A 00O O A

3/107183 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 December 2003 (24.12.2003)

PCT

(10) International Publication Number

WO 03/107183 Al

(51) International Patent Classification”: GOG6F 9/445

(21) International Application Number: PCT/US03/18588

(22) International Filing Date: 11 June 2003 (11.06.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/387,969 12 June 2002 (12.06.2002) US

(71) Applicant (for all designated States except US): FS-
LOGIC INC. [US/US]; 363 North University Ave., Suite
112, Provo, UT 84601 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BLASER, Jared,
R. [US/US]; 419 North Palisade Drive, Orem, UT 84097
(US). COOK, Randall, R. [US/US]; 894 South 1650 East,
Springville, UT 84663 (US).

(74) Agent: ROBINSON, Everett, D.; Parsons Behle & la-
timer, 201 South Main Street, Suite 1800, Post Office Box
45898, Salt Lake City, UT 84145-0898 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
EBurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEMS AND METHODS FOR THE CREATION OF SOFTWARE PACKAGES USING LAYERED SYSTEMS

Applications

| 104

A
A J

Layering System Libraries/Software

Operating System File System and Registry Libraries

A
\]

Layer Manager
100—"|
A
¥
102—_|
Management API
A
v
106’\‘
108—"|
Y |
L J
Base OS
110—"|

Layer Information | _——112

(57) Abstract: The inventions relate generally to computer systems having facilities for providing virtual portions of file systems
and configuration settings to applications. More particularly, the inventions relate to methods of capturing software packages us-
ing layered computing systems and software package products produced by those methods. An exemplary system includes a base
operating system (110), operating system file system and registry libraries (108), layering system libraries and/or software (106),
applications (104), a management applications programmer interface (102), and a layer manager application (100). Detailed infor-
mation on various example embodiments of the inventions are provided in the Detailed Description below, and the inventions are

defined by the appended claims.

TITLE OF INVENTION

CREATING SOFTWARE PACKAGES USING LAYERED SYSTEMS
[0001]

CROSS-REFERENCE TO RELATED APPLICATIONS

[0002] This application claims the benefit of U.S. Provisional Application No. 60/387,969 filed
June 12, 2002 which is hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTIONS

[0003] Prior computing systems have been susceptible to application conflicts with the host
operating system (OS) and other applications. When an application is installed to an OS, a
number of globally accessible files are often placed to the computing system, including for
example shared libraries and system configuration. Those shared libraries are often provided in
different versions, with applications requiring one version or another. A mismatch between a
library version and a version required by an application sometimes results in that application
crashing, becoming inoperable, or exhibiting other errors. Shared configuration elements are
sometimes globally available to applications, which may write a favored configuration thereto.
Following a write to that configuration other applications may be unable to read the
configuration properly, or may be unable to function under a new specified configuration. Thus
it is that following the installation of an application to a computer, other applications may stop
working.

[0004] Installing a number of applications to a computer can be something of a black art. An
administrator may, with good intentions and understanding, install several applications to a
computer. Upon testing an installation or during use, the administrator or a user may discover
that one or more applications operate errantly or not at all. 1t is usually not apparent which
applications are in conflict. The administrator may enter a procedure in which applications are
uninstalled from the computer in a process of elimination to find the offending applications.
Sometimes de-installation programs do not remove all installed files, in which that procedure
may fail to locate the problem. The administrator is then required to continue by creating a
clean (or virgin) installation, and installing applications one at a time until the problem is located.

When applications are found to conflict, a choice must usually be made as to which one will be
installed. One of the applications is sometimes installed to a different computer to avoid the
conflict. If conflicting applications must be installed to a single computer, a new version of at
least one of the applications must be sought and purchased from the software vendors. A non-

conflicting version may not be available, especially if a vendor is small, not supporting the
application, or no longer in business.

[0005] Snapshot utilities are available, which generally operate to create a database of all
files and registry settings on a computer. Prior to installing an application, a snapshot is taken
of the files and registry settings. The application is then installed, and tested. if the application
fails to work satisfactorily, the system can be restored by comparing the existing files and
registry settings against the snapshot and removing installed files and otherwise restoring the
system as before. Snapshot utilities have several limitations. First, if a newly installed
application causes a prior installed application to fail, it is often not possible to simply revert to a
snapshot made prior to older application installation, especially if there have been other
applications installed in the interim. The administrator may be required to revert back to the
earlier snapshot, and then re-install the intervening applications and the new application.
Additionally, there are usually a limited number of snapshots that can be stored, and thus a
required snapshot may not have been retained when found to be needed.

[0006] Likewise, a system may be restored to an earlier state if backups have been made.
That restoration process, however, usually involves a significant amount of time and destroys all
data recorded to the system after the time of the backup.

[0007] Another method involves recording a series of changes (or “diffs”) to a buffer. Using
that method a system can be restored back to a point in time by reverse application of the diffs
to the file system back to the selected point in time. That method typically requires a fixed
amount of disk space for the diff buffer, which becomes unavailable for regular use. As the
buffer becomes full, the only way to continue to record diffs is to overwrite older diffs. Because
of this limitation, the method can only restore a system back to a date for which diffs remain
available. In addition, this method requires three disk operations per write request: one to read
the existing disk information, one two write the diff, and one to write the original request. This
method is therefore processor and disk intensive.

[0008] The Microsoft Windows ME™ OS includes a feature called “System Restore”. That
system is essentially a snapshot system, and only backs up files related to the OS and installed
applications (not user files).

[0009] A current practice of maintaining computers is to image the hard drive of a computer
while in a working state. If the computer becomes unstable, or if undesirable content appears
on the computer, the computer's drive is restored using the earlier made image. This practice is
lacking in that all changes made following the image creation are wiped off the system when the

2

computer is restored, including user files and other applications.

[0010] Also, some applications are not provided with an uninstall program. To de-install
those applications an administrator is required to know where the application files and settings
reside in the system, and remove them manually.

[0011] Itis therefore apparent that much time and money is expended in the administration of
applications on computing platforms, and thus there is a need for a way to ease the installation
and de-installation of applications, and prevent application conflicts. ‘

BRIEF SUMMARY OF THE INVENTIONS

[0012] The inventions relate generally to computer systems having facilities for providing
virtual portions of file systems and configuration settings to applications. More particularly, the
inventions relate to methods of capturing software packages using layered computing systems
and software package products produced by those methods. Detailed information on various
example embodiments of the inventions are provided in the Detailed Description below, and the
inventions are defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Figure 1 illustrates components of a layering computer system at a conceptual level.
[0014] Figure 2 illustrates an operation of a layering computer system at a conceptual level.
[0015] Figure 3 illustrates components of a particular layering computer system.

1

[0016] Figure 4 illustrates components of a layering computer system at simple organizational
level. ‘

[0017] Figure 5 shows a simplified method for performing read file system operations using a
layered computing system.

[0018] Figure 6 shows a simplified method for performing write file system operations using a
layered computing system.

[0019] Figure 7 shows a simplified method for performing registry operations using a layered
computing system.

[0020] Reference will now be made in detail to some embodiments of the inventions, example
of which are illustrated in the accompanying drawings.

DETAILED DESCRIPTION

[0021] General Concepts

[0022] For the purpose of simplifying the discussion herein, an example computing device
may be referenced. That device is a conventional personal computer or workstation having a
CPU, memory, display, keyboard, mouse, and at least one fixed disk. It will be apparent to one
of ordinary skill in the art that the concepts disclosed herein may apply equally to other
computing systems that are not personal computers, for example diskless workstations,
headless workstations or servers, and embedded systems. Herein it is contemplated that the
inventions may be applied to these and other computing systems, both existing and yet to be,
using the methods and principles disclosed herein.

[0023] Likewise the discussion below speaks of Registries and registry settings, which are
specific to Microsoft Windows™ operating systems. It will be recognized that registry settings
are merely configuration for the operating system and applications installed to a computing
device, accessible through a system-wide APl. The meaning of registries and registry settings
is therefore extended to future Windows operating systems and operating systems other than
Windows, where equivalent structures and access facilities exist thereon.

[0024] In the discussion below, the words “enabled” and “activated” are used interchangeably
to describe layers that are active or enabled on a layering computing system. Likewise, the
words “disabled” and “deactivated” may be used to describe layers that are not enabled or
active.

[0025] Provided in one aspect of the invention are application layers which are isolated from
other applications on a computer. In that aspect, an application layer may be defined to be a
group of files in combination with any associated application configuration stored to operating
system files. An application of a layered system may be an application in the most commonly
used meaning, such as word processors, browsers, system tools, games, and the like, or may
extend to other software installed to a host providing an environment, such as a graphical user

environment or shell. It will be seen that isolating appiication files and configuration in a layer
provides several benefits, including the ability to delete, disable, and enable applications in a
simple way and to provide a barrier between applications which may use conflicting
configuration or library files. The use of a layering system may therefore enhance the stability,
reliability, usability and security of a computing system.

[0026] A layered system introduces a new concept of organizing data from disparate sources
and presenting a virtual view of that data to an operating system and a user. This permits the
real data to be much more logically organized while still presenting to the operating system and
the user an expected view and access of that data. In a sense, a layer is a higher order storage
unit. Because a layer can be managed as a unit for the purposes of exporting, importing,
enabling, disabling, and so on, a computer system and user data can be managed with a
greater degree of flexibility and reliability, also with improved security. As changes to a layered
system are made, the changes are organized while being written, rather than tracking the
changes made. By doing this both a speed penalty and the dedication of large amounts of
storage for images and changes are avoided.

[0027] Depicted in figure 1 are components of a layering computer system at a conceptual
level. A base operating system 110 forms a platform with which applications can be run and
files can be accessed in file systems. Base operating system 110 further has registry settings,
globally available to applications for reading and writing. The system has libraries 108 for
executing the functions of the operating system including operating file systems and registries,
and other operating system functions. Tied into libraries 108 are layering system libraries
and/or software 106 which intercept file system and registry accesses from applications 104.
As accesses are received from applications 104, the layering system software 106 performs
computations to determine whether the accesses should be permitted to continue to the base
operating system 110, or should be redirected to layer information 112, the information relating
to and the contents of files and registry settings. A layer manager application 100 may be
provided to permit control and configuration of the layering system software 106 through a
management APl and library 102.

[0028] Depicted in figure 2 is the operation of a layering computer system at a conceptual
level. An application 200 is running on a layered computing system. This computing system
contains a base file system 206, and two layers labeled “A” and “B”, 204 and 202 respectively.
In this example layer B has priority over layer A, which in turn has priority over the base file
system. A first file access 208 is made by application 200. The layered computing system
determines the owner of the file being accessed. Finding an entry for file access 208 in layer B,
the corresponding file in fayer B is opened and returned to the application. The file access of

5

208 might also correspond to files in layers A or the base file system, however layer B is
determined to be the owner as it has priority over layer A and the base. Another file access 210
is made by application 200. The computing system does not, however, find a corresponding
entry in layer B. An entry is found in layer A, which has priority over the base file system.
Again, if a file existed in the base file system corresponding to the file access, it would be
accessed because layer A is found to be the owner with priority. The computing system is not
able to find corresponding entries in layers A or B for file access 212, so that access is made to
the base file system.

