

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
26 May 2005 (26.05.2005)

PCT

(10) International Publication Number
WO 2005/047727 A1

(51) International Patent Classification⁷: **F16F 7/12**, F15B 15/19, 15/16, B60N 2/427, B60R 21/34

80130 (US). **MACARI, John** [GB/GB]; 63, Elms Drive, Lancing, West Sussex, Sussex BN15 9LR (GB). **PARKS, Brent** [US/US]; 6043 South Lima Street, Englewood, CO 80111 (US).

(21) International Application Number:
PCT/US2004/036202

(74) Agent: **METCALF, Craig**; Madson & Metcalf, Suite 900, 15 West South Temple, Salt Lake City, UT 84101 (US).

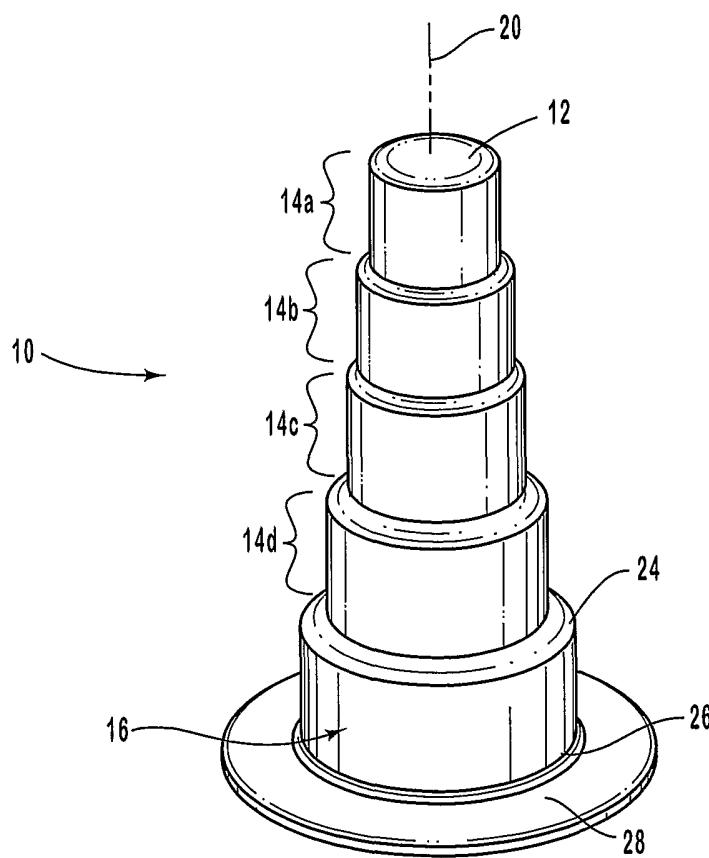
(22) International Filing Date:
1 November 2004 (01.11.2004)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
10/701,734 5 November 2003 (05.11.2003) US


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): **AUTOLIV ASP, INC.** [US/US]; 3350 Airport Road, Ogden, UT 84405 (US).

[Continued on next page]

(72) Inventors; and
(75) Inventors/Applicants (for US only): **SCOTT, John** [US/US]; 9865 Keenan Street, Highlands Ranch, CO

(54) Title: MOTION DAMPER

(57) Abstract: The motion damper includes a damper wall (16), damper stages (14), and a damper head (12). The damper wall and damper stages are successively smaller in a size and have a nested relationship. The damper wall and damper stages are each flexibly attached to an adjacent damper stage or the damper wall such that the damper stages may deploy in a telescopic fashion away from the damper wall. The damper head is attached to a smallest damper stage. As a result, the damper stages change in position relative to the damper wall and relative to each other to absorb the kinetic energy of objects attached to the damper head and damper wall.

WO 2005/047727 A1

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

— *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

Published:

— *with international search report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

MOTION DAMPER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a motion damper. More specifically, the 5 invention relates to a motion damper used in connection with vehicle safety systems.

2. Description of Related Art

Conventional dampers are used to limit the transfer of kinetic energy between two connected objects. In today's world, dampers are used in a wide variety of applications. For example, shock absorbers in vehicular suspension systems use a 10 common type of damper. These suspension systems use a spring, such as a steel coil, to allow each wheel to move up when the wheel encounters a bump, and to rapidly move back down after the wheel passes the bump. However, if only the spring were used in the suspension system, the vehicle would bounce up and down several times after each bump is encountered, making it uncomfortable to ride in the vehicle and 15 also making it difficult to control the vehicle. The danger of this situation is amplified significantly if a surface on which the vehicle is operated is coated with rain or snow. Thus, the suspension system needs a way to dissipate the energy stored in the spring after the wheel encounters an aberration. A damper performs this function and limits the transfer of the kinetic energy, or vibrations, of the wheels of the vehicle to the 20 passenger compartment of the vehicle.

Conventional dampers have been designed in many different ways. One type of damper involves a piston tightly fitted within a chamber. The piston has a head and an arm connected to the head. The piston head slides within the chamber. Seals around the perimeter of the piston head prevent leakage of the fluid between the 25 piston head and the chamber wall. Thus, the piston head divides the chamber into a first and a second sub-chamber. The piston arm protrudes out of an opening in the chamber. Again, seals are required to prevent fluid leakage through the opening. The

piston arm is connected to a first object, such as the wheel of a vehicle, while the chamber is connected to a second object, such as the frame of the vehicle.

A volume of fluid, often oil, is disposed within the chamber. A bi-directional limiting port in the piston head permits the controlled transfer of fluid from the first to the second sub-chamber and vice versa. The limiting port may be designed to allow fluid to flow through the piston head at varying rates. A small limiting port provides for relatively slow transfer of fluid between the sub-chambers and inhibits virtually all oscillation, thus providing a firm ride and nimble handling when used in a shock absorber for a vehicle. A large limiting port, on the other hand, permits rapid transfer of fluid between the sub-chambers and, thus, yields a smooth ride when used in a shock absorber.

In an alternative design, two unidirectional limiting ports are positioned in the piston head. One port permits the fluid to move from the first sub-chamber to the second sub-chamber, while the other port permits the fluid to move from the second sub-chamber to the first sub-chamber. Using two unidirectional ports, a disparate damping effect may be provided, depending on the direction the piston head moves within the chamber.

It takes energy to force the fluid through the limiting port or ports. This energy is converted into thermal energy, i.e., the fluid is heated. Thus, the divergent movement of the objects connected to the damper is converted from kinetic energy into thermal energy to rapidly dissipate the movement of the objects.

The foregoing example illustrates a damper that is very simple in design. However, dampers can be, and often are, much more complex. For instance, some dampers provide varying damping levels through the use of multiple chambers, peripheral passages, or electronic control systems.

Unfortunately, conventional dampers suffer from a number of limitations. First, these dampers are relatively complex and, as a result, are expensive, particularly if the damper is intended to be used only a single time.

Second, conventional dampers have a significant risk of failure when stored for extended periods of time without use. Seals between the chambers may deteriorate over many years of nonuse and fail when the damper is needed. In addition, these conventional dampers must be properly lubricated. Otherwise, friction

between the piston head and chamber would inhibit or entirely prevent operation of the damper. Years of nonuse may also decrease lubrication and again result in product failure. Furthermore, a product failure in a vehicle safety system can be much more significant than failures in other areas. Thus, reliability of a damper used in a vehicle safety system is of the high importance.

Third, conventional dampers are not compact. In particular, the damping effect is generally proportional to the length or size of the damper. That is to say, longer and larger dampers generally provide a superior damping effect. As a result, dampers that provide a substantial damping effect are often bulky.

Consequently, it would be an advantage in the art to provide a damper that is simple in design and, thus, can be manufactured in a cost-effective manner. It would be an additional advantage to provide a motion damper that can be stored for long periods of time and still perform reliably when needed. It would be additionally advantageous to provide a damper that is compact, yet provides a significant damping effect.

SUMMARY OF THE INVENTION

The apparatus of the present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully resolved by current dampers. Thus, the present invention provides a motion damper that is compact and simple in design, and is thus inexpensive to manufacture.

The motion damper is comprised of a convoluted member. The convoluted member has a damper head, damper stages, and a damper wall. The damper wall is generally cylindrical in shape and, prior to deployment of the stages, surrounds the damper stages. The damper wall has a first and a second end. The first end of the damper wall is flexibly attached to the largest damper stage, which is adjacent to the damper wall. The second end of the damper wall is attached to a lip which extends away from the second end of the wall. The lip may be used to secure the motion damper to another object, such as a part of a vehicle.

