

Office de la Propriété

Intellectuelle
du Canada

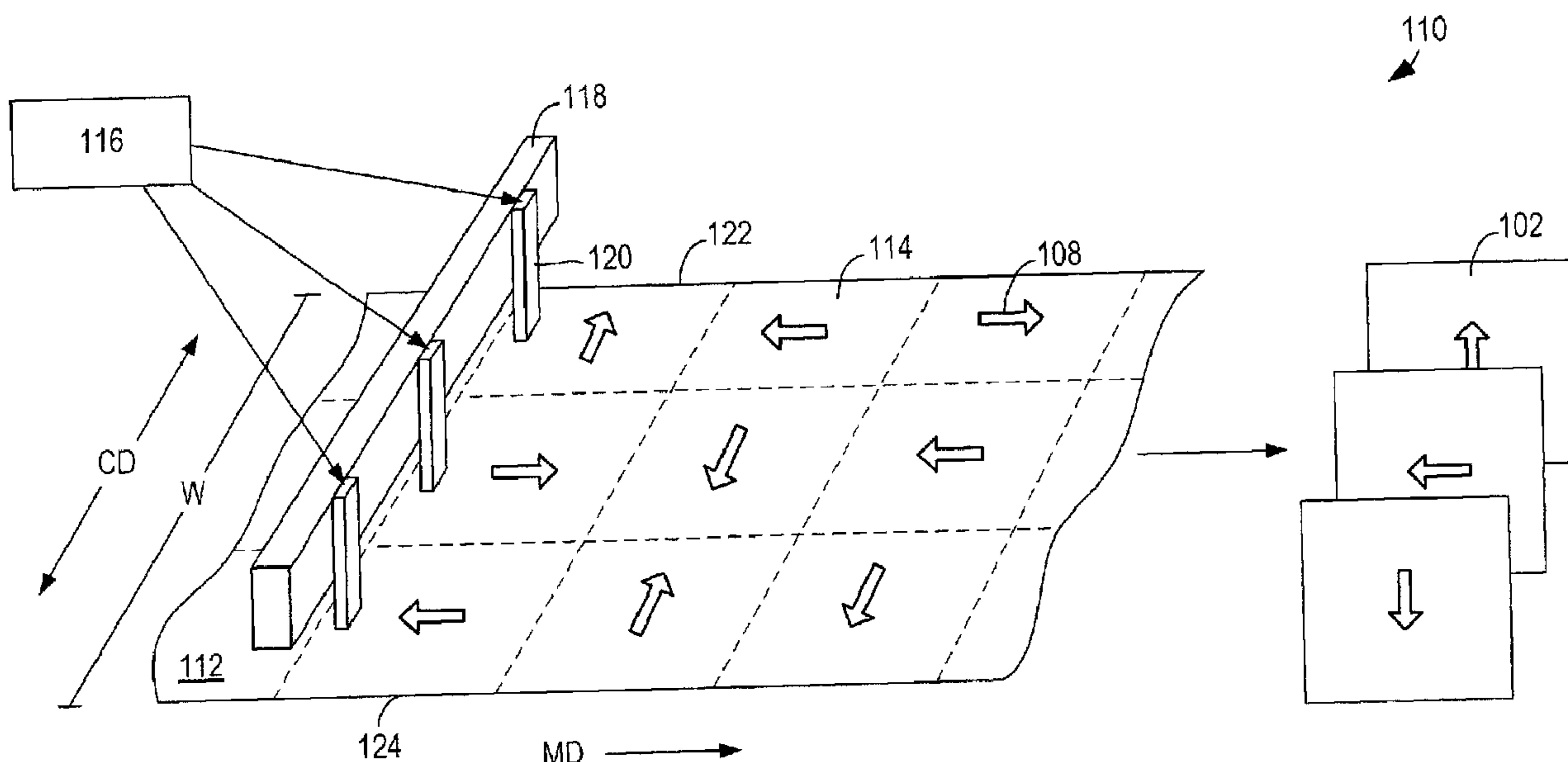
Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

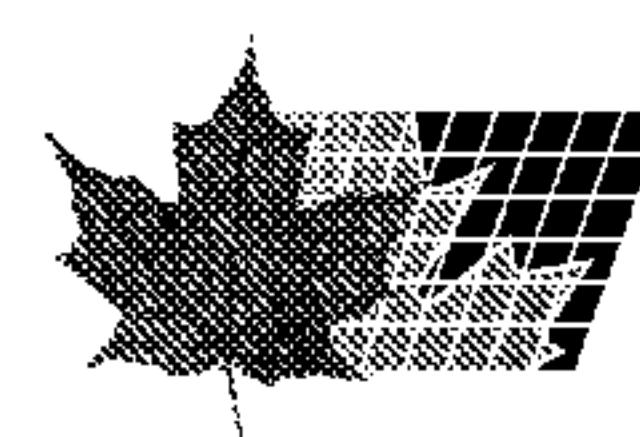
CA 2763661 C 2017/08/29

(11)(21) **2 763 661**


(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2010/05/27
(87) Date publication PCT/PCT Publication Date: 2010/12/09
(45) Date de délivrance/Issue Date: 2017/08/29
(85) Entrée phase nationale/National Entry: 2011/11/25
(86) N° demande PCT/PCT Application No.: US 2010/036382
(87) N° publication PCT/PCT Publication No.: 2010/141314
(30) Priorité/Priority: 2009/06/01 (US61/182,807)


(51) CI.Int./Int.Cl. **A47G 27/02** (2006.01),
A47G 27/00 (2006.01), **E04F 15/02** (2006.01)
(72) **Inventeur/Inventor:**
HUSSMANN, GLEN, US
(73) **Propriétaire/Owner:**
TANDUS FLOORING, INC., US
(74) **Agent:** MACRAE & CO.

(54) Titre : INSTALLATION ALEATOIRE DE CARREAUX AU MOYEN D'UN PROCEDE D'INSTALLATION NON ALEATOIRE
(54) Title: RANDOM TILE INSTALLATION USING NON-RANDOM INSTALLATION TECHNIQUE

(57) Abrégé/Abstract:

A method of manufacturing a modular textile system comprises dividing a textile web into a plurality of frames, each frame defining a carpet tile to be formed from the textile web, providing each frame with an indicium, and forming the textile web into a plurality of carpet tiles. The indicium may comprise at least one of a variously oriented indicium and a variously positioned indicium for indicating the orientation of each carpet tile in an installation.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
9 December 2010 (09.12.2010)(10) International Publication Number
WO 2010/141314 A3

(51) International Patent Classification:

A47G 27/02 (2006.01) E04F 15/02 (2006.01)
A47G 27/00 (2006.01)

KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2010/036382

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date:

27 May 2010 (27.05.2010)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/182,807 1 June 2009 (01.06.2009) US

(71) Applicant (for all designated States except US): TANDUS US, LLC [US/US]; 311 Smith Industrial Blvd., P.O. Box 1447, Dalton, GA 30722-1447 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): HUSSMANN, Glen [US/US]; 417 Frazier Avenue #404, Chattanooga, TN 37405 (US).

