
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0041926 A1

Kundu et al.

US 2012004 1926A1

(43) Pub. Date: Feb. 16, 2012

(54)

(75)

(73)

(21)

(22)

(63)

TECHNIQUES FOR INCREASING THE
USEFULNESS OF TRANSACTION LOGS

Inventors: Joydip Kundu, Nashua, NH (US);
Qinqin Wang, Nashua, NH (US);
Goutam Kulkarni, Nashua, NH
(US)

Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

Appl. No.: 13/026, 183

Filed: Feb. 11, 2011

Related U.S. Application Data

Continuation of application No. 10/414,591, filed on
Apr. 16, 2003, now Pat. No. 7,890,466.

403(1) 403(2)

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/648; 707/E17.007
(57) ABSTRACT

Techniques for making light-weight checkpoints in logs of
streams of transactions and for extending the logs from the
checkpoints. The state saved in the light weight checkpoint
need only include the state of all transactions that are active at
a prior point in the log and are still active at the checkpoint. A
log is extended from the checkpoint by processing new trans
actions in the transaction stream beginning at the prior point
to produce the extending log. When the checkpoint is
reached, the state saved at the checkpoint is used to continue
to produce the extending log. Techniques are further dis
closed for selecting points in the stream of transactions at
which the checkpoints may be made and for determining the
distance between checkpoints. As disclosed, the log in which
the checkpoints are used is a logical log made from a physical
log produced by a relational database system. The logical log
may be used for replication and for data mining.

403(3)

302(a) 302(b) 302(c) 302(d)

401 405(a) 405(b) 405(c) 405(d)

P1 P1 P2 P3 P 1 P2

INCOMPLETE INCOMPLETE INCOMPLETE INCOMPLETE

401

START END

- it.D t
PCR-1 PCR-2 PCR-1 PCR-2 PCR-1 PCR-2 PCR-1 PCR-2

PCR-1 PCR-2 PCR-1 PCR-2. PCR-1 PCR-2 PCR-1 PCR-2

Patent Application Publication Feb. 16, 2012 Sheet 1 of 10 US 2012/0041926A1

query 107 result 109 logical redo log
operation 111 output logical redo log

input logical redo log 103(a) 103(b)

DBMS interface 105

logical redo log table
117

DBMS tables 115

DBMS 101

transaction 121(a) database storage 113

DML op 120

new value checkpoint 123

119 committed
122

DML 118

Fig. 1 Prior Art

US 2012/0041926 A1 Feb. 16, 2012 Sheet 2 of 10 Patent Application Publication

ZT?JE

US 2012/004 1926 A1 Feb. 16, 2012 Sheet 3 of 10 Patent Application Publication

Jauwfion

?

| 0€ NOS

Patent Application Publication Feb. 16, 2012 Sheet 4 of 10 US 2012/004 1926 A1

403(1) 403(2) 403(3)

302(a) 302(b) 302(c) 302(d)

4O1 405(a) 405(b) 405(c) 405(d)

P 1 P1 P2 P3 P 1 P2

INCOMPLETE INCOMPLETE INCOMPLETE INCOMPLETE
START END

a-?t it.D t
4O1 PCR-1 PCR-2 PCR-1 PCR-2 PCR-1 PCR-2 PCR-1 PCR-2

PCR-1 PCR-2 PCR-1 PCR-2 PCR-1 PCR-2 PCR-1 PCR-2

FG. 4

US 2012/004 1926 A1

?T?JE

Patent Application Publication

US 2012/004 1926 A1 Feb. 16, 2012 Sheet 6 of 10 Patent Application Publication

Patent Application Publication Feb. 16, 2012 Sheet 7 of 10 US 2012/004 1926 A1

705
-1

boolean Force Checkpoint kiv xactX;
u4 Count TroubleMaker krvixGetxt -- 707

builder code ()

if (I gege a start of a chained redo, undo)
- - - 709 Count Trouin eaker krvxg tx;

I gee an END of a chained radio undo)

(
711 --count TroubleMaker_krvx6ctxi

703 < if (O as CountTrouble-laker. KWXSctx & TRUE =e
Forcester.P. KX --- 713

- 15
-- add a TAKE CHECKPoINT transaction chnik in the txt celle
client is supposed to call us back with krvXpc) { } to tell us

about it checkpoint infoAnat QI.

ForceCheckpoint krvxactx = FALSE:

N

? At some periodic interval Esat by the client dynamically), the

-- 717

following

function is called from the buildel

checkpoint if you can

721
719 - if at Count TroubleMaker_krvxactx) -

do checkpoint () i
alge

Foreecheckpoint krvXSctx TRUE -- ?
}

Patent Application Publication Feb. 16, 2012 Sheet 8 of 10 US 2012/004 1926 A1

e STR 805 s

LogMiner session table
804 803 804

wo- PRLTR 809 CPTR 813

Logminer physical Logminer checkpoint table
redo log table 807 811

806 808

LogMiner Data Dictionary
232 V

Physical redo log 209 ()

US 2012/004 1926 A1 Feb. 16, 2012 Sheet 9 of 10 Patent Application Publication

sila joj uoueurojuhojpeds-luap suteluoo

LOEREITETT??NT?NNOSCIIx &TTIIN

| || 6

G06

US 2012/004 1926 A1

uohju?jagaimanns ?ae) proses af

Feb. 16, 2012 Sheet 10 of 10 Patent Application Publication

US 2012/004 1926 A1

TECHNIQUES FOR INCREASING THE
USEFULNESS OF TRANSACTION LOGS

CROSS REFERENCES TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 10/414,591, filed on Apr. 16, 2003, pend
ing, the entire disclosure of which is expressly incorporated
by reference herein.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The invention relates generally to the redo logs used
in database systems to log the transactions performed by the
database system and more specifically to increasing the use
fulness of redo logs for purposes such as data mining and
replication of transactions.
0004 2. Description of Related Art: FIG. 1
0005 Nowadays, businesses, governments, and large
organizations generally are completely dependent on their
database systems. If the database system fails, the organiza
tion cannot operate. Because organizations depend so com
pletely on their database systems, the database systems must
be reliable. One way in which reliability is achieved in data
base systems is careful design to reduce hardware and soft
ware failures; another is redundancy of hardware and data so
that hardware and software failures do not result in loss of
data or of service; still another is recoverability, so that when
a failure does occur, the database system can be restarted
without loss of data. A technique that is commonly used to
achieve recoverability is logging; whenever the database sys
temperforms a transaction, it logs the results of the operations
making up the transaction in a file. The result of the logging
operation is a transaction log that records operations belong
ing to a stream of transactions performed by the database
system. When a failure occurs, the transactions in the stream
that were performed up to the point of the failure can be
recovered by redoing the operations specified in the log file.
For this reason, such transaction logs are often termed redo
logs.
0006 To limit the amount of redo log that must be read to
redo changes, redo logs contain checkpoints. A checkpoint
represents a point in the transaction stream and provides
access to data that permits a redo log to be made beginning at
the checkpoint which extends the redo log containing the
checkpoint. From the checkpoint on, the contents of the
extending redo log are exactly equivalent to what the contents
of the original redo log would have been following the check
point. Thus, to restore a database system from the redo log
after a failure, one need not begin the restoration at the begin
ning of the redo log, but may instead begin at the first check
point preceding the failure and make an extending redo log by
restoring the checkpoint's data and making the extending
redo log from the checkpoint. A simple way of making a
checkpoint is to save data at the checkpoint which represents
the current state of all transactions that are active (i.e. uncom
mitted) when the checkpoint is made. In database systems
that handle a large number of transactions, making Such a
checkpoint is expensive both as regards the time required to
make the checkpoint and as regards the checkpoint's size.
0007 While redo logs were originally developed to permit
recovery from failures, both the designers of the database
systems and their users soon realized that the information

