wo 2018/078451 A1 | 00000 OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
03 May 2018 (03.05.2018)

(10) International Publication Number

WO 2018/078451 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 11/36 (2006.01) GO6F 17/50 (2006.01)

(21) International Application Number:
PCT/IB2017/001485

(22) International Filing Date:
01 November 2017 (01.11.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/412,376 Us

(71) Applicant: RECONFIGURE.IO LIMITED [GB/GB]; 17
Victoria Road, Bamford S33 OBS (GB).

(72) Inventors: MAMAGHANI, Mahdi, Jelodari; 428 Camp
Street, Salford M7 1ZN (GB). TAYLOR, Robert, James;
17 Victoria Road, Bamford S33 OBS (GB).

25 October 2016 (25.10.2016)

(74) Agent: KILBURN & STRODE LLP; Lacon London, 84
Theobalds Road, London WC1X 8NL (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(84)

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(54) Title: SYNTHESIS PATH FOR TRANSFORMING CONCURRENT PROGRAMS INTO HARDWARE DEPLOYABLE ON
FPGA-BASED CLOUD INFRASTRUCTURES

100

Software Description|
in Go
12

Balsa IR (Parse,
Eval, Finish)
14

Teak Front-
end
122

Hardware/
5 Software Co-
Binary design
170 Partitioner
116

7 Area, Power, ™, Elaboration
i Performance s
B C i ;

Re-timing and
De-Elastisation
144

Synthesis
FPGA
140

FIG. 1

eTeak Compiler

Dataflow
Network
124

Synchronous
back-end

126

Verilog RTL
132

Multiple
Bitstream
152

(57) Abstract: Exploiting FPGAs for acceleration may be performed by trans-
forming concurrent programs. One example mode of operation may provide
one or more of creating synchronous hardware accelerators from concurrent
asynchronous programs at software level, by obtaining input as software in-
structions describing concurrent behavior via a model of communicating se-
quential processes (CSP) of message exchange between concurrent processes
performed via channels, mapping, on a computing device, each of the concur-
rent processes to synchronous dataflow primitives, comprising at least one of
join, fork, merge, steer, variable, and arbiter, producing a clocked digital logic
description for upload to one or more field programmable gate array (FPGA)
devices, performing primitive remapping of the output design for throughput,
clock rate and resource usage via retiming, and creating an annotated graph of
the input software description for debugging of concurrent code for the field
FPGA devices.

[Continued on next page]

WO 2018/078451 A1 {70000 TS OO

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

— with information concerning request for restoration of the
right of priority in respect of one or more priority claims
(Rules 26bis.3 and 48.2(b)(vii))

WO 2018/078451 PCT/IB2017/001485

SYNTHESIS PATH FOR TRANSFORMING CONCURRENT PROGRAMS
INTO HARDWARE DEPLOYABLE ON FPGA-BASED CLOUD
INFRASTRUCTURES

Cross—-Reference to Related Application

[0001] This application is related to ©previously filed
provisional patent application No. 62/412,376 entitled
‘SYNTHESIS PATH FOR TRANSFORMING PROGRAMS INTO HARDWARE
DEPLOYABLE ON FPGA-BASED CLOUD INFRASTRUCTURES’, which was
filed on October 25, 2016, the entire contents of which are

hereby incorporated by reference in their entirety.

Technical Field of the Application

[0002] This application relates to software and hardware
integration and more specifically adapting a software

development interface for FPGA developments.

Background of the Application

[0003] Conventionally, the recent advances in concurrent
programming and the formal model of communicating sequential
processes (CSP) has gained popularity. The CSP model allows
software designers to implement scalable concurrent software
systems. However, 1ntegrated software applications with
middleware and hardware platforms continues to be limited and

thus 1leaves the developers without the resources needed to

WO 2018/078451 PCT/IB2017/001485

work with certain hardware development platforms such as
FPGAs.

[0004] Current FPGA tooling 1s predicated on a methodology
orientated towards development and testing cycles
characteristic of hardware design, simulation and execution.
IT departments trying to utilize this technology face barriers
including low-level languages and representations, and failing
to harness the power of modern high level language
capabilities. The high cost of rare-skilled resources and
expensive tooling and the high cost and barrier to entry to
trial usage of such technology can also be a constraint.
Communicating sequential processes (CSP) is a model of
concurrency design due to C.A.R Hoare. The CSP model has
historically been utilized to describe concurrency in
industrial contexts. Its communication model has evolved
significantly 1in recent vyears and has 1influenced several
languages in both software and hardware domains including ‘Go’
and ‘Balsa’, respectively. Its descriptions are divisible
into procedures with communication channels for message
passing. Channels can be also defined for interaction between
commands (actions). CSP permits component processes to be
defined both as sequential processes, and as a parallel
composition of more primitive processes. The relationships

between different ©processes, and the way each process

WO 2018/078451 PCT/IB2017/001485

communicates with its environment, are described using various
process algebraic operators.

[0005] Elasticity has emerged as a property that implies
flexibility in adapting resources, communication or timing in
different areas of computer architecture. Elasticity in
digital circuits is referred to as the flexibility against
environmental dynamics. This feature permits the circuit to
preserve correct functionality while being exposed to timing
variations even on a ‘nano’ scale and system level latencies.
We exploit elasticity to realize resource manhagement on
single/multiple FPGA infrastructures.

[0006] The synchronous elastic protocol (SELF) is an efficient
communication protocol that implements a state-based control
flow standard over CSP channels. Elasticity 1s realized by
adopting SELF 1n our circuits. SELF consists of three
communication states namely ‘Idle’, ‘Retry’ and ‘Transfer’.
These states are governed by elastic blocks (EBs) which are
distributed both in the communication and computation domains
of a digital circuit. An EB resembles a flip-flop with some
extra gates to implement the control mechanism based on the
handshake protocol. An EB can be viewed as a pair of latches
operating at opposite clock phases. In a normal mode latches
operate as a flip-flop where one holds a bubble (a latch

containing no data), the other holds data at any time. This

WO 2018/078451 PCT/IB2017/001485

way back pressure is handled by preventing the incoming data
token from overwriting the existing one.

[0007] The model of CSP, unlike the model of Kahn process
networks (KPNs), 1s expressive enough and allows description
of non-deterministic behavior, such as arbitration and
conditional statements based on the wvalues of tokens. This
enables the designer to exploit CSP for modelling a vast range
of applications where non-deterministic and conditional
behavior are possible to be modeled. Hardware acceleration
using coprocessing is the use of computer hardware to perform
some functions more efficiently than 1is possible in software
running on a more dJgeneral-purpose CPU. Hardware accelerators
may 1include GPUs, FPGAs, novel processor design and custom
ASICs (application specific integrated circuits) .APIs are
the defined interfaces through which 1interactions happen
between a system and applications that use those assets. An
API approach is an architectural approach that revolves around
providing programmable interfaces to a set of services to
different applications serving different types of consumers.
When wused 1in the context of web development, an API 1is
typically defined as a set of hypertext transfer protocol
(HTTP) request messages, along with a definition of the

structure of response messages.

WO 2018/078451 PCT/IB2017/001485

[0008] According to one example, ‘big-data’ 1is defined as
data sets with sizes beyond the ability of current technology,
to capture, manage, and process within a tolerable elapsed
time. Big-data applications, such as eCommerce, machine
learning, social networking, digest large amounts of data to
provide valuable information for end users on the fly.
According to GOOGLE statistics (2011) over 4 million search
queries per minute are received by their servers, and
processed, at about 20 petabytes of information per day. This
amount will grow by orders of magnitude in the near future.
Therefore, powerful acceleration infrastructures, such as
cloud based processing and storage services, are required to
fulfil this enormous demand.

[0009] Cloud computing provides a commoditized source of
computing (i.e., on the fly computing) and reduces the total
cost of infrastructure creation and management as cloud
service providers, such as AMZON EC2, GOOGLE CLOUD and IBM,
offer powerful tooling to manage end user tasks on demand
(i.e., elastically) with unlimited storage. Today, cloud
service providers receive billions of queries per day from
major enterprise customers which requires the cloud
applications (software) to be fast enough in processing data.
The conventional CPU based technologies fail to cope with this

rapid data processing requirement. This has been the reason

WO 2018/078451 PCT/IB2017/001485

why the major cloud service providers have incorporated FPGA
support 1in their infrastructures, e.g. AWS Fl, which allows
the cloud users to deploy their own custom processing units in
the cloud servers on FPGA cards and get accelerated services.
This enhances the computing flexibility and improves
productivity of the cloud applications in terms of processing
time and energy.

[0010] To enable cloud application developers to deploy
their custom processing units suitable FPGA tooling is
necessary. Also, a mechanism that permits software developers
without any hardware skills to synthesize their written
application in a language such as GO, may produce one or more
separate and acceleratable data modules which can be stored

and deployed onto FPGA-based cloud computing infrastructures.