(74) Agents: STANO, Dana, E. et al.; Womble Carlyle Sandridge & Rice, PLLC, P.O. Box 7037, Atlanta, GA 30357-0037 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(88) Date of publication of the international search report:

31 March 2011

(54) Title: RANDOM TILE INSTALLATION USING NON-RANDOM INSTALLATION TECHNIQUE

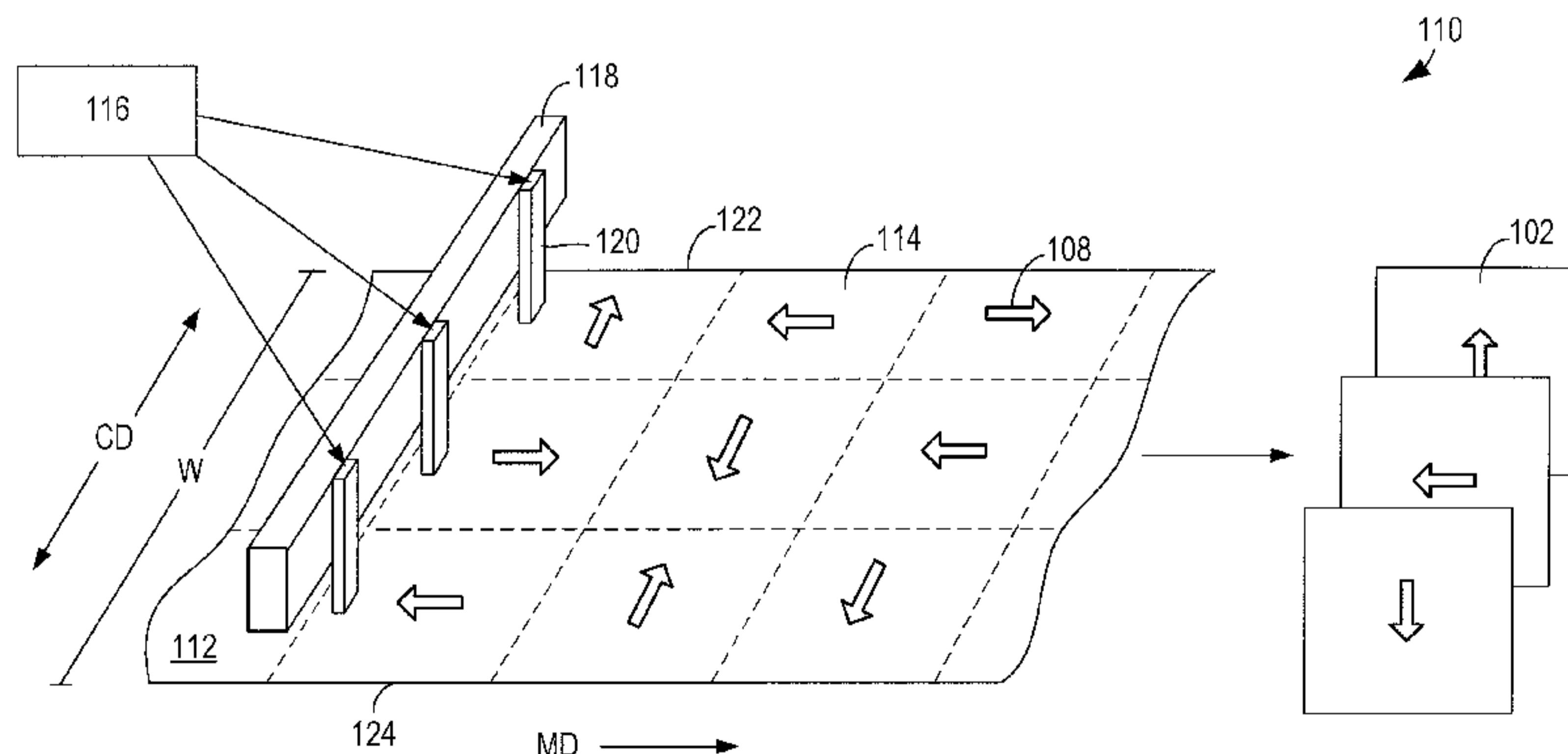


FIG. 1E

(57) Abstract: A method of manufacturing a modular textile system comprises dividing a textile web into a plurality of frames, each frame defining a carpet tile to be formed from the textile web, providing each frame with an indicium, and forming the textile web into a plurality of carpet tiles. The indicium may comprise at least one of a variously oriented indicium and a variously positioned indicium for indicating the orientation of each carpet tile in an installation.

WO 2010/141314 A3

RANDOM TILE INSTALLATION USING NON-RANDOM INSTALLATION TECHNIQUE

5

TECHNICAL FIELD

This disclosure is related to a method of making and installing floor coverings, for example, carpet tiles. This disclosure also is related to carpet tile systems and carpet tile installations.

10

BACKGROUND

Textile tiles, for example, carpet tiles, have been used in many floor covering applications due to their ease of installation. Traditionally, carpet tiles have been installed in a manner that seeks to mimic the appearance of a broadloom installation. Since carpet tiles are cut from a textile web, the tiles are typically 15 installed monolithically, that is, with all of the tiles oriented in the same direction, usually the machine direction. To facilitate the installation, an indicium, for example, an arrow, may be printed on the back of each tile to indicate how the tiles should be oriented. The installer simply rotates each tile as needed so the arrows are pointing in the same direction.

20

Carpet tiles have also been designed with various patterns and designs that allow the tiles to be installed "randomly." As used herein, the term "random installation" generally refers to an installation technique in which each tile is oriented variably and indiscriminately with respect to an adjacent tile. For instance, in one exemplary random tile installation, the installer positions a first 25 tile, and for each subsequent tile, the installer can choose one of four rotational positions (0, 90, 180, or 270 degrees) relative to the previous tile. After the tiles

are arranged on the flooring surface, the installer is charged with reviewing the installation and reorienting any tiles that do not appear to have been laid randomly, based on the particular installer's perception. Unfortunately, by reconfiguring the tiles in this manner, some degree of true randomness of the installation is 5 substituted by the judgment of the installer. Further, this step of reorienting tiles to create a more random "look" in the installer's view is both time-consuming and burdensome.

In some cases, the tiles may be provided with an arrow indicating the machine direction to assist the installer with rotating the tiles in a more "random" 10 manner. However, if the installer focuses too much effort on trying to orient the arrows, and thereby the tiles, randomly, the installer may intentionally or inadvertently use a pattern of rotation, such that the resulting installation may not be random at all. Thus, there is a need for a method and system that provides a more truly random installation as compared with conventional tile systems, 15 without placing a burden on the installer.

SUMMARY

This disclosure is directed generally to carpet tiles, a modular textile system including such tiles, and a textile installation that may be created using the 20 modular tile system. This disclosure is also directed generally to a method of making and installing modular textiles, for example, carpet tiles, and a textile web from which the tiles may be formed.

In one aspect, each carpet tile of the modular textile system includes a variously positioned and/or variously oriented indicium. The position and/or 25 orientation of the indicium may be random or may be pre-determined in a seemingly random or variable manner. Each carpet tile is installed such that each indicium is oriented in a uniform manner (i.e., identically oriented and/or positioned with respect to each other indicium). By arranging the variously positioned and/or variously oriented tiles in a like manner, the overall installation 30 is random or at least seemingly random.

In another aspect, the method of this disclosure facilitates the creation of a random carpet tile installation (or an at least seemingly random carpet tile installation) using an organized or non-random installation technique. To do so, an arrow or other indicium is printed on the back of each carpet tile to indicate the 5 configuration of the tile to be laid. The direction and/or placement of the indicium on a particular tile may be determined using a random number generator or using any other suitable method. When the tiles are installed, the installer rotates each tile until all of the indicia are oriented in a like manner (e.g., the arrows are unidirectional such that the arrow heads are pointing in the same direction), in a 10 manner similar to a conventional monolithic installation. However, since the indicia are printed with various orientations or locations, the resulting tile installation includes variously oriented tiles. Thus, the installer need not be concerned with attempting to create a random installation because the unidirectional arrangement of the indicia will inherently result in a random 15 installation.

Numerous variations of the method and system are contemplated. For example, although the method is described in connection with carpet tiles, the method may be used with other textile systems or flooring systems (e.g., hard surface flooring), or may be used in any other suitable manner.

20 Other features, aspects, and embodiments will be apparent from the following description and accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The description refers to the accompanying schematic drawings, in which 25 like reference characters refer to like parts throughout the several views, and in which:

FIG. 1A schematically illustrates a modular textile system according to the disclosure;

30 **FIG. 1B** schematically illustrates an exemplary installation using the modular textile system of **FIG. 1A**;

FIG. 1C schematically illustrates another exemplary installation using the modular textile system of **FIG. 1A**;

FIG. 1D schematically illustrates still another exemplary installation using the modular textile system of **FIG. 1A**;

5 **FIG. 1E** schematically illustrates an exemplary process for forming the modular textile system of **FIG. 1A**;

FIG. 2 schematically illustrates another exemplary process for forming a modular textile system; and

10 **FIG. 3A** schematically illustrates another modular textile system according to the disclosure; and

FIG. 3B schematically illustrates an exemplary installation using the modular textile system of **FIG. 3A**.