Feb. 16, 2012

contained in the logs could be put to other uses. There are two
broad categories of Such uses: data mining and replication.
Data mining takes advantage of the fact that a redo log nec
essarily contains a complete record over the period during
which the redo log was made of the operations performed by
the database system on the data stored in the database system.
One use of such information is to tune the database system for
more efficient performance; another is to analyze the kinds of
transactions being made by users of the database system over
a particular period. For example, if the database system keeps
track of the sales of items of merchandise, the redo log could
be examined to see whether a TV promotion of a particular
item of merchandize had any immediate effect on sales of the
item.
0008 Replication is an extension of the original purpose
of the redo log. When a redo log is used for recovery, what is
actually done is that the database system is put into the con
dition it was in at the point at which the redo log begins and
the operations that are recorded in the redo log are replicated
in the database system. In the same manner, the redo log can
be used to propagate changes to other database systems. for
example, if an organization has a main personnel database
system at headquarters and local personnel database systems
at various branches, the redo log from the main database
system can be used to replicate the operations performed at
the main database system in each of the branch database
systems, so that what is in the local database systems contin
ues to correspond to what is in the headquarters personnel
database system.
0009 Originally, the information in the redo logs was
copied from the database system at an extremely low level.
For example, in relational database systems, the data in the
database systems is organized into tables. Each table has a
name by which it is known in the database system. Each table
further has one or more named columns. When the table
contains data, the table has one or more rows, each of which
contains fields corresponding to each of the columns. The
fields contain data values. The database system's tables are in
turn defined in other tables that belong to the database sys
tem's data dictionary. To perform an operation in a database
system, one specifies the operation in terms of table names
and column names. The actual data specified in the tables is,
however, contained in data blocks in the database system, and
whenever a data block was changed in the database system, a
copy of the changed data block was written to the redo log.
0010 Redo logs that record changes at the data block level
are termed herein physical redo logs. A log miner could of
course always begin with a copy of a data block from a
physical redo log and use information from the data dictio
nary to determine what table the changed data block belonged
to and from the kind of change what kind of database opera
tion had been performed, but doing so was time consuming
and mistake prone. As for replication, the fact that the changes
were recorded at the data block level meant that the physical
redo log could be used for replication only in database sys
tems that were substantially identical to the one in which the
redo log had been made.
0011 To make redo logs easier to use for data mining and
replication, database system designers began making redo
logs that not only indicated what change had been made, but
also described the operation in terms of a query language
command and the names of the tables and columns affected
by the operation. Such redo logs indicate not only the physical
change, but also the logical database operation that brought it

US 2012/004 1926 A1

about, and are termed herein logical redo logs. Logical redo
logs are much easier to analyze than physical redo logs, and as
long as a particular database system can perform the logical
operations specified in the logical redo log, the logical redo
log be used to make a replica of a set of changes in the
particular database system. Typically, logical redo logs are
made only of those parts of the physical redo log which the
user needs for a particular purpose and are made from the
physical redo log when required. Like physical redo logs,
logical redo logs may have checkpoints to reduce the amount
of physical redo log that must be read to make a particular
logical redo log.
0012 FIG. 1 shows a database management system
(DBMS) 101 that makes and consumes logical redo logs.
Major components of DBMS 101 are database storage 113,
where data including the information needed to define DBMS
tables 115 and the data values located via the tables are stored,
and DBMS interface 105, which is the interface between
DBMS 101 and programs which use DBMS 101 to store and
retrieve data. The basic operations performed on DBMS sys
tem 101 are queries 107, which specify fields to be read or
written in DBMS tables 115 by table name and column name.
The queries return results 109. In typical relational database
systems, the queries are written using the standard structured
query language (SQL). SQL contains two Sublanguages:
DML, which specifies operations on data in the DBMS tables,
and DDL, which specifies operations on the definitions of the
DBMS tables.

0013 Another kind of operation which is significant for
the current discussion is logical redo log operations 111,
which manipulate logical redo logs. As shown at 103(a) and
(b), a logical redo log may be produced and/or consumed by
DBMS 101. Logical redo logs are produced and consumed by
DBMS 101 as required for data mining or replication opera
tions. When a redo log 103 is used for data mining, a redo log
operation 111 converts the redo log to a redo log table 117.
which can then be queried like any other table 115 in DBMS
101.

0014. A detail of a part of a logical redo log 103 is shown
at the bottom of FIG. 1. The logical redo log is made up of a
sequence of transactions 121. Each transaction 121 is made
up of a series of data items that typically represent the fol
lowing:

0015 the DML for an operation in the transaction;
0016 the changes resulting from the DML:
0017 that the changes specified in the transaction have
been committed, that is, actually made in the database
system.

Thus, a DML operation 120 is represented in the transaction
by the DML language 118 for the operation and the new
values 118 resulting from the operation; when a transaction
121 has been committed, it has a committed data item 122.
Additionally, a logical redo log 103 may contain one or more
checkpoints 123.
0018 While logical redo logs have made the information
contained in physical redo logs much more accessible and
usable, problems still remain in the area of checkpointing.
Among them are:

0019 reducing the amount of state that is saved in the
checkpoint; and

0020 determining points in the transaction stream at
which a checkpoint may be safely made.

Feb. 16, 2012

The problems with checkpointing result in two further prob
lems with logical redo logs:

0021 when mining the logical redo log, the user cannot
extend the range of physical redo log records being
mined during a mining session; and

0022 the user cannot tune checkpoint insertion such
that restoring a system using the logical redo log takes a
relatively constant amount of time.

It is an object of the techniques disclosed hereinto solve these
and other problems of redo logs and of logs of streams of
transactions generally.