Summary of the Application

[0011] One example embodiment of the present application
may provide a method that includes creating synchronous
hardware accelerators from concurrent asynchronous programs at
software 1level, the method may include at least one of
obtaining input as software instructions describing concurrent
behavior wvia a model of communicating sequential processes
(CSP) of message exchange between concurrent processes

performed via channels, mapping, on a computing device, each

WO 2018/078451 PCT/IB2017/001485

of the concurrent processes to synchronous dataflow
primitives, comprising at least one of Jjoin, fork, merge,
steer, variable, and arbiter, producing a clocked digital
logic description for upload to one or more field programmable
gate array (FPGA) devices, performing primitive remapping of
the output design for throughput, clock rate and resource
usage via retiming, and creating an annotated graph of the
input software description for debugging of concurrent code
for the field FPGA devices.

[0012] Another example embodiment may include an apparatus
configured to create synchronous hardware accelerators from
concurrent asynchronous programs at software level, the
apparatus may include a processor configured to obtain input
as software instructions describing concurrent behavior via a
model of communicating sequential processes (CSP) of message
exchange between concurrent processes performed via channels,
map each of the concurrent processes to synchronous dataflow
primitives, comprising at least one of Jjoin, fork, merge,
steer, variable, and arbiter, produce a clocked digital logic
description for upload to one or more field programmable gate
array (FPGA) devices, perform primitive remapping of the
output design for throughput, clock rate and resource usage

via retiming, and create an annotated graph of the input

WO 2018/078451 PCT/IB2017/001485

software description for debugging of concurrent code for the
field FPGA devices.

[0013] Still another example embodiment may include a non-
transitory computer readable storage medium configured to
store instructions that when executed causes a processor to
perform creating synchronous hardware accelerators from
concurrent asynchronous programs at software level, the
processor being further configured to perform obtaining input
as software instructions describing concurrent behavior via a
model of communicating sequential processes (CSP) of message
exchange between concurrent processes performed via channels,
mapping, on a computing device, each of the concurrent
processes to synchronous dataflow primitives, comprising at
least one of join, fork, merge, steer, variable, and arbiter,
producing a clocked digital logic description for upload to
one or more field programmable gate array (FPGA) devices,
performing primitive remapping of the output design for
throughput, clock rate and resource usage via retiming, and
creating an annotated graph of the input software description

for debugging of concurrent code for the field FPGA devices.

WO 2018/078451 PCT/IB2017/001485

Brief Description of the Drawings:

[0014] FIG. 1 illustrates an example logic flow diagram of
software and FPGA integration according to example
embodiments.

[0015] FIG. 2 illustrates three tier adaptation module of

software and FPGA integration according to example
embodiments.
[0016] FIG. 3 illustrates an example of integration using a

combined compiler approach according to example embodiments.

[0017] FIG. 4 illustrates an example logic circuit diagram
of software FPGA integration with accelerator modules from
main program execution according to example embodiments.

[0018] FIG. 5 illustrates an example logic flow diagram of
performing FPGA programming according to example embodiments.

[0019] FIG. 6 1llustrates an example configuration of
separating and storing accelerator modules on an FPGA
according to example embodiments.

[0020] FIG. 7 illustrates an example network entity device
configured to store instructions, software, and corresponding
hardware for executing the same, according to example

embodiments of the present application.

WO 2018/078451 PCT/IB2017/001485
10

Detailed Description of the Application:

[0021] It will be readily understood that the components of
the present application, as generally described and
illustrated in the figures herein, may be arranged and
designed in a wide wvariety of different configurations. Thus,
the following detailed description of the embodiments of a
method, apparatus, and system, as represented in the attached
figures, 1s not intended to limit the scope of the application
as claimed, but is merely representative of selected
embodiments of the application.

[0022] The features, structures, or characteristics of the
application described throughout this specification may be
combined in any suitable manner in one or more embodiments.
For example, the usage of the phrases “example embodiments”,
“some embodiments”, or other similar language, throughout this
specification refers to the fact that a particular feature,
structure, or characteristic described in connection with the
embodiment may be included in at least one embodiment of the
present application. Thus, appearances of the phrases

AV

in some embodiments”,

AV

“Yexample embodiments”, in other
embodiments”, or other similar language, throughout this

specification do not necessarily all refer to the same group

of embodiments, and the described features, structures, or

WO 2018/078451 PCT/IB2017/001485
11

characteristics may be combined in any suitable manner in one
or more embodiments.

[0023] In addition, while the term “message” has been used
in the description of embodiments of the present application,
the application may be applied to many types of network data,
such as, packet, frame, datagram, etc. For purposes of this
application, the term “message” also includes packet, frame,
datagram, and any equivalents thereof. Furthermore, while
certain types of messages and signaling are depicted in
exemplary embodiments of the application, the application is
not limited to a certain type of message, and the application
is not limited to a certain type of signaling.

[0024] Example embodiments provide a method of producing
synchronous digital designs from a software description
utilizing certain synchronization primitives, including input
in the form of software instructions describing concurrent
behavior via communicating sequential processes (CSP), with
primitives of message passing between concurrent processes via
channels. The 1input may be transformed into a synchronous
(clocked) digital 1logic description suitable for, but not
limited to, being uploaded to one or more field programmable
gate array (FPGA) devices.

[0025] The optimization of the output throughput may be

based on a clock rate and/or resource usage. In operation,

WO 2018/078451 PCT/IB2017/001485
12

engineers may provide a description via direct upload or a
source code management system to a remotely hosted service
which c¢can then transform, deploy, debug and/or test the
software instructions. This may include the use of an
animated graph visualization for the understanding and
debugging of concurrent code for FPGA devices and other
systems. The measurement and collation of timing information
from deployed systems may provide debugging and analysis of
behavior and concurrency.

[0026] Code partitioning is the deployment of software
instructions to hardware of different architectures,
capabilities and/or topologies based on software instructions
and system analysis including but not limited to tools to
analyze and visualize <concurrent Dbehavior of CSP code.
Compiler tooling may permit engineers to target different
hardware, such as FPGAs, GPUs, manycore systems from the same
code Dbase, including analytic decisions for whether to use
dataflow or state machine representations. Deployment tools
can support the deployment of a single or multiple code bases
over a number of connected hardware systems.

[0027] Tools to analyze performance of the systems may
guide operators and software developers in optimizing the
systems. Example embodiments provide for the provisioning of

HTTP based APIs and software systems as a platform as a

WO 2018/078451 PCT/IB2017/001485
13

service, for the compilation, deployment, management,
measurement, analysis and optimization of systems deployed
over a number of connected hardware systems. Other features
include the orchestration of resource and resource
connectivity, dynamic management of resource utilization,
control of resources utilized based on performance requirement
analysis, for example, in response to demand.

[0028] Example embodiments provide a systematic method and
system to enable hardware and software designers to cope with
the ever increasing complexity of computing infrastructures.
The proposed systematized method overcomes the 1lack of
familiarity of developers at a software 1level with the
hardware level challenges such as technology, protocols, data
encoding and clocking details. This bridges the gap between
the software and hardware domain, and increases the
developer’s productivity and capabilities.

[0029] Example embodiments provide a heterogeneous
environment where high-level CSP descriptions are selectively
transformed into FPGA-synthesizable structures. This enables a
software developer to accelerate code without concern for
ftiming issues at system level.

[0030] FIG. 1 illustrates an example FPGA synthesis logic
flow according to example embodiments. Referring to FIG. 1,

the example 100 includes a software description 112 recognized

WO 2018/078451 PCT/IB2017/001485
14

as a common programing language such as GOOGLE’s GO language.
Other implementations, platforms, compilers and/or systems may
be used as readily recognized by one having ordinary skill in
the art. An eTeak synthesis from CSP to synchronous circuits
(SELF) . The main application file or main program may be
parsed and evaluated via a preparatory software tool, such as
BALSA 114. An eTeak compiler may include a front-end 122, a
dataflow network 124 and a back end 126, which may be use the
SELF protocol to adopt synchrony 1in Teak networks of
macromodules.

[0031] The hardware/software partitioner 116 may access the
binary data 170. Synthesis synchronous procedures of eTeak are
adapted to operate with FPGAs by using a third-party synthesis
tool from the FPGA wvendor, such as a XILINX FPGA, to elaborate
the generated VERILOG netlists 132 of the eTeak and perform
resource sharing/mapping, elaboration 142, re-timing and de-
elastization 144 and synthesis 146, and produce bitstreams 152
that are loadable onto FPGA. Those portions of this exemplary
system affect power and performance constraints 160.