[0029] In figure 4 components of a layering computer system at simple organizational level
are shown. A computing device includes a processor 400, which may also have peripheral
devices attached such as memory, input devices or output devices as desired. Processor 400
interacts with one or more storage devices 402, providing storage for the processor. On
storage 402 is a base operating system 408 and applications 410. A number of layers 404a-n
are also contained on storage 402, each having applications 406a-n.

[0030] In larger aspects, a layer may be defined to be a set of file system and registry
changes, that combination forming an organizational unit that may be managed by layered
system software. In some cases, a layer need not contain registry changes, but only changes
to one or more file systems. In those cases it may be desirable to limit support in the layered
system software to files of file systems. A layer definition may include layer properties and
settings, layer inclusive files, references to those files, registry settings and locations, and a
manifest or directory those file and registry references.

[0031] References may be made inherent, if desired, by locating files and registry settings in
a structure that mirrors a real underlying file system. Such a mirroring system may be
organized in a common directory, with one subdirectory per defined layer, each containing a
mirrored directory structure of the underlying file system.

[0032] An exported layer will contain all of the layer-included information bundled in a
transportable archive. Exported layers may be further bundled into groups, which is especially
useful for layers that rely on other layers, such as layers of a hierarchy or peer layers. For
systems that utilize a mirror structure of an underlying file system, it may be desirable to hide
the mirror structure from applications, except perhaps a manager application, so as to prevent
accidental data modification, loss, or meddling.

[0033] A layer intending to isolate an application has stored thereon the files and directory

structure of the application's installation. When that layer becomes mounted (or enabled),
those application files and directories are shadowed or overlaid over the regular operating
system file system. Shared libraries (such as DLLs), system accessible configuration (such as
registry entries), and version control are managed by the layering subsystem, optionally using
an internal database. Though each layer is a separate and individual entity within the host OS,
the application files, data, and system accessible configuration are presented as if they resided
in their respective ordinary locations. Thus an application stored in a layer appears to the host
OS as if it were installed in the ordinary fashion with the expected functionality.

[0034] For example, suppose a layer existed in a Windows OS environment that specified
that in C:\windows there should be a file called winfile.exe. Suppose that this file did not reside
in the real C:\windows directory. When the layer is not active, a file listing of C:\windows does
not show a winfile.exe. When the layer becomes active, the layering system merges (or
overiays) the real listing of C:\windows and the file list described in the layer. In this example,
applications (and thereby a user) would see all of the files in the real C:\windows directory and
winfile.exe. Registry values in a layer may be handled in a similar manner.

[0035] Shown in figure 5 is a simple method for performing read file system operations using
a layered computing system. A loop is entered beginning at step 500. Execution halts in step
502 pending the receipt of a read request. A determination is then made in step 504 as to
whether or not the file reference of the request is maintained in an enabled layer. To perform
that determination all the layers on the system are generally examined for a virtual file
corresponding to the file reference of the request. If no enabled layer contains such a virtual
file, step 506 executes in which the usual read operation is executed using the file reference of
the request. Otherwise, an owner layer is identified in step 508. For example, if two enabled
layers contain a virtual reference to a file, one will take priority over the other and be identified
as the owner layer. Step 510 then executes, in which a virtual file reference is determined that
corresponds to the file reference of the read request. That virtual file reference might be an
offset and length for a storage device in some systems, a pathname at a mirrored location in
other systems, or other reference. Afterward, the read operation is executed using that virtual
file reference in step 512.

[0036] Figure 6 shows a simple method for performing write file system operations using a
layered computing system. A loop is entered beginning at step 600. Execution halts in step
602 pending the receipt of a write request. A determination is then made in step 604 as to
whether or not the file reference of the request should be captured to an enabled layer. That
determination may be made, for example, by noting the state of the system software is in a
capture state, and in some circumstances by noting the PID of the calling application and

7

parents. If no enabled layer is configured for capture, step 606 executes in which the usual
write operation is executed using the file reference of the request. Otherwise, a capture layer is
identified in step 608. Step 610 then executes, in which a virtual file reference is determined
that corresponds to the file reference of the write request. That virtual file reference might be
an offset and length for an unused portion of a storage device in some systems, a pathname at
a mirrored location in other systems, or other reference. Afterward, the write operation is
executed using that virtual file reference in step 612.

[0037] The read and write operations spoken of in the discussion of figures 5 and 6 may be
performed on some systems through an open() call. A read request, for example, might be a
call to open() with a pathname as a file reference and “r” as an option. Likewise, a write request
might be a call to open with “w” or “+” as an option. In either case, a file handie is returned
which would correspond either to a true file reference (if the file reference is not managed in a
layer) or to a virtual file reference (if the file reference is managed in at least one layer). That
file handle will continue to be used in data read and write operations, and thus the data will be
delivered to and from the correct system locations. Other systems may use other equivalent
methods of opening, reading and writing, and applicable using the methods described herein.

[0038] Figure 7 shows a simple method for performing registry operations using a layered
computing system. The method begins at step 700, following which a pause is executed at step
702 until a request for registry setting operation is received. When a registry setting request is
received, step 704 executes in which a determination is made as to whether or not the request
is to be captured to an enabled layer. If not, step 706 is executed in which a usual registry
function is called, as if layering were not present in the system. Otherwise, step 708 is
performed, in which a destination layer is identified. Step 710 tests the request for a registry
entry creation request. If a creation request was received, step 712 executes in which a virtual
registry entry is created in the destination layer. Otherwise step 714 is performed, testing for a
registry entry deletion request. If positive, step 716 is executed in which either a virtual registry
entry is deleted, if the entry exists in a single layer, or a delete entry is made in the virtual
registry of the destination layer signifying that the registry entry should not appear while that
layer is enabled. If the request is neither a create or delete request, step 718 is performed
testing for a set registry entry request. If positive, step 720 executes creating a virtual setting in
the destination layer.

[0039] As in the above example, layers may contain file and registry deletion references.
Those references may be used where a layer specifies the absence of a file or registry setting,
whereby a specified file or registry setting will appear to be absent from the computing system

only when the layer is enabled.

[0040] The use of a layering system provides several advantages. If applications are stored
individually in layers, interactions between application files may no longer occur due to
conflicting shared libraries (DLLs), as each application 'sees' only it's own installed libraries first,
followed by libraries in the base operating system, those base libraries optionally preceeded by
libraries from other layers if desired. Applications captured in a layer may be safely and
completely uninstalled by simply removing the layer from the host computing system. Different
versions of an application may be stored as layers on a single computer; the user may select a
desired version by enabling the particular layer. A layering system may also extend the file
systems of the OS beyond physical limits if layers are stored on separate disk partitions or
remote file systems. If layering is used for a group of installed applications, the computing
system may be restored to a “virgin” or checkpoint state by removing one or a group of
application layers. The transfer of applications between similar computing systems can be
simplified, in that the transfer may be done simply by moving the layer containing the
application. The bundling of an application and user files into a layer provides a package that
may be compressed or encrypted and transported conveniently. Using a layering system
application vendors can provide 'pre-installed’ applications as layers on CD-ROM or other
media, those applications being pre-tested and guaranteed to work with a high reliability. A
layer also provides a convenient container to limit access to an application, for example for time
limited use or license key access.

[0041] In preferred systems, the enablement and disablement of layers is performed through
a system call. The system drivers control the access of applications to the file system through
the enabled layers, generally without requiring significant access to the system disk or other
storage. In those systems the installation and de-installation of an application can be as simple
as enabling or disabling a containing layer, without requiring the installation or removal of the
applications files from a hard disk. In those systems, time consuming snapshot utilities become
unnecessary.

[0042] In a preferred system, layering only applies to files located to fixed disks and network
drives, each layer spanning one or more fixed disks. In those systems removable disks should
not generally be layered, as a layer generally pertains to the persistent files and configuration
required to operate an application or user environment. It is expected that under most
circumstances user files should be permitted to be saved to a floppy disk or CD-RW, for
example, so a user can transport his files to another computer. Likewise, areas on a fixed disk
may also be reserved for user or other files to be excluded from layering, for example a “my
documents” directory, as desired.

[0043] In some systems it will be advantageous to distinguish layers into a “read-only” and
“read-writable” portions, the read-only portion containing files and configuration as originally
installed and the read-writable portion containing additibns, deletions and modifications to the
original installation. In some circumstances these layers may be referred to as the install
portion (read-only) and the user (read-write) section. A read-writable portion may be global to
all users of a computer. Alternatively a read-writable portion may be provided for each user of a
computer, each read-writable portion being protected from access by other users.

[0044] Some systems provide a multi-user environment providing a facility for an
administrator to designate layers accessible to individual users and another facility to
automatically enable layers on user login and disable layers after a user has logged off. In
those systems an administrator may provide layers accessibie to all users or some users.
Other layers may be provided accessible only to an individual user. In a subset of those
systems a writable layer is provided for each user, providing data protection and isolation
between users.

[0045] A single layer having a read-only and a read-writable portion is equivalent to two
layers, one of which is write protected. In alternate systems, read-only and read-writable layer
portions are individual peer Iéyers; those layer definitions containing a reference to the
accompanying peer layer.

[0046] In layered systems layers may be stacked on top of each other, with the real file
system at the bottom of the stack. If files of the same name and location exist in multiple
layers, or in the base file system, rules can be provided whereby the layered system can
determine which file to present to an application. In some systems, layers include dependency
information. That dependency information may include a list of layer identifiers which are
required to be enabled when a particular layer is enabled. Dependencies may be asserted
when a layer is created, by recording the layers enabled on a layered system at the time of
layer creation. The layering system software may automatically enable all dependent layers
when a particular layer is enabled.

[0047] For ease of configuring and managing a layering system, a manager application may
be provided. The manager application permits an administrator or user to control the
presentation of applications and data on a system, as well as other functions. A manager
application may have facilities for importing and exporting layers, using a standard layer archive
format. That archive format will advantageously be compressed, and may use standard

10

archiving formats, for example those used by 'zip' or 'tar' type applications. A manager
application provides a logical place to contain a facility for changing layered system software
settings. A manager application might provide a viewer to view information about a layer.
Likewise, a layer editor may be provided to edit certain layer information as desired. An editor
might also be provided whereby registry settings and files can be added, removed, or changed
in a layer. A facility for selecting, enabling, and disabling layers and layer groups may also be
provided. Likewise, a facility for defining and editing layer groups may be included, as well as
layer dependency information. A facility for deleting and installing layers may also be provided
in that manager application. That application may also include an interface to cause layered
system software to enter and exit capture modes.

