data code rate upper limit and the control information overhead upper limit, thus the transmission mode for transmitting the data information and/or the control information is determined, so that the problem of not knowing how to multiplex the data information and the control information in the related art can be solved, and the transmission efficiency of the data information and the control information may be improved, the reliability of the data transmission is increased.

[0039] It is to be noted that the method may further include: in condition that a sum of resources required for transmitting the channel state information and the data information is less than the allocated channel resources, adjusting the code rate of part or all of the control information of the second control information to match the allocated channel resources.

[0040] It is to be noted that an operation of adjusting the code rate of part or all of the control information of the second control information to match the allocated channel resources may be before, after or at the same time of transmitting the second control information and the data information in the same time slot in the multiplexing manner on the physical channel according to the determined transmission mode, but it is not limited thereto.

[0041] It is to be noted that the CSI required to be transmitted is determined by a code rate relationship between the second control information and the data information indicated by the base station and a modulation and coding scheme (MCS) of data, but it is not limited thereto.

[0042] In an embodiment of the present disclosure, the method further includes: adjusting the code rate for transmitting the data information to match the allocated channel resources according to at least one of: an overhead of the second control information, a data block size, a modulation and coding scheme of the data information, or a code rate relationship between the data information and the second control information.

[0043] An operation of adjusting the code rate for transmitting the data information to match the allocated channel resources may be before, after or at the same time of transmitting the second control information and the data information in the same time slot in the multiplexing manner on the physical channel according to the determined transmission mode, but it is not

limited thereto.

[0044] It is to be noted that the partial control information of the second control information includes at least one of: the PMI or the CQI corresponding to the second transmission codeword.

[0045] It is to be noted that determining the transmission mode for transmitting the second control information and the data information may include: determining the transmission mode according to at least one of configuration signaling of the base station or a pre-defined rule between a terminal and a base station.

[0046] Optionally, the above steps may, but may not necessarily, be executed by a terminal.

[0047] From the description of the embodiments described above, it will be apparent to those skilled in the art that the methods in the embodiments described above may be implemented by software plus a necessary general-purpose hardware platform, or may of course be implemented by hardware. Based on this understanding, the solution provided by the present application may be embodied in the form of a computer software product. The computer software product is stored in a storage medium (such as a ROM/RAM, a magnetic disk or an optical disk) and includes several instructions for enabling a terminal device (which may be a mobile phone, a computer, a server, a network device, or the like) to execute the method according to each embodiment of the present application.

Embodiment two

[0048] This embodiment provides an information receiving method. FIG. 4 is a flowchart of an information receiving method according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes S302 described below.

[0049] In step S302, at least two pieces of information in the following information transmitted in a multiplexing manner on a physical channel are received: CSI, first control information or data information. Where the first control information includes at least one of: hybrid automatic retransmission request acknowledgement (HARQ-ACK) information or scheduling request (SR) information.

[0050] Through the above steps, since at least two pieces of the following information are received in the multiplexing manner on a physical channel: the CSI, the first control information or the data information, i.e., transmitting the data information and the second control information (including the CSI and/or the first control information) in the multiplexing manner or transmitting the CSI and the first control information in the multiplexing manner on a physical channel. Therefore, the transmission efficiency of the control information and the data information may be increased, and the problem of low transmission efficiency of the control information and the data information in the related art may be solved.

[0051] It should be noted that the above physical channel may include at least one of: a physical uplink control channel (PUCCH) or a physical uplink shared control channel (PUSCH).

[0052] In an embodiment of the present disclosure, in condition that the at least two pieces of information include the CSI and the first control information, a transmission mode for transmitting the CSI and the first control information on the physical channel includes at least one of: manner one, performing a jointly encoding transmission on the first control information and all information of the channel state information (CSI) on the physical channel; manner two, performing the jointly encoding transmission on the first control information and first part of information of the channel state information (CSI) on the physical channel, and performing a separately encoding transmission on second part of information of the channel state information (CSI) on the physical channel.

[0053] It is to be noted that the first part of information may include at least one of: a rank indicator, a channel quality indicator corresponding to a first transmission codeword, a number of non-zero amplitude coefficients, a reference signal resource indicator, a layer-1 reference signal received power, or layer indication information; and the second part of information includes at least one of: a precoding matrix indicator or a channel quality indicator corresponding to a second transmission codeword.

[0054] It is to be noted that the CSI includes at least one of: the PMI, the CQI, the RI, reference signal resource indication information, the L1-RSRP or the LI.

[0055] It is to be noted that in response to satisfying at least one of conditions, the jointly encoding transmission is performed on the first control information and all information of the channel state information (CSI) on the physical channel: the CSI transmitted on the physical channel being wideband CSI or partial-band CSI; transmitting configuration signaling for indicating that a feedback mode of a PMI is configured to one of: a wideband PMI, a partial-band PMI or a single PMI to a terminal; transmitting configuration signaling for indicating that a feedback mode of a CQI is configured to one of: a wideband CQI, a partial-band CQI or a single CQI to the terminal; transmitting, by a terminal, the first control information by using a physical uplink control channel format 3 (PUCCH format 3) or a physical uplink control channel format 4 (PUCCH format 4); and transmitting configuration signaling for indicating that the terminal is allowed to simultaneously transmit the CSI and the first control information on the physical channel to the terminal.

[0056] It is to be noted that configuring the feedback mode of the PMI to the wideband PMI means that the fed back PMI represents PMI information of an entire CSI feedback bandwidth; configuring the feedback mode of the PMI to the partial-band PMI means that the fed back PMI represents a part of all subbands included in an entire activated downlink bandwidth; configuring the feedback mode of the PMI to the single PMI means that the fed back PMI represents an entire CSI reporting bandwidth reporting a single PMI.

[0057] It is to be noted that configuring the feedback mode of the CQI to the wideband PMI means that the fed back PMI represents CQI information of an entire CSI feedback bandwidth; configuring the feedback mode of the CQI to the partial-band CQI means that the fed back CQI represents a part of all subbands included in an entire activated downlink bandwidth; configuring the feedback mode of the CQI to the single PMI means that the fed back CQI represents an entire CSI reporting bandwidth reporting a single CQI.

[0058] It is to be noted that in response to satisfying at least one of conditions, performing the jointly encoding transmission on the first control information and first part of information of the channel state information (CSI) on the physical channel, and performing the separately encoding transmission on the second part of information of the channel state information (CSI) on the physical channel. The conditions includes: transmitting the subband CSI on the physical channel; transmitting configuration signaling for indicating that a feedback mode of a PMI is configured to at least one of: a subband PMI or multiple PMIs to a terminal; transmitting configuration signaling for indicating that a feedback mode of a CQI is configured to at least one of: a subband CQI or multiple CQIs to a terminal; transmitting, by a terminal, the first control information by using a PUCCH format 3 or a PUCCH format 3; and transmitting configuration signaling for indicating that the terminal is allowed to simultaneously transmit the CSI and the first control information on the physical channel to the terminal.

[0059] The feedback mode of the PMI being configured to the subband PMI or the multiple PMIs means that when the number of antenna ports corresponding to the PMI is greater than 2, wideband indication information is fed back for the entire CSI feedback bandwidth, and subband indication information is fed back for the subbands of the CSI feedback bandwidth; when the number of antenna ports corresponding to the PMI is equal to 2, the PMI information is fed back for the subbands of the CSI feedback bandwidth.

[0060] It is to be noted that the feedback mode of the CQI being configured to a subband CQI or multiple CQIs means that the CQI information corresponding to each transmission codeword is fed back for the subbands of the CSI feedback bandwidth.

[0061] In an embodiment of the present disclosure, in condition that the second control information includes the CSI and/or the first control information, and the at least two pieces of information include the data information and the second control information, the second control information and the data information transmitted in the same time slot in the multiplexing manner on the physical channel is received.

[0062] It is to be noted that the method further includes at least one of following steps: transmitting configuration signaling for indicating a transmission mode used for transmitting the second control information and/or the data information to the terminal; and determining the transmission mode used by the second control information and/or the data information according to an predefined rule. This step may be performed before, after, or at the same time of the above S302, but it is not limited thereto.