DESCRIPTION

15 **FIG. 1A** schematically illustrates an exemplary modular textile system 100. The modular textile system 100 includes a plurality of textile tiles 102 (only one of which is labeled), for example, carpet tiles, each of which includes a first pair of edges 104a, 104b that extend in a machine direction **MD** and a second pair of edges 106a, 106b that extend in a cross-machine direction **CD**, such that the 20 carpet tiles 102 have a generally square shape. However, other shapes are contemplated. Each tile 102 includes a first or front side comprising fibers and a second or back side comprising a backing, as will be understood by those of skill in the art.

 As shown in **FIG. 1A**, the back side of each carpet tile 102 includes an 25 indicium 108 that is variously oriented with respect to the machine direction **MD** and cross-machine direction **CD**. The orientation of the indicium 108 may vary for each application. In one example, the indicium 108 may be oriented 0, 90, 180, or 270 degrees with respect to the machine direction **MD**, such that the indicium 108 is generally parallel and/or perpendicular to the various edges 104a, 30 104b, 106a, 106b of the carpet tile 102. In another example, the indicium 108

may be generally oblique to the various edges **104a**, **104b**, **106a**, **106b** of the carpet tile **102** (e.g., pointing towards the corners of the tile). Other possibilities are contemplated.

If desired, the orientation of each variously oriented indicium **108** may be 5 provided randomly, for example, using a random number generator, as will be discussed further below. Alternatively, the orientation may be provided manually or otherwise in a predetermined, non-random, but variable manner (i.e., such that it is seemingly random).

The indicium **108** may generally comprise a directional indicium, i.e., a 10 word, shape, symbol, mark, or other element that is asymmetrical along at least one line of symmetry, such that the direction and/or orientation of indicium **108** can be used to indicate an installation direction or orientation for the carpet tile **102**. In this example, the indicium comprises an arrow. However, other possibilities are contemplated, as will be discussed further below in connection 15 with **FIGS. 3A and 3B**.

To use the carpet tiles **102** to create an installation on a flooring surface, each tile **102** may be rotated as needed so that the indicia **108** on the back of the tiles **102** are arranged in a unidirectional manner, for example, with the arrows **108** pointing in the same direction, and placed in an edge-to-edge relationship with one 20 another, as shown, for example, in **FIG. 1B** (in which the arrows **108** on the back of the tiles **102** are hidden from view and shown with dashed lines). However, since the arrows **108** are oriented variously on the tiles **102**, the resulting tile installation inherently includes an arrangement of variously oriented tiles. The tiles may be secured to the flooring surface in the conventional manner.

25 It will be understood that in any carpet tile installation, the relative positions of the carpet tiles **102** may be generally at the discretion of the installer. If desired, this “positional randomness” or “positional variability” may be minimized by instructing the installer to position the tiles in a sequential manner as the tiles **102** are removed from the packaging without regard to the installer’s 30 personal preferences.

It will also be appreciated that countless possible installation types or styles are contemplated. In **FIG. 1B**, the carpet tiles **102** are arranged in a unidirectional block configuration with the tile edges aligned with one another. In **FIG. 1C**, the carpet tiles **102** are arranged in a unidirectional ashlar configuration. In **FIG. 1D**, 5 the carpet tiles **102** are arranged in a unidirectional brick configuration. Still other configurations may be used.

FIG. 1E schematically illustrates an exemplary process **110** for forming the modular textile system **100** of **FIG. 1A**. A textile web **112** having a printable backing or back side may be divided into a plurality of smaller areas or frames **114** 10 (e.g., cutting frames) (shown schematically with dashed lines), each of which defines a tile **102** to be cut from the web **112**. In this example, the textile web **112** includes three substantially square shaped tile frames **114**, each having a tile length and a tile width, across a width of the textile web **112** extending in the cross-machine direction **CD**. However, other shapes and numbers of frames may 15 be used.

Each frame **114** may be provided with a variously oriented indicium **108** for facilitating installation of the tiles. As stated above, the orientation of the indicium may be random or may be seemingly random or variable.

For example, in one embodiment, as the textile web **112** advances in the 20 machine direction **MD**, a random (or pseudo-random) number generator **116** may generate a plurality of orientation values, each of which represents a pre-determined orientation of an arrow or other indicium **108** to be printed on the back of the textile web **112** within the respective tile frame **114**. For example, the orientation value may be an integer that corresponds to a 0, 90, 180, or 270 degree 25 rotation of the printed indicium **108** relative to some predetermined point. Alternatively, the random number generator may be programmed to select from the values 0, 90, 180, or 270. Alternatively still, the orientation values may be determined manually or automatically using some other random or non-random technique. Still other possibilities are contemplated.

The orientation values may be sent to a printing unit or printer **118**, which in this example, includes three independently operable print heads **120** generally facing the back side of the textile web **112**. Each print head **120** may print the indicium **108** within the respective frame **114** based on the orientation value 5 supplied by the random number generator **116**.

Numerous orientation values and corresponding printing configurations are contemplated. In one particular example, an orientation value of 1 may correspond to a 0 degree position, such that the arrow is printed with the arrow head facing the respective print head **120**. An orientation value of 2 may 10 correspond to a 90 degree rotation with respect to the 0 degree position, such that the arrow is printed with the arrow head facing a first longitudinal edge **122** of the web **112**. An orientation value of 3 may correspond to a 180 degree rotation with respect to the 0 degree position, such that the arrow is printed with the arrow head facing away from the respective print head **120**, and an orientation value of 4 may 15 correspond to a 270 degree rotation with respect to the 0 degree position, such that the arrow is printed with the arrow head facing a second longitudinal edge **124** of the web **112**. In another example, the arrows may be directed towards the corners of the frames. Countless other variations may be used. Further, while arrows are used commonly in the textile industry, it will be understood that the indicium may 20 be any word, number, symbol, or other image that is capable of being oriented with other indicia in a like manner, such that the indicium serves to indicate the installation direction.

In some embodiments, it may be desirable to ensure that an equal number of tiles having each rotation are produced from a particular web. To do so 25 according to one example, the algorithm used to generate the orientation values may be adjusted to ensure that an equal number of orientation values are generated within a given total number of orientation values and/or length of textile web. Alternatively, the algorithm may require that after returning a particular value (e.g., “1”), that each other value (e.g., “2,” “3,” and “4”) must be generated (in any

order) before generating that value (e.g., “1”) again. However, other methods are contemplated.

Any suitable printing technique and/or equipment may be used to print the indicia **108** on the textile web **112**. In the exemplary process shown in **FIG. 1E**, at 5 least one of the print heads **120** may be a digital printer (e.g., an ink jet or dot matrix print head). In another exemplary process **210** schematically illustrated in **FIG. 2** (in which like reference numerals are used where appropriate, except that the “1” is replaced with a “2”), at least one print head **220** may be a transfer-type printer (e.g., flexographic, gravure, etc.). In such an embodiment, each print head 10 **220** may index, pivot, or rotate independently to print the variously oriented indicium **208**. Countless other possibilities are contemplated. Further, it will be understood that any number of printers, each containing one or more print heads, may be used as needed or desired.

Returning to **FIG. 1E**, after the arrow or other directional indicium **108** is 15 printed within each tile frame **114**, the textile web **112** can be cut to form a modular textile system **100** including a plurality of carpet tiles **102**. The tiles **102** then may be processed in the conventional manner. In some instances, the tiles **102** 20 may be packaged sequentially, such that some tiles cut from adjacent portions of the textile web **112** may be packaged together. In other instances, the tiles **102** may be accumulated for later packaging. In such cases, the tiles **102** may be packaged indiscriminately, that is, without regard to their original position on the textile web **114**, thereby introducing a further degree of randomness into the modular textile system and resulting installation.

FIG. 3A schematically depicts an exemplary variation of the system **100** of 25 **FIG. 1A**. The modular textile system **300** includes features that are similar to the system **100** shown in **FIG. 1A**, except for variations noted and variations that will be understood by those of skill in the art. For simplicity, the reference numerals of similar features are preceded in the figures with a “3” instead of a “1.”