Each of the damper stages is also generally cylindrical in shape. The damper stages are of a successively smaller size. The damper stages and damper wall also

have a nested relationship. This means that each of the stages is sized to fit within an adjacent damper stage or the damper wall. Because of the nested relationship, the convoluted member is compact and may be used in small spaces.

5 The damper wall and damper stages are each flexibly attached to an adjacent damper stage or the damper wall such that the damper stages may telescopically extend away from the damper wall along a longitudinal axis of the convoluted member. Accordingly, each of the damper stages may change in position relative to each other and relative to the damper wall. The damper stages may be made from various types of malleable materials, including various types of metals or plastics.

10 The smallest damper stage is flexibly attached to a damper head. The damper head is a broad, flat surface and can be used, for example, to secure or attach the convoluted member to another object.

15 Because the convoluted member is made from a malleable material, the convoluted member can be used to dampen motion between a first object connected to the damper head and a second object connected to the lip or damper wall. As one of the connected objects moves, the stages change in position relative to each other and the wall to absorb the kinetic energy and limit transfer of the kinetic energy to the other connected object. Thus, the convoluted member functions as a motion damper.

20 The motion damper has numerous uses. For example, the motion damper may be used in connection with a linear actuator to dampen the motion of the linear actuator. In fact, one type of linear actuator also uses a convoluted member. For clarity, when the convoluted member is used as part of a linear actuator, the damper wall will be referred to as an actuator wall, the damper stages will be referred to as piston stages, and the damper head will be referred to as a piston head.

25 The actuator wall, piston stages, and piston wall define, at least in part, an interior chamber. Thus, by placing a fluid generator over an open end of the actuator wall, pressurized fluid may be forcefully injected into the interior chamber. In response to injection of the pressurized fluid, the piston stages deploy, or extend telescopically away from, the actuator wall to generate linear motion along a 30 longitudinal axis of the linear actuator.

The damper head of the motion damper may be secured to the piston head of a linear actuator to form a damped actuator. In this configuration, the motion damper dampens the motion of the linear actuator.

The damped actuator operates in the following way in the context of a motor vehicle. The lip of the motion damper is attached to a first part of a vehicle, and the fluid generator of the linear actuator is attached to a second part of the vehicle. The first and second parts of the vehicle may be pivotally attached to each other. When the fluid generator is activated, the piston stages deploy to generate linear motion, moving the first part of the vehicle away from the second part of the vehicle. The motion dampers then deploy to absorb the kinetic energy of the first part of the vehicle. The damper stages change in position relative to each other to provide a more gradual deceleration of the first part of the vehicle. Were it not for the motion damper, the first part of the vehicle might be damaged by the rapid deceleration resulting from the deployment of the linear actuator.

The damped actuator can be used in a number of different ways. For instance, the damped actuator may be used to slightly raise the hood of a vehicle in the event of a vehicle-pedestrian accident such that the hood is used as a "crumple zone" to minimize the danger that the occupant's head or torso will impact the engine block of the vehicle. Also, the damped actuator could be used to tilt, or recline, a vehicle occupant's seat about a rear pivot point in the event of a roll-over accident so that the occupant's head is positioned further away from the roof in case the roof collapses. The motion damper provides for a more gradual deceleration of a part of a vehicle, such as the hood or seat, attached to the linear actuator in each of these instances.

In view of the foregoing, the motion damper provides substantial advantages over conventional dampers. The motion damper is compact and can be used in the tight confines of a vehicle. The motion damper is also simple in design and, thus, can be manufactured in a cost-effective manner. Furthermore, the motion damper can be stored for long periods of time without significantly increasing the risk of deterioration or malfunction. As a result, the motion damper is ideally suited for many types of vehicle safety systems such as the examples cited above.

These and other features, and advantages of the present invention will become

more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the manner in which the advantages and features of the invention
5 are obtained, a more particular description of the invention summarized above will be rendered by reference to the appended drawings. Understanding that these drawings illustrate only selected embodiments of the invention and are not therefore to be considered limiting in scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in
10 which:

Figure 1A is a perspective side view illustrating a convoluted member of a motion damper or linear actuator prior to deployment;

Figure 1B is a perspective side view illustrating the convoluted member after deployment;

15 Figure 2 is a cross-sectional view illustrating a convoluted member prior to deployment;

Figure 3 is a perspective side view of a damped actuator (prior to deployment), which includes a motion damper and a linear actuator that use the convoluted member;

20 Figure 4A is a cross-sectional view showing a damped actuator after deployment of the linear actuator;

Figure 4B is a cross-sectional view illustrating a damped actuator after deployment of the linear actuator and the motion damper;

25 Figure 5 is a perspective view of a vehicle having a pedestrian safety system that uses the damped actuator, the pedestrian safety system being shown in deployed condition;

Figure 6A is a perspective view of a vehicle having a rollover safety system that uses the damped actuator, the rollover safety system being shown in phantom in a deployed condition; and

30 Figure 6B is an enlarged perspective view of the damped actuator of the rollover safety system in a deployed condition.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The preferred embodiments of the invention are now described with reference to Figures 1-6, wherein like parts are designated by like numerals throughout. The members of the present invention, as generally described and illustrated in the Figures, 5 may be designed in a wide variety of configurations. Thus, the following more detailed description of the embodiments of the present invention, as represented in the Figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of presently preferred embodiments of the invention.

In this application, the phrases "connected to," "coupled to," and "in 10 communication with" refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, and thermal interaction. The phrase "attached to" refers to a form of mechanical coupling that restricts relative translation or rotation between the attached objects. Items, parts, or divisions that are "attached" may mechanically interact because of a mechanical fastener, such as a clip, 15 pin, or adhesive, or because the items are integrally formed. The phrases "flexibly attached to" and "pivotally attached to" refer to forms of mechanical coupling that permit relative rotation or relative translation, respectively, while restricting other relative motion.

The phrase "directly attached to" refers to a form of attachment by which the 20 attached items are either in direct contact, or are only separated by a single fastener, adhesive, or other attachment mechanism. The term "abutting" refers to items that are in direct physical contact with each other, although the items may not be attached together.

With reference to Figure 1A, a perspective side view of a convoluted member 25 10 is shown. The convoluted member 10 may be used in connection with either a motion damper or a linear actuator, both of which are shown in Figures 3-6. The convoluted member 10 of Figure 1A is shown prior to deployment, while Figure 1B shows the convoluted member 10 following deployment.

Referring to Figure 1A, the convoluted member 10 includes a head 12, stages 30 14a-d, and a wall 16. The head 12 is a broad, flat surface and can be used, for example, to secure or attach the convoluted member 10 to another object. When the convoluted member 10 is used as part of a linear actuator, the head 12 is referred to as

a "piston head." However, when the convoluted member 10 is used as a motion damper, the term "damper head" will be used to refer to the head 12.

Prior to deployment of the convoluted member 10, the stages 14 of the convoluted member 10 include a series of concentric folds in alternating directions 5 formed in a malleable material. The stages 14 are of a successively smaller size. When the convoluted member 10 is used as part of a linear actuator, the stages 14 will be referred to as "piston stages." The term "damper stages" will be used to refer to the stages 14 when the convoluted member 10 is used as a motion damper.

A smallest stage 14a is attached to the head 12. Again, as stated above, the 10 term "attached to" refers to mechanical interaction between two items because of a fastener or because the items are integrally formed. As illustrated, the head 12 is integrally formed with the stages 14. Alternatively, a mechanical fastener or fasteners, such as an adhesive, bolt, or rivet, may be used to attach the stages 14 to the head 12.

As stated above, the convoluted member 10 also includes a wall 16. The 15 illustrated wall 16 is flexibly attached to the largest stage 14d. The wall 16 extends around a longitudinal axis 20 of the convoluted member 10. Prior to deployment of the stages 14, the stages 14 are generally disposed within, or circumscribed by, the wall 16. The wall 16 includes a first end 24 and second end 26. The first end 24 of the wall 16 is flexibly attached to the largest stage 14d. When the convoluted member 20 10 is used as a motion damper, the term "damper wall" will be used to refer to the wall 16. In contrast, when the convoluted member 10 is used in connection with a linear actuator, the term "actuator wall" will be used to refer to the wall 16.

A lip 28 extends away from the second end 26 of the wall 16. The lip 28 can be used to secure the convoluted member 10 to another object, such as a part of a 25 vehicle (shown in Figures 5 and 6). The illustrated lip 28 extends a uniform distance away from the wall 16. In an alternative embodiment, the lip 28 may include one or more discrete portions that extend away from the wall 16.