[0063] It is to be noted that the transmission mode satisfies at least one of the following conditions: a code rate for transmitting the data information not exceeding a data code rate upper limit configured by a base station; an overhead for transmitting the second control information or partial control information of the second control information not exceeding a control information overhead upper limit configured by the base station; matching a code rate for transmitting part or all of control information of the second control information with allocated channel resources; and matching the code rate for transmitting the data information with the allocated channel resources.

[0064] It is to be noted that the data code rate upper limit includes at least one of: a data code rate upper limit corresponding to each transmission of the data information; and a data code rate upper limit corresponding to each redundancy version value of the data information.

[0065] It is to be noted that the control information overhead upper limit includes at least one of: a control information overhead upper limit corresponding to each transmission of the data information; and a control information overhead upper limit corresponding to each redundancy version value of the data information.

[0066] It is to be noted that the method may further include: in condition that a sum of resources required for receiving the channel state information and the data information is less than the allocated channel resources, adjusting the code rate of part or all of the control information of the second control information to match the allocated channel resources.

[0067] It is to be noted that an execution action of adjusting the code rate of part or all of the control information of the second control information to match the allocated channel resources may be before, after or at the same time of the above S302, but it is not limited thereto.

[0068] It is to be noted that the method may further include: adjusting the code rate for receiving the data information to match the allocated channel resources according to at least one of: an overhead of the second control information, a data block size, a modulation and coding scheme of the data information, or a code rate relationship between the data information and the second control information.

[0069] It is to be noted that an execution action of adjusting the code rate of the control information to match the allocated channel resources may be before, after or at the same time of the above S302, but it is not limited thereto.

[0070] It is to be noted that the partial control information of the second control information includes at least one of: the PMI or the CQI corresponding to the second transmission codeword.

[0071] It is to be noted that the above-mentioned method may, but is not limited to, be executed by a network side device, such as a base station.

[0072] From the description of the embodiments described above, it will be apparent to those skilled in the art that the methods in the embodiments described above may be implemented by software plus a necessary general-purpose hardware platform, or may of course be implemented by hardware. Based on this understanding, the solution provided by the present application may be embodied in the form of a computer software product. The computer software product is stored in a storage medium (such as a ROM/RAM, a magnetic disk or an optical disk) and includes several instructions for enabling a terminal device (which may be a mobile phone, a computer, a server, a network device, or the like) to execute the method according to each embodiment of the present application.

Embodiment three

[0073] This embodiment further provides an information transmission device. The device is configured to implement the above-mentioned embodiments and preferred embodiments. What has been described will not be repeated. As used below, the term "module" may be software, hardware or a combination thereof capable of implementing predetermined functions. The device in the embodiment described below may be implemented by software, hardware or a combination of software and hardware.

[0074] FIG. 5 is a block diagram of a data transmission device according to an embodiment of the present disclosure. As shown in FIG. 5, the device includes: an acquisition module 42 and a transmission module 44.

[0075] The acquisition module 42 is configured to acquire at least two pieces of information in the following information: CSI, first control information or data information;. Where the first control information includes at least one of: hybrid automatic retransmission request acknowledgement (HARQ-ACK) information or scheduling request (SR) information.

[0076] The transmission module 44 is connected to the acquisition module 42 and is configured to transmit the acquired at least two pieces of information in a multiplexing manner on a physical channel.

[0077] Through the above device, since at least two pieces of the following information are transmitted in the multiplexing manner on a physical channel: the CSI, the first control information or the data information, i.e., through transmitting the data information and the control information (including the CSI and/or the first control information) in the multiplexing manner or transmitting the CSI and the first control information in the multiplexing manner on a physical channel. Therefore, the transmission efficiency of the control information and the data information may be increased, and the problem of low transmission efficiency of the control information and the data information in the related art may be solved.

[0078] It is to be noted that the acquisition module 42 may not exist in the device, that is, the device may only be included in the transmission module 44, but it is not limited thereto.

[0079] It is to be noted that the above physical channel may include at least one of: a physical uplink control channel (PUCCH) or a physical uplink shared control channel (PUSCH).

[0080] In an embodiment of the present disclosure, in condition that the at least two pieces of information include the CSI and the first control information, the transmission module 44 may transmit the CSI and the first control information in one of the following manners: manner one, performing a jointly encoding transmission on the first control information and all information of the channel state information (CSI) on the physical channel; manner two, performing the jointly encoding transmission on the first control information and first part of information of the channel state information (CSI) on the physical channel, and performing a separately encoding transmission on second part of information of the channel state information (CSI) on the physical channel.

[0081] It is to be noted that the first part of information may include at least one of: a rank indicator, a channel quality indicator corresponding to a first transmission codeword, a number of non-zero amplitude coefficients, a reference signal resource indicator, a layer-1 reference signal received power, or layer indication information. The second part of information includes at least one of: a precoding matrix indicator or a channel quality indicator corresponding to a second transmission codeword.

[0082] It is to be noted that the CSI includes at least one of: the PMI, the CQI, the RI, reference signal resource indication information, the L1-RSRP or the LI.

[0083] It is to be noted that in response to satisfying at least one of conditions, the transmission module 44 transmits the CSI and the first control information in the manner one: the CSI transmitted on the physical channel being wideband CSI or partial-band CSI; a feedback mode of the PMI being configured to one of: a wideband PMI, a partial-band PMI or a single PMI; a feedback mode of the CQI being configured to one of: a wideband CQI, a partial-band CQI or a single CQI; transmitting, by a terminal, the first control information by using a physical uplink control channel format 3 (PUCCH format 3) or a physical uplink control channel format 4 (PUCCH format 4); or the terminal being configured to allow the terminal to simultaneously transmit the CSI and the first control information on the physical channel.

[0084] It is to be noted that configuring the feedback mode of the PMI to the wideband PMI means that the fed back PMI represents PMI information of an entire CSI feedback bandwidth; configuring the feedback mode of the PMI to the partial-band PMI means that the fed back PMI represents a part of all subbands included in an entire activated downlink bandwidth; configuring the feedback mode of the PMI to the single PMI means that the fed back PMI represents an entire CSI reporting bandwidth reporting a single PMI.

[0085] It is to be noted that configuring the feedback mode of the CQI to the wideband PMI means that the fed back PMI represents CQI information of an entire CSI feedback bandwidth; configuring the feedback mode of the CQI to the partial-band CQI means that the fed back CQI

represents a part of all subbands included in an entire activated downlink bandwidth; configuring the feedback mode of the CQI to the single PMI means that the fed back CQI represents an entire CSI reporting bandwidth reporting a single CQI.

[0086] It is to be noted that in response to satisfying at least one of conditions, the transmission module 44 transmits the CSI and the first control information in the manner two: transmitting subband CSI on the physical channel; the feedback mode of the PMI being configured to at least one of: a subband PMI and multiple PMIs; the feedback mode of the CQI is configured to at least one of: a subband CQI and multiple CQIs; transmitting, by a terminal, the first control information by using a PUCCH format 3 or a PUCCH format 4; or the terminal being configured to allow the terminal to simultaneously transmit the CSI and the first control information on the physical channel.

[0087] It is to be noted that the feedback mode of the PMI being configured to the subband PMI or the multiple PMIs means that when the number of antenna ports corresponding to the PMI is greater than 2, wideband indication information is fed back for the entire CSI feedback bandwidth, and subband indication information is fed back for the subbands of the CSI feedback bandwidth; when the number of antenna ports corresponding to the PMI is equal to 2, the PMI information is fed back for the subbands of the CSI feedback bandwidth.

[0088] It is to be noted that the feedback mode of the CQI being configured to a subband CQI or multiple CQIs means that the CQI information corresponding to each transmission codeword is fed back for the subbands of the CSI feedback bandwidth.

[0089] The above device limits conditions for transmission in the manner one and conditions for transmission in the manner two, thereby overcoming defects in the related art that how to transmit the CSI and the first control information is not set, and the transmission efficiency of the control information is improved.