[0048] It may also be desirable to provide a startup layer enablement function, whereby the
computing system starts up a group of layers based on layer configuration. This will be
especially helpful where it is desired not to provide users with non-layered access to the
underlying file system and registry, for example in public settings.

[0049] It may optionally be desired to include variable handling with regard to file system
paths and registry paths. The location of a file or registry setting specified in a layer may
include one or more variables, so as to permit relocation of that object. A variable may be
denoted in many ways, for example by surrounding the variable name with percent “%”
characters. The source of some variable names and values may be from the environment. For
example, Windows operating systems set the “WINDIR” environment variable to the location of
the OS system subtree, for example C:\windows. Including the WINDIR variable in a path may
permit files of a layer to be moved from one Windows system to another, especially if the OS
system subtree resides in different locations on the computers. Other variable values may be
supplied at runtime, for example a “CURRENTUSER?” variable. In that example, the
CURRENTUSER variable is set to a user's login hame while that user is logged in. One use of
the C‘URRENTUSER variable is to provide a layered file reference for a global file that appears
in each user's profile directory. Yet other variable names and values may be stored in a layer
definition. A manager application may provide editing facilities for changing those layer-defined
variables, and for editing the pathnames of virtual files.

[0050] Layer Creation Modes

[0051] Layer creation modes may be provided in a layered system to create new layers
through a “capture” operation. A capture operation is generally started and ended, and uses
the layering software to intercept operations that install, delete, rename or modify files and
configuration such as a registry. If the layering system supports layers having both a readable

11

and read-writable portion, the capture operation may record changes to the readable portion;
that readable portion becoming effectively locked when the capture operation is ended. During
the capture operation changes made by the installation procedure do not affect the base
system, but are rather recorded to the new layer.

[0052] A first layer creation mode is simply called “capture” mode. When that mode is
enabled, all operations by any application to create, modify or delete files are entered into a
layer. This mode is especially helpful in situations where it is desirable to create a new layer for
one or more applications to be installed to the computing system. In an example of a capture
mode operation on a Windows platform, a user first enables capture mode. The user then
executes an application installation program. During the install, all of the applications shared
DLLs, registry entries, and .ini files that would be directed to the Windows system directories
become trapped in the capture layer. Application files that would be placed on file systems
managed by the OS are also redirected into the layer. All of the captured data is held separate
from the regular OS either locally or remotely in a data file, hard disk partition, or some other
container.

[0053] A second layer creation mode is referred to as “capture by PID” mode. That mode is
similar to “capture” mode, with the difference being that only changes made by a particular
process ID (PID) or one of its child PIDs are captured.

[0054] A third layer creation mode is called “delete capture” mode. This mode may be
thought of as the inverse of “capture” mode. Delete capture mode is intended to track all of the
file system and registry deletions that occur and place those files and registry entries into a new
layer. The software (driver) is hooked into the system so that operations that delete, rename, or
modify file system or registry so they can be copied to the capture layer before they are
modified. This mode may be particularly helpful to create a layer of an already instaiied
application. The user enters “delete capture” mode, following which the user activates the
application's deinstallation program. As the application's uninstall program removes files and
registry settings, they are copied to the new layer. When the uninstall is complete, the user
exists delete capture mode. At that time the application does not exist in the regular file system
or registry, but can be activated by the user as it appeared before the uninstall operation by
activating the newly created layer.

[0055] A fourth layer creation mode is called “delete capture PID” mode. That mode

operates in similar fashion to delete capture mode, with the difference that only changes made
by a particular PID and child PIDs are tracked, rather than system-wide changes.

12

[0056] A system supporting layering need not implement a capture mode if an aiternate layer
delivery mechanism is provided, for example a layer import operation or a simple file or file
system copy.

[0057] Use: Application Installation Generator

[0058] Many application installer programs have the ability to create an application install via
a “capture” or “snapshot” process. This process typically involves comparing the state of the
computer system before and after an application install and generating the install information
based on the differences. In a system supporting layers, an application may be captured as
outlined above, creating an installation layer. Because changes are tracked as they occur, no
state comparison needs to be done, saving time. In addition, it is usually recommended that the
“capture” operation be performed on a “clean” or “virgin” system, so the capture process can
capture all the necessary system changes (i.e. won't miss changes due to application pieces
being left over from prior installations.) This requires the user to reinstall the operating system
to get the system into the desired clean state. A layered system may be made clean by
disabling all layers created during installation capture procedures (assuming all install
operations have occurred under capture operations.) After capture of an installation layer, that
layer can be used to install the application at another computer supporting layers, or the
information can be extracted from the layer to provide a file manifest for other installation
programs.

[0059] Use: Software Installation/Uninstallation

[0060] Layers can be advantageously used to provide an installation for an application that is
relatively easy to uninstall. A software vendor builds an application CD (or other media), first
using a capture mode to record a layer of the application installation. That layer is then
exported to a file, which file is then combined with an installation program for the layering
system software, for example to a compact disc. The compact disc will contain an installation
program, which for example might be called 'setup'. The setup program operates first to install
the layering system software, and then import the layer exported to the compact disc into the
destination system. At that point, the subject application is then installed to the destination
system, but isolated in a layer. Because it is isolated, it is protected from corruption from other
applications or meddling, and thus it remains in a known and reliable state, potentially reducing
the number of technical support calis.

[0061] Itis probably desirable to include a banner screen advertising the layering system
software product and providing contact information for product inquiry and support. It may also

13

be desirable to include a layer manager application with the layering system software to allow a
user to enable and disable the application layers or other installed layers, but that is not
necessary for a simple demonstration product.

[0062] As the application is used, it may be desired to record changes to the virtual file
system into the writable portion of a layer. Alternatively, it may be desirable to record some
user files to the underlying file system so those files could be retained if the application layer
was deinstalled or removed, as might be the case for word processing files, CAD files, etc. The
software installer may be given the option to record the software installation of an application
layer into a readable-only portion, so the user cannot inadvertently or otherwise damage the
application installation.

[0063] At some point, it may be desired to remove the application. To do so, the user
removes the layer from his computer, which deinstalls the application and any files or changes
made to the virtual file system. Uninstalling the layering system software is optional, as the
presence of that software would not adversely affect the use of the destination system.

[0064] Through that method, software creators may create a demo version of their software.
These versions might be used to give the end user experience with a software product before a
purchase is made. The advantage of removing changes to the virtual file system is significant,

as many applications do not uninstall cleanly and leave residual files and changes.

[0065] Optionally, functionality might be built into the layering system software that disables
the application layer after a period of time. After such a disabling, a user would have the option
of removing the application layer, or purchasing a license for use of the application. The license
would presumably be accompanied with a license key or other authentication feature verifiable
by the layering system software.

[0066] In another alternative configuration, an application layer is never transferred to a
resident fixed disk, but rather remains resident on the vendor product, compact disc or
otherwise. In that configuration the application layer can only be activated if the vendor product
is readable in a media drive, and littie or no space is taken on resident file systems for the
application installation.

[0067] Use: Secure Applications

[0068] Applications can be protected from unauthorized access through the use of a layered
system. In a first situation, it is desired to protect application files from viewing and copying, for

14

which one solution is described. The layering system software of a suitable system has an
additional feature by which a layer may include an authentication key or token. Any application
of the computing system desiring to open files within the layer must supply a token to the
layering system software before access is allowed. The PID of an authenticating application
may be tracked so that only one authentication step is required. The application layer may
additionally be encrypted, the layering system software performing decryption and encryption
steps at runtime as the application layer is accessed. That system is advantageous in that only
the data of a particular application need be encrypted, reducing the complexities of
bootstrapping into an encrypted file system and modifying system applications to support
encrypted system files.

[0069] In that system authenticating applications will have access to the application files, but
not applications not having a valid authentication token. The authenticating applications can be
constructed such that limited access is permitted to the application files, as desired by the
programmer. For example, an application may store a license key to one of the application's
files. If access were permitted to that file, an unscrupulous user could copy that license key to a
second computer providing illicit access to the application software stored thereon. The
authenticating layered system software is installed to the computer, and an application layer is
constructed and installed to the computer, that layer encrypted using a key constructed with
information specific to the computer, for example a volume label or Ethernet MAC address. A
second application installed to the computer, for example Windows Explorer, cannot view the
application layer files because it does not possess the correct authentication key. A user is
therefore prevented from copying or otherwise accessing the application files, providing security
for the software vendor.

[0070] n a second situation, it is desirable to protect the software from execution by
unauthorized individuals. In that system, the layering system software has a facility for
authenticating a user before enabling a layer.

[0071] Use: Secure Base OS

[0072] In some circumstances it is desirable to regularly restore a computer to a 'virgin' state.
This is sometimes done, for example, by Internet cafes and college computer [aboratories, or
other systems typically used by untrusted users. The computers are regularly reverted back to
a known good state to ensure that users have a stable and working system free viruses and
from potential interference and security risks. The computer restoration is often performed by
writing an image containing all files of the computer to the computer's hard drive made earlier.
A layered computing system can serve better.

15

[0073] To use a layered computing system in a first system protection and restoration mode,
an administrator first installs a base OS and applications to a computer. The administrator then
causes the computer to enter a capture mode, by which all further changes are recorded to a
layer and not to the underlying file systems and OS resources. Users may then use the
computer in an unrestricted fashion, including installing applications, using the Internet, and
even passing (inadvertently) viruses to the computers. At the end of the day (or other period),
the administrator ends the capture mode, deletes the layer, and re-enters capture mode. All
changes made by users are then wiped and the computer is restored to its base state.

[0074] A second system protection and restoration mode provides that user data may be
retained between sessions. To use this mode, an administrator first installs a base OS and
applications to a computer. The administrator then sets up the computer such that when a user
logs in (or otherwise starts a user session), a user layer is enabled. While in a user session,
changes are recorded to that user's layer. When the user logs out, the user layer is disabled
and retained for future use. That layer may be used repeatedily for multiple user sessions, the
state of the user’s files and configuration being maintained between sessions. Applications
specific to a user might be installed to a user layer providing an easy way to control what
applications are available to a particular user.

[0075] If desired, a user layer may be stored to a network server and retrieved and stored as
required to any computer of a computer farm, so the user may access his files and state
anywhere in the computer group. That layer may provide files and directories overlaid on the
existing fixed disk file systems, as opposed to locations referencing new network mount points.
On a Windows directory structure files located to a layer might appear under C:, as opposed to
being presented as a new and separate volume (e.g., D:).

[0076] Alternatively, a layer might be configured to store files presented as a virtual volume.
For example, a user might store his data in a virtual volume accessible under P:, and backup
his user data by backing up the user layer. That layer could also be protected using encryption
and authentication by including appropriate facilities in the layered system software. In a
variation on that system, a layer might be configured to present files in a subdirectory on an
existing volume which could be at any level in a file system hierarchy.