Referring now to Figure 1B, a perspective side view of the convoluted member 10 is shown after deployment. The stages 14a-d have telescopically extended away 30 from the wall 16 and have unfolded in the process. The stages 14 change in position relative to each other and the wall 16. The stages 14 deploy along the longitudinal axis 20 of the convoluted member 10.

Figure 1B more clearly shows that the wall 16 and the stages 14 are successively smaller in size. In particular, moving from the wall 16 to the head 12, the wall 16 and stages 14 are successively smaller in size.

However, the wall 16 is not necessarily disposed outside of the stages 14. For 5 example, in an alternative embodiment, which is not illustrated, successively larger stages 14 are disposed around the wall 16. In such an embodiment, the wall 16 and stages 14 are of a successively smaller size when moving from the head 12 toward the wall 16.

As stated above, the convoluted member 10 may be used in connection with a 10 linear actuator or may be used as a motion damper to absorb kinetic energy. When used as a linear actuator, a fluid may forcefully be injected into the convoluted member to deploy the piston stages 14. If the convoluted member 10 is used as a motion damper, the damper stages 14 extend, or even contract, to absorb kinetic energy when the damper wall 16 and damper head 12 are connected to objects that are 15 moving either away from or toward each other. Accordingly, the stages 14 change position relative to each other or telescopically extend away from the wall 16 upon the application of a force. This force may drive the stages 14 further away from each other or may drive the stages 14 closer to each other.

As will be understood by those skilled in the art, the convoluted member 10 20 can be made from various types of malleable, or energy absorbing, materials, including certain types of metals or plastics. Because the convoluted member is made from a malleable material, the convoluted member 10 is a single-use convoluted member. Thus, during deployment, the convoluted member 10 becomes deformed and should thereafter be discarded or recycled.

25 The illustrated stages 14 and wall 16 are generally cylindrical in shape. However, the stages 14 and wall 16 may be formed in other shapes, such as a generally octagonal, hexagonal, rectangular, or square shape.

Figure 2 illustrates a cross-section view of a convoluted member 10 before 30 deployment. Figure 2 shows that each stage 14 is flexibly attached to at least one adjacent stage 14. More specifically, each stage 14 is flexibly attached to an adjacent stage 14 by an internal fold 30 or an external fold 32. As stated above, the largest stage 14d is flexibly attached to the first end 24 of the wall 16, while the smallest

stage 14a is attached to the head 12. Each stage 14 is flexibly attached to an adjacent stage 14 such that the stages 14 may telescopically extend away from the wall 16.

The wall 16, stages 14, and head 12 may be integrally formed, as shown, or may comprise physically distinct components joined together using, for example, 5 adhesives, rivets, hinges, other types of pivoting members, or a combination of the foregoing. The embodiment of the convoluted member 10 shown in Figures 1-3 includes four stages 14. Of course, the number of stages 14 may be varied within the scope of this invention. Also, the stages 14, as illustrated, are each about the same height, but stages 14 of varying sizes also come within the scope of this invention.

10 As will be understood by those skilled in the art, the flexible attachment between the stages 14 and between the largest stage 14d and the wall 16 may be achieved in a number of different ways. For example, the stages 14 and wall 16 may be connected using a malleable or flexible material. A plurality of hinges or other types of pivoting members may be used. Also, the wall 16 and stages 14 may simply 15 be formed from a malleable or flexible material, as shown in Figure 2.

The stages 14 and wall 16 have a nested relationship. This means that each of the stages 14 is sized to fit within an adjacent stage 14 or the wall 16. Because of the nested relationship, the convoluted member 10 is compact and may be used in small spaces.

20 The head 12, stages 14 and wall 16 define, at least in part, an interior chamber 34. When the convoluted member 10 is used as part of a linear actuator, pressurized fluid is injected into the interior chamber 34 to deploy the piston stages 14 of the linear actuator and generate linear motion.

Figure 2 also shows that the lip 28 is attached to the second end 26 of the wall 25 16. As illustrated, the wall 16 and lip 28 are integrally formed, but, in an alternative embodiment, the wall 16 and lip 28 may be physically separate components that are attached to each other. In addition, the lip 28 shown in Figure 2 is generally perpendicular to the wall 16, but may be disposed at other angles in relation to the wall 16 in alternative configurations.

30 With reference to Figure 3, there is shown a perspective side view of a damped actuator 40 prior to deployment. The damped actuator 40 includes both a motion damper 42 and linear actuator 44. In Figure 3, the motion damper 42 is

positioned on top of and is attached to the linear actuator 44. The motion damper 42 and linear actuator 44 are coaxial with each other. More specifically, a longitudinal axis 50 of the motion damper 42 is coaxial with a longitudinal axis 52 of the linear actuator 44.

5 The motion damper 42 is comprised of a convoluted member 10 that is made from an energy absorbing material. Accordingly, the damper stages 14 telescopically extend away from, or are pushed toward, the damper wall 16 to absorb the kinetic energy of an object attached to the motion damper 42.

10 The linear actuator 44 has a convoluted member 10 attached to and in fluid communication with the fluid generator 54. In Figure 3, a portion of the actuator wall 16 is cut away to show the piston stages 14. The fluid generator 54 produces a pressurized gas, liquid, or foam to deploy, or telescopically extend, the piston stages 14 of the linear actuator 44. As will be understood by those skilled in the art, the fluid generator 54 can use pyrotechnic methods, or methods for releasing compressed 15 fluids, or a combination of the foregoing to generate the pressurized fluid. As shown, the fluid generator 54 is attached to the lip 28 of the convoluted member 10 of the linear actuator 44.

20 Referring to Figure 4A, a cross-sectional view of a damped actuator 40 after deployment of the linear actuator 44 is illustrated. As shown, the motion damper 42 has not yet been deployed. The damper stages 14 are still relatively close to each 25 other such that the damper stages 14 are substantially disposed within the damper wall 16.

25 The actuator wall 16 and actuator stages 14 define, at least in part, an interior chamber 34. The fluid generator 54 is in fluid communication with the interior chamber 34.

As shown, the fluid generator 54 comprises a housing 58 containing gas generant 60 and an initiator 62. In response to receipt of a signal from a sensor (not shown), which determines when accident conditions exist, the initiator 62 activates the gas generant 60 to produce pressurized inflation gas.

30 The pressurized inflation gas pushes against the piston stages 14. The amount of pressurized inflation gas produced by the fluid generator 54 depends on the specific use of the linear actuator 44. In the embodiment shown in Figure 4A, the pressure of

the inflation gas is sufficient to fully extend each piston stage 14. To be more precise, the piston stages 14 have fully extended away from the piston wall 16 and increased a distance between each piston stage 14 to generate rapid linear motion along the longitudinal axis 52 of the linear actuator 44.

5 As illustrated in Figure 4A, the damper head 12 is attached to the piston head 12 using a rivet 64. The use of the rivet 64 is only illustrative. Other types of mechanical fasteners, such as adhesives or a nut and bolt, may be used attach the damper head 12 to the piston head 12. Alternatively, the convoluted member 10 of the motion damper 42 and the convoluted member 10 of the linear actuator 44 may be 10 integrally formed.

15 The linear actuator 44 and/or motion damper 42 optionally includes one or more attachment brackets 66 to permit pivotal connection of the damped actuator 40 to an object, such a part of a vehicle, which is illustrated in Figures 5 and 6. A pivotal connection is achieved when, for example, a U-shaped bolt (shown in Figure 15 6B) is positioned in an opening 67 in the attachment bracket 66 and then the U-shaped bolt is secured to the object.

20 In an alternative embodiment, the fluid generator 54 is remote to the interior chamber 34. In such a design, a gas guide (not shown) conveys the pressurized fluid generated by the fluid generator 54 to the interior chamber 34. Of course, in such a 25 design, the open end 68 of the actuator wall 16 is enclosed so that the pressurized fluid deploys the piston stages 14 rather than exiting through the open end 68 of the actuator wall 16.

25 Figure 4B is a cross-sectional view illustrating a damped actuator 40 after deployment of the motion damper 42 and linear actuator 44. Following deployment of the linear actuator 44, strong inertial forces are applied to the motion damper 42. As a result, each damper stage 14 changes in position relative to an adjacent damper stage 14. More specifically, the damper stages 14 move further apart from each other along the longitudinal axis 50 of the motion damper 42 and extend telescopically 30 away from the damper wall 16. As a result of the damping effect, the lip 28 of the motion damper 42 decelerates more slowly than the piston head 12. Thus, the motion damper 42 dampens the motion of the linear actuator 44 and provides a more gradual deceleration of an object that is connected to the lip 28 of the damped actuator 40.