[0090] In an embodiment of the present disclosure, in condition that the at least two pieces of information include the data information and the second control information (including the CSI and/or the first control information), the transmission module 44 is configured to transmit the second control information and the data information in the same time slot in the multiplexing manner on the physical channel.

[0091] It is to be noted that the second control information and the data information are transmitted in the same time slot on the physical channel, the device may further include: a determination module, which is configured to determine a transmission mode for transmitting at least one of the second control information or the data information; and the transmission module 44 is connected to the determination module, and is configured to transmit the second control information and the data information in the same time slot in the multiplexing manner on the physical channel according to the determined transmission mode.

[0092] It is to be noted that the transmission mode includes at least one of: a code rate for

transmitting the data information not exceeding a data code rate upper limit configured by a base station; an overhead for transmitting the second control information or partial control information of the second control information not exceeding a control information overhead upper limit configured by the base station; matching a code rate for transmitting part or all of control information of the second control information with allocated channel resources; or matching the code rate for transmitting the data information with the allocated channel resources.

[0093] It is to be noted that the data code rate upper limit may include at least one of: a data code rate upper limit corresponding to each transmission of the data information; or a data code rate upper limit corresponding to each redundancy version value of the data information.

[0094] It is to be noted that the control information overhead upper limit may include at least one of: a control information overhead upper limit corresponding to each transmission of the data information; or a control information overhead upper limit corresponding to each redundancy version value of the data information.

[0095] Through determining the data code rate upper limit and the control information overhead upper limit, thus the transmission mode for transmitting the data information and/or the control information is determined, so that the problem of not knowing how to multiplex the data information and the control information in the related art can be solved, and the transmission efficiency of the data information and the control information may be improved, the reliability of the data transmission is increased.

[0096] It is to be noted that, the second control information and the data information are transmitted in the same time slot in the multiplexing manner on the physical channel according to the determined transmission mode. The above device may further include: an adjustment module, which is connected to the transmission module 44, and is configured to in condition that a sum of resources required for transmitting the channel state information and the data information is less than the allocated channel resources, adjust the code rate of part or all of the control information of the second control information to match the allocated channel resources.

[0097] It is to be noted that the CSI required to be transmitted is determined by a code rate relationship between the second control information and the data information indicated by the base station and a modulation and coding scheme (MCS) of data, but it is not limited thereto.

[0098] In an embodiment of the present disclosure, the second control information and the data information are transmitted in the same time slot in the multiplexing manner on the physical channel according to the determined transmission mode. The above adjust module is further configured to adjust the code rate for transmitting the data information to match the allocated channel resources according to at least one of: an overhead of the second control information, a data block size, a modulation and coding scheme of the data information, or a code rate relationship between the data information and the second control information.

[0099] It is to be noted that the partial control information of the second control information includes at least one of: the PMI and the CQI corresponding to the second transmission codeword.

[0100] It is to be noted that the determination module is further configured to determine the transmission mode according to the configuration signaling of the base station and/or the pre-defined rule between the terminal and the base station.

[0101] Optionally, the above device may be located in the terminal, but is not limited thereto.

[0102] It is to be noted that each module described above may be implemented by software or hardware. Implementation by hardware may, but may not necessarily, be performed in the following manners: the various modules described above are located in a same processor, or multiple modules described above are located in their respective processors in any combination form.

Embodiment four

[0103] According to an embodiment of the present disclosure, an information receiving device is provided. The device includes: a receiving module, which is configured to receive at least two pieces of the following information transmitted in a multiplexing manner on a physical channel: channel state information, first control information or data information; where the first control information includes at least one of: hybrid automatic retransmission request acknowledgement (HARQ-ACK) information or scheduling request (SR) information.

[0104] Through the above device, since at least two pieces of the following information are received in the multiplexing manner on a physical channel: the CSI, the first control information and the data information, i.e., transmitting the data information and the second control information (including the CSI and/or the first control information) in the multiplexing manner or transmitting the CSI and the first control information in the multiplexing manner on a physical channel. Therefore, the transmission efficiency of the control information and the data information may be increased, and the problem of low transmission efficiency of the control information and the data information in the related art may be solved.

[0105] It is to be noted that the above physical channel may include at least one of: a physical uplink control channel (PUCCH) or a physical uplink shared control channel (PUSCH).

[0106] In an embodiment of the present disclosure, in condition that the at least two pieces of information include the CSI and the first control information, a transmission mode for transmitting the CSI and the first control information on the physical channel includes at least one of: manner one, performing a jointly encoding transmission on the first control information and all information of the channel state information (CSI) on the physical channel; manner two,

performing the jointly encoding transmission on the first control information and first part of information of the channel state information (CSI) on the physical channel, and performing a separately encoding transmission on second part of information of the channel state information (CSI) on the physical channel.

[0107] It is to be noted that the first part of information may include at least one of: a rank indicator, a channel quality indicator corresponding to a first transmission codeword, a number of non-zero amplitude coefficients, a reference signal resource indicator, a layer-1 reference signal received power, or layer indication information. The second part of information includes at least one of: a precoding matrix indicator and a channel quality indicator corresponding to a second transmission codeword.

[0108] It is to be noted that the CSI includes at least one of: the PMI, the CQI, the RI, reference signal resource indication information, the L1-RSRP or the LI.

[0109] It is to be noted that in response to satisfying at least one of conditions, the jointly encoding transmission is performed on the first control information and all information of the channel state information (CSI) on the physical channel. The conditions include: the CSI transmitted on the physical channel being wideband CSI or partial-band CSI; transmitting configuration signaling for indicating that a feedback mode of a PMI is configured to one of: a wideband PMI, a partial-band PMI or a single PMI to a terminal; transmitting configuration signaling for indicating that a feedback mode of a CQI is configured to one of: a wideband CQI, a partial-band CQI and a single CQI to the terminal; transmitting, by a terminal, the first control information by using a physical uplink control channel format 3 (PUCCH format 3) or a physical uplink control channel format 4 (PUCCH format 4); and transmitting configuration signaling for indicating that the terminal is allowed to simultaneously transmit the CSI and the first control information on the physical channel to the terminal.

[0110] It is to be noted that configuring the feedback mode of the PMI to the wideband PMI means that the fed back PMI represents PMI information of an entire CSI feedback bandwidth; configuring the feedback mode of the PMI to the partial-band PMI means that the fed back PMI represents a part of all subbands included in an entire activated downlink bandwidth; configuring the feedback mode of the PMI to the single PMI means that the fed back PMI represents an entire CSI reporting bandwidth reporting a single PMI.

[0111] It is to be noted that configuring the feedback mode of the CQI to the wideband PMI means that the fed back PMI represents CQI information of an entire CSI feedback bandwidth; configuring the feedback mode of the CQI to the partial-band CQI means that the fed back CQI represents a part of all subbands included in an entire activated downlink bandwidth; configuring the feedback mode of the CQI to the single PMI means that the fed back CQI represents an entire CSI reporting bandwidth reporting a single CQI.

[0112] It is to be noted that in response to satisfying at least one of conditions, performing the jointly encoding transmission on the first control information and first part of information of the

channel state information (CSI) on the physical channel, and performing the separately encoding transmission on the second part of information of the channel state information (CSI) on the physical channel. The conditions include: transmitting the subband CSI on the physical channel; transmitting configuration signaling for indicating that a feedback mode of a PMI is configured to at least one of: a subband PMI and multiple PMIs to a terminal; transmitting configuration signaling for indicating that a feedback mode of a CQI is configured to at least one of: a subband CQI and multiple CQIs to a terminal; transmitting, by a terminal, the first control information by using a PUCCH format 3 or a PUCCH format 3; and transmitting configuration signaling for indicating that the terminal is allowed to simultaneously transmit the CSI and the first control information on the physical channel to the terminal.

[0113] It is to be noted that the feedback mode of the PMI being configured to the subband PMI or the multiple PMIs means that when the number of antenna ports corresponding to the PMI is greater than 2, wideband indication information is fed back for the entire CSI feedback bandwidth, and subband indication information is fed back for the subbands of the CSI feedback bandwidth; when the number of antenna ports corresponding to the PMI is equal to 2, the PMI information is fed back for the subbands of the CSI feedback bandwidth.