[0077] A layering system might also be used to provide a “bottomless” virtual storage device.
In that system an auxiliary storage device is presented by layering system software as being
available on a main local storage device (e.g. C:). The auxiliary storage device might be an
additional local fixed disk, network drive or file system, or other storage resource. The auxiliary

16

storage device space is effectively added to the existing space, providing a way to expand an
existing fixed disk that has become filled. The auxiliary storage device may optionally be hidden
to the system. This system is advantageous in that no repartitioning is required, no backup and
restore option is required, and no uninstall/reinstall operation of applications is required.

[0078] Use: Heirarchical Layers

[0079] Multiple layers can advantageously be used. In one layer heirarchy, one layer
represents a user type and a writable layer contains the user's changes. For example, a
company has 500 computers. These computers all have the same base software instailed,
which may be only the OS. The company then has layers defined for different types of users,
for example secretaries, engineers and accountants. The secretarial layer contains word
processing, spreadsheet, and other secretarial applications. The engineering layer contains
software development tools, CAD tools, and other engineering related applications. The
accounting layer includes accounting software. In addition, each user may have a personal
layer, which contains an individual's changes on top of the type layer and base system.

[0080] If a user causes his computer to fail, an administrator can restore the computer by
disabling the user's personal layer. If a computer is to be transferred from engineering to
accounting, the administrator removes the engineering type layer and installs the accounting
type layer. Using the above exemplified heirarchical layer organization can simplify the
administration of a large number of workstations in a company or other organization.

[0081] Other Uses

[0082] Another use for a layering system is to have layers that represent different
environments on a system. For example, a user could have an Office and a Gaming layer,
each providing an environment with it's own icons and menus.

[0083] In another use, multiple versions of a software product are installed on a computer,
each isolated in a layer. A user may enable a particular layer and use the corresponding
version of the software product without having to de-install and re-install the application. This
use may be especially helpful where an older version of a software product supports a function
desired but not supported in a newer version, for example, the importation of older word
processing file formats. This use would also be useful to software product testers, who in the
course of testing verify software functionality against multiple development versions. In that use
the repeated unstalling and reinstalling or cleaning and reinstalling operations are avoided.

17

[0084] Example Implementation

[0085] Example systems are provided of an application layering system under a 32-bit
Microsoft Windows architecture, such as Windows 95, 98, NT, 2000, and XP. In those system
a layering system is formed by adding several files to the stock Windows operating system,
those files including a runtime library FSLLIB32.DLL, a compression/archiving library, and an
FSLX driver which is either an FSLX.VXD driver (for 95/98/ME based platforms) or an
FSLX.SYS driver (for NT based platforms). The addition of those files is performed using an
installation program. The example layering system provides a user with the ability to contain
third party application installations into a “file system layer” or FSL. The example system

provides the modes of “capture”, “capture by PID”, “delete capture”, and “delete capture PID".

[0086] Depicted in figure 3 are components of the example layering computer system. An
operating system 314 is instailed to a computing device, that operating system having
subsystems for handling a registry 316 and a file system 318. An FSL system driver is installed
“on top” of the operating system 314 in order to have first processing priority for registry and file
system accesses. An FSL management application 300 provides an administrator an interface
to interact with the FSL system driver 312, change its configuration, and make changes to
layers. An FSL API library 306 provides a convenient interface for the management application
300 to attach to the FSL system driver 312. At certain times, FSL management application 300
provides notices to the Windows Explorer 302 notifying that application that the contents of a
mounted file system have changed. Other applications 304 may interact with the system,
performing read and write operations to the file system and registry, through the FSL system
driver 304. A compression library 310 may be provided to compress layer information,
especially for layer archives exported by the system.

[0087] A “lazy thread” is utilized to perform low priority tasks. That thread wakes up
occasionally to delete layers that are marked for deletion and write out delete lists that have
changed. The execution of the lazy thread may be deferred for a short time if the system is
busy.

[0088] In the example systems there is a key in the registry under
HKEY_LOCAL_MACHINE\SYSTEM called FSLogic\FSL where registry settings describe each
layer and its settings. The SYSTEM portion of the registry is used because it is available very
early in the boot cycle. Each layer has the properties outlined in the following table:

18

Property/Value Meaning/Function -

Active Non-zero indicates that the layer is enabled

ActiveOnStart |Non-zero indicates the layer should be enabled when the FSLX driver loads.
FileRedirect The path to the location in the file system that contains the file system virtual

files.

MajorVersion

The major version of the layer format.

MinorVersion

The minor version of the layer format.

Peer The name of the peer layer.

ReadOnly Non-zero indicates that the layer is read only, or the readable portion of a
peer layer combination.

RegRedirect Path to the location that contains the virtual registry settings for the layer.

Type Layer type.

ShouldDelete Non-zero value indicates that the layer should be deleted. This value is read
by the lazy thread to know if the layer should be deleted.

[0089] Also under HKEY_LOCAL_MACHINE\SYSTEM under a key called fsirdr is kept all

registry information contained in each layer. Under fslrdr there is further a key for each layer
defined in the system. Under each layer key each of the HCC, HCR, HCU, HLM, and HU keys
are present. These keys correspond to HKEY_CURRENT_CONFIG, HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, and HKEY_USERS respectively. The
structure of the registry under these keys mimics the regular structure of the system registry.

[0090]

When a layer is active, all of the keys and values for the layer are overlaid on the

normal registry. For example, a layer “TEST” is defined on a system and has a registry entry
“‘HKEY_LOCAL_MACHINE\SYSTEM\fsIrdNTEST\HLM\Software\XYZCorp”. When that layer
becomes active, the following key would appear in the registry:
‘HKEY_LOCAL_MACHINE\Software\XYZCorp”.

[0091]

The FSLX.SYS and its counterpart FSLX.VXD operate to intercept key file system and

registry calls and manipulate the results to create the appearance that virtual files and registry

settings contained in the layer definitions exist in the real file system and real registry. When

requests come that access virtual files or virtual registry settings, these requests are redirected
by the FSLX driver to the proper locations in the layer. The FSLX driver also accepts IOCTLs
from FSLLIB32.DLL that control the state of the driver. The following table outlines a set of
IOCTL commands available through the FSLX driver:

10CTL

Description

Version Query

. |Returns the driver version.

19

10CTL Description
Begin Capture Causes the driver to enter "Capture” mode.
End Capture Causes the driver to exit "Capture" mode.
Begin Delete Capture Causes the driver to enter "Delete Capture" mode.
End Delete Capture Causes the driver o exit "Delete Capture" mode.
Activate Layer Activates a specified layer.
Deactivate Layer Deactivates a specified layer.
Rename Layer Notifies the driver that a layer has been renamed.

[0092] For each read or write request to a file system or registry, an owner layer is
determined. The owner layer is determined by a sequence of steps. First, if the driver is in
Capture mode, the owner layer is the layer being captured. Second, if the driver is in PID
Capture mode, and if the PID of the requesting process is the PID being captured or a child PID
of the PID being captured, the owner layer is the layer being captured. Lastly, if the driver is not
in capture mode, and if the PID of the requesting process is a PID of an executable whose
executable file is in a layer, the owner layer is the layer where the executable file resides.

[0093] Because multiple layers can be active at the same time and those layers may contain
entries that overlap, rules are defined to determine the order layers are considered by the
driver. Different modes require different search rules. If the system is in capture mode, the
owner layer is defined to be the layer specified as the capture layer. Otherwise, the owner layer
is defined to be the layer that a particular process started from, as may be determined by
traversing upward the PID parent/child chain. For example, suppose layer A contained B.EXE.
When B.EXE executes, it results in process C running. The owner layer for process C is then
layer A.

[0094] When the FSLX driver loads, the following is performed: (1) all mutexes and lists are
initialized, (2) a device is created used for APl DLL communications, (3) a symbolic link that
allows for the device object's access from Win32 programs is made, (4) all of the file system
entry points are hooked in, (5) the drives to be redirected (C:, D:, etc.) are hooked in, (6) all of
the Registry entry points are hooked in, (7) the lazy thread is started.

[0095] The FSLX driver uses the following structures and hooks the following entry points in
the file system and Registry system code:

[0096] Structures used:

20

[0097] FSLX_DELETE_ENTRY_REMOVE: Holds information about an entry on a delete list
that may be removed later, for which all necessary information will not be available at the time
of removal.

[0098] FSILXDELETIONCANDIDATE: Holds information about a file that should be later
marked as deleted.

[0099] PFSLXOPENREGHANDLE: Holds information about all currently open registry
handles.

[0100] FSLX_PFO_ENTRY: Holds information about an open directory, the information
including a pointer to the file object, a handle to the directory, and the directory path.

[0101] FSLX_RENAME_ENTRY: Holds information about a rename operation that is used to
create a delete entry.

[0102] FSLXREGOPENKEY: Holds information about an open key in a layer, including a
handle to the key.

[0103] SH_RET_ENTRY: Holds the name of a file. These file names may have already
been returned in a query routine. This structure is retained to ensure the same name is not
returned more than once if the same file exists in multiple redirection areas.

[0104] FSLXSHADOWHANDLE: Holds information about an open directory handle. Among
other things, it may contain a list of FSLX_PFO_ENTRYSs that correspond to directories in
applicable layers.

[0105] FSLXSHADOWKEY: Holds information about an open registry key. Among other
things, it may contain a list of FSLXREGOPENKEY structures that correspond to keys in
applicable layers.

21

[0106] File System Calls:

[0107] IRP_MJ_CLEANUP: If there is an FSLX_DELETE_ENTRY_REMOVE structure
associated with the parameter referenced File Object, free it. If there is an
FSLXDELETIONCANDIDATE structure associated with the parameter referenced file object,
add a delete entry for the file and free the structure.

[0108] IRP_MJ_CLOSE: Free the FSLXSHADOWHANDLE structure associated with the
parameter referenced File Object by: (1) removing the shadowHandle from the list, (2) getting a
pointer to the shadowhandie using the File Object, (3) decrement the reference count of the
shadowHandle, (4) if the reference count is greater than zero, return success, otherwise (5) free
the originalPath member of the shadowHandle, (6) for each FSLX_PFO_ENTRY: remove the
entry from the list, free the file path, dereference the File Object, close the directory handle, and
free the FSLX_PFO_ENTRY structure, (7) for each SH_RET_ENTRY: remove the entry from
the list and free the name and structure, (8) free the search string, and (9) free the structure.