Referring now to Figure 5, a perspective view of a vehicle 72 having a pedestrian safety system 74 is shown in a deployed condition. The illustrated pedestrian safety system 74 includes an impact sensor 78 in communication with two damped actuators 40. The impact sensor 78 determines when the vehicle 72 has impacted an object, such as a pedestrian. The illustrated impact sensor 78 is located in the front bumper 80 of the vehicle 72. Alternatively, the sensor 78 could be embodied as an electronic control unit (ECU) that senses abnormal acceleration or deceleration of the vehicle 72. In any case, when an impact, or a potential vehicle-pedestrian impact is sensed, the impact sensor 78 sends a signal to the two damped actuators 40. Wiring 82, for example, may be used to transmit an electrical signal from the impact sensor 78 to the damped actuators 40.

A hood 86, which is pivotally attached to a portion of the vehicle 72, includes a pivoting end 88 and a remote end 90. The motion damper 42 of each damped actuator 40 is connected to hood 86 near the pivoting end 88, while the linear actuator 44 of each damped actuator 40 is connected to another part of the vehicle 72 that is located within the engine compartment 94, such as the frame or body 96 of the vehicle 72. Alternatively, the linear actuators 44 could be connected to the hood 86 near the pivoting end 88, while the motion dampers 42 could be connected to the frame or body 96. Within the scope of this invention, the damped actuators 40 could be positioned at various locations on the hood 86. For example, the damped actuators 40 could be positioned near the remote end 90 of the hood 86, or at other positions between or on the pivoting and remote ends 88, 90 of the hood 86.

The linear actuator 44 and motion damper 42 may include one or more attachment brackets 66 (shown in Figure 4A) to permit pivotal attachment of the linear actuator 44 to the body 96 and pivotal attachment of the motion damper 42 to the remote end 90 of the hood 86. Of course, those skilled in the art will recognize that various techniques, including selective connection of the damped actuator 40 to the hood 86, may be used to permit opening and closing of the hood 86 during normal usage.

When the damped actuators 40 receive the signal, the linear actuators 44 inflate and deploy the piston stages 14. As a result, the hood 86 is rapidly lifted. The motion dampers 42 then deploy to absorb the kinetic energy of the hood 86, as shown

in Figure 5. The damper stages 14 change in position relative to each other to provide a more gradual deceleration of the hood 86. Were it not for the motion dampers 42, the hood 86 might be damaged by the rapid acceleration and deceleration resulting from deployment of the linear actuators 44. If so, automobile manufacturers would be 5 less likely to use the pedestrian safety system 74 because manufacturers, or the end user, would be required to replace or repair the hood 86 of the vehicle 72, even when the hood 86 was not otherwise damaged by the accident.

Those skilled in the art will recognize that many variations of the illustrated embodiment of the pedestrian safety system 74 come with scope of this invention. 10 For instance, the number and positioning of the damped actuators 40 may vary depending of the design of the vehicle 72 in which the system 74 is installed.

The purpose of rapidly elevating the hood 86 in the event of a pedestrian impact is to limit injuries to the pedestrian. Frequently, in a vehicle-pedestrian accident, the pedestrian will rotate such that the pedestrian's head, or upper body, 15 impact the hood 86, and then the engine block of the vehicle 72 at a high rate of speed. Rapidly raising the hood 86 using the pedestrian safety system 74 transforms the hood 86 into a "crumple zone," such that hood 86 more gradually decelerates the pedestrian to minimize the severity of the pedestrian's injuries.

With reference to Figure 6A, there is shown a side perspective view of a 20 vehicle 100 having a rollover safety system 102 that uses the damped actuator 40. The safety system 102 includes an accident sensor 104, such as an ECU, in communication with one or more damped actuators 40. When the accident sensor 104 determines that the vehicle 100 has been involved in an accident, the accident sensor 104 transmits a signal through wiring 82 to the damped actuator 40. 25 Alternatively, the accident sensor 104 may determine when the vehicle 100 becomes inverted or rolls over and send a signal in response thereto.

The illustrated seat 106 is pivotally attached to the vehicle 100 and, thus, includes a pivot point 108 and a distal end 110. In one configuration, the seat 106 may include shear pins 111 which are severed by the sudden forceful movement of the 30 distal end 110 of the seat 106. Shear pins 111 prevent the seat 106 from pivoting until an accident is detected.

As shown, the linear actuator 44 of the damped actuator 40 is connected to a

floor 112 of the vehicle 100 and the motion damper 42 of the damped actuator 40 is connected to the distal end 110 of the seat 106. Alternatively, the linear actuator 44 could be connected to the distal end 110 of the seat 106, while the motion damper 42 could be connected to floor 112 of the vehicle 100.

5 Accordingly, when a signal is received from the accident sensor 104, the linear actuator 44 deploys and reclines the seat 106. Thereafter, the motion damper 42 deploys to provide a more gradual deceleration of the seat 106 to minimize discomfort to the occupant 114. As a result, the seat 106 moves into a reclined position, as shown in phantom in Figure 6A.

10 The reclined seat 106 provides additional clearance 116 between the roof 118 and the occupant 114. Therefore, in an accident in which the roof 118 may collapse, the reclined position of the seat 106 decreases the risk that the occupant 114 will be impacted by the roof 118 of the vehicle 100.

15 Referring to Figure 6B, an enlarged perspective view of the damped actuator 40 of the rollover safety system 102 is shown in a deployed condition. As illustrated, the stages 14, 14 of both the motion damper 42 and linear actuator 44 are in a deployed condition. Accordingly, the seat 106 is in a reclined position, as shown in phantom in Figure 6A.

Again, the motion damper 42 is connected to the seat 106, while the linear actuator 44 is connected to the floor 112 of the vehicle 100. The linear actuator 44 includes an attachment bracket 66 that permits pivotal connection of the damped actuator 40 to the floor 112 using a U-shaped bolt 120 and two nuts 122. This pivotal connection permits the damped actuator 40 to rotate relative to the floor 112 as the seat 106 pivots away from the floor 112 without contorting, and possibly damaging, the damped actuator 40. Thus, an angle 124 between a longitudinal axis 126 of the damped actuator 40 and the floor 112 may change without damaging or twisting the damped actuator 40.

30 In an alternative embodiment, both the linear actuator 44 and motion damper 42 include an attachment bracket 66 to permit pivotal connection of the damped actuator 40 to both the seat 106 and floor 112. Of course, those skilled in the art will recognize that various types of pivotal connection mechanisms may be used in connection with the damped actuator 40.

In summary, the motion damper provides substantial advantages over conventional dampers. The motion damper is compact and can be used in the tight confines of a vehicle. The motion damper is also simple in design and, thus, can be manufactured in a cost-effective manner. Furthermore, the motion damper can be 5 stored for long periods of time without significantly increasing the risk of deterioration or malfunction. As a result, the motion damper is ideally suited for many types of vehicle safety systems such as the examples discussed above.

The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are 10 to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

CLAIMS:

1. A motion damper, comprising:
 - a damper wall having a first end; and
 - at least two damper stages, each damper stage being flexibly attached to at least one adjacent damper stage, one of the damper stages being flexibly attached to the first end of the damper wall, wherein the damper wall and damper stages are of a successively smaller size.
2. The motion damper of claim 1, wherein upon the application of a force, at least one damper stage changes in position relative to an adjacent damper stage.
- 10 3. The motion damper of claim 1, wherein each damper stage is flexibly attached to an adjacent damper stage such that the damper stages upon the application of a force, telescopically extend away from the damper wall.
4. The motion damper of claim 1, wherein the damper stages are made from an energy absorbing material.
- 15 5. The motion damper of claim 4, wherein the energy absorbing material is plastic.
6. The motion damper of claim 4, wherein the energy absorbing material is metal.
7. The motion damper of claim 1, wherein at least one damper stage is sized to fit within an adjacent damper stage.
- 20 8. The motion damper of claim 1, wherein the damper wall and damper stages have a nested relationship prior to deployment.
9. The motion damper of claim 1, wherein the damper wall and damper stages are integrally formed.
- 25 10. The motion damper of claim 1, wherein the damper stages are single-acting damper stages.