[0114] It is to be noted that the feedback mode of the CQI being configured to a subband CQI or multiple CQIs means that the CQI information corresponding to each transmission codeword is fed back for the subbands of the CSI feedback bandwidth.

[0115] In an embodiment of the present disclosure, in condition that the second control information includes the CSI and/or the first control information, and the at least two pieces of information include the data information and the second control information, the receiving module is configured to receive the second control information and the data information transmitted in the same time slot in the multiplexing manner on the physical channel.

[0116] It is to be noted that the device further includes at least one of: a transmission module or a determination module. The transmission module is connected to the receiving module and is configured to transmit configuration signaling for indicating a transmission mode used for transmitting the second control information and/or the data information to the terminal. The determination module is connected to the receiving module and is configured to determine the transmission mode used by the second control information and/or the data information according to a predefined rule.

[0117] It is to be noted that the transmission mode satisfies at least one of the following conditions: a code rate for transmitting the data information not exceeding a data code rate upper limit configured by a base station; an overhead for transmitting the second control information or partial control information of the second control information not exceeding a control information overhead upper limit configured by the base station; matching a code rate for transmitting part or all of control information of the second control information with allocated channel resources; or matching the code rate for transmitting the data information with the allocated channel resources.

[0118] It is to be noted that the data code rate upper limit includes at least one of: a data code rate upper limit corresponding to each transmission of the data information; or a data code rate upper limit corresponding to each redundancy version value of the data information.

[0119] It is to be noted that the control information overhead upper limit includes at least one of: a control information overhead upper limit corresponding to each transmission of the data information; or a control information overhead upper limit corresponding to each redundancy version value of the data information.

[0120] It is to be noted that the device may further include: a first adjust module, which is connected to the receiving module, is configured to in condition that a sum of resources required for receiving the channel state information and the data information is less than the allocated channel resources, adjust the code rate of part or all of the control information of the second control information to match the allocated channel resources.

[0121] It is to be noted that the device may further include: a second adjust module, which is connected to the receiving module, is configured to adjust the code rate for receiving the data information to match the allocated channel resources according to at least one of: an overhead of the second control information, a data block size, a modulation and coding scheme of the data information, or a code rate relationship between the data information and the second control information.

[0122] It is to be noted that the partial control information of the second control information includes at least one of: the PMI or the CQI corresponding to the second transmission codeword.

[0123] It is to be noted that the above apparatus may, but may not necessarily, be located in a network side device, such as a base station.

[0124] It is to be noted that each module described above may be implemented by software or hardware. Implementation by hardware may, but may not necessarily, be performed in the following manners: the various modules described above are located in a same processor, or multiple modules described above are located in their respective processors in any combination form.

Embodiment five

[0125] An embodiment of the present application provides a computer-readable storage medium. The computer-readable storage medium stores computer programs. The computer programs are configured to, when executed, perform steps in any above method embodiment.

[0126] Optionally, in this embodiment, the above-mentioned storage medium may include, but

is not limited to, a U disk, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, an optical disk or another medium capable of storing computer programs.

[0127] An embodiment of the present application further provides an electronic apparatus. The electronic apparatus includes a memory and a processor. The memory is configured to store a computer program, and the processor is configured to execute the computer program to perform steps of any one of embodiments described above.

[0128] Optionally, the electronic apparatus described above may further include a transmission device and an input and output device, where both the transmission device and the input and output device are connected to the processor described above.

[0129] Optionally, for examples in the embodiment, reference may be made to the examples described in the embodiments and optional implementation modes described above, and the examples will not be repeated in the embodiment.

[0130] To better understand the present disclosure, the present disclosure will be further described below in conjunction with the following examples not covered by the claims.

Example one

[0131] This example gives an implementation of control information feedback. The terminal transmits CSI and other UCI on a PUCCH in a same time slot in a multiplexing manner, which may improve the transmission efficiency of the UCI. Other UCI includes HARQ-ACK/SR, and the CSI includes at least one of PMI, CQI, or RI.

[0132] In condition that the CSI that the terminal needs to transmit on the PUCCH is wideband CSI or partial-band CSI, if the terminal transmits HARQ-ACK and/or SR in PUCCH format 3 or PUCCH format 4, and the base station allows the terminal to transmit at least one of the HARQ-ACK or the SR as well as the CSI in the PUCCH format 3 or the PUCCH format 4 by configuring signaling, the terminal transmits after performing a joint channel encoding on all CSI in a CSI report as well as at least one of the HARQ-ACK or the SR.

[0133] When the base station configures a feedback mode of terminal PMI as wideband PMI, or partial-band PMI, or single PMI, and signaling of a feedback mode of the CQI is configured to be wideband CQI, or partial-band CQI, or single CQI, if the terminal transmits HARQ-ACK and/or SR in PUCCH format 3 or PUCCH format 4, and the base station allows the terminal to transmit at least one of HARQ-ACK or SR and CSI on the PUCCH format 3 or format 4 by configuring signaling at the same time, the terminal transmits after performing the joint channel encoding on all CSI in the CSI report as well as at least one of the HARQ-ACK or the SR. When the terminal needs to transmit subband CSI on a PUCCH, if the terminal transmits the HARQ-ACK and/or the SR in the PUCCH format 3 or the PUCCH format 4, and the base station allows

the terminal to transmit at least one of the HARQ-ACK or the SR as well as the CSI in the PUCCH format 3 or the PUCCH format 4 by configuring signaling, the terminal transmits after performing the joint channel encoding on first part of CSI in the CSI report as well as at least one of the HARQ-ACK or the SR and performing an independent encoding transmission on second part of CSI in the CSI report. When the CSI is configured to first type of CSI, the first part of CSI includes at least: an RI and a CQI of a first transmission codeword; the second part of CSI includes at least a PMI, and if necessary, includes a CQI of a second transmission codeword. When the CSI is configured to second type of CSI, the first part of CSI includes at least: the RI, the CQI of the first transmission codeword, and the number of non-zero amplitude coefficients in the PMI. The second part of CSI includes at least the PMI.

[0134] When the base station configures the feedback mode of the terminal PMI to be subband PMI or multiple PMIs, and/or, the signaling of the feedback mode of the CQI is configured to subband CQI or multiple CQIs, if the terminal transmits the HARQ-ACK and/or SR in the PUCCH format 3 or the PUCCH format 4, and the base station allows the terminal to transmit at least one of HARQ-ACK or the SR and CSI on the PUCCH format 3 or the PUCCH format 4 through configuration signaling at the same time, and the terminal transmits after performing the joint channel encoding on first part of CSI in the CSI report as well as at least one of the HARQ-ACK or the SR and performing the independent encoding transmission on second part of CSI in the CSI report. When the CSI is configured to first type of CSI, the first part of CSI includes at least: an RI and a CQI of a first transmission codeword; the second part of CSI includes at least a PMI, and if necessary, includes a CQI of a second transmission codeword. When the CSI is configured to second type of CSI, the first part of CSI includes at least: the RI, the CQI of the first transmission codeword, and the number of non-zero amplitude coefficients in the PMI. The second part of CSI includes at least the PMI.

Example two

[0135] This example gives an implementation of control information and data transmission. A terminal multiplexes data and an UCI on a PUSCH in a same time slot to improve the performance of an uplink transmission. Multiplexing transmission modes are mode 1, mode 2 and mode 3.

[0136] Mode one: after calculating the CSI, the terminal obtains the total number of UCI bits, and obtains the total number of resource elements (REs) required by the UCI according to values of β_{offset} of the UCI and an MCS of the PUSCH configured by a base station. The terminal uses the total number of REs of the PUSCH allocated by the base station minus the total number of REs of the UCI to obtain the total number of REs required for the data, and adjusts a code rate of an uplink data transmission to match the total number of data channel resources. FIG. 6 is a schematic diagram of adjusting the data code rate provided by the embodiment two of the present disclosure.