[0109] IRP_MJ_CREATE: Get the full file name and full parent directory path for the
request. Determine if the File Object represents a file or a directory. If the File Object
represents a directory, determine if it represents the root directory. Check to see if this is a
reentrant call for which the SL_OPEN_TARGET_DIRECTORY bit in currentlrpStack->Flags
should be set. If this is a reentrant create, get the shadowHandle object for this File Object,
increment the reference count on the shadowHandle if there is one, and return. Determine the
owner layer. If the path of the file being opened is in a redirected area, and if the file that is
being created is on the delete list, create and fill in an FSLX_DELETE_ENTRY_REMOVE
structure and return. The completion routine for that operation checks to see if the create was
successful and, if so, removes the delete entry from the delete list. Check to see if the create is
for a *.Config or a *.Manifest file. If it is, set a flag, for which at the completion of this routine if
the return code is STATUS_OBJECT_PATH_NOT_FOUND the return code is changed to
STATUS_OBJECT_NAME_NOT_FOUND. If the request is for a directory, do (1) if a
shadowHandle already exists for the parameter referenced File Object, increment it's reference
count, (2) if a shadowHandle does not exist, create one with all entries initialized to default
values, and for each layer that contains a corresponding directory or delete entries that
correspond to the directory, create an FSLX_PFO_ENTRY entry. Determine if the parameter
referenced request should be redirected: (1) if the request is a write request and capture mode
is enabled, do (a) make sure the parent directory is in the layer being captured, (b) if the
parameter referenced request is to a file and if a delete entry exists for the file, create an
FSLX_DELETE_ENTRY_REMOVE structure so that the delete entry can be removed if this

22

operation is successful, (c) if the parameter referenced request is to a file and if a delete entry
does not exist for the file, use the standard search order to locate and copy any existing file to
the writable portion of the layer being captured, and (d) redirect the create to the writable
portion of the layer being captured and return; (2) if no layers have the directory and it is an
open (not a create), don't redirect and return from the function call; (3) if there is no owner layer,
do: (a) if the request is a write request, don't redirect and return from the function call, (b) if the
request is a read request, find a first file by iterating through each layer in the search path, and
redirect to that file unless the file is on a delete list; (4) if an owner layer can be identified, and if
the request is a write request: (a) make sure the directory path exists in the writable section of
the owner layer, (b) if the parameter referenced request is to a file, and if a delete entry exists
for the file, create an FSLX_DELETE_ENTRY_REMOVE structure so that the delete entry can
be removed upon function call completion, (c) if the parameter referenced request is to a file,
and if no delete entry exists for the file, use the standard search order to locate and copy any
existing file to the writable portion of the layer being captured, and (d) redirect the writable
portion of the layer being captured and return; and (5) if an owner layer can be identified, and if
the request is a read request, find a first file by iterating through each layer in the search path,
and redirect to that file unless the file is on a delete list. If the file that is being opened is on the
delete list, return STATUS_OBJECT_NAME_NOT_FOUND. If the open is being performed
with the FILE_DELETE_ON_CLOSE flag, and if the parameter referenced file is a file that
should be protected from delete, (1) clear the FILE_DELETE_ON_CLOSE flag, and (2) create
an FSLXDELETIONCANDIDATE structure, later used in the completion routine to add a delete
entry for the file. Return a value that indicates success or failure.

[0110] IRP_MJ_CREATE: (completion routine) If the create operation is being canceled,
free the shadowHandle if one exists, free any existing FSLXDELETIONCANDIDATE and return.
If the create operation failed, free any existing shadowHandle and
FSLXDELETIONCANDIDATE and return. If an FSLX_DELETE_ENTRY_REMOVE exists, use
it to remove the delete entry from the delete list.

[0111] [IRP_MJ_DIRECTORY_CONTROL: If the minor function code is
IRP_MN_QUERY_DIRECTORY, (1) get the shadowHandle for the File Object, (2) if there is no
shadowHandle, return, (3) if the root directory is being enumerated, do not return “.” or “..”
entries, (4) enumerate the corresponding directories in each layer and the real directory. Use
SH_RET_ENTRY structures to make sure duplicate entries are not returned.

[0112] [IRP_MJ_SET_INFORMATION: If the FilelnformationClass is

23

FileDispositioninformation, if the file is being deleted, and if it is a file that should be protected
from deletion, create an FSLXDELETIONCANDIDATE structure to be used in the completion
routine to add a delete entry for the referenced file. Otherwise, if FilelnformationClass is
FileRenamelnformation, do the following: (1) if the requested operation is a rename operation
on a protected file that should succeed, copy the source file to the writable section of the owner
layer and create a delete list entry for the source file, (2) if the requested operation is a rename
operation on an unprotected file, perform the rename operation and create an
FSLX_RENAME_ENTRY entry for the source file.

[0113] IRP_MJ_SET_INFORMATION: (completion routine) If FileInformationClass is
FileRenamelnformation, and if there is an FSLX_RENAME_ENTRY, use the contained
information to create a delete entry for the source file of the rename operation. If
FileInformationClass is FileDispositioninformation, do: (1) if the operation was successful and
the file was deleted, get the FSLXDELETIONCANDIDATE structure, and if the deleted file was
not in the writable section of the owner layer, cancel the deletion, (2) if the operation was
' successful and the delete operation was canceled, remove any existing
FSLXDELETIONCANDIDATE, or (3) if the operation was unsuccessful, and if a deletion was
being attempted, remove any existing FSLXDELETIONCANDIDATE.

[0114] . Registry Calls:

[0115] RegCloseKey: If this call is re-entrant, pass the cail parameters to the OS. Since all
NtClose calls come through this hook and not just RegCloseKey calls, make sure that this call is
a close for a registry handle. If not, pass the call parameters to the OS. Get the shadowKey
structure. If there exists a shadowKey, (1) free the shadowKey and all FSLXREGOPENKEY
structures by closing the handle to the key and freeing the structure, and (2) if the main key
handle has not been closed, close it. If there is no shadowKey, close the handle. Remove any
PFSLXOPENREGHANDLE.

[0116] RegCreateKey: If this call is re-entrant, pass the call parameters to the OS. |f
requesting in a redirected part of the registry, pass the call parameters to the OS. Get the PID
of the caller. If there is a delete entry corresponding to the requested create operation, (1)
create a new key in the writable section of the owner layer, (2) if unable to create the key, return
an error, (3) change the disposition to REG_CREATED_NEW_KEY, (4) create a new
shadowKey structure for the created key, (5) determine the owner layer for the key, (6) if there

24

is an owner layer (a) allocate a new FSLXSHADOWKEY structure and initialize with default
values and (b) create an FSLXREGOPENKEY entries for applicable layers, (7) if the key does
not exist in the base registry, but does in one or more layers, create a user mode handle to be
returned to the calling application, and (8) remove the delete entry. Otherwise if there is no
delete entry corresponding to the requested create operation, continue. Create a shadowKey
structure. Determine the owner layer for the key. If there is an owner layer (1) allocate a new
FSLXSHADOWEKEY structure and initialize with default values, and (2) create
FSLXREGOPENKEY entries for applicable layers. If the key does not exist in the base registry
but it does in one or more layers, create a user mode handle to be returned to the calling
application. If the key can be opened (not created), set the disposition to
REG_OPENED_EXISTING_KEY, create a new PFSLXOPENREGHANDLE and return. If
creation of a key in the writable section of an owner layer is successful, do: (1) set the
disposition to REG_CREATED_NEW_KEY, (2) create a PFSLXOPENREGHANDLE, and (3)
return. If the error code from the creation attempt was
STATUS_OBJECT_PATH_NOT_FOUND, return STATUS_OBJECT_PATH_NOT_FOUND. If
a key was not created in the writable section of an owner layer, attempt to create the key in the
base registry, create a PFSLXOPENREGHANDLE, and return.

[0117] RegDeleteKey: If this call is re-entrant, pass the call parameters to the OS.
Otherwise, if there is an owner layer, do: (1) if the key has child keys, return
STATUS_ACCESS_DENIED, or (2) if the key has no child keys, create a delete entry for the
key. If there is no owner layer, do: (1) if there is a shadowKey, delete the key from the base
registry and add delete entries to all layers, or (2) if there is no shadowKey, delete the key from
the base registry.

[0118] RegDeleteValueKey: If this call is re-entrant, pass the call parameters to the OS.
Otherwise, if there is an owner layer, create a delete entry for the value. If there is no owner
layer, delete the value from the real registry and create delete entries for all applicable layers.

[0119] RegEnumerateKey: If this call is re-entrant, pass the call parameters to the OS.
Otherwise, if there is a shadowKey, (1) enumerate through the read registry and applicable
layers, (2) store state information in the shadowKey. Do not return duplicate entries. If there is
no shadowKey, pass the call parameters to the OS.

[0120] RegEnumerateValueKey: If this call is re-entrant, pass the call parameters to the OS.

25

Otherwise, if there is a shadowKey, (1) enumerate through the read registry and applicable
layers, (2) store state information in the shadowKey. Do not return duplicate entries. If there is
no shadowKey, pass the call parameters to the OS.

[0121] RegFlushKey: If this call is re-entrant, pass the call parameters to the OS. If there is
a shadowKey, flush the real registry key and all applicable layer keys. Otherwise, pass the call
parameters to the OS.

[0122] RegOpenKey: If this call is re-entrant, or if the key is in the redirection area of the
registry, pass the call parameters to the OS. Otherwise, get the caller's PID. If there is a delete
entry for this open, return STATUS_OBJECT_NAME_NOT_FOUND. Create a shadowKey.

Try to identify an owner layer. If an owner layer can be identified, (1) allocate a new
FSLXSHADOWKEY structure initialized with default values, (2) create FSLXREGOPENKEY
entries for applicable layers, and if a key does not exist in the base registry but it does in one or
more layers, create a user mode handle to be returned to the calling application. If the open
operation was successful, create a PFSLXOPENREGHANDLE.

[0123] RegQueryKey: If this call is re-entrant, pass the call parameters to the OS. If there is
no shadowKey and the request is of class “KeyNameinformation”, get the key name and if it is
the name of a redirect key, change it to the base name. If there is a shadowKey and there is a
delete entry found for this key, return STATUS_OBJECT_NAME_NOT_FOUND. If there is a
shadowKey and there is not a delete entry for this key, query the real registry key and all
applicable layer keys. Depending on the class of query, combine the results and return them to
the user.

[0124] RegQueryValueKey: If this call is re-entrant, or if there is no shadowKey, pass the
call parameters to the OS. If there is a delete entry for this value, return
STATUS_OBJECT_NAME_NOT_FOUND. Otherwise, if there is a shadow key, use the
standard search order to find the value to return.

[0125] RegSetValueKey: [f this call is re-entrant, or if there is no owner layer, pass the call
parameters to the OS. Otherwise, set the value in the writable portion of the owner layer. If the
setting operation was successful, remove any delete entry for the value and return.