11. A damped actuator comprising:
 - a linear actuator having a fluid generator, an actuator wall, at least two piston stages, a piston head, and an interior chamber defined at least in part by the actuator wall and piston stages, each piston stage being flexibly attached to at least one adjacent piston stage, one of the piston stages being flexibly attached to the actuator wall and another piston stage being attached to the piston head, the actuator wall and the piston stages being of a successively smaller size, and the fluid generator being in fluid communication with the interior chamber; and
 - a motion damper having a damper wall, at least two damper stages, and a damper head, each damper stage being flexibly attached to at least one adjacent damper stage, one of the damper stages being flexibly attached to the damper wall and another damper stage being attached to the damper head, the damper wall and damper stages being of a successively smaller size, and the damper head being attached to the piston head.
12. The damped actuator of claim 11, wherein upon the application of a force, at least one damper stage changes in position relative to an adjacent damper stage.
13. The damped actuator of claim 11, wherein each damper stage is flexibly attached to an adjacent damper stage such that upon the application of a force, the damper stages telescopically extend away from the damper wall.
14. The damped actuator of claim 11, wherein the damper stages are made from an energy absorbing material.
15. The damped actuator of claim 11, wherein the piston stages deploy in response to activation of the fluid generator.
16. The damped actuator of claim 11, wherein at least one damper stage is sized to fit within an adjacent damper stage.
17. The damped actuator of claim 11, wherein the damper wall and damper stages have a nested relationship prior to deployment.

18. The damped actuator of claim 11, wherein the linear actuator is a single-acting linear actuator.

19. The damped actuator of claim 11, wherein the motion damper is a single-acting motion damper.

5 20. The damped actuator of claim 11, wherein the damper wall, damper stages, and damper head are integrally formed.

21. The damped actuator of claim 11, wherein the actuator wall, piston stages, and piston head are integrally formed.

22. A damped actuator for use in a vehicle comprising:
10 a linear actuator having a fluid generator, an actuator wall, at least two piston stages, a piston head, and an interior chamber defined at least in part by the actuator wall and piston stages, each piston stage being flexibly attached to at least one adjacent piston stage, one of the piston stages being flexibly attached to the actuator wall and another piston stage being attached to the piston head, the actuator wall and
15 piston stages being of a successively smaller size, the fluid generator being in fluid communication with the interior chamber, and the linear actuator being connected to a first part of a vehicle; and

20 a motion damper having a damper wall, at least two damper stages, and a damper head, each damper stage being flexibly attached to at least one adjacent damper stage, one of the damper stages being flexibly attached to the damper wall and another damper stage being attached to the damper head, the damper wall and damper stages being of a successively smaller size, the damper head being attached to the piston head, and the motion damper being connected to a second part of the vehicle.

23. The damped actuator of claim 22, wherein upon the application of a force, at least one damper stage changes in position relative to an adjacent damper stage.

24. The damped actuator of claim 22, wherein each damper stage is flexibly attached to an adjacent damper stage such that upon the application of a force, the damper stages telescopically extend away from the damper wall.

25. The damped actuator of claim 22, wherein the piston stages deploy in response to activation of the fluid generator.

26. The damped actuator of claim 22, wherein at least one damper stage is sized to fit within an adjacent damper stage.

5 27. The damped actuator of claim 22, wherein the damper wall and damper stages have a nested relationship prior to deployment.

28. The damped actuator of claim 22, wherein the motion damper is a single-acting motion damper.

10 29. The damped actuator of claim 22, wherein the linear actuator is a single-acting linear actuator.

30. The damped actuator of claim 22, wherein the linear actuator and motion damper are coaxial.

31. The damped actuator of claim 22, wherein the first part of the vehicle is pivotally attached to the vehicle.

15 32. The damped actuator of claim 31, wherein the first part of the vehicle is a seat.

33. The damped actuator of claim 31, wherein the first part of the vehicle is a hood.

20 34. The damped actuator of claim 22, wherein the damper wall, damper stages, and damper head are integrally formed.