[0032] De-elastization (pipelining) as an optimization
technique toward efficiency may include synchronous elastic
circuits of eTeak, which are able to tolerate wvariation in
timing due to their elastic nature. Elasticity could impose a

prohibitive impact on the overall performance of the system,

WO 2018/078451 PCT/IB2017/001485
15

therefore de-elastization is applied as a pipelining method to
remove elasticity (i.e., handshake components of SELF)
selectively from the design and introduce synchronous rigidity
locally into the «circuit. This provides fast synchronous
circuits on a single FPGA, however intra-FPGA communications
remain elastic to tolerate any plausible delays.

[0033] Hardware/software high-level code partitioning may
be used to accelerate high-level CSP codes by using eTeak
synthesis framework to transform software level instructions
to high-performance hardware entities. HW/SW partitioning is
necessary as not every chunk of high-level code is
transformable to hardware efficiently. Therefore, an analysis
mechanism 1is proposed which partitions the high-level code
into chunks and then selects the best transformation procedure
based on the behavioral factors, such as memory accesses,
control and data dependencies, etc.

[0034] This technique can be expanded to cover different
accelerator types, such as GPU and MANYCORE. Different data
access patterns and behavioral characteristics of a section of
code can be used to setup the mapping of that code to
different classes of processing hardware. The optimal
placement can be made, possibly with developer input of code
on accelerator hardware or general CPU in a given

configuration of connected server hardware.

WO 2018/078451 PCT/IB2017/001485
16

[0035] Visualization is important to the general
applicability of the system as the ability of engineers and
designers to understand the concurrent behavior of their
designs is imperative. Visualization of CSP for debugging at
a higher abstraction level may include Teak’s graphical engine
being adopted to wvisualize CSP procedures and provide a
debugging mechanism to software programmers to be able to
trace their concurrent programs in a multi-FPGA system. This
approach could benefit cloud programmers to develop “correct”
concurrent programs for future data center architectures. A
Restful HTTP API and software tool 1is used to enable
developers 1n developing software systems that utilize FPGAs.
The Restful API permits a developer to request that code
provided directly, or in a source code repository is combined
with other infrastructural code and used to produce an FPGA
bitstream, and that this bit stream 1is loaded into an FPGA
located in a datacenter. This infrastructural code would
include interfaces to cover communication with direct attached
memory, main system memory and/or CPU via a system
interconnect, such as QPI, PCIe or NVLink. Other accelerators
and FPGAs vis standard or custom interconnect and other types
of hardware, for example storage may be used.

[0036] Other code provided will be compiled targeting the

host processor attached to said FPGA, and these will be set

WO 2018/078451 PCT/IB2017/001485
17

running by control systems on customer request. The HTTP API
also provides methods to stop, and return resources for use by
other users. Methods are provided to account for resource
usage. Further, the API provides a way to insert trace points
into the FPGA and/or main CPU execution to trace, analyze and
visualize code behavior. A tracepoint is a section of software
code or hardware entity that measures aspects of behavior and
provides a way to inform a monitoring system of the behavior
being measured. Methods could be provided to preprocess trace
data before delivery via HTTP or another Internet messaging
protocol.

[0037] The HTTP API 1is also provided to permit the
reporting and handling of errors 1in a deployed component.
Infrastructure may also be provided for handling of failures
with restart and handover. A software tool to access this API
that works as a part of normal application development flow
provides a developer with access to the above described
functionality. In combination with above described code
development environment, a further HTTP API provides the
ability to run code over a number of separate servers, CPUs,
FPGAs and other potential accelerators utilizing different
methods of interconnection between such elements.

[0038] Deployment from source code control may enable ease

of deployment, APIs and command line tools which are provided

WO 2018/078451 PCT/IB2017/001485
18

to permit a developer to ask for the deployment of code
residing in a cloud or private source code control system,
such as GITHUB. The service would then make a copy of the
code, compile it to FPGA bitstreams, CPU executable binaries
or output for other accelerators, and using rules described in
the source, deploy this configuration over hardware. This
hardware could be hosted in the cloud, or based on a specific
site.

[0039] Additional embodiments may include using GO with
FPGA synthesis by FPGA payloads from the GO language by using
LLVM as an 1intermediate form to transform GO to finite state
machines. This would entail using ‘llgo’ or a similar tool to
compile GO to an LLVM IR representation. Then, in a single or
over multiple passes, convert this representation to finite
state machines. A final pass would then convert the (FSM)
representations to verilog for synthesis with commercial FPGA
tooling. Optimization of the FSM transformation may be done
with directed profiling and feedback to FSM transformation
annotation of communication channels and synthesis.

[0040] List scheduling may be used to optimize clock usage,
which reduces Dbit-width of data paths when possible.
Minimization of clock tree depth can also be used to maximize

parallelism.

WO 2018/078451 PCT/IB2017/001485
19

[0041] In FIG.1 there are three main components to the
system according to the example embodiments. The eTeak
compiler 1s a compiler that includes the Teak front-end 122
and processes dataflow 124 to provide a synchronous backend
126. The hardware/software co-design partitioner 116 provides
a portal for data integration with the eTeak compiler. The
re-timing and de-elastisation module 144 may provide
performance enhancement, timing and synthesis for multiple
bitstreams.

[0042] FIG. 2 illustrates a detailed example of the
processes performed by the eTeak compiler according to example
embodiments. Referring to FIG. 2, the eTeak compiler in FIG.
1 is described in larger detail 200. Three stages take place
to synthesize a high level GO description into digital
circuits, the light weight GO functions are parsed from a main
program file 210, evaluated and mapped onto a Teak
intermediate representation (IR) using a BALSA frontend. The
functions parsed 212-216 from the main file are the basis of
the accelerators placed in memory of the FPGA 244 .Next, in (b)
the TEAK IR 1is synthesized into macro-modules 222-234, the
main constituents of the TEAK dataflow network. Fach macro
has a separate GO/done signal which determines the activation
and termination of a process. Then, 1in part (c) ETEAK

synchronous synthesis backend is exploited to generate FPGA

WO 2018/078451 PCT/IB2017/001485
20

synthesizable circuits. ETEAK uses the SELF protocol to
realize a rigid synchronous communication between the dataflow
primitives. ETEAK synthesized circuits inherit fine grained
elasticity which 1s beneficial in terms of power but the
circuits may suffer from unnecessary handshake overhead
between the primitives. The control of the FPGA may be
performed from a developer workstation 240.

[0043] De-elastization, as an optimization technique, 1is
considered to introduce rigidity to the circuit by balancing
the pipelines which removes the overhead of the fine grained
communication between the primitives. As shown in the figure
above introducing an additional EB to the middle pipeline
permits the tool to remove the associated fork/join pair from
the circuit. For high-level code partitioning (FIG. 1 - b) the
feedback from eTeak is critical in deciding which functions
should reside at the host (PC) and which ones should be
synthesized into hardware (i.e., an accelerator). The
partitioning of the high-level code 1s based on the power,
area and performance feedback received from the runnable
patterns generated.

[0044] The de-elastization process retimes the fine grained
handshake circuits of the eTeak by additional Dbuffer
insertion. This removes unnecessary elastic handshakes from

the c¢ircuit and boosts the clock frequency and hence the

WO 2018/078451 PCT/IB2017/001485
21

throughput. A FPGA-compatible SELF elastic controller may be
used on every data channel and are responsible for handling
back-pressure and realizing elastic communication between the
sequential procedures. The controllers are able to instrument
a pair of D-type flip-flops. Every channel could have 0 to ‘N’
of the control flow blocks.

[0045] Software and hardware may be bridged using an BAXI
interconnect. Entities in the system level view are
sequential processes that communicate wvia channels. The high-
level GO channels are mapped onto communication links in the
hardware infrastructure. Communication between systems 1is
performed either via memory sharing or direct links, such as
PCIe, NVLink, etc. The elastic channels of eTeak enable a
latency-insensitive communication between the computing
entities in the system.

[0046] Multiple accelerator function wunits (AFUs) could
communicate either wvia channels mapped on a communication
medium or via shared memory model using off-chip DRAM or
utilize on-chip memories (BRAM) available on the FPGA. The CSP
model is leveraged toward architecture scalability. The eTeak
generated AFUs provides communication Dbetween the host
processor and the on-board FPGA 1is facilitated and BAXI
wrappers are not shown in this figure for simplicity. There

are techniques ©proposed for multiple AFU communication

WO 2018/078451 PCT/IB2017/001485
22

including network-on-chip (NoC) which requires the AFUs to be
capable of processing/generating packets which requires
routers for packet routing etc. Using the CSP model permits
use of light weight procedures that communicate either using
shared memory model or distributed memory model. Due to the
slack elastic nature of the eTeak dgenerated circuits these
communication types are transformable to each other via
retiming. By taking the available 1logic and the expected
throughput in to account eTeak can apply these transformations
automatically.