SUMMARY OF THE INVENTION

0023. In one aspect, the techniques provide light-weight
checkpoints in logs of streams of transactions. A light-weight
checkpoint is made by selecting a point in the stream at which
a checkpoint is to be made in the log and then saving state in
the checkpoint, the State that is required to be saved being
only the state of all transactions that are active both at the
point and at a prior point in the stream. The light-weight
checkpoint may further contain client-defined state in addi
tion to the state needed for the checkpoint.
0024. The light-weight checkpoint is used to make a log of
a stream of transactions that extends a previously-made log
that contains the checkpoint. The extending log is made
beginning at the prior point in the previously-made log, and
when the checkpoint is reached, using the saved state to which
the checkpoint gives access to continue making the extending
log. Until the checkpoint is reached, the extending log may
contain only the transactions that become active after the
prior point. The distance between the checkpoints in the log
may be determined by a mean amount of time needed to make
the extending log from the previous point to the checkpoint.
0025. In another aspect, the techniques select “safe' loca
tions for checkpoints. A location is safe if it is a point in the
transaction stream at which no operation is unfinished within
a transaction belonging to the stream. If the transaction
stream is a redo log for a database system, a location is further
safe if no transaction which affects the data dictionary is
uncommitted.
0026. In a further aspect, the technique is used to make
checkpoints in a logical log of the stream of transactions. The
logical log is made from a physical log of the stream of
transactions. An extending logical log is made using a check
point by beginning to construct the extending logical log from
the physical log at the prior point. When the checkpoint is
reached, the state saved at the checkpoint is used to continue
making the extending logical log from the physical log. The
extending logical log may be used for replication or it may be
used to extend the range of a data mining operation.
0027. Other objects and advantages will be apparent to
those skilled in the arts to which the invention pertains upon
perusal of the following Detailed Description and drawing,
wherein:

BRIEF DESCRIPTION OF THE DRAWING

0028 FIG. 1 is a schematic diagram of a prior-art DBMS
system that produces and consumes logical redo logs;
0029 FIG. 2 is a schematic diagram of a DBMS system in
which the inventions described herein are implemented;
0030 FIG.3 shows a portion of a physical redo log and the
portion of a logical redo log made from the portion of the
physical redo log.

US 2012/004 1926 A1

0031 FIG. 4 shows how physical redo log is made into
logical redo log;
0032 FIG.5 shows how state is saved at checkpoints in the
logical redo log;
0033 FIG. 6 shows how a safe SCN is located in the
physical redo log;
0034 FIG. 7 shows how a checkpoint SCR is inserted into
the physical redo log in a preferred embodiment;
0035 FIG. 8 is an overview of the tables used to relate
logical redo logs to LogMiner sessions, physical redo logs,
LogMiner data dictionary table 232, and to the state saved in
checkpoints;
0036 FIG. 9 is a detail of a row of LogMiner checkpoint
table 811; and
0037 FIG. 10 shows details of the transaction structure,
the LCR, and the PCR in a preferred embodiment.
0038 Reference numbers in the drawing have three or
more digits: the two right-hand digits are reference numbers
in the drawing indicated by the remaining digits. Thus, an
item with the reference number 203 first appears as item 203
in FIG. 2.

DETAILED DESCRIPTION

0039. The following Detailed Description will begin with
an overview of a DBMS in which the invention is imple
mented and will then describe in detail how the logical redo
log is made from the physical redo log, how light-weight
checkpoints are made and used in the logical redo log, how
locations in the logical redo log for checkpoints are deter
mined, and how checkpoints are used in data mining and
replication and will finally describe a user interface for speci
fying how to determine where checkpoints are to be inserted
into the logical redo log.
Overview of a DBMS in which the Invention is Implemented:
FIGS. 2 and 8 A preferred embodiment of the invention is
implemented in the Oracle.9iTM Release 2 DBMS, manufac
tured by Oracle Corporation, Redwood City, Calif. FIG. 2 is
a schematic of the Oracle 9i system that shows those compo
nents of the system that are relevant to the present discussion.
DBMS 201 has two main components: a computer system
203 which is running the DBMS and a file system 205 that is
accessible to DBMS 201. File system 205 includes DBMS
program files 213 for the programs that create the DBMS
system when they are executed in computer 203 and the data
files 207 that contain the data for DBMS 201. As indicated
above, the data includes not only the data that the user
accesses by means of the DBMS’s tables, but also the data that
defines those tables. To the programs that interact with DBMS
201, DBMS 201 appears as shown within computer system
203: DBMS 201 includes interfaces 221 by means of which
other programs interact with DBMS 201 and database 217.
Data stored in database 217 in data blocks 237 is organized
into tables including user tables 235 and system tables 229.
Included in the latter is data dictionary 231, which is a col
lection of tables that defines the other tables in the DBMS,
including the user tables 235.
004.0 DBMS 201 includes the LogMiner utility for mak
ing a logical redo log from one or more physical redo logs or
portions thereof and making the logical redo log available for
data mining and replication. The physical redo logs 209 are
stored in file system 205; if a user desires, logical redo logs
may also be stored there. File system 205 also includes Log
Miner code 215. Interfaces 221 includes interface 223 for the
physical redo log, interface 225 for queries, and interface 227

Feb. 16, 2012

for the LogMiner utility. Included in system tables 229 are
LogMiner tables 233. Among these tables are LogMiner data
dictionary 232, which is a special dictionary used by the
LogMiner utility to produce logical redo logs 211, and
V LOGMNR CONTENTS view 234, which is a table which
is made from a logical redo log 211. Like any other table in
database 217, table 234 may be read by means of queries 218.
0041. As regards queries 218 and their results 219, DBMS
201 operates in the same fashion as any standard relational
database system. Physical redo log interface 223 produces
physical redo log 209(i) by making a copy of every data block
237 that is changed in database 217 and writing the copy of
the block to a file in physical redo logs 209. The data blocks
237 are written in the order in which the changes are made.
Two important consequences of this fact are the following:

0.042 Copies of data blocks changed by different trans
actions 121 are interleaved in a physical redo log 209;
and

0.043 Copies of data blocks are written to physical redo
log 209 before the transaction that changed them is
committed.

LogMiner interface 227 is the interface for making a logical
redo log 211 (i) from part or all of a physical redo log 209(i)
and operating on the logical redo log 211(i). Interface 227
receives an identification of a portion of a physical redo log
209(i) and produces a logical redo log 211 (i) corresponding
to the portion of physical redo log 209(i). Using the interface,
the user can specify at 214 how long it should take to restart
the system from a logical redo log 211 and for data mining
purposes, the user can specify at 216 what portion of the
physical redo log the user wishes to examine. LogMiner 215
then makes a logical redo log 211 corresponding to that
portion of physical redo log 209 and when the logical redo log
is finished, LogMiner 215 makes table 234 from the logical
redo log 211 in LogMiner tables 233 for the user.
0044 FIG. 8 provides an overview of the system tables in
system 201 that are used to relate a logical redo log to the
session that has made and is using it, to the physical redo log
from which it is made, and to the LogMiner data dictionary
table 232 used to make the physical redo log. Also included in
these tables is LogMiner checkpoint table 811, which con
tains the data that is saved when a checkpoint is made in
logical redo log 211. The information in table 811 will be
described in detail during the discussion of checkpointing.
0045 Beginning with LogMiner session table 803, this
table relates a session to the information needed to make a
logical redo log from a physical redo log. There is a row in
table 803 for each session that is currently active in LogMiner.
The fields in a row are as follows:

session# number,
clientii number,
serverti number,
session name varchar2(30),
db id number,
session attr number,
Start Scil number,
end Scn number,
checkpoint Scn number,

sessioni identifies the LogMiner session. The next set of
fields identify the environment in which the session is run
ning. clienth identifies the client to which the session belongs,
serverif the database server the LogMiner session is running

US 2012/004 1926 A1

on, session name is the name given by the session's user to
the session, and db id is the identifier of the database in which
the transactions contained in the logical redo log were made.
The remaining fields contain information about the current
state of the session. As will be explained in more detail in the
following, locations in physical redo logs are identified by
system change numbers, or SCN's. Start Scn and end Scn are
the SCN's of the physical redo blocks at which the logical
redo log made for the session will begin and end. checkpoint
scn is the SCN of the most recently-made checkpoint in the
logical redo log.
0046 Physical redo log table 807 relates a session to the
physical redo logs 209 and the LogMiner Data Dictionaries
232 used to make the logical redo log for the session. There is
a physical redo log table row (PLTR) 809 for each use of a
physical redo log by a LogMiner session. Different sessions
may simultaneously access the same physical redo log and a
given session may access a physical redo log at different
places.