26

[0126] In the example systems the FSLLIB32.DLL runtime library provides an API that may
be used by other applications to manage the layered system and communicate with the FSLX

driver, and further provides system management function implementations. That library

includes functions to load and unload the FSLX driver, identify version information for itself and

FSLX driver; begin and end Capture mode; begin and end Delete Capture mode; import and

export layers; create, delete, rename and merge layers; activate and deactivate layers; get layer

information; enumerate layers; enumerate the files of a layer; enumerate the registry entries of

a layer; manipulate the registry entries of a layer; enable and disable layers; set and unset an

“active on start” layer property, create and delete layer groups; enumerate layer groups; add

and remove layers from layer groups; verify system integrity; enumerate layer variables; create

and delete layer variables; and delete the writable portion of a layer and create a new, empty

writable portion. A discussion of the individual exported functions follows with greater

specificity, using C language prototypes:

Function Description
FSLActivate(Validates the fsiName against defined layers. If corresponding
layer or group is defined, get information. If fsiName
PTCHAR fsIName) corresponds to a group, recursively call FSLActivate for each
layer in the group. Communicates with FSLX driver via an
IOCTL to active the layer. Notifies the Windows Explorer that
classes may have changed. For each virtual directory
contained in the newly activated layer, notify the Windows
Explorer that the directory contents have changed.
Applications in the layer that are specified to be run on system
startup (in win.ini, registry, startup folder, etc.) are started.
Return a value indicating success or failure.
Function Description
FSLAddLayerToGroup(Verifies that both the specified layer and group are defined.
Creates a subkey under the group key with the name of the
PTCHAR fsIName, layer, adding the layer to the group. Return a value indicating
PTCHAR groupName) success or failure.
Function Description
FSLAddVariable(Verifies the specified layer is defined. Open the variables key
for the specified layer. Set a registry value using the provided
PTCHAR fsiName, varName and varValue. Return a value indicating success or
PTCHAR varName, failure.
PTCHAR varValue)

27

Function

Description

FSLCreate(Verifies the specified layer is not defined. Create a layer
definition with default values. Create the layer redirection area
PTCHAR fsiName, in the file system(s). If createPeer is true, recursively call
BOOL createPeer) FSLCreate for the peer with createPeer set to FALSE, and set
the peer entries in the layers to point to each other. Return a
value indicating success or failure.
Function Description
FSLCreateGroup(Validates groupName. If the group already exists, return an
PTCHAR groupName) S:::)cilrb g;ate a new group named groupName under the
HKEY_LOCAL_MACHINE\SYSTEM\FSLogic\groups) Return
a value indicating success or failure.
Function Description
FSLDeactivate(Validate fsIName, and get information about the corresponding
layer or group. If fsiName corresponds to a group, recursively
PTCHAR fslName, call FSLDeactivate for each layer of the group. If fsIName
BOOL force, corresponds to a layer, communicate with the FSLX driver
. through an IOCTL to deactivate the layer. If the FSLX driver
PDWORD _pFid) returns an error that there is a PID running from this layer and
force is true, kill the PID corresponding to pPid. Return a
value indicating success or failure.
Function Description
FSLDelete(Validates fsIName. [f the corresponding layer does not exist,
or if the corresponding layer has not been deactivated, return
PTCHAR fsiName, an error. If deletePeer is TRUE, recursively call FSLDelete
BOOL deletePeer, with the name of the peer layer, with deletePeer set to FALSE.
BOOL force Mark the layer as deleted. Remove the fsirdr registry branch
' for the corresponding layer. Remove the layer from any group
PDWORD pPid) entries. Return a value indicating success or failure.
Function Description
FSLDeleteGroup(Validates groupName. Deletes the group key and any
PTCHAR groupName) subkeys or values. Return a value indicating success or
failure.
Function Description
FSLDeletePeer(Validates fsIName. Finds the peer for fsiName. Calls
FSLDelete using the found peer name. Return a value
PTCHAR fsiName, indicating success or failure.
BOOL force,
PDWORD pPid)

28

Function

Description

FSLDeleteVariable(Validates fsiName. Delete any variable/value pair from the
PTCHAR fsIName, ::aa%le"rp : variables key. Return a value indicating success or
PTCHAR varName)

Function Description
FSLEnable(Validate fsiIName, and get information about the corresponding
layer or group. If fslName corresponds to a group, recursively
PTCHAR fsiName, call FSLEnable using the same bEnable for each layer of the
BOOL bEnable) group. If fsiName corresponds to a layer, set the enabled
value of the corresponding layer based on bEnable. Return a
value indicating success or failure.
Function Description

FSLEndCapture(Validate fsIName. Communicates with FSLX driver through an

PTCHAR fsiName) IOCTL call to cause the driver to exit capture mode. Notifies

Windows Explorer that classes may have changed. For each
directory contained in the newly activated layer, Windows
Explorer is notified that the directory contents have changed.
Return a value indicating success or failure.

29

Function

Description

FSLEXxport(
PTCHAR fsIName,
PTCHAR archivePath,
BOOL replacelfExists,
PTCHAR errorStr,

void (__stdcall
*RTInfoFunc)(PFSL_IMP_EXP
plmpexp),

BOOL blnitialCall)

Validate fsIName, and get information about the corresponding
layer or group. If blnitialCall is TRUE, perform a number of
initialization steps including (1) validating the archivePath, (2)
testing for the existence of an archive file in the archivePath
directory, (3) if the replacelfExists flag is FALSE, returning an
error if an archive file already exists in the archivePath
directory, (4) if the replacelfExists flag is TRUE, deleting an
archive file located in the archivePath directory, (5) if fsIName
corresponds to a layer having a peer layer, recursively calling
FSLExport once for both the corresponding layer and the peer
layer with binitialCall set to FALSE, followed by closing the
archive file. Otherwise, if fsiName corresponds to a layer
group, perform a number of steps including (1) for each layer
of the group, recursively calling FSLExport for each layer and
any existing peer layer to each layer with binitiaiCall set to
FALSE, (2) storing the group name in the archive, (3) placing
a version number in the archive, and (4) closing the archive
file. If binitialCall is FALSE and fsIName corresponds to a
layer, perform the steps of (1) creating a hew archive file if it
has not yet been created, (2) opening the archive file, (3)
exporting the fslrdr portion of the registry of the layer to a new
file, (4) exporting the layer definition in the system registry to a
new file, (5) creating a file designating the name of the layer,
(6) adding all of the created files in the previous three steps
plus the files in the redirection area of the file systems of the
layer to the archive, (7) placing a version number in the
archive, (8) closing the archive file, and (9) removing the
exported registry files and layer name designation file. Return
a value indicating success or failure.

Function

Description

FSLFindClose(
HANDLE hFindFile)

Call FindClose (of the WIN32 API) using hFindFile. Return a
value indicating success or failure.

Function

Description

FSLFindCloseGroup(
PFSL_FIND *groupFind)

Close the registry key in groupFind. Return a value indicating
success or failure.

Function

Description

FSLFindCloseLayer(
PFSL_FIND *fsiFind)

Close the registry key in fslFind. Return a value indicating
success or failure.

Function

Description

FSLFindCloseLayerinGroup(
PFSL_FIND *fsIFind)

Close the registry key in fsIFind. Return a value indicating
success or failure.

30

Function

Description

FSLFindCloseVariable(
PFSL_FIND *find)

Close the registry key in find. Return a value indicating
success or failure.

Function Description
FSLFindFirstFile(Validate fsiName. Generate a search string including the
LPCTSTR fsiName redirection area of the layer and IpFileName. Call FindFirstFile

LPCTSTR IpFileName,

LPWIN32_FIND_DATA
IpFindFileData)

(WIN32 API) on the redirect search string. Return a value
indicating success or failure.

Function Description
FSLFindFirstGroup(Open the parent key in the registry where all group names are
. . stored (HKEY_LOCAL_MACHINE\SYSTEM\FSLogic\groups).
PFSL_FIND *groupFind, Set the index in groupFind to 0. Find the first group name.
PTCHAR groupName) Return a value indicating success or failure.
Function Description
FSLFindFirstLayer(Open HKEY_LOCAL_MACHINE\SYSTEM\FSLogic\fsl. Store
- the handie to the key in the fsIFind structure. Set the index in
PFSL_FIND *fslFind, the fslIFind structure to 0. Set includePeers in the fslFind
PTCHAR fsiName, structure to the value of includePeers. Get the first layer name

BOOL includePeers)

from the registry (layer names are subkeys of
HKEY_LOCAL_MACHINE\SYSTEM\FSLogic\FSL). If a layer
is marked for deletion. go to the next layer. Skip peer layers if
includePeers is FALSE. Return a value indicating success or
failure.

Function

Description

FSLFindFirstLayerinGroup(
PFSL_FIND *fsIFind,

Open the group registry key under
HKEY_LOCAL_MACHINE\SYSTEM\FSLogic\groups. Set the
index in fsIFind to 0. Get the first layer name from the registry.

PTCHAR groupName, Return a value indicating success or failure.
PTCHAR fslName)
Function Description
FSLFindFirstVariable(Open the variables registry key under the layer definition key.
*fi Set the index in find to 0. Find the first value (is this a var

PFSL_FIND *find, S e

- name or var value?). Return a value indicating success or
PTCHAR varName) failure.

31

Function

Description

FSLFindNextFile(
HANDLE hFindFile,

LPWIN32_FIND_DATA
IpFindFileData)

Call FindNextFile (WIN32 API). Return a value indicating
success or failure.

Function Description
FSLFindNextGroup(Increment th.e index in groupFind.. Rgad. the next group name
PFSL_FIND *groupFind, from the registry. Return a value indicating success or failure.
PTCHAR groupName)
Function Description
FSLFindNextLayer(Increment the index in the fslIFind structure. Read the next
- layer name from the registry. Skip layers marked for deletion.
PFSL_FIND *fslFind, If the includePeers field in fsIFind is FALSE, skip peer layers.
PTCHAR fsiName) Return a value indicating success or failure.
Function Description

FSLFindNextLayerinGroup(
PFSL_FIND *fsIFind,

Increment the index in fsIFind. Read the next layer name from
the group key. Return a value indicating success or failure.

PTCHAR fsIName)
Function Description
FSLFindNextVariable(Increment the index in find. Find the next vglue (is this a var
PFSL_FIND *find, ?aail,:}ree or var value?). Return a value indicating success or
PTCHAR varName)
Function Description
FSLGetDriverVersion(Communicates to the FSL Driver via an IOCTL call to
. . determine the FSL driver's major and minor version numbers.
PDWORD pdMajVersion, Sets pdMajVersion and pdMinVersion to the major and minor
PDWORD version numbers of the FSL driver. Return a value indicating
pdMinVersionstruct) success or failure.

32

Function

Description

FSLGetlInfo(
PTCHAR fsIName,
PFSL_INFO *pinfo)

Validate the fsIName. Set structure pointed to by pinfo to
zero. Copy the layer name into the structure. If fsiName
corresponds to a group, (1) set blsGroup in plnfo to TRUE,
and (2) look at all the layers in the group and set enabled,
active, and activeOnStart flags of the pinfo structure
appropriately. Read the active, enabled, activeOnStart,
majorVersion, minorVersion, type, and peerName values from
the registry and set the corresponding flags of the pinfo
structure. Return a value indicating success or failure.