In this example, the indicium **308** comprises a word, symbol, mark, or 30 other element that is variously positioned on the back of the carpet tile **302**, such

that each indicium **308** is proximate to one of the edges **304a**, **304b**, **306a**, **306b** and/or corners **326a**, **326b**, **326c**, **326d** of the respective carpet tile. The indicia **308** may be symmetrical or asymmetrical since the position of the indicium **308** may be used to indicate the orientation of each tile **302**. For example, in the 5 illustrated embodiment **300**, each indicium comprises a circle or dot **308** positioned adjacent to one of the corners **326** of each tile **302**. In still another variation (not shown), the indicium may comprise a line or other marking proximate to one of the edges of each tile (e.g., perpendicular, parallel, or oblique to the respective edge). Countless other variations are contemplated hereby.

10 To install the tiles **302** according to one exemplary method, the tiles **302** may be oriented in a unidirectional manner such that the indicium **308** are similarly positioned with respect to one another, for example, as shown in **FIG. 3B** (in which the indicium **308** are hidden from view and shown with dashed lines).

15 The system **300** can be made as described in connection with **FIGS. 1E** and **2**, or using any other suitable process, equipment, or technique. In this example, however, the values generated by a machine or manually may be referred to as position values, such that the indicium **308** is provided in a particular quadrant of the tile and/or adjacent to a particular corner of the respective tile 20 frame **314**. Numerous other possibilities are contemplated.

It will be appreciated that the present method and system greatly simplify the creation of a random tile installation. Unlike conventional systems, the installer need not adhere to complicated instructions for rotating the tiles with respect to one another to ensure some degree of variation in tile orientation. 25 Further, the installer need not be burdened with the visual discretion and responsibility associated with conventional random tile systems. Instead, the carpet tiles may be positioned quickly and effortlessly as needed to arrange the indicia in a unidirectional configuration. Further, the present method and system ensure a greater degree of randomness in the resulting installation since the

installer is not given the discretion to change the orientation of each tile to suit his particular preferences.

It will be readily understood by those persons skilled in the art that, in view of the above disclosure, the present invention is susceptible of broad utility and 5 application. Although specific embodiments or aspects are disclosed, it will be understood that this disclosure is only illustrative and exemplary of the invention and is made merely for purposes of providing a full and enabling disclosure of the invention and to set forth the best mode of practicing the invention known to the inventors at the time the invention was made.

10 Many adaptations, variations, modifications, and equivalent arrangements will be apparent from or reasonably suggested by the present invention and the above detailed description thereof without departing from the substance or scope of the present invention. It will be recognized that various elements discussed with reference to the various embodiments may be interchanged to create entirely 15 new embodiments coming within the scope of the invention. Accordingly, all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and is not intended nor is to be construed to limit or otherwise to exclude any such other embodiments, adaptations, variations, modifications, and equivalent arrangements of the present invention.

20

What is claimed is:

1. A method of manufacturing modular tiles, comprising:
 - dividing a textile web into a plurality of frames, the plurality of frames defining modular tiles to be formed from the textile web, wherein the textile web includes a backing;
 - providing each frame of the plurality of frames with an indicium on the backing of the textile web, wherein the indicium comprises at least one of a randomly oriented indicium and a randomly positioned indicium; and
 - forming the modular tiles from the textile web,

wherein when the modular tiles are installed with the indicium of each modular tile configured in a like manner with respect to one another, such that the at least one of

 - randomly oriented indicia of the modular tiles are oriented in the same direction, and
 - randomly positioned indicia of the modular tiles are positioned in the same position with respect to one another,

the installed modular tiles are randomly oriented with respect to one another.
2. A method of manufacturing modular tiles, comprising:
 - dividing a textile web into a plurality of frames, the frames defining modular tiles for being cut from the textile web, wherein the textile web has a machine direction and a cross-machine direction, and wherein the textile web includes a backing;
 - marking the backing of the textile web within the frames with indicia that is at least one of
 - randomly oriented with respect to the machine direction of the textile web, and
 - randomly positioned within the frames; and

cutting the textile web into the modular tiles defined by the frames,

wherein the indicia are for indicating an installation direction of the modular tiles, wherein the modular tiles are for being installed with the indicia configured in a like manner with respect to one another, such that the at least one of

randomly oriented indicia of the modular tiles are oriented in the same direction, and randomly positioned indicia of the modular tiles are in the same relative position,

the installed modular tiles are randomly oriented with respect to one another.

3. A method of manufacturing modular tiles, comprising:

dividing a textile web into a plurality of frames, the frames being for defining modular tiles to be cut from the textile web, wherein the textile web has a machine direction and wherein the textile web comprises a backing;

randomly generating a value for printing an indicium in each frame of the plurality of frames, the value comprising at least one of

an orientation value, wherein the orientation value corresponds to an orientation of the indicium to be printed relative to the machine direction of the textile web, and

a positional value, wherein the positional value corresponds to a position of the indicium to be printed within the frame;

printing the indicium on the backing of the textile web in each frame of the plurality of frames; and

cutting the textile web into the modular tiles defined by the plurality of frames,

wherein the modular tiles are for being arranged in an edge-to-edge relationship with the indicia of the modular tiles configured in a like manner with respect to each other, so that the arranged modular tiles are randomly oriented with respect to one another.

4. The method of any one of claims 1 to 3, wherein dividing the textile web into a plurality of frames comprises dividing the textile web into a number of modular tile widths and lengths.

5. The method of claim 4, wherein each modular tile width and tile length defines one frame of the plurality of frames.

6. A method of manufacturing modular tiles, comprising:

defining a plurality of areas of a textile web, the plurality of areas of the textile web comprising modular tiles to be cut from the textile web, wherein the textile web has a machine direction and a cross-machine direction, and wherein the textile comprises a backing;

marking the backing of the textile web within each area of the plurality of areas with an indicium that is at least one of

randomly oriented with respect to the machine direction of the textile web, and

randomly positioned within the area; and

cutting the textile web into the modular tiles defined by the plurality of areas,

wherein when the modular tiles are installed with the indicia of the modular tiles configured in a like manner with respect to one another, the installed modular tiles are randomly oriented with respect to one another.

7. A method of manufacturing modular tiles, comprising:

cutting a textile web into modular tiles, wherein the textile web has a machine direction and a backing, wherein the backing of the modular tiles includes an indicium that is at least one of

randomly oriented with respect to the machine direction of the textile web, and

randomly positioned with respect to corners of the modular tiles,

wherein the modular tiles are for being positioned in an edge-to-edge relationship with the indicia similarly configured with respect to one another, so that the modular tiles in the edge-to-edge relationship are randomly oriented with respect to one another.

8. The method of any one of claims 1 to 7, wherein

the indicium is a randomly oriented indicium, and

the method further comprises providing a plurality of orientation values, wherein the plurality of orientation values each correspond to an orientation of the indicium on the textile web for the respective modular tile.

9. The method of claim 8, wherein providing the plurality of orientation values comprises generating the plurality of orientation values using a random number generator.
10. The method of claim 8, wherein providing the plurality of orientation values comprises manually generating the plurality of orientation values.
11. The method of any one of claims 8 to 10, wherein the orientation values each correspond to a 0, 90, 180, or 270 degree rotation of the indicium relative to an initial orientation.
12. The method of claim 11, wherein the initial orientation comprises the machine direction of the textile web.
13. The method of any one of claims 8 to 12, wherein the indicium on the textile web has an orientation corresponding to the orientation value for the respective modular tile.
14. The method of any one of claims 8 to 13, wherein the indicium comprises a directional indicium.
15. The method of any one of claims 8 to 14, wherein the indicium comprises a word, shape, symbol, mark, or other element that is asymmetrical along at least one line of symmetry.
16. The method of any one of claims 8 to 15, wherein the indicium comprises an arrow.
17. The method of any one of claims 1 to 7, wherein the indicium is a randomly positioned indicium, and the method further comprises providing a plurality of positional values, wherein the positional values each correspond to a position of the indicium on the textile web for the respective modular tile.

18. The method of claim 17, wherein providing the plurality of positional values comprises generating the plurality of positional values using a random number generator.
19. The method of claim 17, wherein providing the plurality of positional values comprises manually generating the plurality of positional values.
20. The method of any one of claims 17 to 19, wherein the indicium on the textile web has a position corresponding to the positional value for the respective modular tile.
21. The method of any one of claims 17 to 20, wherein the positional values each correspond to a corner of the respective modular tile.
22. The method of any one of claims 17 to 20, wherein the positional values each correspond to an edge of the respective modular tile.
23. The method of any one of claims 17 to 20, wherein the indicia each comprise a word, shape, symbol, mark, or other element positioned relative to one or more corners or edges of the respective modular tile.
24. The method of claim 23, wherein the indicium comprises a circle or dot positioned relative to a corner of the respective modular tile.
25. The method of claim 23, wherein the indicium comprises a line or other marking positioned relative to one or more edges of the respective modular tile.
26. Modular tiles formed according to the method of any one of claims 1 to 25, wherein the modular tiles each include the indicia for installing the modular tiles with the indicium of each modular tile configured in a like manner, so that the installed modular tiles are randomly oriented with respect to one another.