Physical and Logical Redo Logs in System 201: FIGS. 3 and
10

0047 FIG.3 shows a portion of a physical redo log 209 of
the type used in DBMS 201 and a portion of a logical redo log
made from the physical redo log. Physical redo log 209 in a
preferred embodiment is a sequence of redo log blocks 302.
For the most part, each block 302 contains a copy of a
changed data block in data blocks 237. In addition to the copy
of the changed data block, each block 302 contains a SCN301
and a transaction ID number (TID)303. SCN301 identifies a
change in the database system and associates the block 302
with that change. A number of blocks 302 may thus have the
same SCN. As shown in FIG. 3, the SCN's are monotonically
increasing, and can thus be used to specify locations in a
physical redo log. TID 303 identifies the transaction that
made the change recorded in block 237. When a transaction is
committed, that fact is indicated by a commit block 307 in the
physical redo log. As can be seen from FIG. 3, the blocks 302
are ordered by increasing SCN, but blocks from different
transactions may be interleaved. Thus, in FIG.3, the blocks of
transaction Nare interleaved with those of transactions Mand
O.
0048 LogMiner program 309 produces logical redo log
211 from physical redo log 209 using information from Log
Miner data dictionary 232. In logical redo log 211, the infor
mation for the transactions is not interleaved; instead, the
information for each transaction is grouped, and the order of
the groups in logical redo log 211 corresponds to the order by
SCN of the commit redo log blocks for the transactions in
physical redo log 209. Thus, in log 209 the order of commit
records is M. O. N and in log 211, the complete information
for transaction M comes first, followed by the complete infor
mation for transaction O, and the complete information for
transaction N.
0049. In addition to reordering the information from
physical redo log 209 as just described, LogMiner program
309 adds information obtained from LogMiner data dictio
nary 232 so that the DML operation and the table(s) and
column(s) it is performed on can be read directly from logical
redo log 211. Logical redo log 211 is made up of a sequence
of logical change records (LCRs) 311. Each logical change
record specifies one of at least the following:

0050 a DML operation
0051 a transaction start:
0052 a commit;
0053 checkpointed state for a transaction

Feb. 16, 2012

0054 The sequence of logical change records for a given
transaction includes a transaction start LCR for the transac
tion, one or more LCR's specifying DML operations per
formed in the transaction, and a commit LCR for the trans
action. The set of LCR's for transaction O is shown at 317.
With the DML operations, each LCR points to a list of PCR
records 313 that specify the columns affected by the opera
tion; each PCR record 313 points to the value produced in the
column by the operation. Such a DML LCR is shown at 316.
0055 Details of the LCR and PCR data structures are
shown at 311 and 313 in FIG. 10. Beginning with LCR 311,
Operation field 1015 contains the name of the SQL operation
represented by the LCR. Num pcr field 1017 contains the
number of PCR's 313 in the chain of PCR's pointed to by the
LCR. TXN id field 1019 identifies the transaction that the
LCR belongs to Object number 1021 is the data base sys
tem's internal number for the database object that the opera
tion recorded in the LCR affects; LogMiner 215 can use this
number and Object version number 1023 in LogMiner data
dictionary 232 to find out the object's name and characteris
tics. As will be described in more detail below, an operation
recorded in an LCR may correspond to one or more redo log
blocks 302; Low Scn field 1025 is the SCN of the first redo
log block 302 to which the LCR corresponds; High scn field
1027 is the SCN of the last redo log block 302 to which the
LCR corresponds. property field 1029 contains information
relative to particular kinds of LCR's. PCR ptr field 1031,
finally, is the pointer to the list of PCR's 313 that belong to the
LCR.
0056 Continuing with PCR.313, First column field 1033
contains the lowest column number for which data is con
tained in the PCR record. Data ptr 1035 is a pointerto Val315
for the PCR; Data size 1037 indicates the size of the data in
Va1315.
Making a Logical Redo Log from a Physical Redo Log: FIG.
4
0057 The LogMiner utility produces logical redo log 211
from physical redo log 209 as specified by the user of the
LogMiner. For data mining purposes, the user creates a Log
Miner session and specifies a range of SCN's in one or more
physical redo logs. The LogMiner session then creates logical
redo log 211 from physical redo log 209 and then makes table
234 from the logical redo log.
0058. The part of the LogMiner that produces logical redo
log 211 in a preferred embodiment has three components: a
reader, a preparer, and a builder. The reader reads the physical
redo log 209 and orders the redo log blocks by increasing
SCN. The preparer makes LCR's 311, PCR's 313, and VALs
315 that provide logical descriptions of the operations
described by the redo log blocks. It is the builder's job to
relate LCR's to transactions and also to merge incomplete
LCR's into a single LCR. The LCR's, PCR's, and VALs are
made using the information from the redo log blocks and
information from LogMiner data dictionary 232. The builder
orders the transactions in logical redo log 211 by the SCN of
the commit block 307 in physical redo log 208 for the trans
action. As will be described in more detail later, the builder
also makes checkpoints in logical redo log 211 by inserting
checkpoint LCR's at the proper locations in logical redo log
211.
0059 FIG. 4 shows how the preparer makes LCR's and
PCR's from physical redo log blocks and how the builder
merges the LCR's for a single DML operation into a single
LCR. The first operation is shown at 401. The physical redo
log 209 is made up of chained redo blocks 302; here, four such

US 2012/004 1926 A1

blocks, 302(a . . . d) are shown. A redo block may contain
information about changes in one or more columns 403 of a
table in DBMS 201. Thus, block 302(a) contains change
information for columns c1 and c2. A column's change infor
mation may also extend across several redo blocks 302; thus
the change information from column c2 extends across
blockS 302(a ... c) and the change information from column
c4 extends across blocks 302(c... d).
0060. The preparer first makes a structure 405 for each
redo block 302(i). The structure contains an LCR 311 (i) cor
responding to the redo block. The LCR instructure 305(i) has
a PCR 313 for each column that has change data in the
corresponding redo block 302(i). Thus, at 405(a), there are
PCR's for column P1 and the portion of column P2 that is
contained in block 302(a). Included in each LCR 311 are the
TID 201 and the SCN(s)301 for its corresponding redo block
3O2.