[0137] Mode two: when transmitted uplink data is a service with a higher priority, for example,

a URLLC service, the reliability of the uplink data transmission needs to be guaranteed. The uplink data may be transmitted according to at least one of following sub-modes. FIG. 7 is a schematic diagram of conditionally adjusting the data code rate according to the exemplary embodiment two of the present disclosure. As shown in FIG. 7, the mode two includes a sub-mode one and a sub-mode two.

[0138] Sub-mode one: the base station configures a code rate upper limit of a multiplexed data transmission for the terminal. A code rate of the transmitted data does not exceed this upper limit. When a code rate of the uplink data transmission is adjusted to reach the upper limit, the code rate is no longer increased for rate matching.

[0139] Optionally, the base station may configure multiple code rate upper limits for a total of K transmissions of the same data. A k -th transmission corresponds to an m -th code rate upper limit. When the data is first transmitted and retransmitted, the terminal determines the corresponding code rate upper limit according to this data transmission being the k -th transmission. For example, K transmissions are configured to M groups, a m -th group includes K_m transmissions, and the base station configures M code rate upper limits for transmissions of M groups, the m -th code rate upper limit is applied to K_m transmissions in the m -th group when K_m transmissions multiplex the UCI.

[0140] Optionally, the base station may configure multiple upper code rate limits for different redundancy version (RV) values of the same data transmission. When each transmission needs to be multiplexed with the UCI, the terminal determines the corresponding code rate upper limit according to a value of the agreed RV or an indicator of the base station.

[0141] Optionally, the base station configures a data transmission code rate upper limit multiplexed with the UCI for each transmission block; another mode is that the base station configures data transmission code rate upper limit multiplexed with the UCI for all transmission blocks, and a maximum value of all transmission block code rates is less than or equal to this code rate upper limit.

[0142] Sub-mode two: the base station configures an overhead upper limit of the multiplexed UCI for the terminal. An overhead of the UCI may represent the number of UCI bits, and/or the number of REs occupied by the UCI. The overhead of the UCI transmitted and multiplexed with the data does not exceed the upper limit. When the code rate of the uplink data transmission is adjusted so that the overhead of the UCI reaches the upper limit, the code rate is no longer increased for rate matching.

[0143] Optionally, the base station may configure multiple overhead upper limits of the UCI multiplexed by a total of K transmissions of the same data for a total of K transmissions of the same data. The k -th transmission corresponds to the m -th code rate upper limit. When the data is first transmitted and retransmitted, the terminal determines the corresponding overhead upper limit of the UCI multiplexed by the K -th transmission according to this data transmission

being the k -th transmission; for example, K transmissions are configured to M groups, the m -th group includes K_m transmissions, and the base station configures M overhead upper limits of the UCI for transmissions of M groups, the m -th overhead upper limit is applied to K_m transmissions in the m -th group when K_m transmissions multiplex the UCI.

[0144] Optionally, the base station may configure multiple overhead upper limits of the UCI multiplexed with different RV values of the same data transmission, and when each data transmission needs to be multiplexed with the UCI, the terminal determines the corresponding overhead upper limit of the UCI multiplexed with the data according to the value of the agreed RV or the indicator of the base station.

[0145] Mode three: the terminal adjusts a code rate of at least part of the control information to match allocated channel resources according to at least one of an MCS of the data, a control information overhead or a size of the data block required to be transmitted. According to the data MCS indicated by the base station and a relationship between the UCI and the data code rate, if the sum of resources required for transmitting the CSI and the uplink data is less than the allocated channel resources, the code rate of at least part of the control information is adjusted to match the allocated channel resources, for example, a code rate of the second part of CSI included in the CSI required to be transmitted.

[0146] For example, a case of mode three is shown in FIG. 8, FIG. 8 is a schematic diagram of adjusting the code rate of the UCI according to the example two of the present disclosure. The total number of REs of the PUSCH configured by the base station is N , and the total number of REs of the data obtained from the MCS and the transmission block size (TBS) of the data is N_{data} . According to the relationship β_{offset} between the data code rate and the code rate corresponding to the first part and the number of bits in the first part, the total number of REs N_{Part1} in the first part of the CSI may be obtained, and the number of bits calculated in the second part of the CSI is B_{part2} . the total number of REs required to completely transmit Part2 at an original code rate may be obtained according to the β_{offset} and the MCS:

$$N_{\text{Part2_original}} \propto B_{\text{part2}} / (\text{MCS} / \beta_{\text{offset_part2}})$$

[0147] $N_{\text{Part2_original}}$ represents the total number of REs required to completely transmit Part2 at the original code rate.

[0148] If $N_{\text{Part2_original}} < (N - N_{\text{data}} - N_{\text{Part1}})$, the code rate of part 2 of the CSI is reduced to

$$C_{\text{part2}} \propto B_{\text{part2}} / (N - N_{\text{data}} - N_{\text{part1}})$$

[0149] C_{part2} represents the code rate after the code rate of part 2 of the CSI is reduced.

[0150] Optionally, the base station may instruct the terminal to adopt at least one of the above-mentioned multiple modes through the higher layer signaling or the physical layer signaling.

For example, the base station may perform such signaling indicator through different requirements of uplink and downlink services.

Example three

[0151] This example gives an implementation of channel state information feedback. A base station allocates reference signal (RS) resources for a CSI measurement feedback to a terminal, such as CSI-RS resources. These resources include at least one of: a first RS resource set for channel measurement or a second RS resource set for interference measurement. The second RS resource set includes at least one of: an interference measurement resource based on a zero-power RS or an interference measurement resource based on a non-zero-power RS. When performing the CSI calculation, the terminal performs a channel measurement according to resources in the selected first RS resource set, and performs an interference measurement according to one or more second RS resources corresponding to the first RS resource in the second RS resource set. The terminal determines a corresponding relationship between RS resources in the first RS resource set and RS resources in the second RS resource set according to at least one of a first type mode, a second type mode, and a third type mode.

[0152] In the first type mode: the base station notifies the terminal of each resource in the first RS resource set as well as which RS resource in the second RS resource set corresponds to each resource in the first RS resource set respectively through higher layer signaling and/or physical layer signaling. For example, the base station may include ID information indicating one or more first RS resource sets corresponding to each second RS resource set in configuration information of each resource included by the second RS resource set or in configuration information in the second RS resource set; or include ID information indicating one or more second RS resource sets corresponding to each first RS resource set in configuration information of each resource included by the first RS resource set or in configuration information in the first RS resource set.

[0153] In the second type mode: the terminal acquires the correspondence between the RS resources in the first RS resource set and the RS resources in the second RS resource set by a pre-defined rule. The first RS resource set includes M RS resources $\{C_1, \dots, C_M\}$, and the second RS resource set includes N RS resources $\{I_1, \dots, I_N\}$, wherein C_i corresponds to one or more second RS resources $I_{i1}, I_{i2}, \dots, I_{iK}$. $I_{i1}, I_{i2}, \dots, I_{iK}$ is several consecutive RS resources in I_1, \dots, I_N . For example, an m -th RS resource in the first RS resource set corresponds to $(m-1)K+1$ to mK -th RS resources in the second RS resource set, K is an integer greater than or equal to 1, and may be a pre-defined constant, or determined by the configuration signaling of the base station.

[0154] If a value of K is determined according to signaling, the signaling may be an explicit signal, or the value of K may be determined according to a ratio between the number of

resources included in the configured second RS resource set and the number of resources included in the configured first RS resource set. For example, a ratio of N and M is a real number X , and then the value of K is X or the smallest integer which is larger than X . If the ratio of N and M is less than the value of K (that is, the value of K is an integer after rounding up X), then the M -th RS resource in the first RS resource set corresponds to the $(M-1)K+1$ to N -th RS resources.

[0155] Optionally, the order in which $\{C_1, \dots, C_M\}$ and $\{I_1, \dots, I_N\}$ are arranged may be an order arranged in the corresponding RS set, or an order arranged according to the corresponding resource ID size.

