CARD TRANSPORTING AND STACKING APPARATUS

INVENTORS
ROBERT G. WAMPACH
EDWARD J. ZASADA

BY

ATTORNEY
This invention relates to conveying apparatus and more particularly to a rotary conveyor for transporting and stacking flexible cards.

In some special applications, such as in a stock or commodity exchange, a need arises for transporting flexible cards past an operator, who copies the information carried by the cards on a telegraph keyboard, after which the cards must be stacked in the same sequence in which they passed the operator for a subsequent comparison of the information on the cards with the information transmitted by the telegraph apparatus. A special problem arises in the conveying and stacking of these cards since they normally are made of relatively flexible paper of the order of 16 to 20 pound bond. Due to the manner in which the cards are handled, they may be slightly curled or may be creased vertically so that the conveying and stacking apparatus must be able to handle both types of cards, that is, curled or creased, without the cards falling off the conveyor or becoming stacked improperly. At the same time, the cards must be fully visible to the keyboard operator as they pass her position.

Accordingly, it is an object of this invention to transport and stack flexible data cards.

It is a further object of this invention to use a single means to drive a rotary conveyor and to strip and stack flexible data cards carried by the conveyor.

It is another object of this invention in a rotary conveyor to transport and stack flexible data cards irrespective of whether the cards are slightly curled about a horizontal axis or are creased vertically.

In a preferred embodiment of the invention, the card transporting and stacking mechanism includes a turntable or rotary conveyor drum which is rotated about a vertical axis at approximately one to four revolutions per minute by means of a drive belt driven through a drive pulley located outside the turntable. A groove for the belt is provided near the upper edge of the rim of the turntable, and the drive belt strips the cards from the turntable at a predetermined position established by the location of the drive pulley. At this position, the belt lifts the cards forward causing them to be stacked on their faces in the sequence in which they were carried by the turntable.

The rim of the turntable has a concave cross-sectional configuration so that slightly curled cards will not fall off, and a lip or flange having a convex upper surface extends radially from the lower rim edge of the turntable to support the bottom of the cards. The convex upper surface of the lip prevents vertically creased cards from tipping over, especially during the stacking operation.

Other objects and features of this invention will be apparent to those skilled in the art upon consideration of the following detailed specification taken in conjunction with the drawings in which:

FIG. 1 is a general view of the card transporting and stacking mechanism mounted on an operator's table; FIG. 2 is a top view of a portion of the device shown in FIG. 1, and FIG. 3, 4 and 5 show cross-sectional views of a portion of the conveyor drum or turntable with horizontally curled and vertically creased cards being carried thereon. Throughout the drawings the same reference numbers are used to designate the same elements.

Referring now to FIG. 1, the card transporting and stacking mechanism of this invention is shown mounted on an operator's table 10 of the type utilized in a preferred application of the invention. When orders are taken on the trading floor of an exchange they are written on a slip of paper or a card approximately 3 x 5 inches in size made of approximately 16 to 20 pound bond. The cards then are rolled up and transported to the operator's table 10 in a market quotation transmitting cabinet any way of pneumatic tubes. The slips are removed from the pneumatic tubes by an operator designated as a "loader" who stands behind the table 10 at the position designated A. The "loader" unrolls the cards and places them on a turntable or rotary conveyor drum 11 having an outer rim 12 with a lower lip or flange 13 for supporting the cards 9. The turntable 11 is rotated in the direction of the arrow at approximately one to four revolutions per minute by means of a pulley and drive motor located in a housing 14. The necessary driving force is applied to the turntable 11 through a drive belt 15 which rides in a groove 16 located near the upper edge of the rim 12 of the turntable 11.

After the cards 9 have been placed on the turntable 11 by the "loader" at position A, they are slowly rotated by the turntable 11 past the operator's position B whereby the operator keyboards the information from the cards 9 into a punched paper tape on a keyboard 17. The operation of the telegraph apparatus for the transmission of the information keyed on by the operator at position B forms no part of this invention and will not be further discussed. From position B the cards 9 continue to be carried by the revolving turntable 11 to a position C where the belt 15 tips the upper edges of the cards 9 forward causing the cards to pivot on the flange 13 which supports their lower edges. The cards then fall face down into a storage bin 18 where they are stacked in their proper sequence for subsequent utilization by an operator at position C in checking the information transmitted by the telegraph apparatus.

FIG. 2 shows in greater detail the relative positions of the turntable 11 and the drive belt 15 which causes the cards 9 to be tipped and stacked into the storage bin 18. It may be seen in FIG. 2 that the belt 15 extends radially beyond the outer edge of the lower lip or flange 13 as it enters the motor housing 14. As the belt enters into the housing 14, it contacts the cards 9 above their center of gravity and causes them to be stripped from the turntable 11 and tipped forward until the cards finally fall on their faces into the bin 18 as indicated by the dotted lines in FIG. 2.

The sides of the bin 18 are not vertical but are approximately the same width as the cards 9 at the bottom and flare outwardly so that the top of the bin 18 is approximately twice as wide as its base. These tapered sides cause the cards 9 to be stacked properly whether the turntable 11 is revolving rapidly or slowly. When the turntable 11 revolves at its maximum speed the momentum of the cards 9 causes them to be carried against the wall 18a of the bin 18. As stated previously, the stripping and tipping action of the belt 15 causes these cards to be tipped forward and the angle of the side 18a then causes the cards 9 to slide down that side to be stacked in the proper face down position. On the other hand, if the turntable 11 is revolving at its lowest speed, the cards 9, as they are stripped off and tipped forward, fall near the side 18b and the angle of that side guides the cards to cause them to be stacked properly at the bottom of the bin 18.