0061. As the builder encounters each structure 405, it adds
it to a list of such structures for the transaction identified by
the structure's TID. In the list, the structures are ordered by
SCN. The builder keeps adding structures 405 to the transac
tion's list until it encounters the LCR corresponding to a redo
block 302 that indicates that the transaction has been com
mitted. It then adds the last LCR corresponding to the “com
mitted redo block. The result of this process is shown at 409.
At the head of the list is a transaction data structure 411. Its
contents may be seen at 411 in FIG. 10. First comes Identifier
field 1003, which contains the TID 303 for the transaction;
then comes a Property field 1005, then a Start time field that
specifies the time at which the transaction begins. Next come
Low scn field 1009 and High scn field 1011, which indicate
the earliest SCN specified in the LCR's that have so far
accumulated for the transaction and the highest SCN speci
fied in those LCR's. Num lorfield 1013 indicates the number
of LCR's that have accumulated in the transaction thus far.

0062. Then come the LCR's 311 for the transaction, begin
ning with a 'start transaction LCR (L1) and ending with a
“commit LCR (L6). In this case, the transaction is a single
DML operation which spans multiple redo blocks, as indi
cated by the set of incomplete LCR's L2 through L5 for the
DML operation. Since all of these LCR's are for a single
DML operation, they can be merged into the single DML
LCRL2, as shown at 413. Once the LCR's have been merged
into L2, the PCR's can be merged to the extent possible. Once
this is done, the list of LCR's 311 for the transaction is placed
in the logical redo log in the order specified by the SCN in the
“commit LCR.

Checkpointing in the Logical Redo Log: FIGS. 5 and 6

0063 As long as the physical redo log is available, a logi
cal redo log can be made from it as described above. The
process of making the logical redo log is, however, time
consuming, and it is consequently worthwhile to include
checkpoints in the logical redo log, so that an extending
logical redo log can be made starting at the checkpoint,
instead of having to be made starting at beginning of the
physical redo log. There are two issues in making checkpoints
in the logical redo log:

0064 minimizing the cost of the checkpoint in terms of
both time to make the checkpoint and the amount of
storage needed for the checkpoint's state; and

Feb. 16, 2012

0065 picking points in the creation of the logical redo
log at which the checkpoint may be made.

0.066 Each of these issues is dealt with in the following.

Light-Weight Checkpointing in the Logical Redo Log: FIG.5
0067. As already noted, the simplest form of checkpoint
ing is to save the current state of every transaction that is
active at the time the checkpoint is made. With logical redo
log 211, that means saving the list of LCR's 311 and their
dependent PCR's 313 and VALs 315 for every transaction that
does not yet have a “commit LCR at the time the checkpoint
is made. In large online transaction systems such as those
used in commercial Web sites, there may be 10,000 transac
tions active at a given moment. Checkpoints are made in a
preferred embodiment of logical redo log 211 by a technique
that is termed in the following lightweight checkpointing.
Lightweight checkpointing takes advantage of the following
facts:

0068 most transactions in an on-line transaction sys
tem are short; and

0069 with short transactions, simply remaking the
LCR's, PCR's, and VALs of logical redo log 211 for the
transaction from physical redo log 209 is less costly than
saving the State for the transaction at a checkpoint in the
logical redo log 209 and using the saved state to remake
the transaction.

0070 FIG. 5 shows how lightweight checkpointing works
at 501. At the top of FIG. 5 is shown a portion of a physical
redolog503. In physical redolog503, redolog blocks 302 are
ordered by SCN 201. The redo log blocks 301 for different
transactions are interleaved as shown in FIG. 3. The portions
ofredolog503 that contain redo blocks for transactions 505(a
. . . h) are shown by brackets. There are three transactions,
505(a), 505(c), and 505(h), that are “long relative to the
others. At the bottom of FIG. 5 is the logical redo log 509
which LogMiner 309 makes from the physical redo blocks
302 of physical redo log 503. There is a logical redo log
transaction 511 (a ... h) corresponding to each of the physical
redo log transactions 505(a ... h), but as also shown in FIG.
3, the LCR's for the transactions are not interleaved and the
transactions are ordered by the SCN of the commit record in
physical redo log 503 for the transaction. Thus, transaction
511(a) follows all of the other transactions in logical redo log
509.
(0071. There are three lightweight checkpoints 507(1... 3)
shown in logical redolog509. As shown by the dotted arrows,
each of these checkpoints 507 corresponds to the SCN301 of
a redo log block 301. How these SCN's are selected will be
explained in more detail later. When a lightweight checkpoint
is made, the state of any transaction 511 that is active both at
the last lightweight checkpoint 507(i) and at the current light
weight checkpoint 507(i) is saved and a checkpoint LCR 513
that points to the saved state for the transaction is inserted into
logical redo log 509. The checkpoint LCR includes the SCN
301 corresponding to the checkpoint and the TID of the
transaction whose state is being saved. The active transac
tions 511 at a given checkpoint 507(i) are of course those for
which no “commit LCR has been made. Whether a given
active transaction was also active at checkpoint 507(i) can be
determined by comparing the SCN for checkpoint 507(i) with
the SCN of the first LCR in the list of LCR's for the given
transaction. If the SCN for checkpoint 507(i) is greater than
the SCN of the first LCR in the given transaction's list of
LCR's, the transaction was also active at checkpoint 507(i).

US 2012/004 1926 A1

Thus, in FIG. 5, there are two transactions that were active at
both lightweight checkpoint 507(1) and checkpoint 507(2),
namely 511(a) and (c), and there is a checkpoint LCR 513 for
each of these transactions at lightweight checkpoint 507(2).
Similarly, there are two transactions that were active at both
lightweight checkpoint 507(2) and checkpoint 507(3),
namely 511(a) and (h), and there is a checkpoint LCR 513 for
each of these transactions at checkpoint 507(3).

Details of Lightweight Checkpoints: FIGS. 9 and 10
0072 There is a checkpoint LCR for every transaction
which is both active at the SCN at which the lightweight
checkpoint is taken and was also active at the SCN at which
the last checkpoint was taken. As will be explained in detail
below, lightweight checkpoints may be only taken at a safe
SCN. Checkpoint LCR's are like other LCR's 311 except in
the following respects:

(0073 operation field 1015 specifies a checkpoint:
0074 there are no object changes or PCR's associated
with the checkpoint LCR; and

(0075 the SCN's specified in the LCR are the SCN of the
safe SCN at which the checkpoint was taken.