27. A modular tile installation comprising modular tiles formed according to the method of any one of claims 1 to 25, arranged with the indicia of the modular tiles in a like manner, wherein the modular tiles of the modular tile installation are randomly oriented with respect to one another.

28. A modular tile system, the modular tile system comprising:

a plurality of modular tiles, the modular tiles each having a face and a backing, wherein the modular tiles are formed to have a machine direction and a cross-machine direction, wherein

the backing of each modular tile is provided with an indicium, wherein the indicium comprises at least one of a randomly oriented indicium and a randomly positioned indicium, wherein the randomly oriented indicium is randomly oriented with respect to the machine direction of the face of the modular tile, and the randomly positioned indicium is randomly positioned on the modular tile,

wherein the modular tiles are for being placed in an edge-to-edge configuration with one another in an installation with the indicium of each modular tile configured in a like manner with respect to one another, such that the at least one of the

randomly oriented indicia of the modular tiles are oriented in the same direction, and

randomly positioned indicia of the modular tiles are positioned in the same position with respect to one another,

so that the installed modular tiles are randomly oriented with respect to one another.

29. A modular tile system, the modular tile system comprising:

a plurality of modular tiles formed from a textile web, the textile web having a face and a backing, and wherein the textile web is formed to have a machine direction, and wherein the modular tiles are formed from the textile web by

dividing the textile web into a plurality of frames, such that the plurality of frames each define one modular tile of the plurality of modular tiles,

providing the backing of the textile web within the frames with indicia that is at least one of

randomly oriented with respect to the machine direction of the textile web, and

randomly positioned within the frames, and

cutting the textile web into the modular tiles defined by the frames,

wherein the plurality of modular tiles are for being installed on a surface with the indicium of each modular tile configured in a like manner with respect to one another, such that the at least one of the

randomly oriented indicia of the modular tiles are oriented in the same direction, and

randomly positioned indicia of the modular tiles are positioned in the same position with respect to one another,

so that the installed modular tiles are randomly oriented with respect to one another.

30. A modular tile system, the modular tile system comprising:

a plurality of modular tiles formed from a textile web, the modular tiles and the textile web each having a face and a backing, wherein the textile web has a machine direction and a cross-machine direction, and wherein the modular tiles are formed from the textile web by

defining a plurality of areas of the textile web, the plurality of areas defining the modular tiles to be formed from the textile web,

providing the backing of the textile web within the areas with indicia that is at least one of

randomly oriented with respect to the machine direction of the textile web, and

randomly positioned within the area, and

cutting the textile web into the modular tiles defined by the areas,

wherein when the modular tiles are installed with the indicia of the modular tiles configured in a like manner with respect to one another, the installed modular tiles are randomly oriented with respect to one another.

31. The system of any one of claims 28 to 30, wherein the indicia comprise randomly oriented indicia.
32. The system of claim 31, wherein the indicia are each oriented 0, 90, 180, or 270 degrees with respect to the machine direction of the textile web.
33. The system of claim 31, wherein the modular tiles are further formed from the textile web by providing a plurality of orientation values for the indicia to be provided on the backing of the modular tiles, wherein the orientation values each correspond to a 0, 90, 180, or 270 degree rotation of each indicium relative to an initial orientation.
34. The system of claim 33, wherein the initial orientation comprises the machine direction of the textile web.
35. The system of claim 33 or 34, wherein providing the plurality of orientation values comprises generating the plurality of orientation values using a random number generator.
36. The system of claim 33 or 34, wherein providing the plurality of orientation values comprises manually generating the plurality of orientation values.
37. The system of any one of claims 33 to 36, wherein the indicia on the textile web have an orientation corresponding to the orientation values for the respective modular tiles.
38. The system of any one of claims 31 to 37, wherein the indicia comprise directional indicia.
39. The system of any one of claims 31 to 38, wherein the indicia each comprise a word, shape, symbol, mark, or other element that is asymmetrical along at least one line of symmetry.

40. The system of any one of claims 31 to 39, wherein the indicia each comprise an arrow.
41. The system of any one of claims 28 to 31, wherein the indicia comprise randomly positioned indicia.
42. The system of claim 41, wherein the modular tiles are further formed from the textile web by providing a plurality of positional values, wherein the positional values each correspond to a position of the indicium to be provided on the backing of the modular tiles.
43. The system of claim 42, wherein providing the plurality of positional values comprises generating the positional values using a random number generator.
44. The system of claim 42, wherein providing the plurality of positional values comprises manually generating the positional values.
45. The system of any one of claims 42 to 44, wherein the positional values each correspond to a corner of the respective modular tile.
46. The system of any one of claims 42 to 44, wherein the positional values each correspond to an edge of the respective modular tile.
47. The system of any one of claims 42 to 44, wherein the indicia each comprise a word, shape, symbol, mark, or other element positioned relative to one or more corners or edges of the respective modular tile.
48. The system of claim 47, wherein the indicia each comprise a circle or dot positioned relative to a corner of the respective modular tile.
49. The system of claim 47, wherein the indicia each comprise a line or other marking positioned relative to one or more edges of the respective modular tile.

50. The system of any one of claims 28 to 49, wherein the plurality of modular tiles are installed on a surface with the indicium of each modular tile configured in a like manner with respect to one another, so that the installed modular tiles are randomly oriented with respect to one another.