[0156] In the third type mode: the first RS resource set includes M RS resources $\{C_1, \dots, C_M\}$, and the second RS resource set includes N RS resources $\{I_1, \dots, I_N\}$. When configuring the first and/or second RS resource set, the base station configures the resources included in the first and/or second RS resource set in a grouping manner.

[0157] For example, the first RS resource set is divided into A groups, and the second RS resource set is divided into B groups, where $1 \leq A \leq M$ and $1 \leq B \leq N$. The base station separately configures first RS resources included in each group of the A groups of the first RS resources, and/or the second RS resource included in each group of the B groups of the second RS resources. The first RS resource in an a -th group corresponds to the second RS resource in a b -th group, and a correspondence between such groups is configured by the base station or predefined. If $A=B$ is pre-defined, the a -th group corresponds to the second RS resource in the b -th group; or if $A=B=M$ is pre-defined, an m -th first RS resource corresponds to the second RS resource in an m -th group; or if $A=B=N$, an n -th second RS resource corresponds to the first RS resource in an n -th group.

Example four

[0158] This example gives an implementation of CSI feedback. When a CSI feedback includes a CRI and/or a L1-RSRP, a terminal may measure and report the CRI and/or the L1-RSRP based on a triggered aperiodic reference signal. A base station triggers one or more reference signal resource sets through higher layer or physical layer signaling, and selects to report the CRI and/or the L1-RSRP based on the measurement on these reference signal resource sets. The base station triggers M reference signal resource sets, and an m -th reference signal resource set includes K_m reference signal resources. There are

$$\sum_{m=1}^M K_m = K$$

reference signal resources, modes of the base station feeding back the CRI include at least one of a mode 1, a mode 2 and a mode 3.

[0159] Mode one: encoding and reporting are performed according to an order of selected reference signal resources in K reference signal resources.

[0160] Optionally, the order may be an order of the reference signal resource set and a configuration of reference signal resources in each set, or an order of ID sizes of K reference signal resources. Optionally, a feedback bit width of each CRI is

$\lceil \log_2(K) \rceil$

bits.

[0161] Mode two: the reported CRI includes two parts, which are indication information of the reference signal resource set where the reference signal resource is located, for example, the indication information indicates that the reference signal resource set is information of an m -th set of all measured reference signal resource sets; and indication information that the reference signal resource is in a k th reference signal resource of the reference signal resource set in which the reference signal resource is located .

[0162] Optionally, the k -th reference signal resource and/or the m -th reference signal resource set are arranged in at least one of the following orders: an order configured according to the reference signal resource set, an order of the reference signal resource configured in the reference signal resource set, an order of the reference signal resource set ID size, and an order of the reference signal resource ID size in the reference signal resource set.

[0163] Optionally, the feedback bit width of each reference signal resource set indication information is

$\lceil \log_2(M) \rceil$

bits, and the feedback bit width of each reference signal resource indication information corresponding to an m -th reference information resource set is

$\lceil \log_2(K_m) \rceil$

. Alternatively, the feedback bit width of each reference signal resource indication information in the m -th reference signal resource set is (

$\lceil \log_2(M) \rceil + \lceil \log_2(K_m) \rceil$

) bits.

[0164] Mode three: the reported reference signal resource is the k -th reference signal resource in the m -th reference signal resource set, and the reported CRI is calculated according to the formula which is a function of k and m . For example, the reported CRI indicates information of a

$(\sum_{i=0}^{m-1} K_i + k)$

-th resource among totally K resources, where $m=1, \dots, M$; $k=1, \dots, K$; and $K_0=0$.

[0165] In addition, when the CRI is x , the k -th reference signal resource in the m -th reference signal resource set is indicated, where m satisfies

$\sum_{i=0}^{m-1} K_i < x + 1$, $\sum_{i=0}^m K_i \geq x + 1$

, k indicates $x +$

$1 - \sum_{i=1}^{m-1} K_i$

, where $m=1, \dots, M$; $k=1, \dots, K$; $K_0=0$.

[0166] Optionally, the k -th reference signal resource and/or the m -th reference signal resource set are arranged in at least one of the following orders: an order configured according to the reference signal resource set, an order of the reference signal resource configured in the reference signal resource set, an order of the reference signal resource set ID size, and an order of the reference signal resource ID size in the reference signal resource set.

[0167] Optionally, a feedback bit width of each CRI is

$$\lceil \log_2(\sum_{m=1}^M K_m) \rceil$$

bits.

[0168] In addition, the triggered M reference signal resource sets, each set includes information indicating a time difference between a time slot for transmitting the reference signal and a time slot for the triggering signaling. When the M reference signal resource sets are triggered, the time difference indicated by each reference signal set may be different. For example, the time difference indicated by the M sets is M consecutive integers. In this case, each reference signal set may be represented by ID information of a time slot, for example, a 1st, a 2nd, ..., an M -th reference signal resource set corresponds to a respectively one of a s_1 -th, a s_2 -th, ..., an s_M -th time slot after the triggering signaling. In the methods for feeding back the CRI, parameters $1, \dots, M$, etc. representing the reference signal resource set ID may be replaced with parameters such as s_1, s_2, \dots, s_M , etc.

[0169] Apparently, it is to be understood by those skilled in the art that each of the above-mentioned modules or steps of the embodiments of the present invention may be implemented by a general-purpose computing apparatus, the modules or steps may be concentrated on a single computing apparatus or distributed on a network composed of multiple computing apparatuses, and alternatively, the modules or steps may be implemented by program codes executable by the computing apparatuses, so that the modules or steps may be stored in a storage apparatus and executed by the computing apparatuses. In some circumstances, the illustrated or described steps may be executed in sequences different from those described herein, or the modules or steps may be made into various integrated circuit modules separately, or multiple modules or steps therein may be made into a single integrated circuit module for implementation. In this way, the present application is not limited to any particular combination of hardware and software.

REFERENCES CITED IN THE DESCRIPTION

Cited references

This list of references cited by the applicant is for the reader's convenience only. It does not

form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- [CN201810031249 \[0001\]](#)
- [US2014233419A1 \[0006\]](#)
- [WO2016163855A1 \[0007\]](#)
- [US2017332374A1 \[0007\]](#)

Patentkrav**1. Fremgangsmåde, der omfatter:**

bestemmelse af en transmissionstilstand for at opfylde en øvre kodehastig-

5 hedsgrænse, der er konfigureret af en basisstation til transmission af kanaltil-
standsinformation, CSI, af første kontrolinformation og datainformation i et
tidsvindue på en multiplekseringsmåde af en flerhed af multiplekseringsmåder
på en fysisk kanal (S204), hvor flerheden af multiplekseringsmåder omfatter:

(a) en første måde, herunder udførelse af en fælles kodningstransmission på

10 den første kontrolinformation og al information af CSI'en på den fysiske kanal,
som svar på den CSI, der transmitteres på den fysiske kanal, herunder mindst
én af bredbårds-CSI eller partielbårds-CSI; og

(b) en anden måde, herunder (i) udførelse af den fælles kodningstransmission
på den første kontrolinformation og første del af information af CSI'en på den

15 fysiske kanal og (ii) udførelse af en separat kodningstransmission på anden
del af information af kanaltilstandsinformationen CSI på den fysiske kanal, som
svar på den CSI, der transmitteres på den fysiske kanal, inklusive underbårds-
CSI; og

transmission af CSI'en, den første information og datainformationen i tidsvin-
20 duet på multiplekseringsmåden på den fysiske måde i overensstemmelse med
den bestemte transmissionstilstand,

hvor den første kontrolinformation omfatter mindst én af: hybrid automatisk
gentransmissionsanmodningsbekræftelse, HARQ-ACK, information eller plan-
lægningsanmodning, SR, information (S202).