[0047] High level language (user interface) functions in GO
language are implemented by the programmer. The GO high-level
description 1is partitioned into host and accelerator codes
(.go). The host code which is the main function and calls the
reminder functions which are compiled using a go-lang compiler
to generate executable files runnable on the host processor
(.exe). The accelerator code 1s synthesized into accelerators.
The Go accelerator code 1is parsed and an abstract syntax tree
(AST) 1is constructed based on the tree format (.go.tree). In
operation, the Teak compiler takes 1in the Balsa AST and
optimizes i1t wvia conventional evaluate (.go.eval) and finish
(go.finish) methods. The output of this step is a network of
procedures in a Teak intermediate representation (IR) format

(.teak). In Teak IR, every process 1s 1in the macro-module

WO 2018/078451 PCT/IB2017/001485
23

format which has separate "go” and “done’ signals to determine
activation and termination of a process.

[0048] eTeak, a synchronous backend, takes the Teak IR file
and introduces a «clock to 1it. Using the syntax directed
translation method procedures in Teak IR, mappings may be
performed onto synchronous (clocked) primitives of {Join,
Fork, Steer, Merge, Variable, Elastic BRlock, Arbiter, Initial,
Reset, Operator}. The output of this step 1is a gate level
netlist in Verilog (.v). Introducing a clock has two major
advantages: with a notion of synchronous timing the scheduling
step is analyzable and optimizable using conventional
synthesis tools and static timing analysis tools.

[0049] With a synchronous behavior data manipulation units
(operators) are re-synthesizable. The generated synchronous
netlist are synthesizable onto FPGAs. eTeak synthesized
circuits are fine grained which 1s beneficial in terms of
power but the circuits may suffer from unnecessary
communication overhead between the primitives. De-
elastisation, as an optimization technique, introduces
rigidity to the c¢ircuit by retiming the pipelines which
removes away The overhead of the fine grained communication
between the primitives.

[0050] eTeak generated Verilog netlists are provided to a

synthesis tool to generate single or multiple bitstreams

WO 2018/078451 PCT/IB2017/001485
24

loadable into one or more FPGA systems. The communication
between the host and the accelerator i1s performed using a set
of shared memory locations. FEach accelerator has go/done
signal that determines its start and finish time. This allows

the host to interact with the accelerator on the FPGA

effectively. A graphical mechanism then permits the high-
level developers to visualize their code (.go) in the form of
a synchronous dataflow graph (.eTeak) 1in which the flow of

data 1s dynamically illustrated according to the timing
information provided by the FPGAs (.timing.report). This
enables the developer to debug the system at post-synthesis
level where the timing information associated with IO and
memories are available.

[0051] Continuing with the same example, mapping onto macro
modules may include a Teak IR being built based on the macro-
module style with separate ‘go’ and ‘done’
activation/termination signals. These modules are linked in
sequence or parallel according to source level directives. The
macro-module architecture contributes to a distributed control
mechanism where the datapath and the corresponding control are
enclosed within a macro-module. Accordingly, modules are
controlled locally through handshaking, thus, whenever data
become available, computation can begin. Based on this, data-

dependent computation becomes possible which means that

WO 2018/078451 PCT/IB2017/001485
25

independent data streaming can exist within a module, which
can significantly influence the performance of the circuit. In
addition, it permits the tool to perform functional
decomposition over a module and define new boundaries.

[0052] Scheduling the macro-modules based on the clock, 1is
also referred to as retiming, which determines the arrangement
between the macro-modules. For scheduling, buffers are
employed on every link/channel to place the execution time
between the macro-module in order. Using this technique, the
out-of-order execution of the macro-modules becomes possible.

[0053] One example embodiment may include a high level
cloud interface that permits the cloud programmer to submit
the 'Go’ implementation of a processing system (e.g. image
processing) up to an acceleration infrastructure and
partitioning the submitted Go description into host and
accelerator codes (.go). With regard to the high-level
patterns, GPUs or multicore architectures may be composed in a
hybrid fashion with FPGAs. The host code is the main function
and calls the reminder functions. The main function 1is
compiled using golang compiler from Google tTo generate an
executable file runnable on the host processor (.bin). The
accelerator code is synthesized into accelerators. A process
may include parsing the high-level go description and produce

an abstract syntax tree (AST) based on the Balsa’s abstract

WO 2018/078451 PCT/IB2017/001485

26
tree format (.go.tree). The Balsa AST is taken by Teak and
optimized wvia conventional evaluate (.go.eval) and finish
(go.finish) methods. The output of this step is a network of

procedures 1in Teak 1intermediate representation (IR) format
(.teak) . In Teak IR every process 1is 1n the macro-module
format which has separate "go” and “done’ signals to determine
activation and termination of a process. A process for
introducing the clock to asynchronous dataflows, named eTeak
includes taking the Teak IR file and introducing the clock
signal to 1ts data holding elements by adopting the SELF
protocol. The process takes the Teak IR and maps it onto
synchronous (clocked) primitives of {Join, Fork, Steer, Merge,
Variable, Elastic Block, Arbiter, 1Initial, Reset, Operator}
described below. The output of this step 1is a gate level
netlist in Verilog (.v).

[0054] The clock may provide a notion of synchronous timing
so the scheduling step 1is analyzable and optimizable using
conventional synthesis tools and static timing analysis tools.
With a synchronous behavior data manipulation units
(operators) are re-synthesizable. The generated synchronous
netlists are synthesizable onto FPGAs. De-elastisation is a
mid-level optimization technique that introduces rigidity
selectively to the c¢ircuit by retiming the pipelines which

removes the overhead of the fine grained communication between

WO 2018/078451 PCT/IB2017/001485
27

the primitives. eTeak synthesized circuits are fine grained
which 1is beneficial in terms of power and reliably but the
circuits may suffer from unnecessary communication overhead
between the primitives. Flasticity is useful for FPGA level
place and routing. De-elastisation keeps elasticity at
communication level between processes and removes it from the
computation domain. Single or multiple bitstreams loadable
onto a FPGA farm are generated using synthesis tools from FPGA
vendors (such as Xilinx’s Vivado).

[0055] An effective scalable communication infrastructure
is needed between the host system and the accelerators. The
communication 1s performed using a set of shared memory
locations on a board. Fach accelerator has go/done signal
that determines its start and finish time. This permits the
host to interact with the accelerators resident on the FPGA
effectively.

[0056] A graphical process that assists the high-level
developers to visualize their code (.go) in form of a
synchronous dataflow graph (.eTeak) in which the flow of data
is dynamically illustrated according to the timing information
(switching traces) provided by the FPGAs (.timing.report).
This enables the developer to debug the system at post-
synthesis level where the timing information associated with

I0 and memories are available.

WO 2018/078451 PCT/IB2017/001485
28

[0057] Macro-module primitives include steer (S) which
chooses an output path based on the input control wvalue
attached to data. The primitives may select channels
depending on availability. Steers are inferred wherever an
if/else or case statement 1is used. Each parametrized output
independently matches the conditions of input and acts like a
data-dependent de-multiplexer. A fork (F) is a
parameterizable component which can carry any number of bits
from 1input to outputs and which brings concurrency to the
circuit by activating two or more macro-modules at the same
time or supplying them with data.

[0058] A merge (M) is an input on one of the input ports is
multiplexed towards the output based on first-come-first-
served policy, thus the 1inputs must be mnutually exclusive.
Merge 1s also parameterizable, which means that it can
function as a data or control multiplexer. A Jjoin (J)
synchronizes and concatenates data inputs. A two-way Jjoin of n
and 0 bits can be used as a conjunction of data and control.
Variable (V)permanent data storage. A variable (V) 1in the
eTeak dataflow network has a single write port and multiple,
parameterizable read ports, and supports multiple read and
write variables mapped onto BRAMs of the FPGA. The ‘reads’
and ‘writes’ are distinguished and placed into separate

stages. Variables permit complicated control activity without

WO 2018/078451 PCT/IB2017/001485
29

incurring the cost of always moving data along with control
around a circuit. ‘wg/wd’ and ‘rg/rd’ (go/done) pairs make all
writes data initiated and control token completed, all reads
control token initiated and data delivery terminated. The
variable can be considered as a multi-bit register in which a
read means assigning the contents of the register to the
output wire. Similarly, a write to a wvariable could be
translated as assigning the current value of the input wire to
the register. Operators (0) including floating point and
other types are the components which can manipulate data.
Inputs are formed into a single word. All data transforming
operations are performed within this component, including
verifying a condition or other operations.