0076. The state of the transactions that are both active
when the lightweight checkpoint is taken and were also active
when the previous lightweight checkpoint was taken is stored
in LogMiner checkpoint table 811. There is a checkpoint
table row (CPTR)813 in the table for each checkpoint LCR in
the logical redo logs currently being managed by the Log
Miner.
0.077 FIG. 10 shows the fields of CPTR 813. Sessioni
field 901 contains the number of the session for which the
LogMiner is making the logical redo log which is being
checkpointed. Checkpt scn field 903 contains the SCN at
which the checkpoint was taken. The fields 907,909, and 911
together make up a unique TID 909 for the transaction whose
state is associated with the LCR to which the entry belongs.
That LCR is identified by the values in TID909 and Checkpt
Scn field 903.
0078. When a checkpoint LCR is made in the preferred
embodiment, it may represent state for the checkpoint LCR's
transaction which is specified by the client for whom the
checkpoint is made as well as the state that is saved as
required for the lightweight checkpoint. The value of STATE
field 913 indicates whether it contains such client-specified
state. If it does, the state is stored in the bit large object
(BLOB) which contains the value of CLIENT DATA field
917. What state is saved in field 917 and how it is interpreted
are determined completely by the client. In a preferred
embodiment, LogMiner saves the data specified by the client
in field 917 after it has stored the state required to construct an
extending logical redo log.
0079. One example of the kind of information that may be
stored in field 917 and of how the client may use such infor
mation is the following: A database system may have two
database systems A and B. Buses the logical redo log made by
A to replicate changes in A and A uses the logical redo log
made by B to replicate changes in B. A problem with this
arrangement is that B's replication of A causes changes in B
which are recorded in the logical redo log and Vice-versa.
However, the changes in B caused by the replication of A are
of no interest to A, since those changes are already in A. The
same is true of the changes in A caused by the replication of
B. Client-specified state can be used to solve this problem. In
this case, the client-specified State is a change source field

Feb. 16, 2012

associated with each transaction whose state is being saved at
the checkpoint. The value of the change source field indicates
whether the transaction was originally done in A or B. The
client in A that is making the logical redo log for use in B
knows whether a particular transaction whose state is being
saved at the checkpoint was replicated from B, and when it
was, the change source field for the transaction is set to B
when the state is saved at the checkpoint. Otherwise, it is set
to A The client in B that does the replication from the logical
redo log examines the change source field for each transaction
whose State was saved at the checkpoint and does not replicate
those transactions whose change Source field indicates B.
Replication from B to A works the same way. The state
required to do the lightweight checkpoint is stored in CKPT
DATA field 915. The saved state is the contents of transaction
specifier 411 for the transaction and of the LCR's 311, PCR's
313, and values 315 for the transaction as they exist at the time
the checkpoint is made. The state is stored in the BLOB
associated with field 915.

Making an Extending Logical Redo Log. Using a Light
Weight Checkpoint
0080 When the LogMiner makes an extending logical
redo log 509 using lightweight checkpoints 507, it proceeds
as follows:
I0081 1. It finds the first checkpoint 507(i) preceding the

point at which the extending logical redo log 509 is to
begin. The point at which extension is to begin is specified
by an SCN.

I0082 2. It finds the next preceding checkpoint 507(i).
Beginning at checkpoint 507(i), the LogMiner reads the
physical redo log between checkpoint 507(i) and check
point 507(i) to recreate the LCR's and associated data
structures corresponding to the redo log blocks for trans
actions which become active after checkpoint 507(i).

I0083. 3. On reaching checkpoint 507(i), the LogMiner
restores the state of any transaction 511 whose state is
accessible from the checkpoint LCR's 513 associated with
checkpoint 507(i) and then continues reading the physical
redo log and creating the LCR's and associated data struc
tures until it reaches the point at which the extending logi
cal redo log is to end.

I0084. When this procedure is applied to FIG. 5 and the
creation or recreation of the logical redo log is to begin at an
SCNDSCN301(v), but less than the SCN for the next check
point 507(4), LogMiner reads backward along logical redo
log 509 until it finds the checkpoint LCR's 513 associated
with checkpoint 507(2). LogMiner begins processing the
physical redo log blocks 302 for new transactions following
the SCN specified in the checkpoint LCR's associated with
checkpoint 507(2). The state of transactions 511(a) and (h) is
accessible via checkpoint LCR's associated with checkpoint
507(3), so the state of these transactions is restored at check
point 507(3), and the LogMiner then processes all of the
physical redo log blocks 302 whose SCN's are greater than
SCN 301(v) until it reaches the point at which the extending
logical redo log 509 is to end. As can be seen from the
foregoing, the effect of the above procedure is to order the
logical redo transactions 511 beginning at checkpoint 507(3)
in exactly the same order as if the physical redo log 503 had
been read from its beginning. As is also apparent from the
foregoing, the extending logical redo log 509 can begin at any
point in logical redo log 509 which is preceded by two check
points 507. Points that are not preceded by two checkpoints

US 2012/004 1926 A1

507 are so close to the beginning of logical redo log 509 that
making extending logical redo log 509 from the beginning of
physical redo log 503 is not particularly expensive.
0085. It should be pointed out here that any technique may
be used to indicate a point in physical redo log 503; for
example, a time stamp in the log may be used instead of an
SCN. Further, where the prior point in the physical redo log is
associated with a redo log block 302 and the redo log block
302 marks the beginning of a transaction, how that transaction
is treated in the algorithm is a matter of implementation: the
algorithm may consider the transaction either to be one of
those which is active at the prior point or one of those which
becomes active after the prior point.
I0086. It should also be pointed out here that in the above
extension algorithm, checkpoint 507(i) serves only a single
purpose: to indicate a point in the transaction stream. The
state saved at checkpoint 507(i) is not required for the exten
sion algorithm, and consequently, checkpoint 507(i) can be
replaced by a data structure that merely indicates checkpoint
507(i)'s SCN. An embodiment which might employ this
approach is one where a logical redo log always has a single
checkpoint at the end of the logical redo log. An SCN could be
selected that was at a given distance from the end of the
logical redo log and that SCN could be used to determine
whether a transaction's state had to be saved at the check
point.

Selecting “Safe” SCN's for Lightweight Checkpoints: FIG. 6
0087. One of the complications of checkpointing logical
redo log 211 is that a checkpoint 507 may not simply be
inserted at any point in logical redo log 211. The checkpoint
507 may only be inserted at points in the logical redo log
corresponding to points in the physical redo log where taking
the checkpoint will not interfere with an ongoing operation.
Since points in the physical redo log are marked by SCN's, the
points in physical redo log 209 corresponding to points in
logical redo log 211 at which checkpoints may be inserted are
termed herein safe SCN's. In physical redo log 209, there are
two situations where taking a checkpoint will interfere with
an ongoing operation:

I0088 when the operation affects a field whose value
extends across more than one redo block 302; such fields
will be termed in the following multi-block fields; and

I0089 during a Data Definition Language (DDL) trans
action.