25

**2. Fremgangsmåde ifølge krav 1, hvor som svar på at opfylde mindst én af
betingelserne udføres den fælles kodningstransmission på den første kontrol-
information og al information af CSI'en på den fysiske kanal, hvor betingel-
serne omfatter:**

en tilbagemeldingstilstand, der er angivet med en prækodningsmatrix, som er konfigureret til én af: en bredbåndsprækodningsmatrixindikator, en partielbåndsprækodningsmatrixindikator eller en enkelt prækodningsmatrixindikator; en tilbagemeldingstilstand af en kanalkvalitetsindikator, der er konfigureret til én af: en bredbåndskanalkvalitetsindikator, en partielbåndskanalkvalitetsindikator og en enkeltkanalskvalitetsindikator;

5 transmission af den første kontrolinformation ved hjælp af en terminal ved at bruge et fysisk uplink-styrekanalformat 3 eller et fysisk uplink-styrekanalformat 4; og

10 hvor terminalen er konfigureret til at gøre det muligt for terminalen at transmittere kanaltilstandsinformationen og den første kontrolinformation samtidigt på den fysiske kanal.

15 **3. Fremgangsmåde ifølge krav 1, hvor som svar på at opfylde mindst én af betingelserne udføres den fælles kodningstransmission på den første kontrolinformation og den første del af informationen af CSI'en på den fysiske kanal, og den separate kodetransmission udføres på den anden del af information af CSI'en på den fysiske kanal, hvor betingelserne omfatter:**

20 tilbagemeldingstilstanden, der er angivet med prækodningsmatrixen, som er konfigureret til mindst én af: en underbåndsprækodningsmatrixindikator eller flere prækodningsmatrixindikatorer;

tilbagemeldingstilstanden af kanalkvalitetsindikatoren er konfigureret til mindst én af: en underbåndskanalkvalitetsindikator eller flere kanalkvalitetsindikatorer;

25 transmission af den første kontrolinformation ved hjælp af en terminal ved at bruge et fysisk uplink-styrekanalformat 3 eller et fysisk uplink-styrekanalformat 4; og

hvor terminalen er konfigureret til at gøre det muligt for terminalen at transmittere kanaltilstandsinformationen og den første kontrolinformation samtidig på den fysiske kanal.

30

4. Fremgangsmåde ifølge krav 1, hvor

den første del af informationen af CSI'en omfatter mindst én af: en rangindikator, en kanalkvalitetsindikator svarende til et første transmissionskodeord, et antal amplitudekoefficienter, der ikke er nul, en referencesignalressourceindikator, en lag-1-referencesignal-modtageeffekt eller lagindikationsinformation; og

den anden del af informationen omfatter mindst én af: en prækodningsmatrixindikator og en kanalkvalitetsindikator svarende til et andet transmissionskodeord.

5. Fremgangsmåde ifølge krav 1, hvor kanaltilstandsinformationen omfatter mindst én af: prækodningsmatrixindikatoren, kanalkvalitetsindikatoren, rangindikatoren, referencesignalressourceindikationsinformation, lag-1-referencesignal-modtageeffekten eller lagindikationsinformationen.**6. Fremgangsmåde ifølge krav 1, hvor transmissionstilstanden opfylder mindst én af følgende betingelser:**

en kodehastighed for transmission af datainformationen overstiger ikke den øvre datakodehastighedsgrænse, der er konfigureret af basisstationen; et overhead for transmission af den anden kontrolinformation eller delvise kontrolinformation af den anden kontrolinformation overstiger ikke en øvre kontrolinformationsoverheadgrænse, som er konfigureret af basisstationen;

tilpasning af kodehastigheden for transmission af en del af eller hele kontrolinformationen af den anden kontrolinformation med allokerede kanalressourcer; eller

tilpasning af kodehastigheden for transmission af datainformationen med de allokerede kanalressourcer.

7. Fremgangsmåden ifølge krav 6,

hvor den øvre datakodehastighedsgrænse omfatter mindst én af: en øvre datakodehastighedsgrænse svarende til hver transmission af datainformationen; eller en øvre datakodehastighedsgrænse svarende til hver redundansversionsværdi af datainformationen; eller

5 hvor den øvre kontrolinformationsoverheadgrænse omfatter mindst én af: en øvre kontrolinformationsoverheadgrænse svarende til hver transmission af datainformationen; eller en øvre kontrolinformationsoverheadgrænse svarende til hver redundansversionsværdi af datainformationen.

10 **8. Fremgangsmåde ifølge krav 1**, hvor bestemmelsen af transmissionstilstanden til transmission af den anden kontrolinformation og datainformationen omfatter: bestemmelse af transmissionstilstanden ifølge mindst én af: konfigurationssignalering af basisstationen eller en foruddefineret regel mellem en terminal og basisstationen.

15 **9. Fremgangsmåde**, der omfatter:
modtagelse af (S302) kanaltilstandsinformation, CSI, af første kontrolinformation, datainformation transmitteret på en multiplekseringsmåde af en flerhed af multiplekseringsmåder på en fysisk kanal i overensstemmelse med en transmissionstilstand, der er bestemt til at opfylde en øvre kodehastighedsgrænse, der er konfigureret af en basisstation, hvor flerheden af multiplekseringsmåder omfatter:
20 (a) en første måde, herunder udførelse af en fælles kodningstransmission på den første kontrolinformation og al information af CSI'en på den fysiske kanal, som svar på den CSI, der transmitteres på den fysiske kanal, herunder mindst én af bredbårds-CSI eller partielbårds-CSI; og
25 (b) en anden måde, herunder (i) udførelse af den fælles kodningstransmission på den første kontrolinformation og første del af information af CSI'en på den fysiske kanal og (ii) udførelse af en separat kodningstransmission på anden del af information af kanaltilstandsinformationen CSI på den fysiske kanal, som

svar på den CSI, der transmitteres på den fysiske kanal, herunder underbånds-CSI,

hvor den første kontrolinformation omfatter mindst én af: hybrid automatisk gentransmissionsanmodningsbekræftelse, HARQ-ACK, information eller planlægningsanmodning, SR, information.

10. Elektronisk indretning, der omfatter mindst én processor, som er konfigureret til at:

bestemme en transmissionstilstand for at opfylde en øvre kodehastighedsgrænse, der er konfigureret af en basisstation, til transmission af kanaltilstandsinformation, CSI, af første kontrolinformation og datainformation i et tidsvindue på en multiplekseringsmåde af en flerhed af multiplekseringsmåder på en fysisk kanal (S204), hvor flerheden af multiplekseringsmåder omfatter:

(a) en første måde, herunder udførelse af en fælles kodningstransmission på den første kontrolinformation og al information af CSI'en på den fysiske kanal, som svar på den CSI, der transmitteres på den fysiske kanal, herunder mindst én af bredbånds-CSI eller partielbånds-CSI; og

(b) en anden måde, herunder (i) udførelse af den fælles kodningstransmission på den første kontrolinformation og første del af information af CSI'en på den fysiske kanal og (ii) udførelse af en separat kodningstransmission på anden del af information af kanaltilstandsinformationen CSI på den fysiske kanal, som svar på den CSI, der transmitteres på den fysiske kanal, inklusive underbånds-CSI; og

transmittere CSI'en, den første information og datainformationen i tidsvinduet på multiplekseringsmåden på den fysiske måde i overensstemmelse med den bestemte transmissionstilstand,

hvor den første kontrolinformation omfatter mindst én af: hybrid automatisk gentransmissionsanmodningsbekræftelse, HARQ-ACK, information eller planlægningsanmodning, SR, information (S202).