[0059] Initial (I) is a component which holds an initial
value and can insert wvalues, such as activation into the
network. When a top-level module is generated to start over
and over within the loop structure a ‘go’ signal may not
exist. In that case ‘I’ 1initializes the activation at each
round. FElastic buffer (ERBR) is for data storage and channel
decoupling. Buffers provide storage for valid and empty tokens
and they are the only components that initiate and take an
active part in handshaking, all other components are
“transparent” to the handshaking. A buffer may input and store

a new token wvalid or empty from its predecessor 1f its

WO 2018/078451 PCT/IB2017/001485
30

successor buffer has input and stored the token which it was
previously holding. The arbiter (A) takes a number of input
channels, and gives a single output channel, forwarding on any
data from input channels to the output channel, fairly
choosing between concurrent accesses. This component could be
used as a memory oOr a bus arbiter to control several master
accesses. If the masters are clocked at the same speed then
arbiters could be implemented as synchronous arbiters (TeakM)
otherwise they should be realized as asynchronous arbiters.
[0060] One practical example may be for supporting an image
processing application, as an example, that is deployed onto
the cloud and serves for billions of image search queries per
day. Assuming this application 1is implemented in the GO
language, one way of executing this application is by
compiling 1t into machine code (i.e., assembly code) and
executing it on a general purpose machine, such as ARM, IBM
POWER, x86, etc. The generated assembly code will mostly
comprise 32 or 64 bit MOVE, ADD, MULT, LOAD, STORE, type
instructions. In a pipelined processor, each instruction has
to be passed through the pipeline stages, including, for
example, five cycles: Pre.Fetch, Fetch, Decode, Execute,
WriteBack, may be part of the pipeline for every instruction.
[0061] According to the example embodiments, the presented

synthesis flow takes in the 1input description of the

WO 2018/078451 PCT/IB2017/001485
31

application, such as a neural network, and generates a
control-data flow graph, and then maps it into a FPGA friendly
hardware logic. Finally, the target FPGA in the cloud 1is
programmed using the generated logic. This permits the
developer without FPGA skills to program and use the FPGA
technology for computing large-scale big-data, such as image
processing. Unlike processors and GPUs, the Dbitwise
operations, data load/store are customizable, which provides
that the entire computation could be performed using compact
data types vs. full 32-bit floating point.

[0062] In a cloud based 1image processing technology, a
large amount of images are submitted to a storage server in
the cloud (e.g., AWS S3), next a software application that
contains the higher order functions for processing images 1is
deployed onto the cloud application server, depending on the
nature of the application, proper setup usually accompanies
the main source code (i.e., main file) which specifies the
services, HTTP end-points, and other cloud services. For the
sake of consistency with the detailed description, it 1is
assumed that the application is implemented in the GO
language.

[0063] FIG. 3 1illustrates a non-accelerator model 300,
where the source code is parsed, 1linked, and compiled into

machine code (i.e., assembly code) and finally executed on a

WO 2018/078451 PCT/IB2017/001485
32

set of general purpose processors, such as ARM, IBM POWER,
x86, etc. The generated assembly code comprises of 32/64 bit
MOVE, ADD, MULT, LOAD, STORE instructions, along with system
calls to invoke IO, interrupt, and co-processing functions. In
a pipelined processor, each instruction has to enter the
pipeline stages, such as pre.Fetch, fetch, decode, execute,

writeback, etc., as the pipeline 1is ‘general’ for every

instruction. The source code 310 may be accessible via a
cloud interface 312 and a debug interface 314. The server may
include a GO compiler 322 and a go Trace function 318. The

CPU farm 330 in the cloud may have its own memory 332 for
processing main function files and corresponding software
modules for processing images or other data 340 stored in the
cloud.

[0064] FIG. 4 illustrates an example FPGA ©processing
platform with separated accelerator data according to example
embodiments. Referring to FIG. 4, the system 400, 1like
numerals represent like components 1in other figures. The
cloud interface 312 1is 1linked to two separate segments
including the accelerator segment 360 and a GO compiler
segment 322 which is setup to process the main file. The
accelerator segment 360 includes a GO/BALSA/TEAK segment 362,
an ETEAK backend 364 and a FPGA segment 366. The accelerators

parsed from the main file may be forwarded to the FPGA memory

WO 2018/078451 PCT/IB2017/001485
33

space 1in the FPGA farm 350. In this image processing
example, the input description of the application is received,
such as a neural network, and a control-data flow graph 1is
generated and mapped into a FPGA accessible hardware logic.
The target FPGA in the cloud is programmed using the generated
logic, which permits the developer without FPGA skills to
program and use the FPGA technology for computing via a
control device 352. A visualization engine 370 provides a
feedback control feature to illustrate the processed code.
[0065] Unlike processors and GPUs, the bitwise operations
and data load/store are customizable which indicates the
entire computation could be performed using compact data types
vs. full 32 bit floating point data types. This is far beyond
CPU/GPUs. 1In operation, submitting the application (GO source
code) by the developer via the «cloud interface 312, an
application may include a ‘main()’ function and a set of
parsed functions (accelerators) to be called by the main

function. There are also packages to be imported by the main

GO file (.go) that provide several built-in functions such as
runtime () .
[0066] This process may include 1initializing some data

structure by the GO compiler, loading a data structure that is
relevant to the application, which specifies the memory layout

for the application and the arrangement for the machine code

WO 2018/078451 PCT/IB2017/001485
34

for being loaded to memory. Building a parse tree made of
nodes. The parse tree 1is composed of leaves which are
operations, types (references) and values, the parsed content
is derived from the source code. Also, such a tool, such as
BISON 1is a general purpose proprietary tool for generating
parsers and 1is generically described as a general-purpose
parser dJenerator that converts a grammar description for a
context-free grammar into a program to parse that grammar.
Next, compiling the parse tree nodes (operations, types and
values) 1into assembly code may be performed. Then, creating
an object file (.0) that contains structure information to the
external references such as other object files and a GO
runtime, and loading object files 1into data/instruction
memories after resolving the external references and
generating an executable machine code by a cloud service.
[0067] At runtime, managing the reachable nodes and
removing unreachables by a garbage collector may be performed,
and initializing the memory allocator, cache, TLS table and
heap sizes, may also be performed. Continuing with the same
example, executing the ‘Go’ routines as separate threads may
be performed by executing them on the multi/many core
processors. As stated above GO is a concurrent language, the
main function spawns GO routines to carry out tasks

independently. The operating system is the one responsible for

WO 2018/078451 PCT/IB2017/001485
35

organizing the threads based on their data availability and
dependency on other threads. The ideal situation is when each
thread could run on a separate core of a processor. Each
thread loads data from its memory, processes 1it, and writes
the data back to memory.

[0068] Reporting the final results back to a user, after
the program finishes the execution when ‘all’ of spawned
threads complete their task 1s also helpful to view the
result. The report could be in any format depending on the
source code specification, e.g. a graph, a table, or a raw
file containing output wvalues. Also, reporting the runtime
information/debug/traces back to the user upon request may
also be performed. Runtime results are the monitored
information by the cloud provider, and are used for profiling
the application and identifying it’s attributes in terms of
communication and computation, memory read/write rates, etc.
Those items could be used to unlock the deadlocks which is
likely to occur in concurrent applications.

[0069] FIG. 5 illustrates an example flow diagram of
managing data for FPGA execution according to example
embodiments. Referring to FIG. 5, the method 500 may include
submitting an application (i.e., GO source code) via a cloud
interface, this may include a main function 512. A variety of

functions may be parsed from the main function during

WO 2018/078451 PCT/IB2017/001485
36

processing 514, this may include partitioning the code into
the main and accelerator functions to reduce a size of the
main function. For example, by separating the main function
from the accelerators/functions, which is the major caller
that controls the sequence of initiations and terminations of
the accelerators from the accelerator functions, which are the
callees that do a particular task in hardware on FPGA, the
result 1s one main file and two or more accelerator
files/modules. The main function will be smaller in size 516
and will call the created accelerator modules 518 or files 516
from the FPGA memory when referenced from the main file
execution. The main function can then be compiled using a
compiler and the accelerators using the presented compiler.
Since the main function is the only function/file being
compiled at this time 522, the compiler of the main function
is able to generate an executable file without the accelerator
function being part of this operation, which provides for a
much faster result. Later the main and the accelerator

functions will be sharing a memory block for communication in

the FPGA.
[0070] The accelerator functions are parsed and mapped to a
mid-level dataflow graph. Separately, the accelerator

functions are parsed and mapped to abstract syntax trees, such

as parse trees. Then nodes are mapped to primitives (i.e.,

WO 2018/078451 PCT/IB2017/001485
37

Join, Fork, Merge Steer, Channels, Variables). The dataflows
are pipelined by iteratively going through the graph (i.e.,
de-elastization). In this operation, channels are buffered
using extra memory blocks to avoid deadlocks, unnecessary
stalls 1n processing, and to de-synchronize the processes.
This technique is also known as slack matching, pipelining or
retiming.