0090 ADDL transaction is one that changes a table defi
nition and thus also changes the LogMiner data dictionary
232. When Such a transaction occurs, the change to the Log
Miner data dictionary must have been made before the physi
cal redo log blocks 302 following the committed DDL trans
action can be properly interpreted in making logical redo log
211; consequently, a checkpoint 507 may correspond to a
physical redo log SCN which is less than that at which the
DDL transaction begins or is greater than the SCN at which
the DDL operation is committed, but may not correspond to
an SCN within that range.
0091 FIG. 6 shows an example of safe SCN's and how
they may be determined Shown in FIG. 6 is a sequence of
physical redo log blocks 302 whose SCN's range from 1004
through 1011. The physical redo log blocks 302 belong to
three transactions: TX 5, 6, and 7. Transactions 6 and 7
include operations which affect multi-block fields. Thus,
transaction 6 has an operation on the field corresponding to
column 2 of its row. That field extends across the blocks 302

Feb. 16, 2012

with SCN's 1005, 1007, and 1009, and is thus a multi-block
field. Operations involving multi-block fields are termed
herein multi-block field operations, or MBFOs. The SCN for
a physical redo log block 302 that is involved in a multi-block
field operation is not a safe SCN. In FIG. 6, the blocks
involved in a MBFO in transaction 6 are shown by square
bracket 603(a); those involved in a MBFO in transaction 7 are
shown by square bracket 603(b). Brackets 603(a) and (b)
together span blocks 302 with SCN's ranging from 1005
through 1010, and hence the only safe SCN's 607 in FIG. 6
are 1004 and 1011. One way of detecting unsafe SCN's is to
use an unsafe SCN counter which is incremented whenever
an MBFO operation or a DDL transaction begins in physical
redo log 302 and decremented wheneveran MBFO operation
or a DDL transaction ends. If the unsafe SCN counter has a
value greater than 0 when a physical redo log block 302 is
being processed to produce logical redo log 211, the physical
redo log block 302 is unsafe and its SCN is not a safe SCN.
The values of the unsafe redo log counter are shown at 605 in
FIG. 6, where it can be seen that they are 0 only for the blocks
302 with SCN's 1004 and 1011, and these are the safe SCN's
607(a) and (b).

Determining how Often to Take a Checkpoint

0092. In general, determining how often to take a check
point in logical redo log 211 is a matter of balancing the cost
in processing time and memory of taking the checkpoint
against the cost of rereading redo log blocks 302. More spe
cifically, the longer the interval between checkpoints, the
fewer transactions there will be that are active both at a
checkpoint 507(i) and its preceding checkpoint 507(i), but the
more redo log blocks 302 will have to be read.
0093. The analysis that needs to be performed in an opti
mal embodiment to determine whether a checkpoint should
be taken is the following:
0094) 1. Assume that LogMiner processes physical redo
logs 209 at P MByte/sec, and can write (or read) check
points at a rate of CMByte/sec.

(0095 2. Say at any given point in time we have “S” Mbyte
of unconsumed data that requires processing of "L' redo
logs 209 to gather. Thus it is beneficial to take a checkpoint
if 2S/C3LFP

Since “S” (and as a result L) can change with time, whether or
not to take a checkpoint is a difficult question to answer.
Moreover computing Stakes CPU cycles (L can be computed
simultaneously with S), so the question becomes how often
shouldS becomputed. Thus S=f(point in time we compute S).
The same is true for L. Thus finding Sand L in an optimal way
is not feasible in polynomial time. LogMiner takes the fol
lowing approach in approximating the optimal Solution. The
user is asked to provide a MTTR in seconds (say Y seconds).
This means that if the rate of processing redo records is P
Mbyte/Sec, then LogMiner can take checkpoints after pro
cessing PxY Mbytes of redo record and still satisfy the user's
request. In the LogMiner code, the reader process injects a
RECOVERY CHECKPOINT LCR in the stream after it has
processed PXY/2 Mbytes of redo. The factor of 2 is added to
cover for the cases when a checkpoint can not be taken
because of ongoing DDL or MBFO operations. This
approach keeps the computation costs to a minimum, and
guarantees that in a well-behaved redo stream at least one
checkpoint will be taken every PXY Mbytes of redo records

US 2012/004 1926 A1

processed. Determining how often a checkpoint is to be taken
in logical redo log 211 can be done in two different contexts:
data mining and replication.

Determining how Often a Checkpoint is to be Taken in Data
Mining

0096. A data miner begins a data mining session by speci
fying the physical redo logs 209 that he or she wishes to mine
and a range of SCN's within the physical redo logs. Light
weight checkpoints 507 in the logical redo logs 211 corre
sponding to the portions of the physical redo logs being mined
make it possible for the data miner to examine a range of
SCN's that extends beyond the range of SCN's originally
specified without having to construct the extending logical
redo log for the extended range from the beginning of the
physical redo log. The LogMiner creates the extending logi
cal redo log 211 by finding the two checkpoints 507(i) and (i)
closest to the end of the existing range and then proceeding
from checkpoint 507(i) as described above to construct the
extending logical redo log 211. For example, the data miner
can first mine the logical redo log in the SCN range (100-10,
000) and then mine the logical redo log in SCN range (10.
000-20,000) without having to recreate the logical redo log
from SCN100 through SCN10,000. The same technique can
be used to make a logical redo log which extends a logical
redo log that the user has saved.

Determining how Often a Checkpoint is to be Taken in Rep
lication

0097 Frequency of checkpoints is interesting in the rep
lication context when logical redo log 211 is being used to
restore an instance of a database system after a failure. In Such
a case, the manager of the database system locates the check
point 507(f) immediately preceding the location of the failure
in logical redo log 509 and the checkpoint 507(i) preceding
that checkpoint and begins making an extending logical redo
log 509 as described above from physical redolog503 begin
ning at checkpoint 513(i) using the state saved at checkpoint
507(i). When the extending logical redo log 509 is complete,
database system 201 is restarted, the transactions recorded in
extending logical redo log 509 are redone from checkpoint
513(i) on to restore the database, and the system continues on
from there. The time required to restore the database system
will of course depend on the time required to make extending
logical redo log 509, and that in turn will depend on the
intervals between checkpoints 507 in logical redo log 509.
0098. If there is a requirement that there be a predictable
time between failure of a database system and its restoration,
the intervals at which the checkpoints are taken may be cal
culated to provide restoration within the predictable time.
One way of doing this is to receive a mean time to recovery
(MTTR) value from the user and have the LogMiner use
information it has about the time it takes to make a logical
redo log from a physical redo log and the MTTR value to
compute an interval between checkpoints that should produce
the desired MTTR. The user can specify the MTTR value
using a simple graphical user interface.