35. The damped actuator of claim 22, wherein the actuator wall, piston stages, and piston head are integrally formed.

1 / 7

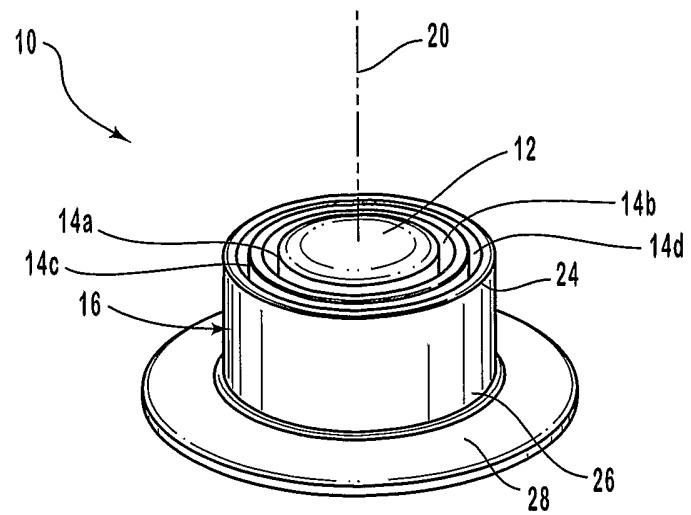


Fig. 1A

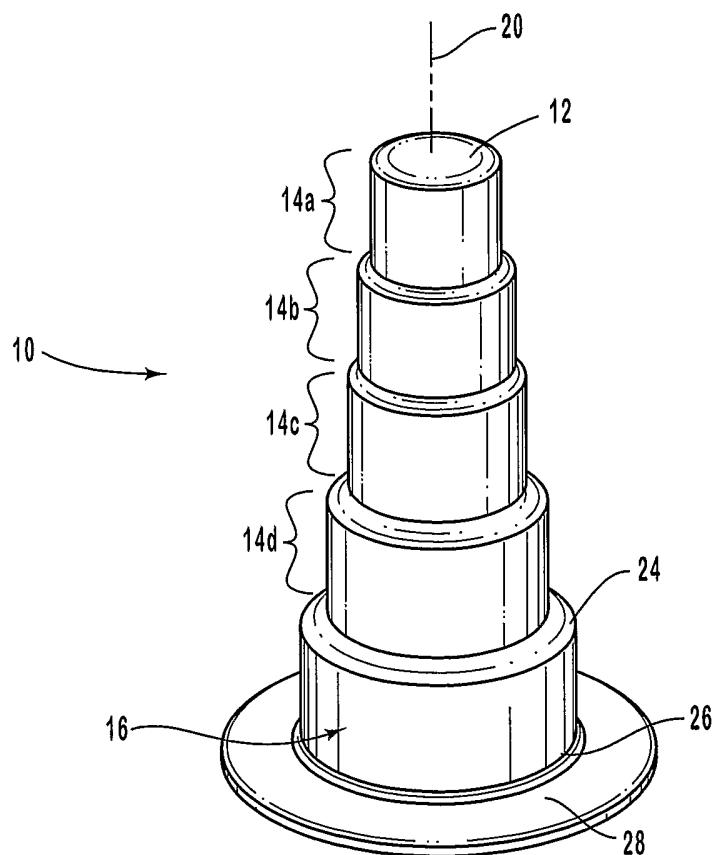


Fig. 1B

2 / 7

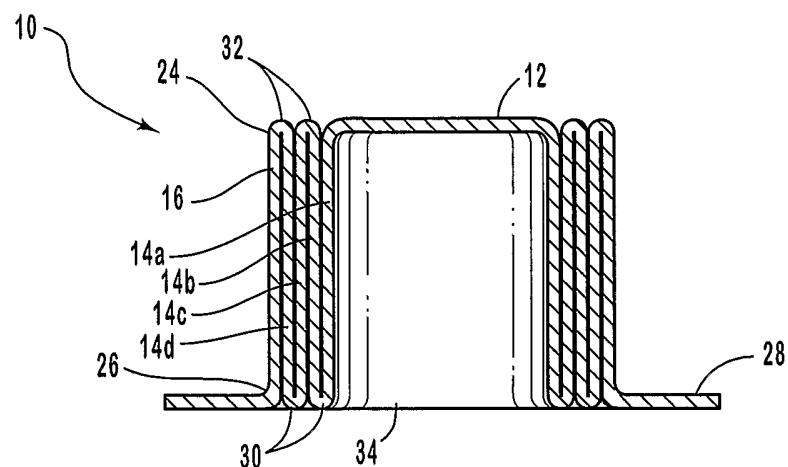