[0071] Continuing with the same example, the accelerators
are compiled into VERILOG RTL logic using the ETEAK compiler.
The process of synthesizing provides for asynchronous graphs
of TEAK being introduced with a timed (i.e., clocked)
procedure which makes them synthesizable onto FPGAs.
Transforming the asynchronous procedures into one or several
synchronous logic units 1is performed via the main function
separation from the accelerator files. The generated logic
may be wrapped in proper shells to enable interaction with the
environment (e.g., PCIle), off-chip memories (DDR3/4, Flash),
DMAs, etc. Shells may be VERILOG RTL implementations which
facilitate the communication between the accelerators and the
environment by coupling the input/output channels of the
accelerators to the shared memory locations wvisible to the
processor and any computer system. Deploying an object file
executable on a CPU and the FPGA programmable bitstream, which

use shared memory model to communicate initiation and

WO 2018/078451 PCT/IB2017/001485
38

termination of the accelerators, 1s performed by a cloud
service manager and based on the content of the main file 524.
When reporting the results back to the developer, after the
program finishes execution 526, the report could be in any
format depending on the source code specification, e.g. a
graph, a table, or a raw file containing output values. It is
also possible to transfer information via API gateways to the
user provided by the cloud service to provide output over HTTP
to a user’s web page, in one example.

[0072] Runtime results are based on the monitored
information by the cloud provider, and are used for profiling
the application and identifying its behavior 1in terms of
communication and computation, memory read/write rates, etc.
Such information could be used to unlock the deadlocks which
are plausible to occur in concurrent applications. To trace
the behavior of the accelerator, a debug core is inserted into
the FPGA, this 1is provided by the hardware development
environment. The ‘accelerators’ may be defined as accelerable
portions of the source GO code, which are either specified
explicitly by the user and implemented as a separate function
marked by the compiler implicitly as software patterns that
could significantly benefit from being synthesized onto FPGAs,
e.g., loops in SIMD or VLIW form, iterative data manipulation

in For-Loops that could be unrolled and pipelined, etc.

WO 2018/078451 PCT/IB2017/001485
39

[0073] One example of a GO main file prior to modified
structure (i.e., a modified main) may provide
// A concurrent prime sieve
package main
// Send the sequence 2, 3, 4, ... to channel 'ch'.
func Generate(ch chan<- int) {
for i := 2; ; i++ {

ch <- 1 // Send 'i' to channel 'ch'.

}
// Copy the wvalues from channel 'in' to channel
'out',
// removing those divisible by 'prime'.
func Filter(in <-chan 1int, out chan<- 1int, prime
int) {
for {
i := <-in // Receive value from 'in'.
if i%prime != 0 {

out <- i // Send 'i' to 'out'.

// The prime sieve: Daisy-chain Filter processes.

WO 2018/078451 PCT/IB2017/001485

40
func main () {
ch := make(chan int) // Create a new channel.
go Generate(ch) // Launch Generate
goroutine.
for i := 0; 1 < 10; i++ {
prime := <-ch

print (prime, "\n")
chl := make(chan int)
go Filter(ch, chl, prime)

ch = chl

[0074] As may be observed from the main function, the
‘Filter’ and ‘Generate’ functions are defined as specific
computational functions included within the original main file
and then called in the main function as noted above.
According to example embodiment, the accelerator files can
pull the functions out and store them in FPGA memory spaces,
and the main function can use a replacement bit in memory as a
signal to begin processing. The memory stores the generate
results, initiations and terminations, which have taken place
in the main function.

[0075] FIG. © 1illustrates an example FPGA optimization

procedure according to example embodiments. Referring to FIG.

WO 2018/078451 PCT/IB2017/001485
41

6, the system 600 includes a main file or program 610 which is
processed to create a modified main portion 612 and a set of
accelerators 614 as extracted functions from the main file.
The FPGA 620 may be include core FPGA components and a shared
memory space62l used to store the separate accelerators 622-
628. The accelerators may be linked to shared memory via
channels designated by the accelerator definitions or the main
function. The FPGA may also have a processor 623 for
executing instructions. In the example of the 1image
processing of large scale images associated with a search
engine query, the storage service 630 in the cloud may store a
large number of files 632, which may be relevant to the query
received. For example, 1f a user submitted a query for dogs
or dogs wearing hats, all such images associated with the
search engine and stored in the cloud may be retrieved and
sorted according to FPGA logic stored in the accelerators. 1In
order to provide real time results, the accelerators may be
organized wvia channels and may have a correspondence with a
main file from which they were originally derived. The result
of the wvarious accelerators being executed may yield image
results organized in a manner consistent with the query.

[0076] In one example embodiment, a method of operation may
include identifying a main function at a compiler module,

parsing a plurality of functions from the main file, creating

WO 2018/078451 PCT/IB2017/001485
42

a modified main function without the plurality of functions,
and creating a plurality of accelerator modules and storing
the plurality of accelerator modules on a field programmable
gate array (FPGA) memory space of a FPGA. The method may also
include executing the modified main function, calling the
accelerator modules on the FPGA memory space based on the
executed modified main function, and providing a result of the
modified main function execution to a computing device.

[0077] The main function is a function that calls multiple
functions/accelerators or sub-functions, submitted through the
cloud interface. The main function is the function/file that
calls the accelerators, initiates the accelerators/sub-
functions. In this example, once the functions are removed,
the main function may still reference and identify those
functions. When the main function 1is submitted to a
preprocessing stage, via an API or cloud service provider, the
main function may include several function calls, such as GO
keyword routines. Once the main file is compiled, the data
response 1is returned as having been processed. A GO function
may read this data and the accelerators are created based on
the original content of the main function. The main function
may enable a data realization, such as a graph or other
reporting feature. The compiler may be a ‘GO’ compiler that

parses the source code, exports the code and creates a

WO 2018/078451 PCT/IB2017/001485

43
runtime. The functions are parsed to create executable files
or the accelerators. The accelerators are ordered based on
their order to be called by the main function. The main

function can be linked to graphic functions, which are written
and identified by the main function ‘.exe’. An accelerator
may have a data pending status, the accelerators may be
ordered especially if the pending data from one accelerator
(Al) is not available or is available via another accelerator
(A2) . In this example, A2 may finish processing first, and
then Al can Dbe called accordingly, depending on the
dependency. The channels between accelerators may be written
as channel keywords, for example, the main function may create
a channel as a memory block/pointer, such as a memory address
in the FPGA. Accelerator ‘Al’ may create a channel as a
memory location, the channels can be mapped as any
communication 1link, for example, a command to read to a
specific memory location. The main function will Dbe
maintained outside the FPGA and 1s processed via a CPU, while
the accelerators are stored in the FPGA memory. The channel
may be a PCI or PCIe 1link, memory location, in the hardware,
but 1s identifiable as a communication medium, which are
passed to the accelerators as pointers, and which are mapped
between accelerators, and can be referred to as mappings. The

channels are also communication mediums which may work with

WO 2018/078451 PCT/IB2017/001485
44

BRAM and ERAM. The channels are created as mappings within
the FPGA when the accelerators are created and placed in the
FPGA memory space. The channels are identified from the
accelerators and are placed in the accelerators and utilized
by the main function.

[0078] The parsing is performed by identifying functions.
The functions can be identified wvia their code parameter type
(i.e., ‘function’ code naming convention). The syntax tree
that is generated during the parsing is mapped from every node
in the tree to machine <code or a hardware description
language. The nodes are primitive, such as data flow
primitives, Jjoin, fork, etc. Fach node in the parse tree 1is
mapped to a macro-module to identify the dependencies, such as
nodes requiring other nodes, predecessor nodes required for
other nodes. The tree has nodes and edges and the edges are
the dependencies between the nodes, the nodes/macro-modules
are implemented to be mapped to TEAK primitives. A clock can
be used to synchronize the VERILOG netlist which is
deployable/readable onto FPGA. The CPU performs run time,
library 1linking, maintains accelerator references, table,
pointers, addresses, the addresses to the memory in the FPGA.
The result may be based on shared CPU vs. FPGA memory spaces,
the completion of the main modified file may be performed by

the main file execution reading the FPGA memory spaces and

WO 2018/078451 PCT/IB2017/001485
45

utilizing the accelerators. The result will include the data
processed by the accelerators being transferred to an API
interface or other application. Some examples of a final
result may be the results of a query, or other result may be
returned, such as an array of data to be plotted, search
engine results which are transformed into a web browser
interface.

[0079] Continuing with the same example embodiment the
accelerator modules may be accessed during executing of the
modified main function via channels ©performed wvia the
compiler. The parsing of the plurality of functions from the
main function may further provide identifying instances of
functions, identified by function syntax, such as ‘func’ and
removing code associated with the plurality of functions from
the modified main function and leaving calls to the functions
by name. The example method may provide creating different
ones of the plurality of accelerator modules corresponding to
each of the identified functions. The method may also provide
calling at least one of the plurality of accelerator modules
from the accelerator modules from a defined channel
corresponding to a memory location in the FPGA memory space.
However, the main function 1s processed wvia a processor
outside the FPGA, such as a CPU. The creating of the modified

main function further includes creating references to each of

WO 2018/078451 PCT/IB2017/001485
46

the parsed functions and a reference to memory space
locations, associated with the ©plurality of accelerator
modules, in the modified main function.

