The invention relates to cream can lifters and has for its object to provide a device of this character particularly adapted for lifting cream cans, for instance ice cream cans from cabinets wherein the can compartment is relatively narrow in relation to the can and constructed in a manner whereby the gripping arms will easily pass between the opposite sides of the can and the cabinet walls and provided with means cooperating with the gripping arms, whereby said arms will positively hold the can during the removal of the can from the cabinet compartment or when the can is in a position other than a vertical one.

A further object is to provide a cream can lifter comprising pivoted arms carried by a handle member and adapted to engage opposite sides of the can and to provide lugs carried by the lower ends of the arms and cooperating with the bead of the can whereby when the pivoted arms are forced together for gripping the can, inwardly extending lugs carried by the arms will be forced downwardly into close binding engagement with the upper end of the can thereby insuring a positive gripping and holding of the can. Also to make the inwardly extending lugs relatively wide for preventing side pivotal movement of the can in relation to the holder when the can is out of a vertical position during a handling operation.

A further object is to form the gripping arms from channeled members, the upper ends of which are pivotally connected to an inverted channeled handle member, links connected to the arms and extending inwardly and to the adjacent ends of which links a hand grip is pivotally connected which is adapted to be gripped by the operator in connection with the handle member for forcing the lower ends of the arms together and into gripping engagement with the can.

A further object is to curve the arms upwardly and inwardly, thereby allowing the operator to easily see the gripping of the can, thereby insuring a positive gripping action.

A further object is to provide a can lifter comprising a horizontally disposed handle member having downwardly extending arms pivot to its outer end, said arms being provided with can gripping elements adapted to engage under the bead of a can and over the upper end of the can and a hand grip having link connections with the arms, and which hand grip when forced upwardly during a can lifting operation forces the lower ends of the arms into close binding engagement with opposite sides of a can.

With the above and other objects in view the invention resides in the combination and arrangement of parts as hereinafter set forth, shown in the drawing, described and claimed, it being understood that changes in the precise embodiment of the invention may be made within the scope of what is claimed without departing from the spirit of the invention.

In the drawing:—
Figure 1 is a side elevation of the can lifter showing the same disposed in a compartment of a cabinet and in position to grip a can.
Figure 2 is a vertical transverse sectional view through the lifter.
Figure 3 is a horizontal sectional view through the lifter taken on line 3—3 of Figure 1.
Referencing to the drawing, the numeral 1 designates a conventional form of cream can cabinet, for instance an ice cream cabinet, or a cabinet used in a lunch room for the reception of milk cans, and 2 a compartment therein. The compartment wall 3 usually has a relatively small clearance in relation to the cream can 4, therefore it will be seen that any lifting tool for gripping and holding the can 4 would necessarily have to have its arms relatively narrow so they can be easily inserted between the wall 3 and the bead 5 of the can.

The lifter comprises a horizontally disposed handle member 6 preferably formed from channeled material having its ends 7 flattened and which ends 7 are pivotally mounted at 8 between the flanges 9 of the gripping arms 10. Gripping arms 10 extend downwardly and incline outwardly and terminate in relatively flat portions 11, which may be easily passed between the periphery of the can 4 and the wall 3 of the cabinet, and by inclining downwardly and outwardly it will be seen that the operator may easily observe the positions of the arms 11 during a can gripping operation. The lower ends of the portions 11 of the arms are provided with inwardly extending
flanges 12, which flanges, when forced inwardly, engage the under side of the bead 5, and incident to the camming action thereof force the lifter as a whole downwardly slightly for forcing the inwardly extending flanges 13 carried by the arms 10 downwardly into close binding engagement with the upper end of the can 4, for instance into engagement with the cover 14, thereby insuring a positive gripping of the can and also insuring the holding of the can 4 in relative relation to the lifter during the handling operation, for instance if the can and lifter are moved to a position other than vertical, a pivotal action of the lifter on the can will be prevented. To further insure a positive gripping and holding and prevention of pivotal action, the flanges 13 are relatively wide as clearly shown in Figure 2. Pivotally connected to the arms 10 at 15 and between the flanges 9 are inwardly extending links 16, which links have their inner adjacent ends pivotally connected at 17 to a channeled gripping member 18. When it is desired to force the arms 10 into gripping engagement with the opposite sides of the can, the operator grasps the handle member 6 and the hand grip 18 with one or both hands and forces the grip 18 upwardly, which action will impart pulls on the links 16 which will in turn pull inwardly the arms 10 on their pivotal points 8, thereby forcing the lugs 12 into engagement with the bead 5 and the flanges 13 into close binding engagement with the upper end of the can. As the space between the can 4 and the wall 3 is relatively narrow, it is obvious that a means for positioning the flattened portions 11 accurately and quickly before inserting the device in the chamber 2 is desirable, and to accomplish this result the inner ends of the links 16 are provided with stop lugs 19 which engage within the gripping member 18 when the links 16 and gripping member are in horizontal positions and which limiting action will position the lower ends of the arms 10 where they will accurately pass between the periphery of the cam 4 and the wall 3 of the cabinet.

From the above it will be seen that a cream can lifter is provided, which lifter is simple in construction, positive in its operation and constructed in a manner whereby it will positively grip and hold the can, and that pivotal action of the can and lifting device in relation to each other is positively prevented during a handling operation, particularly when the can is in a position other than a vertical one.

The invention having been set forth what is claimed as new and useful is:

1. A can lifter comprising a horizontally disposed handle member, arms pivoted to the ends of said handle member, spaced can engaging elements carried by said arms, links pivotally connected to the arms spaced from their ends and extending towards each other and a horizontally disposed gripping member pivotally connected to the adjacent ends of the links.

2. A can lifter comprising a handle member, arms pivotally connected to the handle member, a handle gripping member adjacent the handle member, link connections between the handle gripping member and the arms, a flange carried by said arms and adapted to engage under a bead and flanges carried by said arms and adapted to engage the upper end of a can and forming means whereby pivotal movement of the can in the holder is prevented.

3. A can lifter comprising a handle member, arms pivotally connected to the handle member, flanges carried by said arms and adapted to engage under a can bead, flanges carried by the inner sides of said arms and adapted to engage the upper end of a can, a hand grip beneath the handle member and link connections between the hand grip and the arms.

In testimony whereof I hereunto affix my signature.

OSCAR CARLSON.