Function Description
FSLGetVersion(Sets pdMajVersion and pdMinVersion to the major and minor
. . version numbers of the FSLX driver. Return a value indicating
PDWORD pdMajVersion, success or failure.
PDWORD
pdMinVersionstruct)
Function Description
FSLGetVariable(Read the value named by varName from the specified layer's
variables key into varValue. Return a value indicating success
PTCHAR fsiName, or failure.
PTCHAR varName,
PTCHAR varValue)
Function Description
FSLImport(Verify the archivepath (the archivepath being the full pathname
. to the file). Open the archive file. Check the version humbers
FTCHAR archivePath, against what is supported by the FSLX driver (i.e. driver
BOOL replacelfExists, version number > archive version number), returning an error
if unsupported. Extract the files that contain the layer and
PTCHAR errorStr, group names. Create each group. For each layer to be
void (__stdcall imported, perform the following: (1) if a layer of the same

*RTInfoFunc)(PFSL_IMP_EXP
pimpexp))

name already exists and if replacelfExists is FALSE return an
error, otherwise delete the existing layer, (2) extract all
pertinent information for the layer from the archive, (3) delete
the file that indicates the layer name, (4) import the registry
fslrdr branch for the layer, (5) import the layer definition, (5)
mark the layer as enabled, and (6) delete the layer registry
information files. Close the archive. Return a value indicating
success or failure.

33

Function

Description

FSLInitSystem(void)

Verify the FSL system: (1) make sure
HKEY_LOCAL_MACHINE\SYSTEM\FSLogic\FSL exists, (2)
make sure major and minor version registry value are created,
(3) make sure defauit file system redirection path and registry
redirection path registry values are set, (4) make sure
HKEY_LOCAL_MACHINE\SYSTEM\fsirdr exists, and (5)
make sure C:\fsirdr exists. Read default file system redirection
path. Read default registry redirection path. Return a value
indicating success or failure.

Function

Description

FSLIsGroup(PTCHAR name)

Validate the name. Determine if name is a valid group by
attempting to open the group key under
HKEY_LOCAL_MACHINE\SYSTEM\FSLogic\groups. Return
a value indicating success or failure.

Function Description

FSLLoadDriver(void) Verify the FSL system: (1) make sure
HKEY_LOCAL_MACHINE\SYSTEM\FSLogic\FSL exists, (2)
make sure major and minor version registry value are created,
(3) make sure defaulit file system redirection path and registry
redirection path registry values are set, (4) make sure
HKEY_LOCAL_MACHINE\SYSTEM\fsIrdr exists, and (5)
make sure C:\fslrdr exists. Loads the driver if it is not loaded.
Notifies Windows Explorer via SHChangeNotify that the
C:Vfslrdr directory has changed. Return a value indicating
success or failure.

Function Description
FSLRegCloseKey(HKEY Close the registry key. Return a value indicating success or
hKey) failure.

Function Description
FSLRegCopyKey(Create a new key name under the destination parent key. If

HKEY srcKe the key already existed under the destination parent and
Y overwrite is FALSE, and if copying the values and subkeys
PTCHAR srcKeyName, from the source would overwrite any values or subkeys in the
destination return FALSE. Otherwise, copy the subkeys and
HKEY destParentKey, values to the destination. If removeAfterCopy is TRUE, delete
BOOL overwrite, the registry source key with all of its subkeys and values.
BOOL removeAfterCopy) Return a value indicating success or failure.

34

Function

Description

FSLRegCopyValue(If the value already exists under destKey and overwrite is
HKEY srcKey false, return an error. Read the source value and write that
' value to the destination. If removeAfterCopy is TRUE, remove
LPCTSTR IpValueName, |the source value (what about the source key?) Return a value
HKEY destKey, indicating success or failure.
BOOL overwrite,
BOOL removeAfterCopy)
Function Description
FSLRegCreateKeyEx(Create a registry path to the layer's redirection area using the
HKEY hKe layer's redirect path, its name, ans IpSubKey. Create the key
¥ in the redirection area. Return a value indicating success or
LPCTSTR IpSubKey, failure.
DWORD Reserved,
LPTSTR IpClass,
DWORD dwOptions,
REGSAM samDesired,

LPSECURITY_ATTRIBUT
ES IpSecurity Attributes,

PHKEY phkResult,
LPDWORD
IpdwDisposition)
Function Description
FSLRegDeleteKey(Remove the key and all subkeys and values. Return a value
HKEY hKey, indicating success or failure.

LPCTSTR IpSubKey)

Function Description
FSLRegDeleteVaiue(Delete the specified value. Return a value indicating success
HKEY hKey, or failure.

LPCTSTR lpValueName)

35

Function Description
FSLRegEnumKeyEx(Enumerate the specified key. Return a value indicating
HKEY hKey, success or failure.
DWORD dwindex,

LPTSTR IpName,
LPDWORD ipcbName,
LPDWORD IpReserved,
LPTSTR IpClass,
LPDWORD IpcbhCiass,

PFILETIME
IpftLastWriteTime)

Function

Description

FSLRegEnumValue(
HKEY hKey,
DWORD dwindex,
LPTSTR IpValueName,

LPDWORD
ipcbValueName,

LPDWORD IpReserved,
LPDWORD IpType,
LPBYTE IpData,
LPDWORD IpcbData)

Enumerate the specified value. Return a value indicating
success or failure.

Function Description
FSLRegOpenKeyEx(Create a registry path to the layer's redirect area using the
PTCHAR aiName, |2/ eckect path e e and pSubkey. Open e ey in
HKEY hKey, failure.
LPCTSTR IpSubKey,
DWORD ulOptions,
REGSAM samDesired,
PHKEY phkResult)

36

Function

Description

FSLRegQueryValueEx(
HKEY hKey,
LPTSTR IpValueName,
LPDWORD IpReserved,
LPDWORD IpType,
LPBYTE IpData,
LPDWORD lpcbData)

Query the value specified. Return a value indicating success
or failure.

Function

Description

FSLRegSetValueEx(
HKEY hKey,
LPCTSTR IpValueName,
DWORD Reserved,
DWORD dwType,
CONST BYTE *lpData,
DWORD chData)

Set the specified value. Return a value indicating success or
failure.

Function

Description

FSLRemoveLayerFromGroup(

Verify that the group exists, and that the layer is a member of
the group. Remove the layer from the group by deleting the

PTCHAR fsiName, key with the layer's name from the group key. Return a value
PTCHAR group) indicating success or failure.
Function Description
FSLResetPeer(Get the peer name for this layer (writable section of the layer).
Get information about the peer. make sure the peer is
PTCHAR fsiName, deactivated. Delete the peer. Create the peer. Point the layer
BOOL force, and the new peer layer at each other by setting their peer
PDWORD pPid) values in the registry. If the narr_led' Iay.er is active, activgte the
new peer layer. Return a value indicating success or failure.
Function Description
FSLSetActiveOnStart(Verify the name corresponds to an existing layer or group.
Get information about the named layer or group. If the name
PTCHAR name, corresponds to a group, recursively call FSLSetActiveOnStart
BOOL bActiveOnStart) for each layer in the group. Otherwise, set the activeOnStart

value for the layer to bActiveOnStart. Return a value
indicating success or failure.

37

Function Description
FSLSetLayerlnfo(Verify that the name corresponds to a layer. Open the registry
key that contains the layer definition. [f fileRedirect is
PTCHAR name, specified, set the value of the proper registry value. If
PTCHAR fileRedirect, regRedirect is specified do: (1) set the value of the proper
. registry value, (2) create the specified redirect path, (3) create
PTCHAR regRedirect, |y "o direct root keys (HLM, HCU, HU, HCC, and HCR). If
DWORD *pType, type is specified, set the value of the proper registry value. If
* readOnly is specified, set the value of the proper registry
DWORD *pReadOnly, value. If peerName is specified, set the value of the proper
PTCHAR peerName) registry value. Return a value indicating success or failure.
Function Description
FSLStartCapture(Validates fsiName to make sure it is a valid layer name (legal
characters, etc.) Communicates to the FSL Driver via an
PTCHAR fsiName, IOCTL to put it into Capture mode. Notifies Windows Explorer
BOOL bTrack, that classes may have changed. For each directory contained
DWORD dPid) in the newly activated layer, Windows Explorer is notified that
the directory contents have changes. Applications in the layer
that are specified to be run on system startup are started
(there are several places where these can be specified: win.ini,
registry, startup folder, etc.) Return a value indicating success
or failure.
Function Description
FSLUnloadDriver(BOOL force) | All active layers are deactivated. Unloads the FSLX driver.
Notifies Windows Explorer via SHChangeNotify that the
C:\fslrdr directory has changed. Return a value indicating
success or failure.

Function

Description

FSLVerifyBaseSystem(void)

Make sure HKEY_LOCAL_MACHINE\SYSTEM\FSLogic
exists. Put the current major and minor version into
majorVersion and minorVersion values. Put the default File
System rediredction path in a DefaultFileRedirect value. Put
the default Registry redirection path in a
DefaultRegistryRedirect value. Make sure
HKEY_LOCAL_MACHINE\SYSTEM\slrdr exists. Make sure
fsirdr exists at the root of all file systems that will be redirected.
Return a value indicating success or failure.

[01271

Each of the above functions returns a value of the type “FSLLIB32_API DWORD

_stdcall” indicating success or failure. In the above functions, the TCHAR variable type
changes depending on the compilation options. 1t compiled for Unicode, a TCHAR is a 16 bit
entity, otherwise it is an 8 byte char. A BOOL may be represented by a single bit, but is often
defined to be a word so as to permit efficient word alignment according to the processor

38

architecture. A DWORD is normally a 32-bit integer. And an LPCTSTR is a long pointer to a
constant array of TCHARs.

[0128] In the example systems, on each file system volume (C:, D, etc.) included in the
system there is an fslrdr directory at the root of the volume. This directory contains file system
information for each of the defined layers. Under the fsirdr directory directories that correspond
to each layer are maintained. Under each of those layer directories is a directory that
represents the drive letter. Under each of those letter directories the contained directories and
file structures mimic the regular structure of the containing drive. When a layer is active all of
the directories and files defined for the layer are overlaid on the normal file system. For
example, the directory “C:¥slrd\TEST\c\XYZCorp” is defined under a “TEST” layer. When the
“TEST" layer is active, the directory “c:\XYZCorp” appears on the C: drive to all applications
running under that layer, and optionally under other layers depending on the implementation
details.

[0129] While the present systems and methods have been described and illustrated in
conjunction with a number of specific configurations, those skilled in the art will appreciate that
variations and modifications may be made without departing from the principles herein
illustrated, described, and claimed. The present invention, as defined by the appended claims,
may be embodied in other specific forms without departing from its spirit or essential
characteristics. The configurations described herein are to be considered in all respects as only
illustrative, and not restrictive. All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their scope.

