(54) 发明名称
一种用于3D封装TSV硅抛光的化学机械抛光液

(57) 摘要
本发明提供了一种用于3D封装的硅通孔技术硅抛光的化学机械抛光液，所述的化学机械抛光液包括研磨颗粒，一种或多种强酸和水；所述强酸的在所述抛光液中的质量浓度为2~50wt%。本发明的抛光液是可以在碱性条件下同时提高抛光液以及抛光机台温度从而提高3D封装中TSV硅的抛光产率。
1. 一种用于 3D 封装 TSV 硅抛光的化学机械抛光液，其特征在于，包括水、研磨颗粒、一种或多种强碱；所述强碱在所述抛光液中的质量浓度为 2～50wt%。

2. 根据权利要求 1 所述的化学机械抛光液，其特征在于，所述强碱为氢氧化钾、氢氧化钠、氢氧化锂、氢氧化铯、四甲基氢氧化胺、四乙基氢氧化胺、四丙基氢氧化胺、氨水、羟胺、乙二胺、乙醇胺，三乙醇胺中的一种或多种混合物。

3. 根据权利要求 1 所述的化学机械抛光液，其特征在于，所述研磨颗粒为氧化硅、氧化铝、氧化铈或聚合物颗粒中的一种或多种。

4. 根据权利要求 2 所述的化学机械抛光液，其特征在于，所述聚合物颗料为聚乙烯、聚四氟乙烯、聚丙烯酰胺、聚乙烯醇或者其混合物。

5. 根据权利要求 1 所述的化学机械抛光液，其特征在于，所述研磨颗粒的直径为 20～200nm。

6. 根据权利要求 5 所述的化学机械抛光液，其特征在于，所述研磨颗粒的直径为 30～100nm。

7. 根据权利要求 1 所述的化学机械抛光液，其特征在于，还包括表面活性剂、稳定剂、抑制剂、杀菌剂或 pH 值调节剂。

8. 根据权利要求 7 所述的化学机械抛光液，其特征在于，所述 pH 值调节剂为氢氧化钾溶液或硝酸。

9. 根据权利要求 8 所述的化学机械抛光液，其特征在于，所述氢氧化钾溶液的浓度为 5～40wt%。

10. 一种如权利要求 1 所述的化学机械抛光液在 3D 封装 TSV 硅抛光中的应用，其特征在于，将机台、以及包括研磨颗粒和 2～50wt% 浓度强碱的抛光液加热，并将温度控制在 60～90℃范围内进行抛光。
一种用于 3D 封装 TSV 硅抛光的化学机械抛光液