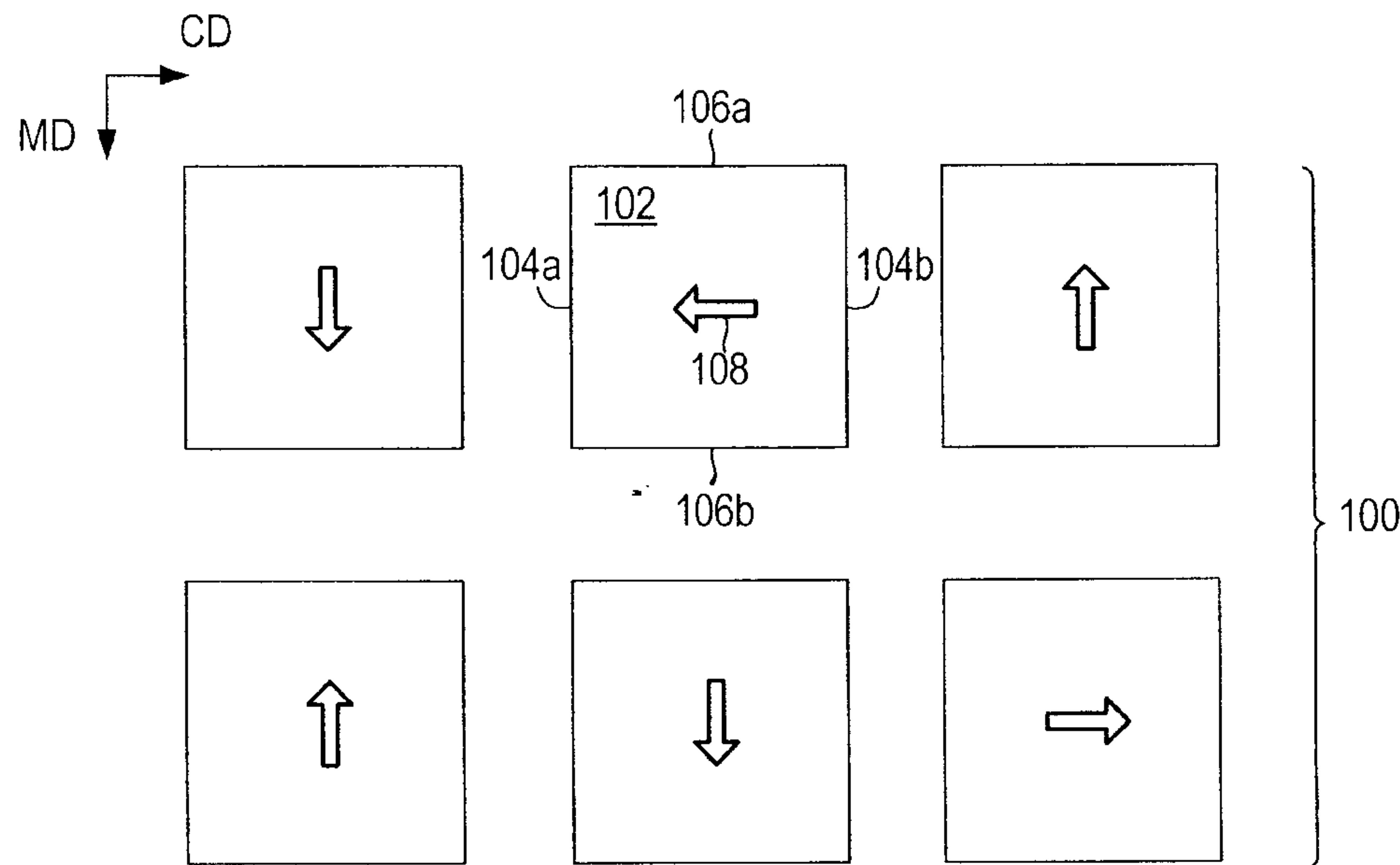


FIG. 1A

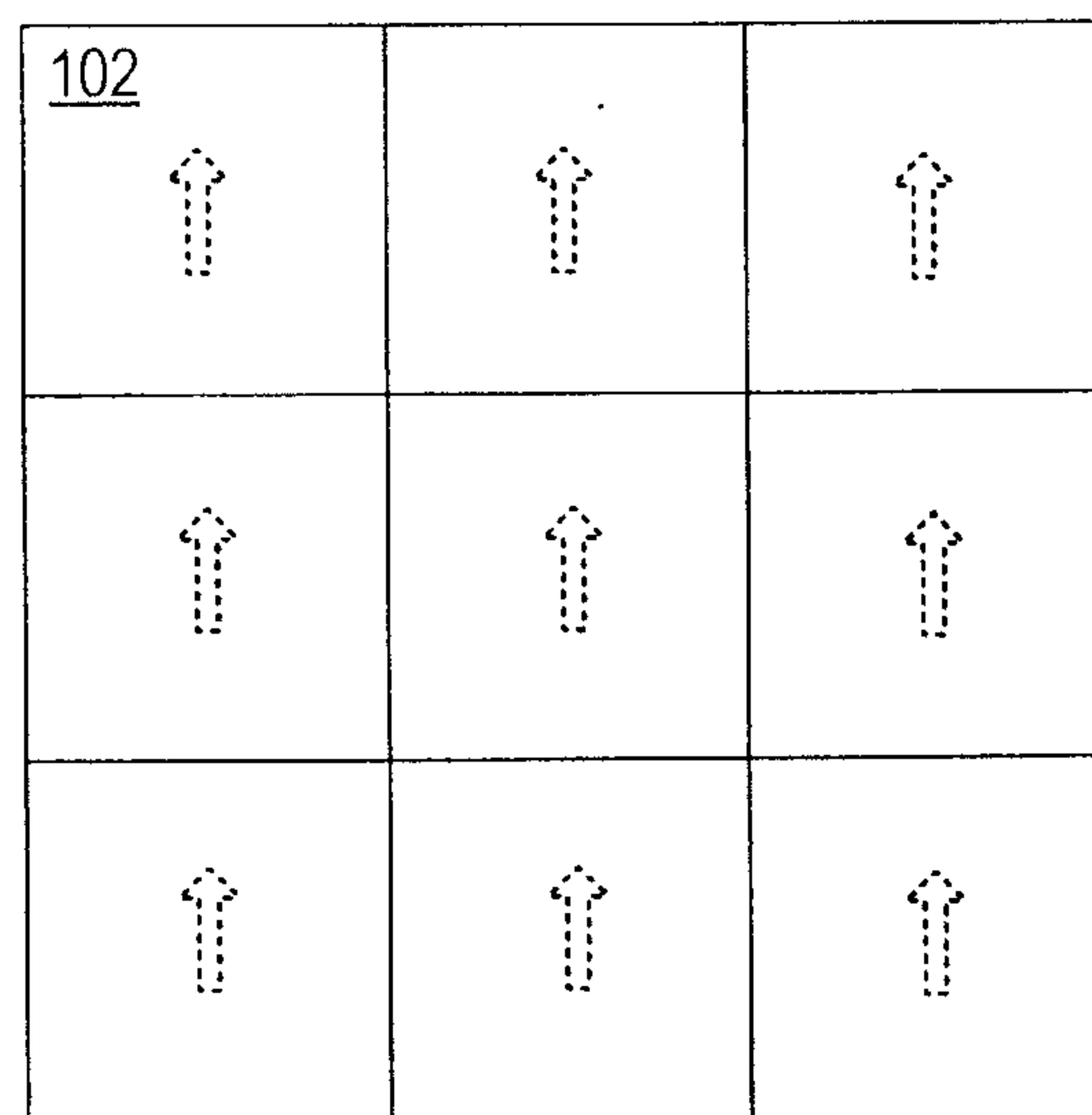


FIG. 1B

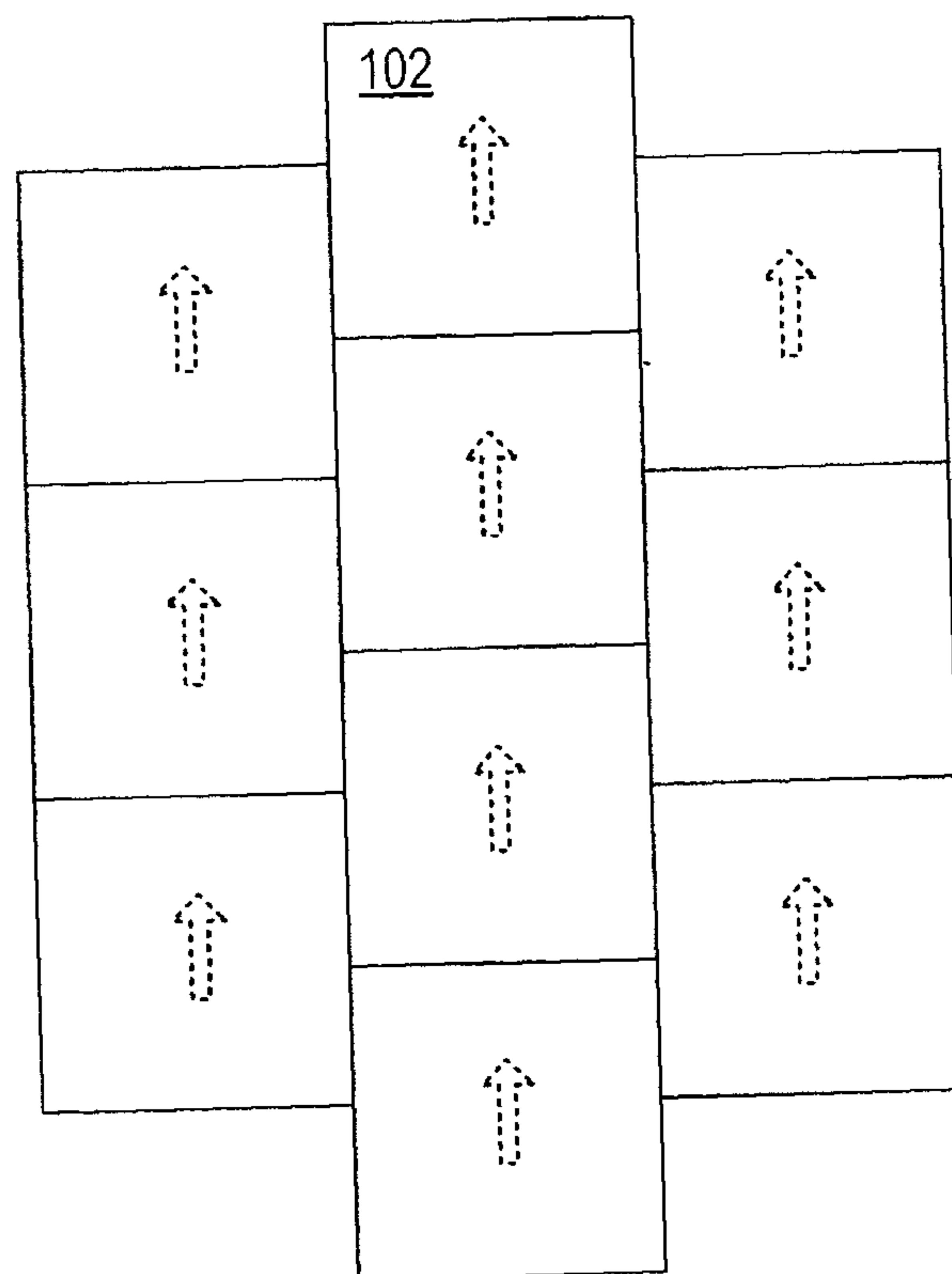