39

CLAIMS
What is claimed is:

1. A method of utilizing a layered computing environment to create a program product, the
method comprising the steps of:

utilizing a computing environment including layered system software, the layered system
software being executable to perform at least the functions of:

(i) receiving from épplications a read request for a read operation to a file
system, the read request containing a file reference appropriate to the file system organization,

(ii) a first determining whether or not the file reference is maintained in at least
one enabled layer, ‘

(iii) if in the first determining a file reference is found not to be maintained in at
least one enabled layer, causing the read operation to execute using the file reference of the
read request,

(iv) if in the first determining a file reference is found to be maintained in at least
one enabled layer, identifying an owner layer from the set of enabled layers,

(v) following the identifying an owner layer, identifying a virtual read reference
utilizing information contained in the layer,

(vi) following the identifying a virtual read reference, causing the read operation
to execute using the virtual read reference,

(vii) receiving from applications a write request for a write operation to a file
system, the write request containing a file reference appropriate to the file system organization,

(viii) a second determining whether or not the file reference is a reference to a
write operation to be captured in an enabled layer,

(ix) if in the second determining a file reference is determined not to be a
reference to a write operation to be captured to an enabled layer, causing the write operation to
execute using the file reference of the write request,

(x) if in the second determining a file reference is determined to be a reference to
a write operation to be captured to an enabled layer, identifying a capture layer,

(xi) following the identifying a capture layer, creating a virtual write reference
corresponding to the file reference of the write request,

(xii) following the creating a virtual write reference, causing the write operation to
execute using the virtual write reference,

(xiii) receiving management commands through an applications programmer
interface, those management commands including commands to start and stop a capture
operation;

40

entering a capture mode;

performing an installation action;

ending a capture mode; and

exporting the captured layer to a portable media format.

2. A method according to claim 1, wherein said exporting also exports a layered system
software installation package to the portable media format.

3. A method according to claim 1, wherein the installation action is a software package install.

4. A method according to claim 3, wherein the capture mode causes all operations to create,
modify or delete files to be redirected into the capture layer.

5. A method according to claim 3, wherein the capture mode is a capture by PID mode.

6. A method according to claim 1, wherein the installation action is a software package
uninstall.

7. A method according to claim 6, wherein the capture mode is a delete capture mode.

8. A method according to claim 6, wherein the capture mode is a delete capture by PID mode.

9. A method according to claim 1, wherein said captured layer is encrypted before storing in the
portable media format.

10. A program product containing both a captured layer and computer instructions for operating
a layered computing environment, comprising:

a set of computer readable media comprising at least one medium upon which is stored
a captured layer and computer instructions, said instructions being executable by a computing
system to achieve the functions of:

(i) receiving from applications a read request for a read operation to a file
system, the read request containing a file reference appropriate to the file system organization;

(ii) a first determining whether or not the file reference is maintained in at least
one enabled layer;

(iii) if in the first determining a file reference is found not to be maintained in at
least one enabled layer, causing the read operation to execute using the file reference of the
read request;

(iv) if in the first determining a file reference is found to be maintained in at least

41

one enabled layer, identifying an owner layer from the set of enabled layers;
(v) following the identifying an owner layer, identifying a virtual read reference
utilizing information contained in the layer; and
(vi) following the identifying a virtual read reference, causing the read operation
to execute using the virtual read reference; and
a layer captured by utilizing a layered computing environment to create a program
product.

11. A program product according to claim 10, wherein:
said layer contains encrypted information; and
the computer instructions are further executable to achieve the functions of:
(vii) receiving an authentication key or license authorization, and
(viii) using the authentication key or license authorization to decrypt encrypted
information referenced by the virtual read reference.

12. A program product according to claim 10, wherein the computer instructions are further
executable to achieve the functions of:

(vii) receiving from applications a write request for a write operation to a file system, the
write request containing a file reference appropriate to the file system organization,

(viii) a second determining whether or not the file reference is a reference to a write
operation to be captured in an enabled layer;

(ix) if in the second determining a file reference is determined not to be a reference to a
write operation to be captured to an enabled layer, causing the write operation to execute using
the file reference of the write request;

(x) if in the second determining a file reference is determined to be a reference to a write
operation to be captured to an enabled layer, identifying a capture layer;

(xi) following the identifying a capture layer, creating a virtual write reference
corresponding to the file reference of the write request; and

(xii) following the creating a virtual write reference, causing the write operation to
execute using the virtual write reference.

13. A program product according to claim 12, wherein the computer instructions are further
executable to achieve the functions of:

(xiii) receiving from applications requests to create, delete, and set the value of a registry
setting;

(xiv) following receipt of a request to create, delete or set the value of a registry setting,
a determining whether or not the registry operation of the request is to be captured to an
enabled layer;

42

(xv) acting on a request to create a registry setting, and on a determination that a
registry setting is not to be captured to an enabled layer, causing the registry setting operation
to execute in the base system registry location;

(xvi) acting on a request to create a registry setting, and on a determination that a
registry setting is to be captured to an enabled layer, identifying a registry creation destination
layer;

(xvii) following said identifying a registry creation destination layer, causing the registry
setting to be created virtually in the registry creation destination layer;

(xviii) acting on a request to delete a registry setting, and on a determination that a
registry setting is not to be captured to an enabled layer, causing the registry setting deletion
operation to execute in the base system registry location;

(xiv) acting on a request to delete a registry setting, and on a determination that a
registry setting is to be captured to an enabled layer, identifying a registry deletion destination
layer; '

(xx) following said identifying a registry deletion destination layer, causing the registry
setting to be deleted virtually in the registry deletion destination layer;

(xxi) acting on a request to set a registry setting, and on a determination that a registry
setting is not to be captured to an enabled layer, causing the registry setting operation to
execute in the base system registry location;

(xxii) acting on a request to set a registry setting, and on a determination that a registry
setting is to be captured to an enabled layer, identifying a registry setting destination layer; and

(xxiii) following said identifying a registry setting destination layer, causing the registry
setting to be created virtually in the registry setting destination layer.

14. A program product according to claim 13, wherein the computer instructions are further
executable to achieve the function of:

(xiii) receiving management commands through an applications programmer interface.

15. A program product according to claim 14, wherein the computer instructions include a layer
manager application.

16. A program product according to claim 10, wherein the computer instructions are further
executable to achieve the functions of:

(xiii) examining the installed layers for a configuration element, that element specifying
for each layer whether or not the layer is to be enabled on system initialization; and

(xiv) enabling those layers having configuration elements specifying layer enablement on
system initialization.

43

1/5

Applications

1

Layer Manager
100—"|
102—_|
Management API
Fig. 1 t
106 —_|

Layering System Libraries/Software

Operating System File System and Registry Libraries

108—"
Base OS Layer Information | ——112
110—"|
Fig. 2
200—_| Application
208— 210
202—" Layer B / /
| _—212
204—_| Layer A \
206—_| Base File system \J

2/5

300 Fig. 3 04—,
FSL Management . Other
Application R Windows Explorer Applications
A
306-\ 1 310—\ s02—" ?
FSL API Library FSL Cﬁg}gﬁssm“
312~\ 1
Y Y
FSL System Driver
31 6—\ 1 A
Operating System \ ‘
Registry Subsystem
A 4
File System Subsystem
N
31 4—/ 318
FI 4 —1—404a
9- 402—_| Storage Layer 1| Applications [~406a
——1—404b
400—_ Layer 2 Applications |—406b
Processor |«ge=p] .
—1—404n
Layer N Applications [~—406n
Base OS Applications [>~410

500

3/5

~C

Start

v

Wait for read request

504

Is
file reference
maintained in
an enabled
layer?

506

/

Use reference of request
to execute regular read

Identify owner layer

'

Identify virtual
file reference

Y

Execute read using
virtual file reference

J

4/5

600

Start

~C

A 4

Fig. 6

Wait for write request

604

Is
file reference
to be captured to
an enabled
layer?

606

/

Use reference of request
to execute regular write

Identify capturing layer

l

Create virtual
file reference

'

Execute write using
virtual file reference

l

5/5

C Start D/ 700
Y

702 .
Wait for request for registry setting F/ Flg 7

706

/

Execute normal registry

704

Is
registry request
to be captured to

No

function

an enabled
layer?

Yes

Identify destination layer |— 708

712

Create virtual registry

setting in layer

/—716

Create delete entry in virtual

Delete? registry, or delete entry if
isolated to layer

Set virtual registry

setting in layer

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US03/18588
A. CLASSIFICATION OF SUBJECT MATTER
IPC(T) . GO6F 9/445
US CL : TI7/174

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 717/174; 707/1, 2, 101, 104.1, 200; 705/59; 713/189

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
ACM

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X Us 5.,561,799 (KHALIDI et al) 1 October 1996 (1.10.1996), column 5, line 34 to column 10, 12
Y :)25 15256?’799 (KHALIDI et al) 1 October 1996 (1.10.1996), column 5, line 34 to column 1,4,5,7,8,16
Y Iljzé ?,?9?,402 (JIA et al) 23 November 1999 (23.11.1999), column 6, line 22 to column 8 2,3,6,9,11
Y 51;664,;56,915 B1 (CHTCHETKINE et al) 12 March 2002 (12.03.2002), entire document 1, 10, 14, 15
Y Microsoft Windows NT Resource Kit, Microsoft Press, 1993, Vol. 1., pages 325-346. 13
A HEIDEMANN, H.S. File-System Development with Stackable Layers. ACM Transations 1-16

on Computer Systems, February 1994, Vol 12, No. 1, pages 58-89

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“Xr document of particular relevance; the claimed invention cannot be
“E" earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L" document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as " document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P" document published prior to the international filing date but later than the “&" document member of the same patent family

priority date claimed

Date of the actual completion of the international search Date of mailing of the international seari réport]
22 October 2003 (22.10.2003) ' N O V Z 0
Name and mailing address of the ISA/US Autharized officer O ‘ ‘

Mail Stop PCT, Attn: ISA/US . . ¢ y

Commissioner for Patents Kakali Chaki ¢) ;; i AN

P.O. Box 1450

Alexandria, Virginia 22313-1450 Telephone No. (703)305-3900

Facsimile No. (703)305-3230

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US03/18588

Box Il TEXT OF THE ABSTRACT (Continuation of Item 5 of the first sheet)

The inventions relate generally to computer systems having facilities for providing virtual portions of file systems and configuration
settings to applications. More particularly, the inventions relate to methods of capturing software packages using layered computing
systems and software package products produced by those methods. An exemplary system as shown in Figure 1 includes a base
operating system (110), operating system file system and registry libraries (108), layering system libraries and/or software (106),
applications (104), a management applications programmer interface (102), and a layer manager application (100).

Form PCT/ISA/210 (continuation of first sheet(2)) July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