技术领域
[0001] 本发明涉及一种化学机械抛光液，尤其涉及一种用于 3D 封装的 TSV 硅抛光的化学机械抛光液。

背景技术
[0002] 在集成电路制造工艺中，平面化技术已成为与光刻和刻蚀同等重要且相互依赖的不可缺少的关键技术之一，而化学机械抛光（CMP）工艺又是目前最有效、最成熟的平面化技术。化学机械抛光系统是集清洗、干燥、在线检测、终点检测等技术于一体的化学机械平面化技术，是 IC 向微细化、多层化、平面化、薄型化发展的产物，是集成电路提高生产效率、降低生产、晶圆全局平面化必备技术。
[0003] 随着科技的发展，现代消费电子产品在提供多样功能的同时，也需具备更小巧的体积与更低的制造成本要求。对此，作为电子产品的重要基础，半导体产业面临着重大的挑战。
[0004] 为了满足电子产品发展的需求，3D 堆叠式封装技术已被作为能否以较小尺寸来制造高性能芯片的关键，而硅通孔技术是通过以垂直导通来整合晶圆堆栈的方式，以达到芯片间的电气互连，该技术让元件整合的方式进入到利用穿孔信道的区域重叠式互连（Area-array-like Interconnects）的新阶段，让不同的芯片或晶圆能够堆栈在一起，并实现更快的速度、更少的噪声，以及更强的功能，这将促使电子产品能实现创新性的应用。因此 3D 硅通孔技术一问世，便受到了广泛的关注与青睐。
[0005] 在集成电路（integrated circuit，简称 IC）制造工艺中，3D 封装硅通孔技术是通过在芯片和晶圆之间、晶圆和晶圆之间制作垂直导通，实现芯片之间互连的最新技术。与以往的 IC 封装电子线和使用凸点的互连技术不同，3D 封装硅通孔技术封装具有最小的尺寸和重量，可以将不同种类的技术集成到单个封装中，用短的垂直互连代替长的 2D 互连，降低寄生效应和功耗等。此技术能够很好的节约制造成本，且有效提高集成电路系统的整合度与效能。
[0006] CMP 在 IC 制造领域应用广泛，抛光对象包括衬底、介质及互连材料等。其中金属 CMP 是 90 纳米以下芯片制造中器件和互连制造的关键工艺之一，是亚 90 纳米时代的研究热点。金属铜、铝、钨正在越来越多地应用于集成电路器件上的互连，必须通过化学机械抛光实现多层互连，因而开发出新一代的金属化学机械抛光液一直让业界关注。
[0007] 随着集成电路技术的不断发展，对于化学机械工艺也不断寻求新的改进。尤其是在集成电路的 3D 封装技术成熟后，硅通孔技术不断得到更多应用，对于抛光硅技术的改进也越来越引起人们的重视。然而在抛光过程中，3D 封装技术常常平整地需要去除 10 个微米以上的硅，使得化学机械抛光法的选择提出要求。
[0008] 目前，出现了一系列适合于抛光硅的化学机械抛光液，如：美国专利 US 2002151252A1 公开了一种用于硅 CMP 的组合物和方法，其提供了种以氧化硅，以及碱金属、铵盐、胺嗪（对二氯己环）、乙二胺中的一种或多种，和一种结构类似于 EDTA 的有机
酸作为主要成分抛光液对硅基材进行抛光；专利 US 2006014390A1 公开了一种用于硅的抛光方法，其采用以 4.25~18.5wt% 的研磨颗粒，80~95wt% 的去离子水，表面活性剂，和 0.05~1.5wt% 氢氧化钾、氢氧化钠、氨水，或胺类化合物中的一种或多种作为主要成分的化学机械抛光液，并配合特定的抛光工艺对硅进行抛光；专利 US05860848A 公开了一种使用聚合物电解质的硅 CMP 的方法。然而上述抛光液在对 3D 封装技术的抛光应用上存在明显的去除速率不足的情况，严重影响产率。

发明内容
[0009] 本发明提供了一种用于 3D 封装 TSV 技术硅抛光的化学机械抛光液，在抛光液主要成分中加入强碱，其目的在于改善 3D 封装 TSV 技术中硅基材的抛光速率。
[0010] 本发明一种用于 3D 封装的硅通孔技术硅抛光的化学机械抛光液通过以下技术方案实现其目的：
一种用于 3D 封装 TSV 硅抛光的化学机械抛光液，其中，包括水、研磨颗粒、一种或多种强碱；所述强碱在所述抛光液中的质量浓度为 2~50wt%。
[0011] 上述的化学机械抛光液，其中，所述强碱为氢氧化钾、氢氧化钠、氢氧化铝、氢氧化铯、四甲基氢氧化胺、四乙基氢氧化胺、四丙基氢氧化胺、氨水、羟胺、乙二胺、乙醇胺，三乙醇胺中的一种或多种混合物。
[0012] 上述的化学机械抛光液，其中，所述研磨颗粒为氧化硅、氧化铝、氧化铈或聚杂物颗粒中的一种或多种。
[0013] 上述的化学机械抛光液，其中，所述聚杂物颗粒为聚乙烯、聚四氟乙烯或其它混合物。
[0014] 上述的化学机械抛光液，其中，所述研磨颗粒的直径为 20~200nm。
[0015] 上述的化学机械抛光液，其中，所述研磨颗粒的直径为 30~100nm。
[0016] 上述的化学机械抛光液，其中，还包括表面活性剂、稳定剂、抑制剂、杀菌剂或 pH 值调节剂。
[0017] 上述的化学机械抛光液，其中，所述 pH 值调节剂为氢氧化钾溶液或硝酸。
[0018] 上述的化学机械抛光液，其中，所述氢氧化钾溶液的浓度为 5~40wt%。
[0019] 一种如权利要求 1 所述的化学机械抛光液在 3D 封装 TSV 硅抛光中的应用，其中，将台机、以及包括研磨颗粒和 2~50wt% 浓度强碱的抛光液加热，并将温度控制在 60~90℃范围内进行抛光。采用本发明一种用于 3D 封装 TSV 硅抛光的化学机械抛光液的优点在于：
1. 本发明的抛光液是可以利用在碱性条件下通过提高抛光液以及抛光台温度从而提高速度抛光硅衬底的新型化学机械抛光液，显著提高 3D 封装中的 TSV 硅抛光的产率。
[0020] 2. 本发明的抛光液不含氧化剂，其成分更简单，抛光工艺更易控制。