11. Elektronisk indretning, der omfatter mindst én processor, som er konfigureret til at:

modtage kanaltilstandsinformation, CSI, af første kontrolinformation, datainformation transmitteret på en multiplekseringsmåde af en flerhed af multiplekse-

5 ringsmåder på en fysisk kanal i overensstemmelse med en transmissionstilstand, der er bestemt til at opfylde en øvre kodehastighedsgrænse, der er kon-

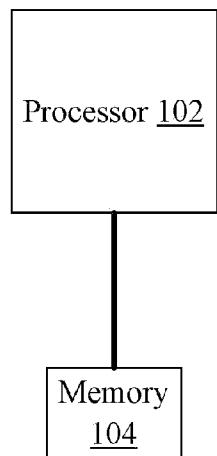
figureret af en basisstation, hvor flerheden af multiplekseringsmåder omfatter: (a) en første måde, herunder udførelse af en fælles kodningstransmission på den første kontrolinformation og al information af CSI'en på den fysiske kanal,

10 som svar på den CSI, der transmitteres på den fysiske kanal, herunder mindst én af bredbånds-CSI eller partielbånds-CSI; og

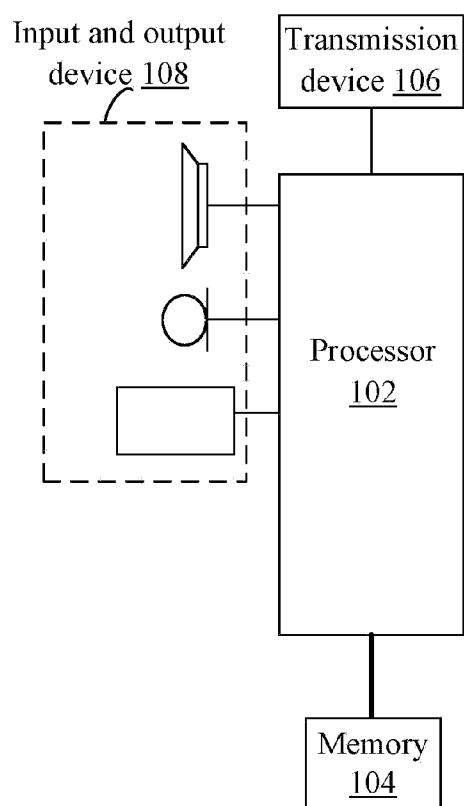
(b) en anden måde, herunder (i) udførelse af den fælles kodningstransmission på den første kontrolinformation og første del af information af CSI'en på den fysiske kanal og (ii) udførelse af en separat kodningstransmission på anden

15 del af information af kanaltilstandsinformationen CSI på den fysiske kanal, som svar på den CSI, der transmitteres på den fysiske kanal, herunder underbånds-CSI,

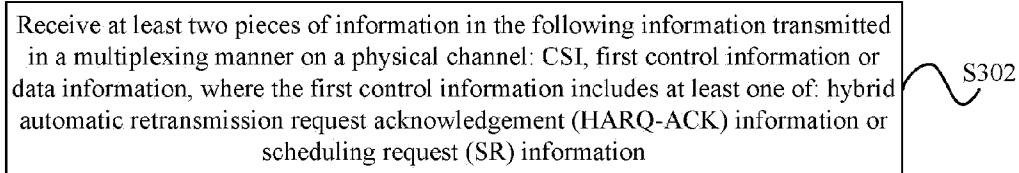
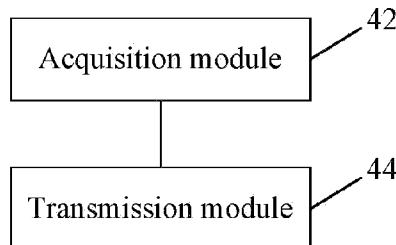
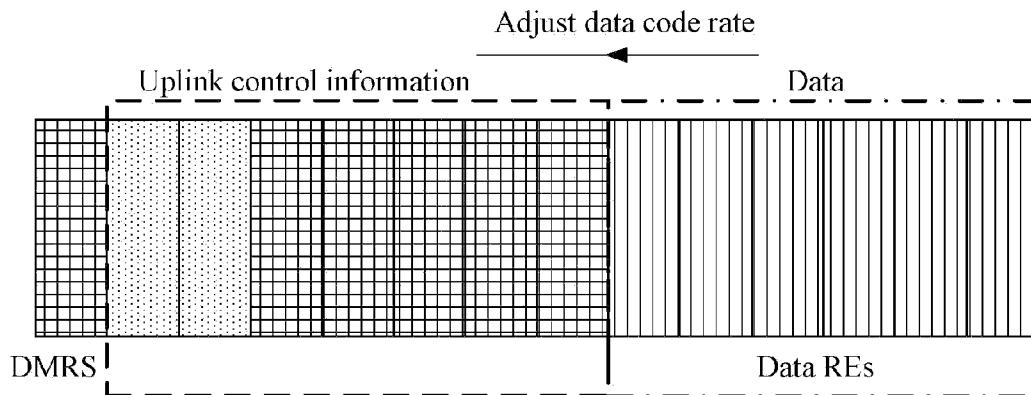
hvor den første kontrolinformation omfatter mindst én af: hybrid automatisk gentransmissionsanmodningsbekræftelse, HARQ-ACK, information eller planlægningsanmodning, SR, information.


12. Computerlæsbart lagermedie omfattende instruktioner, som, når de udføres af en computer, får computeren til at udføre fremgangsmåden ifølge et hvilket som helst af kravene 1 til 8.

25


13. Computerlæsbart lagermedium omfattende instruktioner, som, når de udføres af en computer, får computeren til at udføre fremgangsmåden ifølge krav 9.

DRAWINGS




Drawing

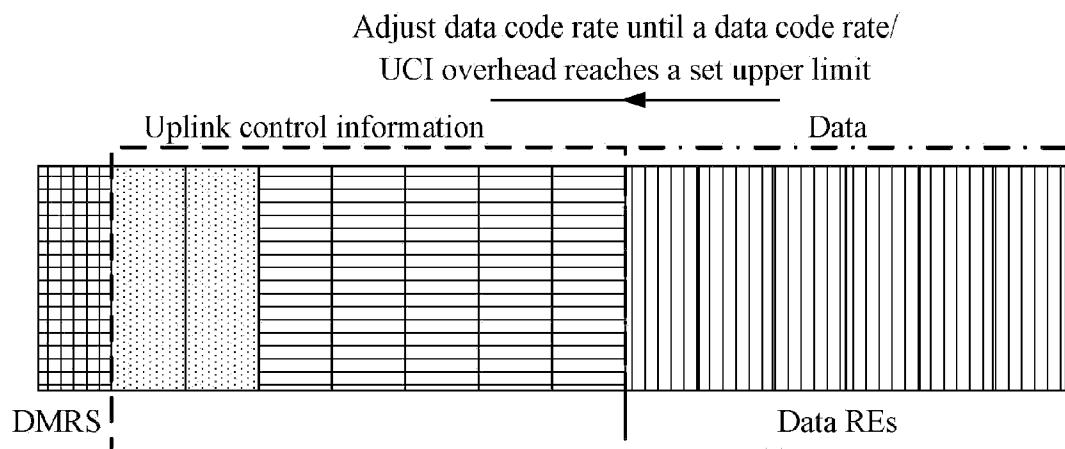
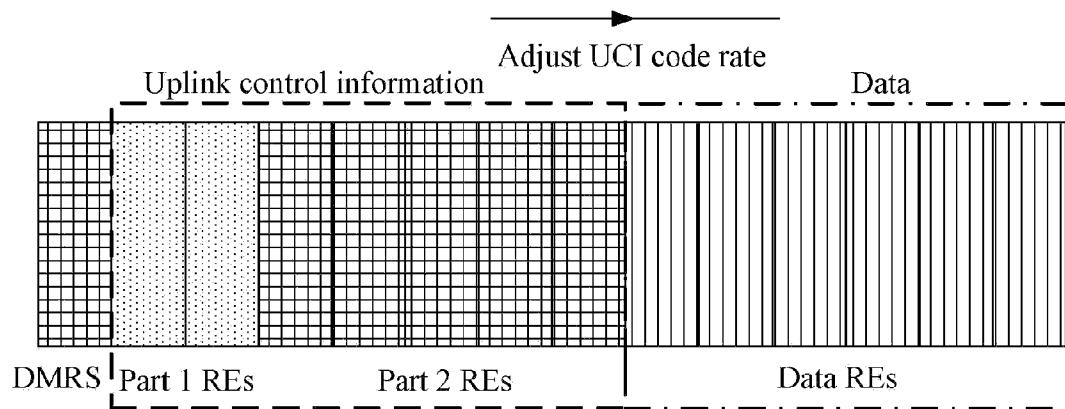



FIG. 1

FIG. 2

FIG. 3**FIG. 4****FIG. 5****FIG. 6**

FIG. 7**FIG. 8**