Finding a Safe SCN: FIG. 7
0099. Of course, the SCN at which the LogMiner deter
mines that a checkpoint should be taken may not be a safe
SCN. FIG. 7 shows pseudocode for ensuring that the check
point is taken at the first safe SCN following the SCN at which

Feb. 16, 2012

it was determined that the checkpoint should be taken. Shown
in FIG. 7 is a portion 701 of the code for the builder. At 703 is
the portion of the builder's main routine, builder code, that is
of interest; at 719 is the function checkpoint if you can,
which builder code 703 calls whenever LogMiner 309 deter
mines that a checkpoint should occur. The behavior of the part
of builder code shown here is determined by two variables:
ForceCheckPoint krvXSctX 705, which is a flag that indicates
whether a checkpoint should be taken at the next safe SCN,
and CountTroubleMaker krvSctX 707, a counter which indi
cates that the current SCN is a safe SCN when the counter's
value is 0. Variable 707 implements the unsafe SCN counter
of FIG. 6.
0100 When the reader portion of LogMiner determines
that a checkpoint should occur, for example because it has
read the number of redo log blocks that correspond to the
MTTR specified by a user, it places a RECOVERY CHECK
POINT LCR in the queue of redo log blocks 302 which it is
making for the preparer. When builder code 703 reaches the
RECOVERY CHECKPOINT LCR, it calls checkpoint if
you can 719. That function determines at 721 whether
counter 707 has the value 0; if it does, the function calls a
function do checkpoint which saves the state required for the
light-weight checkpoint and places TAKE CHECKPOINT
NOW checkpoints LCR 513 specifying the saved state into
logical redo log 509. If counter 707 has any other value, flag
705 is set to TRUE, as seen at 723. In builder code 703,
whenever the start of a multi-block row operation or a DDL
transaction is seen, counter 707 is incremented (709); when
ever the end of Such an operation or transaction is seen,
counter 707 is decremented (711). At 713, if a checkpoint is
pending (indicated by the value of flag 705) and the counter
707 has the value 0, the checkpoint is made as described
above (715) and flag 705 is set to FALSE (717). Thus, if the
reader places a RECOVERY CHECKPOINT LCR in redo
block sequence 302 at SCN1008 in FIG. 6, when the builder
processes the RECOVERY CHECKPOINT LCR, it calls
checkpoint if you can 719, which, because counter 707 has
the value 2, will not insert a TAKE CHECKPOINT NOW
LCR 513 into logical redo log 211, but will instead set flag
705 to TRUE. It will remain TRUE until counter 707 reaches
the value 0, which will happen at safe SCN 607(b), and at that
time, the checkpoint will be taken and the TAKE CHECK
POINT NOW LCR inserted into logical redo code 211.

CONCLUSION

0101 The foregoing Detailed Description has disclosed to
those skilled in the relevant technologies how to make and use
checkpoints according to the invention and has further dis
closed the best mode presently known to the inventors of
making and using the checkpoints. The inventors use their
checkpoints in conjunction with the redo logs produced by a
relational database system, and their implementations of their
inventions are necessarily determined in general by the char
acteristics of the relational database system in which they are
implemented and in particular by the systems for physical and
logical redo logging in the database system. It will, however,
be immediately apparent to those skilled in the relevant tech
nologies that the invention is in no way restricted to the
relational database system in which it is implemented or even
to database systems generally, but can be employed in any
system which logs a stream of transactions.
0102. In any system in which the inventions are imple
mented, the particular manner in which the invention is

US 2012/004 1926 A1

implemented will depend on the manner in which the stream
of transactions is represented and the purposes to be achieved
by the logging and the checkpointing, as well as on the imple
mentation tools available to the implementers and on the
underlying systems in which the checkpoints will be made
and used. For all of the foregoing reasons, the Detailed
Description is to be regarded as being in all respects exem
plary and not restrictive, and the breadth of the invention
disclosed herein is to be determined not from the Detailed
Description, but rather from the claims as interpreted with the
full breadth permitted by the patent laws.
What is claimed is:
1. A computer-implemented method for implementing a

transaction log, comprising:
storing transaction information in the transaction log,

wherein the transaction information includes informa
tion for both a longer running transaction and a shorter
running transaction; and

generating a first set of information corresponding to the
longer running transaction and a second set of informa
tion corresponding to the shorter running transaction,
wherein a level of state information is different between
the first set of information and the second set of infor
mation, and wherein the level of state information is
relatively greater for the first set of information corre
sponding to the longer running transaction than the sec
ond set of information corresponding to the shorter run
ning transactions.

2. The method of claim 1, wherein the transaction log
comprises both physical and logical logs.

3. The method of claim 2, wherein the physical log com
prises a sequence of redo log blocks and the logical log
comprises grouped transaction information and state infor
mation.

4. The method of claim 2, wherein the longer running
transaction is represented in both the logical log and the
physical log, and the shorter running transaction is repre
sented in only the physical log.

5. The method of claim 1, wherein the second set of infor
mation comprises no state information Such that there is no
entry in the logical log for state information for the shorter
running transaction.

6. The method of claim 1, further comprising:
using the first set of information for longer running trans

actions; and
using the second set of information for shorter running

transactions.
7. The method of claim 1, wherein the transaction log is

produce by a relational database system.
8. A computer program product comprising a non-transi

tory computer-readable medium having executable code
which, when executed by a processor, performs a process for
implementing a transaction log, the process comprising:

storing transaction information in the transaction log,
wherein the transaction information includes informa
tion for both a longer running transaction and a shorter
running transaction;

generating a first set of information corresponding to the
longer running transaction and a second set of informa
tion corresponding to the shorter running transaction,
wherein a level of state information is different between
the first set of information and the second set of infor
mation, and wherein the level of state information is
relatively greater for the first set of information corre

Feb. 16, 2012

sponding to the longer running transaction than the sec
ond set of information corresponding to the shorter run
ning transactions.

9. The computer program product of claim 8, wherein the
transaction log comprises both physical and logical logs.

10. The computer program product of claim 9, wherein the
physical log comprises a sequence of redo log blocks and the
logical log comprises grouped transaction information and
state information.

11. The computer program product of claim 9, wherein the
longer running transaction is represented in both the logical
log, and the physical log and the shorter running transaction is
represented in only the physical log.

12. The computer program product of claim 8, wherein the
second set of information comprises no state information
Such that there is no entry in the logical log for state informa
tion for the shorter running transaction.

13. The computer program product of claim 8, further
comprising:

using the first set of information for longer running trans
actions; and

using the second set of information for shorter running
transactions.

14. The computer program product of claim 8, wherein the
transaction log is produce by a relational database system.

15. An apparatus for implementing a transaction log, com
prising:

the transaction log for storing transaction information,
wherein the transaction information includes informa
tion for both a longer running transaction and a shorter
running transaction; and

a processor programmed for:
generating a first set of information corresponding to the

longer running transaction and a second set of informa
tion corresponding to the shorter running transaction,
wherein a level of state information is different between
the first set of information and the second set of infor
mation, and wherein the level of state information is
relatively greater for the first set of information corre
sponding to the longer running transaction than the sec
ond set of information corresponding to the shorter run
ning transactions.

16. The apparatus of claim 15, wherein the transaction log
comprises both physical and logical logs.

17. The apparatus of claim 16, wherein the physical log
comprises a sequence of redo log blocks and the logical log
comprises grouped transaction information and state infor
mation.

18. The apparatus of claim 16, wherein the longer running
transaction is represented in both the logical log and the
physical log, and the shorter running transaction is repre
sented in only the physical log.

19. The apparatus of claim 15, wherein the second set of
information comprises no state information Such that there is
no entry in the logical log for state information for the shorter
running transaction.

20. The apparatus of claim 15, wherein the processor is
further programmed for:

using the first set of information for longer running trans
actions; and

using the second set of information for shorter running
transactions.