Fig. 2

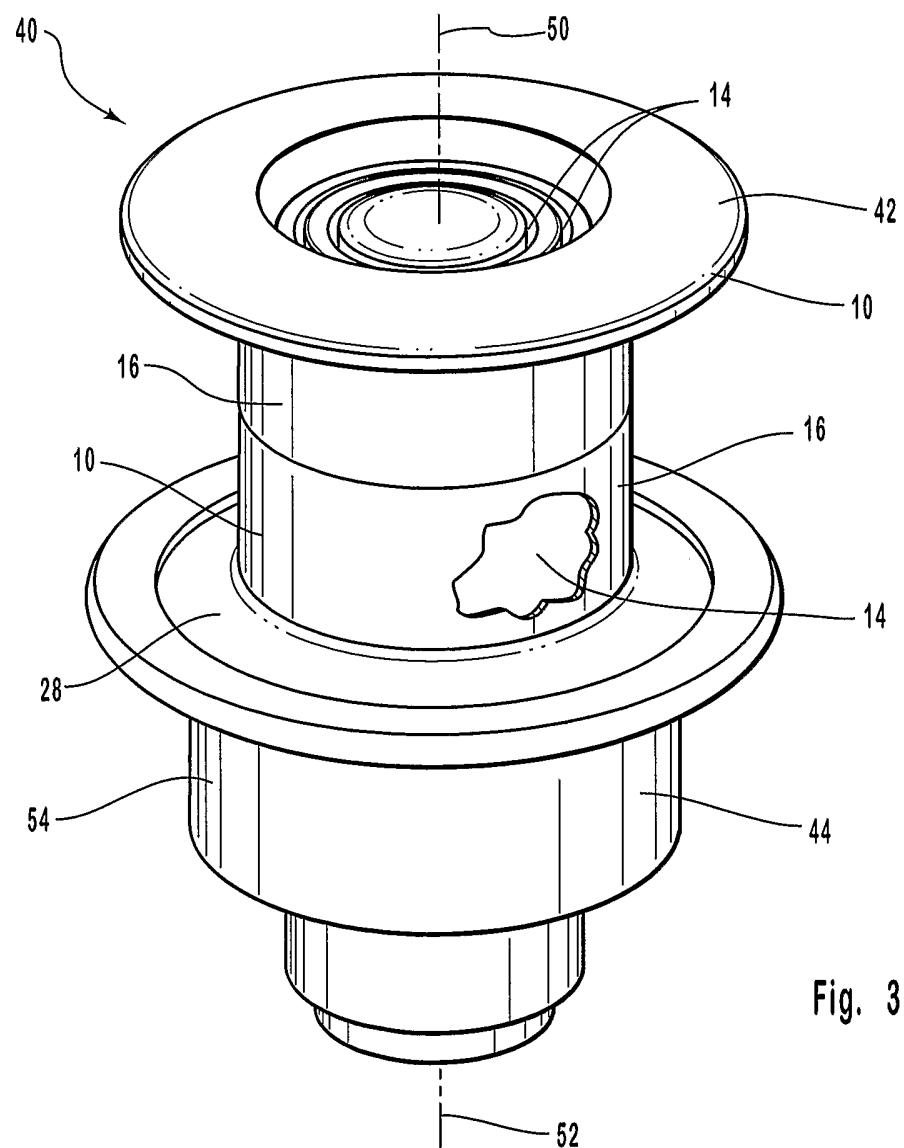


Fig. 3

3 / 7

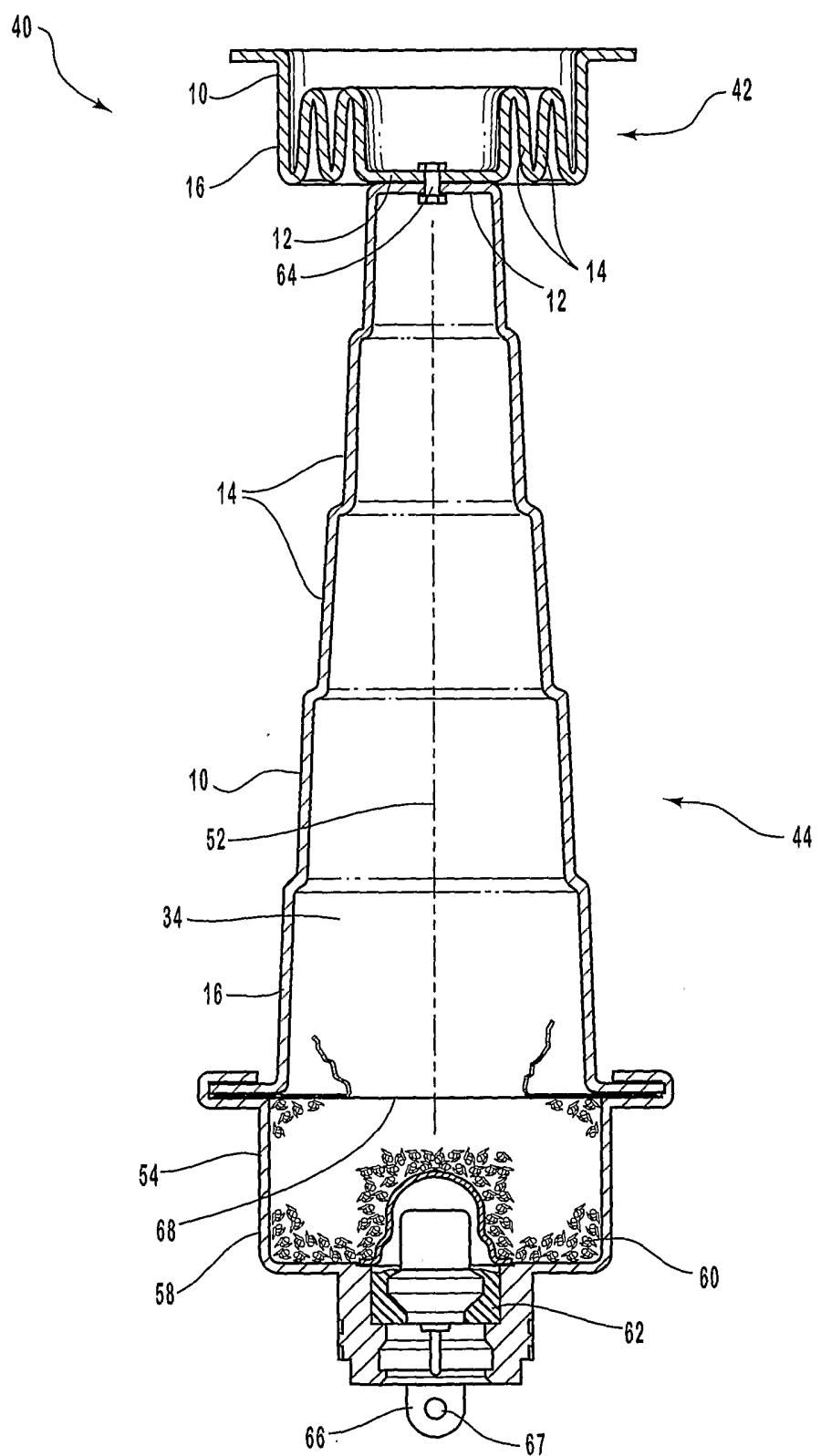


Fig. 4A

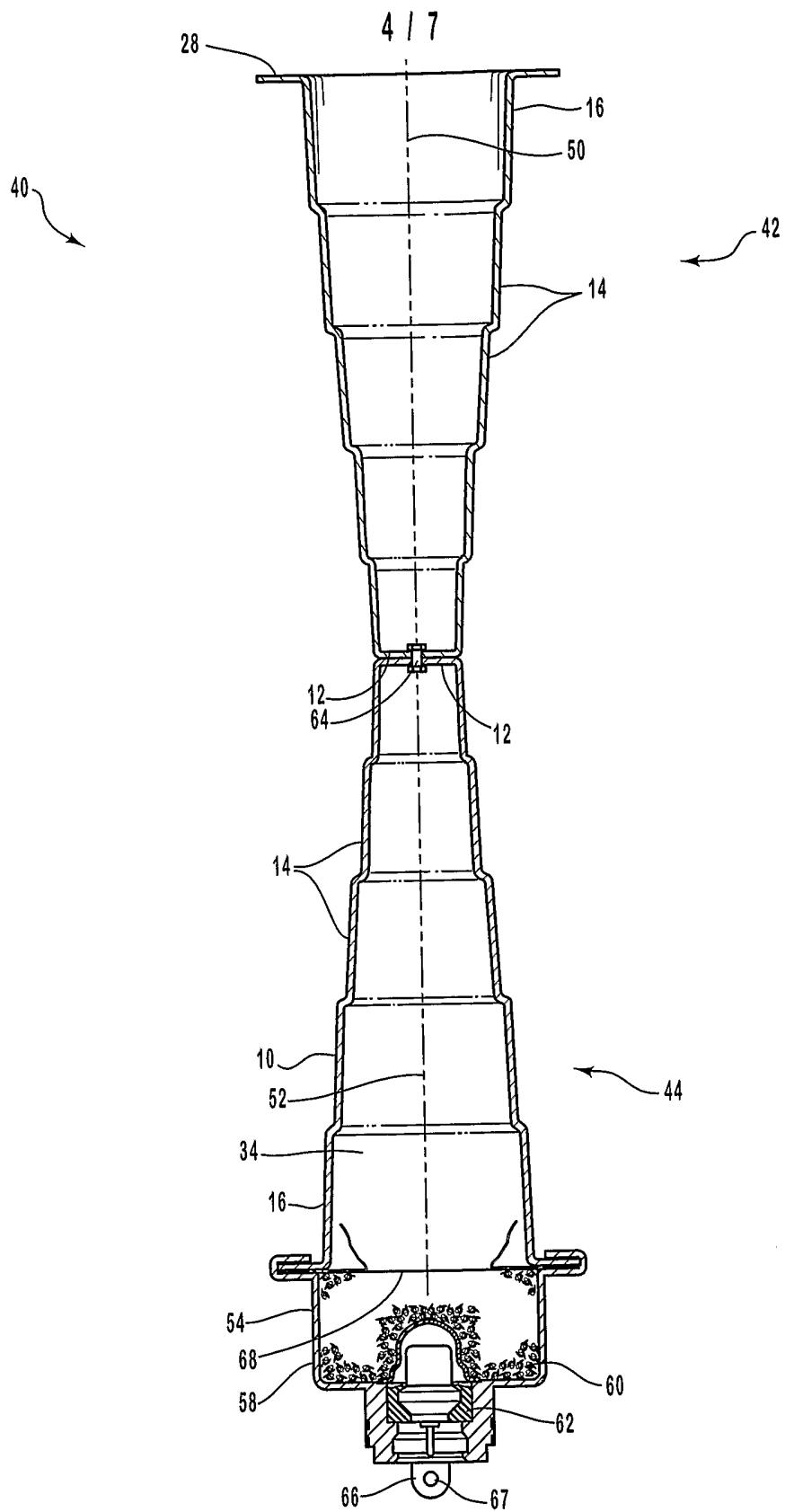


Fig. 4B

5 / 7

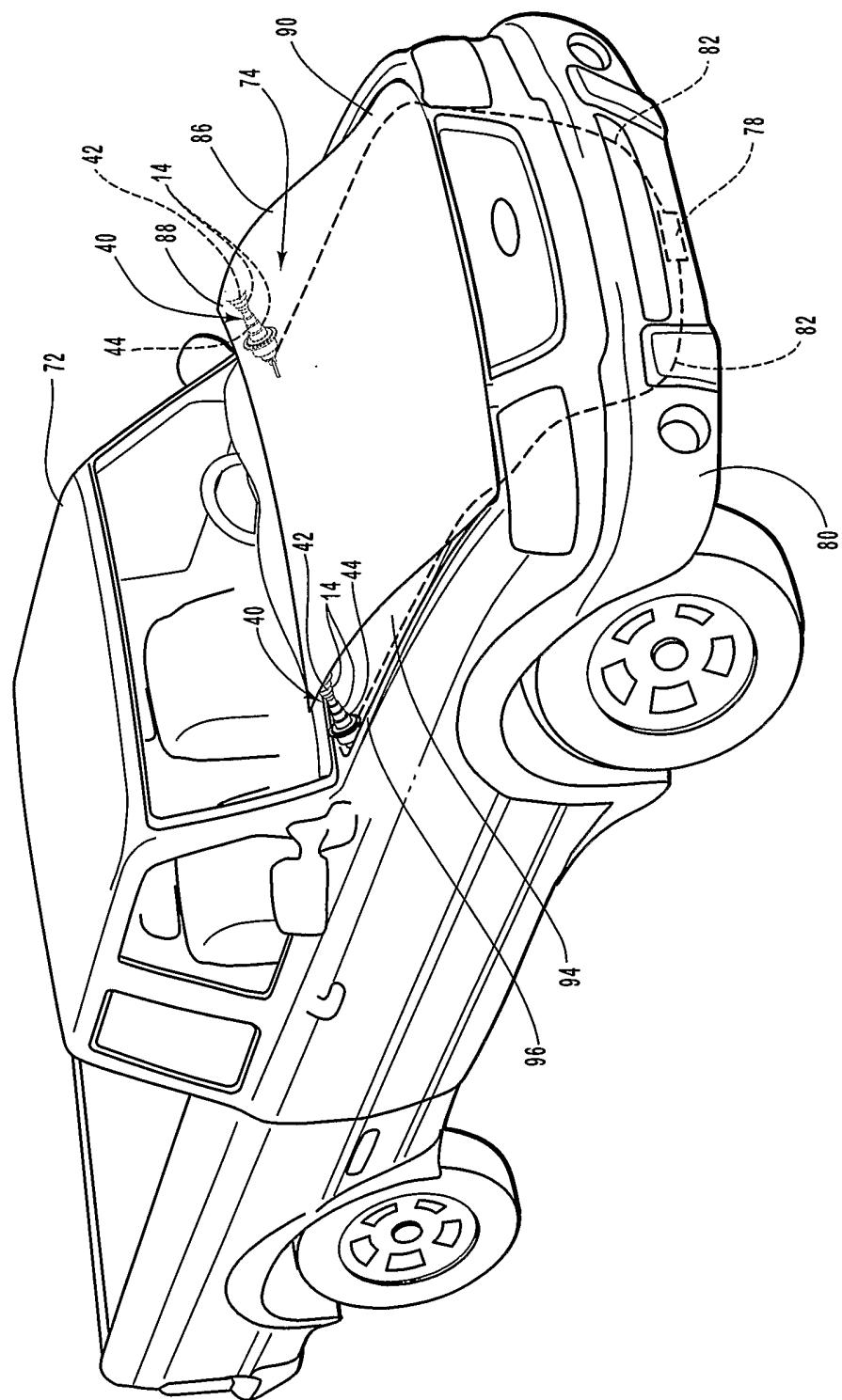
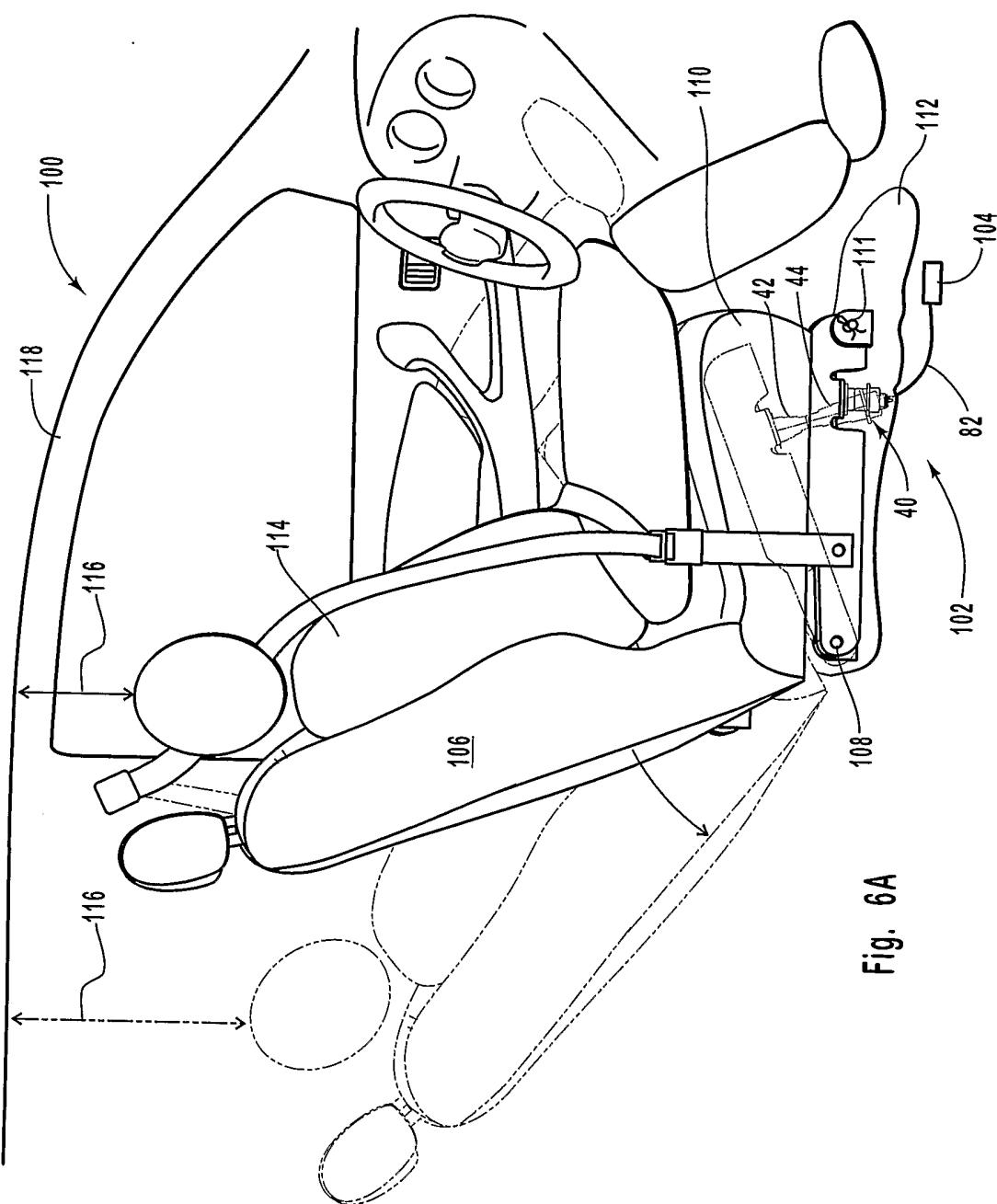