As stated previously, because of the flexible nature of the cards 9 coupled with the fact that the cards may be either slightly rolled along a horizontal axis or may have
sharp vertical creases placed in them by the "loader," the rim 12 and lip 13 of the turntable 11 must be designed to transport properly such cards as well as cards which are not rolled or creased. FIGS. 3, 4 and 5 show cross-sections of the turntable 11 at the rim 12, with FIGS. 3 and 4 being cross-sectional views taken along the line 3—3 in FIG. 2 and with FIG. 5 being a cross-sectional view taken along the line 5—5 in FIG. 2.

FIG. 3 shows the turntable 11 carrying a card 9 which is slightly rolled about a horizontal axis. As may be seen in FIG. 3 the lower edge of the card rests on the upper convex surface of the lip or flange 13 with the upper edge of the card being carried by a ridge 19 formed just above the groove 16 in which the belt 15 rides. In order to prevent such slightly rolled cards as that shown in FIG. 3 from pitching forward off of the turntable 11, the cross-section of the rim 12 is made concave to a greater amount than the concave shape likely to be imparted to a slightly rolled card 9. As a consequence, the card 9 is supported only by the lower lip or flange 13 and the ridge 19 until the card is stripped from the turntable at the desired position over the bin 18.

It should be noted that if the rim 12 did not have such a concave cross-section but instead had a straight or linear cross-section, the middle portion of a slightly rolled card 9 possibly would rest against the rim 12 at or below its center of gravity causing the card to be carried in an unstable manner; so that it very likely would be pitched or thrown off of the turntable prior to the time of reaching the bin 18. The concave cross-sectional configuration of the rim 12 eliminates such a possibility.

In order to overcome the natural tendency for the cards 9 to remain rolled after their removal from the pneumatic tube, the "loader" often imparts a slight vertical crease to the cards prior to placing them on the turntable 11. Such a vertically creased card 9 is shown in FIG. 4, which in all other respects is identical to FIG. 3. If the lower lip or flange 13 were flat, such a vertically creased card 9 might tend to ride on the lower lip 13 resting only on the point formed in the card by the crease. As a consequence, such a vertically creased card would tend to be quite unstable and would be very likely to tip over, especially at the time that the belt 15 strips the cards from the turntable 11 and tips them forward over the bin 18. By constructing the upper surface of the lip 13 in a beveled or convex cross-sectional configuration, the vertically creased cards 9 always rest on two points of support, one on each side of the vertical crease formed in the card (see FIG. 4). Thus, the cards 9 are supported in a stable manner; and there is less likelihood that they will tip over as they are transported past the operator's position B (FIG. 1).

When such a vertically creased card 9 is transported by the turntable 11 to the card stacking position C (FIG. 1), the belt 15 causes the cards to be stripped and tipped forward into the bin 18 as shown in FIG. 5. The convex lip 13 continues to support the vertically creased cards 9 at two points on either side of the crease at all times until the card is dumped forward on its face into the bin 18. If a flat surface were used for the lip 13, a vertically creased card 9 would be tipped forward on the point formed by the crease and most likely would tip over side-

ways causing it to fall into the bin 18 in the wrong position.

It should be noted that the belt 15 used in the preferred embodiment of this invention performs two functions, namely, it transmits the driving power from a motor in the housing 14 to the turntable 11 to rotate the turntable at the desired speed; and it also is used to strip and tip the cards 9 forward to stack them in the bin 18. The card transporting and stacking mechanism of this invention is a simple, reliable and inexpensive conveyor system particularly suitable for conveying and stacking flexible cards.

Although the invention has been described in conjunction with a single preferred embodiment thereof, it is not to be considered limited to the embodiment chosen for purposes of disclosure, but covers all changes and modifications which may be made in the structure of the apparatus to fit various design requirements without departing from the true spirit and scope of the invention.

What is claimed is:

1. A rotary card transporting and stacking device including:
 a rotary conveyor drum;
 a lower support member mounted on the conveyor drum and including means for supporting the bottom of a card and for preventing the bottom of the card from slipping inwardly toward the center of the conveyor drum;
 an upper support member positioned above and at a lesser distance from the center of the conveyor drum than the lower support member for preventing cards supported on the lower support member from falling inwardly toward the center of the conveyor drum;
 an endless belt carried by the conveyor drum; and
 means for causing the belt to extend outwardly from the drum along a chord of the circle formed by the outer periphery of the lower support member so that a card carried on the lower support member is rotated about its bottom surface away from the upper support member to a point at which the center of gravity of the card is farther from the center of the conveyor drum than the lower support member causing the card to fall off the lower support member under the action of gravity.

2. A device according to claim 1 where the lower support member is a flange having an upper surface of substantially convex cross-section.

3. A device according to claim 1 wherein the periphery of the conveyor drum between the upper and lower support members is of substantially concave cross-section.

References Cited

UNITED STATES PATENTS

1,588,903 6/1926 Parker 198—103
2,264,579 12/1941 Mondlock 198—209
3,220,569 11/1965 Willits et al. 214—6

FOREIGN PATENTS

769,930 9/1955 Great Britain.

GERALD M. FORLENZA, Primary Examiner.
J. E. OLDS, Assistant Examiner.