FIG. 1C

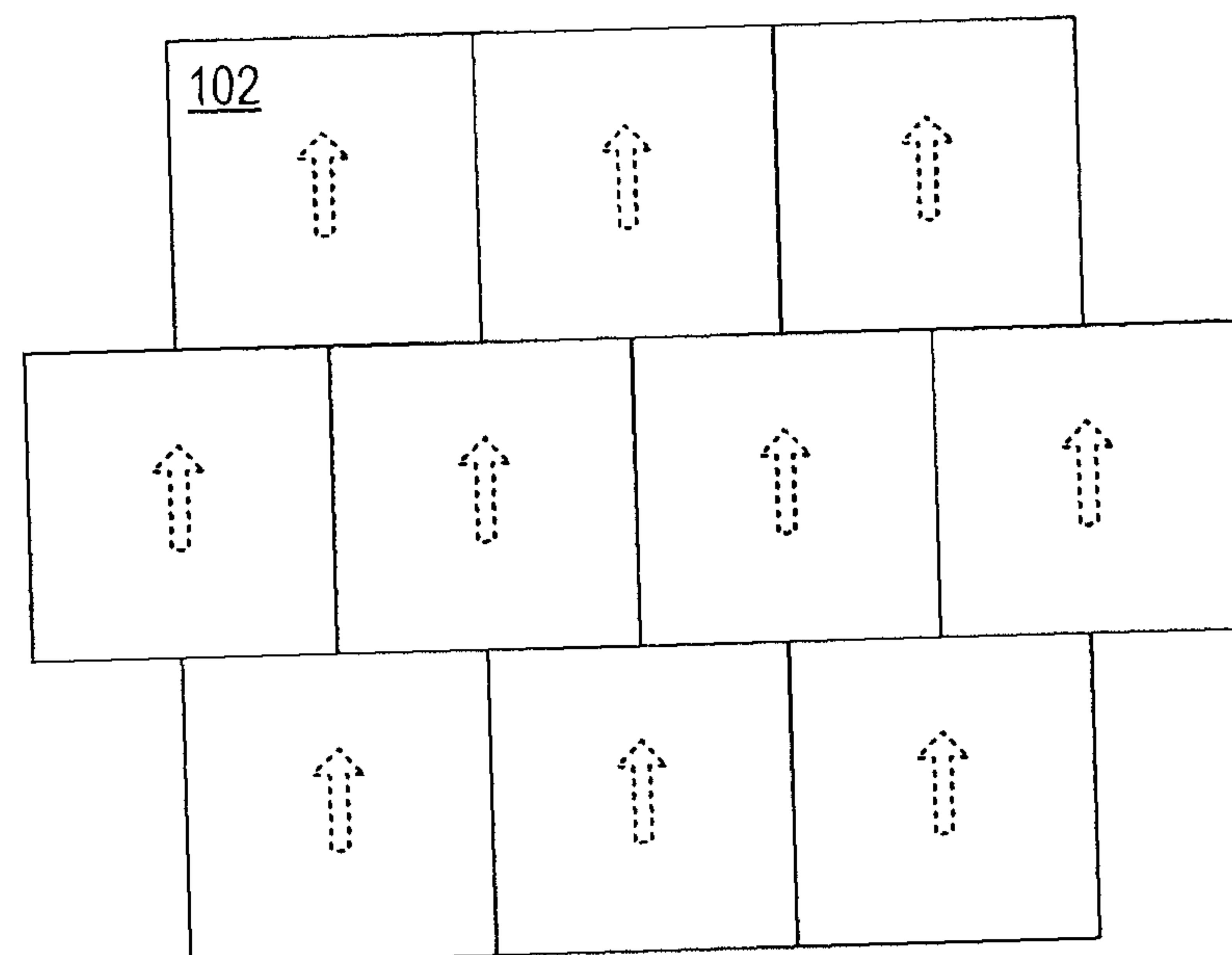


FIG. 1D

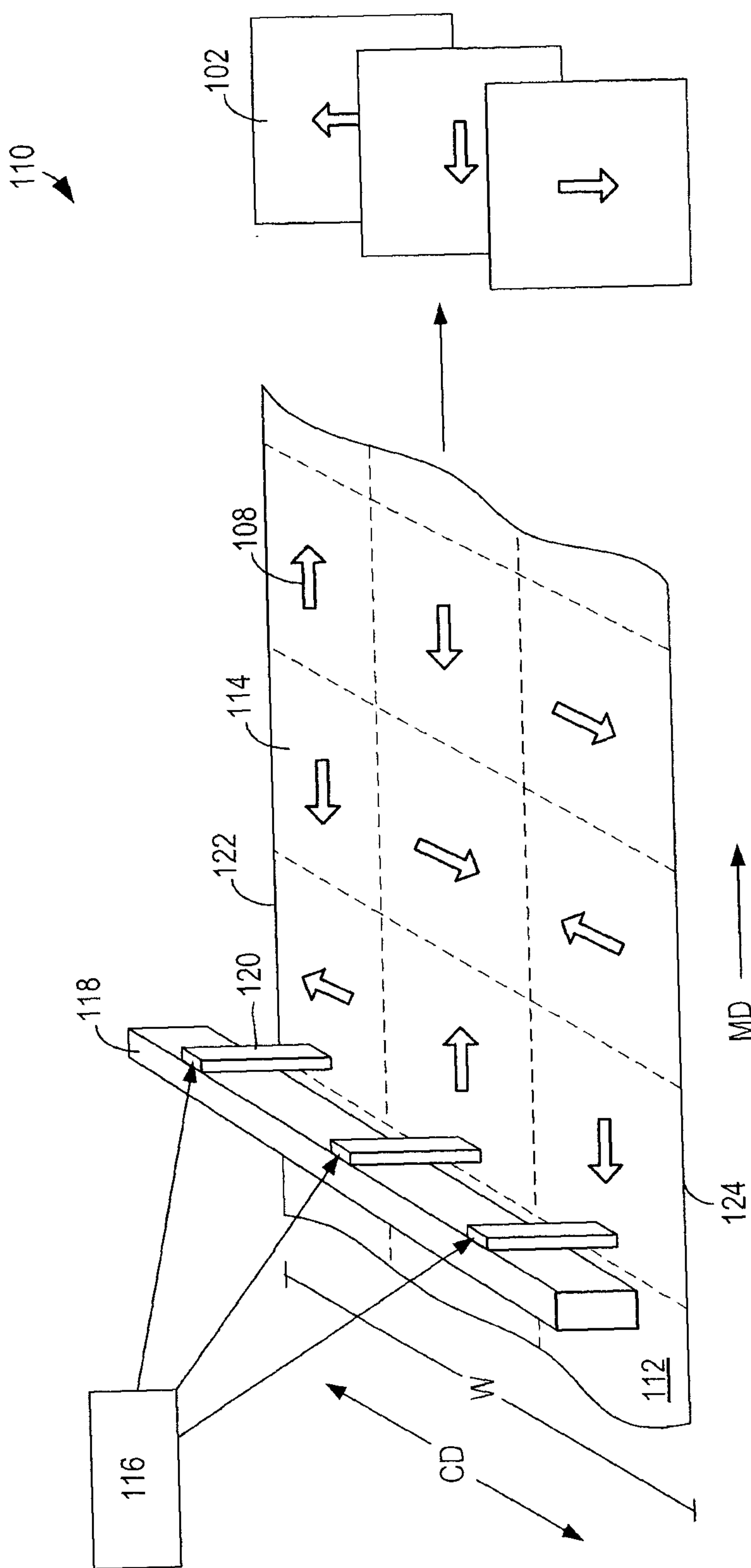


FIG. 1E

4/5