Fig. 5

7 / 7

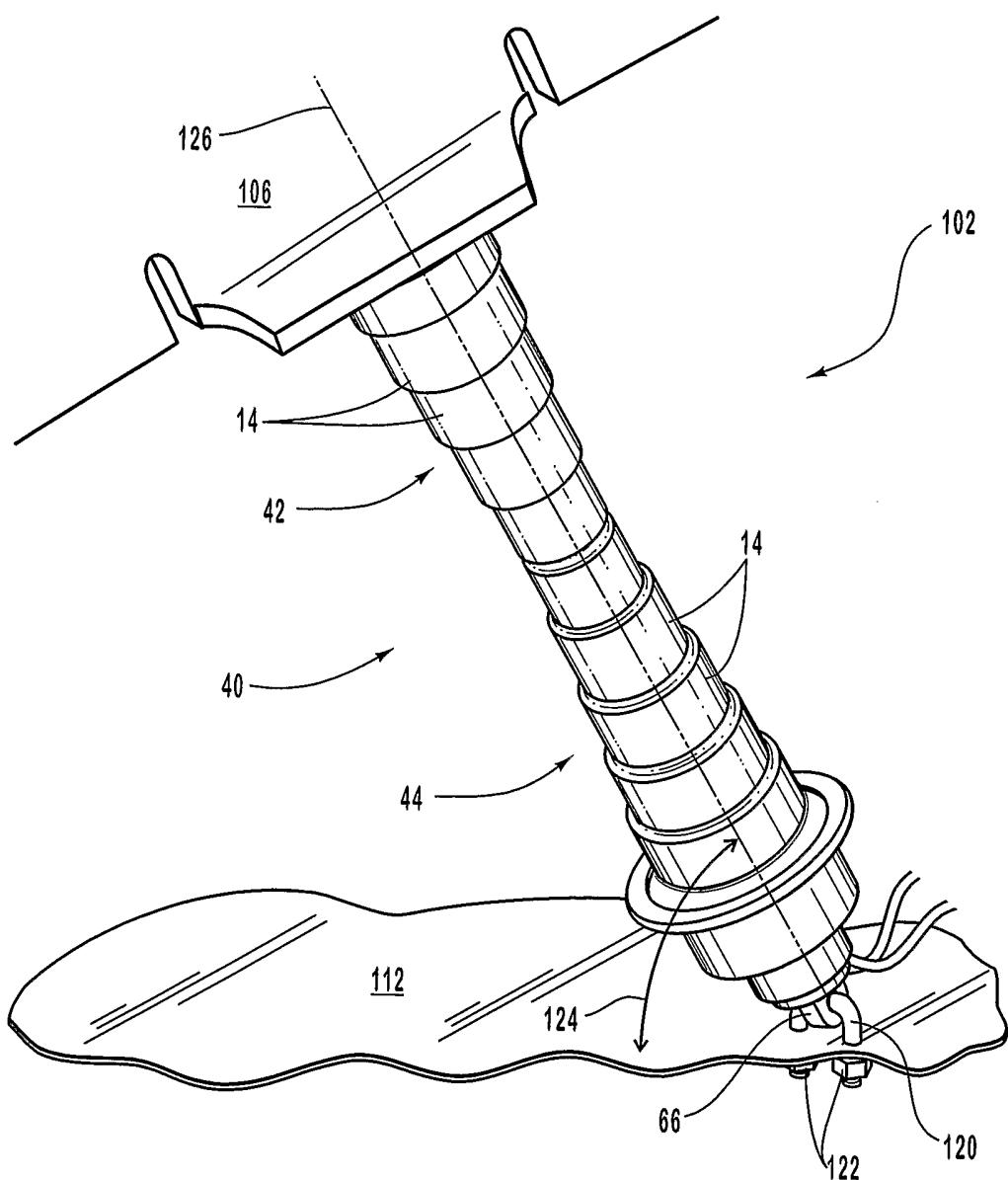


Fig. 6B

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US2004/036202

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 F16F7/12 F15B15/19 F15B15/16 B60N2/427 B60R21/34

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 F16F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 557 733 A (MAN NUTZFAHRZEUGE AG) 1 September 1993 (1993-09-01) page 3, line 33 - line 47; figures 10,11 -----	1,2,4,6, 7,9,10
X	EP 0 777 064 A (AUTOMOBILES PEUGEOT; AUTOMOBILES CITROEN) 4 June 1997 (1997-06-04) column 5, line 6 - column 6, line 1; figures 3,4 -----	1,2,4,6, 7,9,10
A		3
X	US 5 549 327 A (R+E, UML U+EE SCHE ET AL) 27 August 1996 (1996-08-27) column 2, line 35 - line 37; figures 1-3 -----	1,2,4,5, 7,9,10
X	US 2003/184070 A1 (VIDAL PAULO ET AL) 2 October 2003 (2003-10-02) figure 3 -----	1
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

15 February 2005

Date of mailing of the international search report

02.05.05

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Pirog, P

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US2004/036202

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 48 093045 A (UNKNOWN) 1 December 1973 (1973-12-01) figures 1,2	1
A	-----	8
X	EP 0 794 350 A (AUTOMOBILES PEUGEOT; AUTOMOBILES CITROEN) 10 September 1997 (1997-09-10) figures 3,5	1
X	US 2002/167183 A1 (SHIMOTSU KOJI ET AL) 14 November 2002 (2002-11-14) figures -----	1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2004/036202

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-10

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-10

A motion damper, comprising a damper wall and at least two damper stages, wherein each damper stage is flexibly attached to an adjacent damper stage such that the damper stages upon the application of a force, telescopically extend away from the damper wall.

2. claims: 11-35

A damped actuator comprising a linear actuator and a motion damper having a damper wall and at least two damper stages.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US2004/036202

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0557733	A 01-09-1993	DE	4206022 A1	02-09-1993
		DE	59301518 D1	14-03-1996
		EP	0557733 A1	01-09-1993
EP 0777064	A 04-06-1997	FR	2741924 A1	06-06-1997
		DE	69616946 D1	20-12-2001
		DE	69616946 T2	27-06-2002
		EP	0777064 A1	04-06-1997
		ES	2165965 T3	01-04-2002
US 5549327	A 27-08-1996	DE	4417835 A1	23-11-1995
		CA	2148526 A1	21-11-1995
		DE	59502731 D1	13-08-1998
		EP	0683072 A1	22-11-1995
		ES	2118471 T3	16-09-1998
		JP	7315076 A	05-12-1995
US 2003184070	A1 02-10-2003	GB	2386937 A	01-10-2003
JP 48093045	A 01-12-1973	NONE		
EP 0794350	A 10-09-1997	FR	2745621 A1	05-09-1997
		DE	69715941 D1	07-11-2002
		DE	69715941 T2	12-06-2003
		EP	0794350 A1	10-09-1997
		ES	2184965 T3	16-04-2003
US 2002167183	A1 14-11-2002	JP	2002331888 A	19-11-2002
		DE	10220633 A1	14-11-2002