具体实施方式
[0021] 本发明提供了一种用于抛光 3D 封装的 TSV 基材的化学机械抛光液。本发明采用以强碱和研磨颗粒为主要成分，在碱性条件下同时提高抛光液以及抛光机台温度从而提高高密度抛光硅衬底的新型化学机械抛光液，显著提高 3D 封装中的 TSV 硅抛光的速率。
[0022] 其中所述强碱可以是氢氧化钾、氢氧化钠、氢氧化铝、氢氧化铯、四甲基氢氧化胺、
四乙基氢氧化胺、四丙基氢氧化胺、氨水、羟胺、乙二胺、乙醇胺或三乙醇胺等等。上述的强碱可以一种单独使用,或是多种强配合使用。

[0023] 所述研磨颗粒可以是氧化硅、氧化铝、氧化铈或聚合物颗粒,所述的聚合颗粒如聚乙烯或聚四氟乙烯等。并优选为氧化硅。这些研磨颗粒的直径控制在 20~200nm, 最优选的范围为 30~100nm。

[0024] 在所述抛光液中,所述的研磨颗粒质量浓度为 0.5~10wt%。

[0025] 还可以在抛光液中再加入常用的一些添加剂如,表面活性剂、稳定剂,抑制剂,杀菌剂或 pH 值调节剂,以进一步提高表面的抛光性能。

[0026] 下面我们列举一些具体实施例,从而说明采用本发明的抛光液对于提高抛光 3D 封装中的 TSV 硅基材的抛光速率卓越效果。

<table>
<thead>
<tr>
<th>实施例</th>
<th>研磨颗粒</th>
<th>碱性介质</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>具体物质</td>
<td>含量 (wt%)</td>
</tr>
<tr>
<td>1</td>
<td>SiO₂ (30nm)</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Al₂O₃</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>CeO₂</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>聚乙烯 (Mn: 20000)</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>聚四氟乙烯 (Mn: 40000)</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>SiO₂</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>SiO₂</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>SiO₂</td>
<td>2</td>
</tr>
<tr>
<td>对比例</td>
<td>SiO₂</td>
<td>20</td>
</tr>
</tbody>
</table>

表 1: 本发明的抛光液 1~8 配方

1 给出了本发明的抛光液 1~8 和对比抛光液,将表中配方,将各成分混合均匀,去离子水补充质量比 100%,最后用 pH 调节剂 (如 20%KOH 溶液或稀 HNO₃,可根据 pH 值的需要进行选择) 调节到所需 pH 值,继续搅拌至均匀流体,静置 30 分钟即可得到各化学机械抛光液。

[0028] 将表 1 中本发明的抛光液实施例 1~8 和对比抛光液分别对硅衬底进行抛光。抛光条件相同,抛光参数如下: Logitech。抛光垫,向下压力 3~6psi,转盘转速 / 抛光头转速 =60/80rpm,抛光时间 120s,化学机械抛光液流速 100ml/min,机台和抛光液温度为 60~90℃。抛光结果见表 2。
表 2：本发明的抛光液 1～8 和对比抛光液的抛光效果

<table>
<thead>
<tr>
<th>抛光液</th>
<th>温度（℃）</th>
<th>下压力 (ps)</th>
<th>不同压力下的硅去除速率 (A/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>3</td>
<td>20000</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>3</td>
<td>32000</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>3</td>
<td>25000</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>6</td>
<td>40000</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>5</td>
<td>30000</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>5</td>
<td>30000</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>4</td>
<td>35000</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>4</td>
<td>32000</td>
</tr>
<tr>
<td>对比</td>
<td>22</td>
<td>3</td>
<td>1000</td>
</tr>
</tbody>
</table>

以上数据和图表表明，本发明的化学机械抛光液在金属抛光过程中与对比液相比，即使是在不同的压力下，也具有超高的多晶硅的去除速率，可满足 TSV 高速抛光要求，提高产量。其可能的机理为：

\[
\text{Si} + 60\text{H} = \text{SiO}_2^{-} + 3\text{H}_2\text{O} + 4e; \\
2\text{H} + 2e = \text{H}_2.
\]

[0029] 在抛光过程中，硅不断被强碱溶解转化为可溶的硅酸盐，然后被抛光颗粒和抛光垫带走，表面复始达到从而达到去除硅目的。上述反应在升温条件下反应加快，去除速率也加快。

[0030] 以上对本发明的具体实施例进行了详细描述，但其只是作为范例，本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言，任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此，在不脱离本发明的精神和范围下所作的均等变换和修改，都应涵盖在本发明的范围内。