[0080] Another example embodiment may provide a method of
creating synchronous hardware accelerators from concurrent
asynchronous programs at software level, the method may
include obtaining input as software instructions describing
concurrent behavior via a model of communicating sequential
processes (CSP) of message exchange between concurrent
processes performed via channels, mapping, on a computing
device, each of the concurrent processes to synchronous
dataflow primitives, comprising at least one of join, fork,
merge, steer, variable, and arbiter, producing a clocked
digital 1logic description for upload to one or more field
programmable gate array (FPGA) devices, performing primitive
remapping of the output design for throughput, clock rate and
resource usage via retiming, and creating an annotated graph
of the input software description for debugging of concurrent
code for the field FPGA devices.

[0081] Continuing with the same example, the method may
also include identifying a main function, parsing a plurality
of functions from the main function, creating a modified main
function without the plurality of functions, creating the

synchronous hardware accelerators based on the plurality of

WO 2018/078451 PCT/IB2017/001485
47

functions and storing the synchronous hardware accelerators on
a field programmable gate array (FPGA) memory space of the
FPGA, executing the modified main function, calling the
synchronous hardware accelerators on the FPGA memory space
based on the executed modified main function, and providing a
result of the modified main function execution to the
computing device.

[0082] The synchronous hardware accelerators are accessed
during executing of the modified main function via channels.
The parsing of the plurality of functions from the main
function further includes identifying instances of functions,
identified by function syntax, and removing code associated
with the plurality of functions from the modified main
function. The method may also include creating a different
one of the synchronous hardware accelerators corresponding to
each of the identified functions, and calling at least one of
the synchronous hardware accelerators from at least one other
of the synchronous hardware accelerators from at least one of
the channels corresponding to a specific memory location in
the FPGA memory space. The main function is processed via a
processor outside the FPGA, and wherein creating the modified
main function further comprises creating references to each of

the parsed functions and at least one reference to memory

WO 2018/078451 PCT/IB2017/001485
48

space locations, associated with the synchronous hardware
accelerators, in the modified main function.

[0083] The operations of a method or algorithm described in
connection with the embodiments disclosed herein may be
embodied directly in hardware, in a computer program executed
by a processor, or 1in a combination of the two. A computer
program may be embodied on a computer readable medium, such as
a storage medium. For example, a computer program may reside
in random access memory (“RAM”), flash memory, read-only
memory ("ROM™) , erasable programmable read-only memory
("EPROM”), electrically erasable programmable read-only memory
("EEPROM”), registers, hard disk, a removable disk, a compact
disk read-only memory (“CD-ROM”), or any other form of storage
medium known in the art.

[0084] An exemplary storage medium may be coupled to the
processor such that the processor may read information from,
and write information to, the storage medium. In the
alternative, the storage medium may be 1integral to the
processor. The processor and the storage medium may reside in
an application specific integrated circuit (“ASIC”). In the
alternative, the processor and the storage medium may reside
as discrete components. For example FIG. 7illustrates an
example network element 700, which may represent any of the

above-described network components of the other figures.

WO 2018/078451 PCT/IB2017/001485
49

[0085] As illustrated in FIG. 7, a memory 710 and a
processor 720 may be discrete components of the network entity
700 that are used to execute an application or set of
operations. The application may be coded in software 1in a
computer language understood by the processor 720, and stored
in a computer readable medium, such as, the memory 710. The
computer readable medium may be a non-transitory computer
readable medium that includes tangible hardware components in
addition to software stored 1in memory. Furthermore, a
software module 730 may be another discrete entity that is
part of the network entity 700, and which contains software
instructions that may be executed by the processor 720. In
addition to the above noted components of the network entity
700, the network entity 700 may also have a transmitter and
receiver pair configured to receive and transmit communication
signals (not shown).

[0086] Although an exemplary embodiment of the system,
method, and computer readable medium of the present invention
has been illustrated in the accompanied drawings and described
in the foregoing detailed description, it will be understood
that the invention is not limited to the embodiments
disclosed, but is capable of numerous rearrangements,
modifications, and substitutions without departing from the

spirit or scope of the invention as set forth and defined by

WO 2018/078451 PCT/IB2017/001485
50

the following claims. For example, the capabilities of the
various embodiments can be performed by one or more of the
modules or components described herein or in a distributed
architecture and may include a transmitter, receiver or pair
of Dboth. For example, all or part of the functionality
performed by the individual modules, may be performed by one
or more of these modules. Further, the functionality described
herein may be performed at wvarious times and in relation to
various events, internal or external to the modules or
components. Also, the information sent between various modules
can be sent between the modules wvia at least one of: a data
network, the Internet, a voice network, an Internet Protocol
network, a wireless device, a wired device and/or via
plurality of protocols. Also, the messages sent or received by
any of the modules may be sent or received directly and/or via
one or more of the other modules.

[0087] One skilled in the art will appreciate that a
“system” could be embodied as a personal computer, a server, a
console, a personal digital assistant (PDA), a cell phone, a
tablet computing device, a smartphone or any other suitable
computing device, or combination of devices. Presenting the
above-described functions as being performed by a “system” is
not intended to 1limit the scope of the present invention in

any way, but 1is intended to provide one example of many

WO 2018/078451 PCT/IB2017/001485
51

embodiments of the present invention. Indeed, methods,
systems and apparatuses disclosed herein may be implemented in
localized and distributed forms consistent with computing
technology.

[0088] It should be noted that some of the system features
described in this specification have been presented as
modules, in order to more particularly emphasize their
implementation independence. For example, a module may be
implemented as a hardware circuit comprising custom very large
scale integration (VLSI) circuits or gate arrays, off-the-
shelf semiconductors such as logic chips, transistors, or
other discrete components. A module may also be implemented
in programmable hardware devices such as field programmable
gate arrays, programmable array logic, programmable logic
devices, graphics processing units, or the like.

[0089] A module may also be at least partially implemented
in software for execution by wvarious types of processors. An
identified unit of executable code may, for instance, comprise
one or more physical or logical blocks of computer
instructions that may, for instance, be organized as an
object, procedure, or function. Nevertheless, the executables
of an identified module need not be physically located
together, but may comprise disparate instructions stored in

different locations which, when Jjoined 1logically together,

WO 2018/078451 PCT/IB2017/001485
52

comprise the module and achieve the stated purpose for the
module. Further, modules may be stored on a computer-readable
medium, which may be, for instance, a hard disk drive, flash
device, random access memory (RAM), tape, or any other such
medium used to store data.

[0090] Indeed, a module of executable code could be a
single instruction, or many instructions, and may even be
distributed over several different code segments, among
different programs, and across several memory devices.
Similarly, operational data may be identified and illustrated
herein within modules, and may be embodied in any suitable
form and organized within any suitable type of data structure.
The operational data may be collected as a single data set, or
may be distributed over different locations including over
different storage devices, and may exist, at least partially,
merely as electronic signals on a system or network.

[0091] It will be readily understood that the components of
the invention, as generally described and illustrated in the
figures herein, may be arranged and designed in a wide variety
of different configurations. Thus, the detailed description
of the embodiments is not intended to limit the scope of the
invention as claimed, but is merely representative of selected

embodiments of the invention.

WO 2018/078451 PCT/IB2017/001485
53

[0092] One having ordinary skill in the art will readily
understand that the invention as discussed above may be
practiced with steps in a different order, and/or with
hardware elements in configurations that are different than
those which are disclosed. Therefore, although the invention
has been described based upon these preferred embodiments, it
would be apparent to those of skill in the art that certain
modifications, variations, and alternative constructions would
be apparent, while remaining within the spirit and scope of
the invention. In order to determine the metes and bounds of
the 1invention, therefore, reference should be made to the
appended claims.

[0093] While preferred embodiments of the present
application have been described, 1t is to be understood that
the embodiments described are illustrative only and the scope
of the application 1is to be defined solely by the appended
claims when considered with a full range of equivalents and
modifications (e.g., protocols, hardware devices, software

platforms etc.) thereto.

WO 2018/078451 PCT/IB2017/001485

54
WHAT IS CLAIMED IS:
1. An apparatus configured to create synchronous hardware
accelerators from concurrent asynchronous programs, the

apparatus comprising:

a processor configured to:

obtain input that describes concurrent behavior
via a model of communicating sequential processes (CSP)
of message exchange between concurrent processes
performed via channels;

map each of the concurrent ©processes to
synchronous dataflow primitives, comprising at least one
of join, fork, merge, steer, variable, and arbiter;

produce a clocked digital logic description for
upload to one or more field programmable gate array
(FPGA) devices;

perform a primitive remap of the output design
for throughput, <c¢lock rate and resource usage vVvia a
retime; and

create an annotated graph of the input software
description for a debug of concurrent code for the field

FPGA devices.

WO 2018/078451 PCT/IB2017/001485
55

2. The apparatus of <claim 1, wherein the processor 1is
further configured to:
identify a main function;
parse a plurality of functions from the main
function;
create a modified main function without the
plurality of functions;
create the synchronous hardware accelerators based
on the plurality of functions and store the synchronous
hardware accelerators on a FPGA memory space of the FPGA;
execute the modified main function;
call the synchronous hardware accelerators on the
FPGA memory space based on the executed modified main
function; and
provide a result of the modified main function

execution.

3. The apparatus of <claim 2, wherein the synchronous
hardware accelerators are accessed during an execution of the

modified main function via channels.

WO 2018/078451 PCT/IB2017/001485
56

4, The apparatus of claim 2, wherein the parse of the
plurality of functions from the main function further
comprises an identification of instances of functions,
identified by function syntax, and a removal of code
associated with the plurality of functions from the modified

main function.

5. The apparatus of <claim 4, wherein the processor 1is
further configured to <create a different one of the
synchronous hardware accelerators that correspond to each of

the identified functions.

6. The apparatus of «claim b5, wherein the processor is
further configured to call at 1least one of the synchronous
hardware accelerators from at least one other of the
synchronous hardware accelerators from at least one of the
channels that correspond to a specific memory location in the

FPGA memory space.

7. The apparatus of claim 2, wherein the main function is

processed via a processor outside the FPGA.

WO 2018/078451 PCT/IB2017/001485
57

8. The apparatus of c¢laim 2, wherein creation of the
modified main function further comprises a <creation of

references to each of the parsed functions.

9. The apparatus of claim 2, wherein creation of the modified
main function further comprises at least one reference to
memory space locations, associated with the synchronous

hardware accelerators, in the modified main function.

WO 2018/078451 PCT/IB2017/001485

1/7
100
Software Description Balsa IR (Parse,
in Go Eval, Finish)
112 114
4 I N
Teak Front-
end
122
Hardware/ %_ A
Bi Software Co- g Dataflow
|1n7a:)ry design —* O Network
Partitioner x 124
(3]
116 2
\. J (]
Synchronous
back-end
126
\. J
PRSI r = S) \ 4
Area, Power, . Elaboration)
Performance 142 Verilog RTL
Constraints : . J 132
) 160 r \
IETTPORURURPPLLE ’ Re-timing and
De-Elastisation
144
\ S
[Synthesis) Multiple
146 Bitstream
S g 152
FPGA
140
\. J

FIG. 1

WO 2018/078451 PCT/IB2017/001485

2/7
00
(a) Go-lang
) m Specification
func a() { *
3 (Package, Func, Struct,
212 P Pointer, Channel, Buffers,
Variable, etc.)
func main() { | n N
o} D | func b() {
210 oy
— 214
M M]
299 24 le 'Véze (b)Teak Intermediate
Representation (IRz
(Macro-modules: Ports, Links,
" T Accesses,Procedures,
| 228 232 Components)
./
)
M
234
N /
opt: De-Elastisation
(by balancing the pipelines some (C) eTeak SynChronOUS
components are removable) . (ClOCked) BaCkend
v AN E (Fork, Join, Merge, Steer, Variable,
é é EBuffer, Memory, Combinatorial)
i data_out
data_in H H
Memory
(DRAM,
NVMe,
j—— etc.)
240 244
Host T Accelerator Memory
on FPGA on FPGA

FIG. 2

WO 2018/078451 PCT/IB2017/001485
3/7

00

Source Code

310
Cloud Interface Debug Interface
312 314 Web Server
A 4
Parser
Go Importer
Compiler | Exporter Go :;I'1R;ace
322 Semantic
Runtime =
L 2
Momory Storage
Farm 332 data
330 340

FIG. 3

WO 2018/078451 PCT/IB2017/001485

4/7
00
Source Code
310
ACCELERATOR * *
SE%EAOENT Cloud Interface Debug Interface Web Server
312 314
P Go-Balsa-Teak
362
Go * Visualization
Compiler eTeak Backend Engine
322 364 370
MAIN/ v
HOST FPGA Segment A
366
v
Cloud
Eg FPGA Farm Mooy <||: Storage
350 data 340
Control
Device
352

FIG. 4

WO 2018/078451

00

577

IDENTIFYING A MAIN FUNCTIONAT A
COMPILER MODULE
512

:

PARSING A PLURALITY OF FUNCTIONS
FROM THE MAIN FUNCTION
514

I

CREATING A MODIFIED MAIN FUNCTION
WITHOUT THE PLURALITY OF FUNCTIONS
516

l

CREATING A PLURALITY OF ACCELERATOR
MODULES AND STORING THE PLURALITY
OF ACCELERATOR MODULES ON AN FPGA
MEMORY
518

|

EXECUTING THE MAIN FILE
522

l

CALLING THE ACCELERATOR MODULES ON
THE FPGA MEMORY BASED ON THE
EXECUTED MAIN FUNCTION
524

I

PROVIDING A RESULT OF THE MAIN
FUNCTION EXECUTION TO A COMPUTING
DEVICE
526

FIG. 5

PCT/IB2017/001485

WO 2018/078451

6/7

00

MAIN
610

y

y

MODIFIED MAIN ACCELERATORS
612 614
I l l |
A1 OF A2 OF A3 OF AN OF
N N N N
622 624 626 628
1 I]]
-
FPGA
MEMORY 620 PROCESSOR
621 623
STORAGE
SERVICE
630
FILES
632

FIG. 6

PCT/IB2017/001485

WO 2018/078451 PCT/IB2017/001485
717

PROCESSOR MEMORY
720 710
I A
SOFTWARE
MODULE <
730

FIG. 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2017/001485

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/36 GO6F17/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, INSPEC

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X MAHDI JELODARI MAMAGHANI ET AL: 1
"Asynchronous Dataflow De-Elastisation for
Efficient Heterogeneous Synthesis",
2016 16TH INTERNATIONAL CONFERENCE ON
APPLICATION OF CONCURRENCY TO SYSTEM
DESIGN (ACSD),
19 June 2016 (2016-06-19), pages 104-113,
XP055451166,
DOI: 10.1109/ACSD.2016.22
ISBN: 978-1-5090-2589-3
A the whole document 2-9

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

15 February 2018

Date of mailing of the international search report

23/02/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Renault, Sophie

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2017/001485

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

SAUL J M ED - SPRAGUE R H JR:
"Hardware/software codesign for FPGA-based
systems",

SYSTEMS SCIENCES, 1999. HICSS-32.
PROCEEDINGS OF THE 32ND ANNUAL HAWAI I
INTERNATIONAL CONFERENCE ON MAUI, HI, USA
5-8 JAN. 1999, LOS ALAMITOS, CA, USA,IEEE
COMPUT. SOC, US,

5 January 1999 (1999-01-05), page 10pp,
XP032348178,

DOI: 10.1109/HICSS.1999.772879

ISBN: 978-0-7695-0001-0

Introduction

US 20137262073 Al (ASAAD SAMETH W [US] ET
AL) 3 October 2013 (2013-10-03)

abstract

STEFANOV T ET AL: "System design using
Khan process networks: the Compaan/Laura
approach",

DESIGN, AUTOMATION AND TEST IN EUROPE
CONFERENCE AND EXHIBITION, 2004.
PROCEEDINGS FEB. 16-20, 2004, PISCATAWAY,
NJ, USA,IEEE, 1730 MASSACHUSETTS AVE., NW
WASHINGTON, DC 20036-1992 USA,

16 February 2004 (2004-02-16), pages
340-345V01.1, XP032396460,

DOI: 10.1109/DATE.2004.1268870

ISBN: 978-0-7695-2085-8

the whole document

ANDRE SEFFRIN ET AL:
"Hardware-accelerated execution of
Pi-calculus reconfiguration schedules",
FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2011
INTERNATIONAL CONFERENCE ON, IEEE,

12 December 2011 (2011-12-12), pages 1-8,
XP032096861,

DOI: 10.1109/FPT.2011.6132710

ISBN: 978-1-4577-1741-3

abstract

1-9

1-9

1-9

1-9

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1B2017/001485
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2013262073 Al 03-10-2013 DE 112013000758 T5 18-12-2014
GB 2514503 A 26-11-2014
US 2013262073 Al 03-10-2013
US 2016063155 Al 03-03-2016
WO 2013148409 Al 03-10-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - wo-search-report
	Page 68 - wo-search-report
	Page 69 - wo-search-report