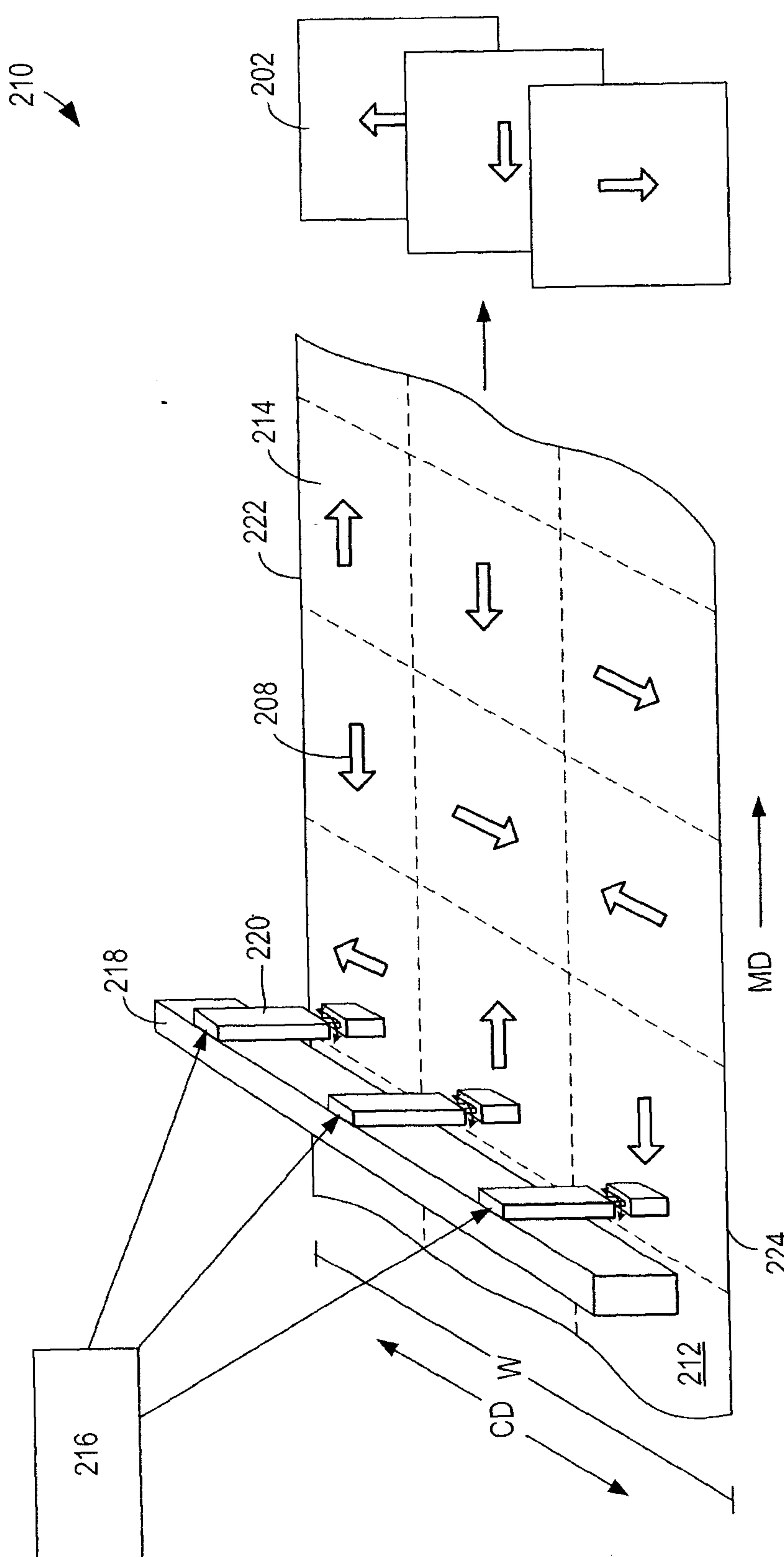


FIG. 2

WO 2010/141314

PCT/US2010/036382

5/5

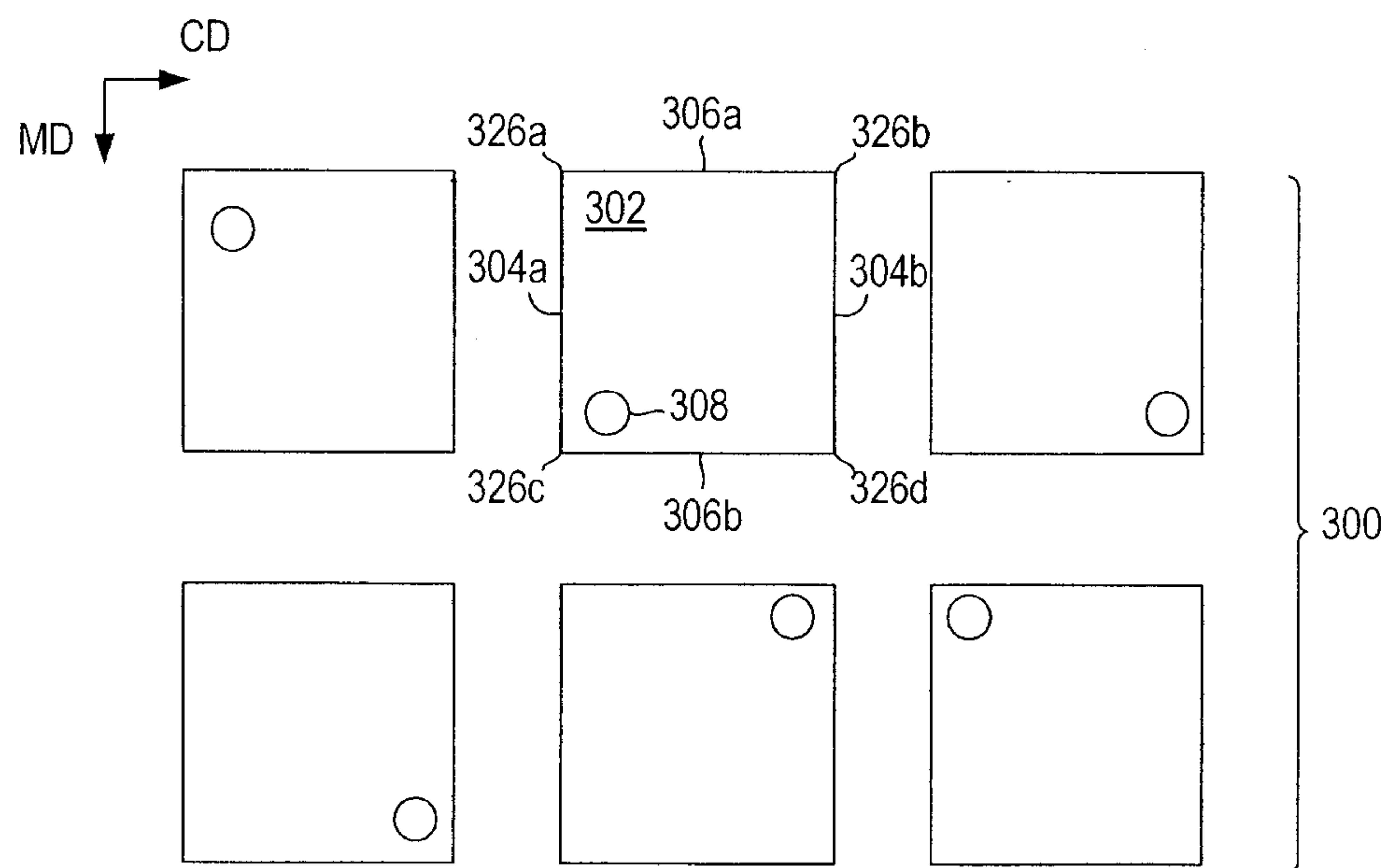
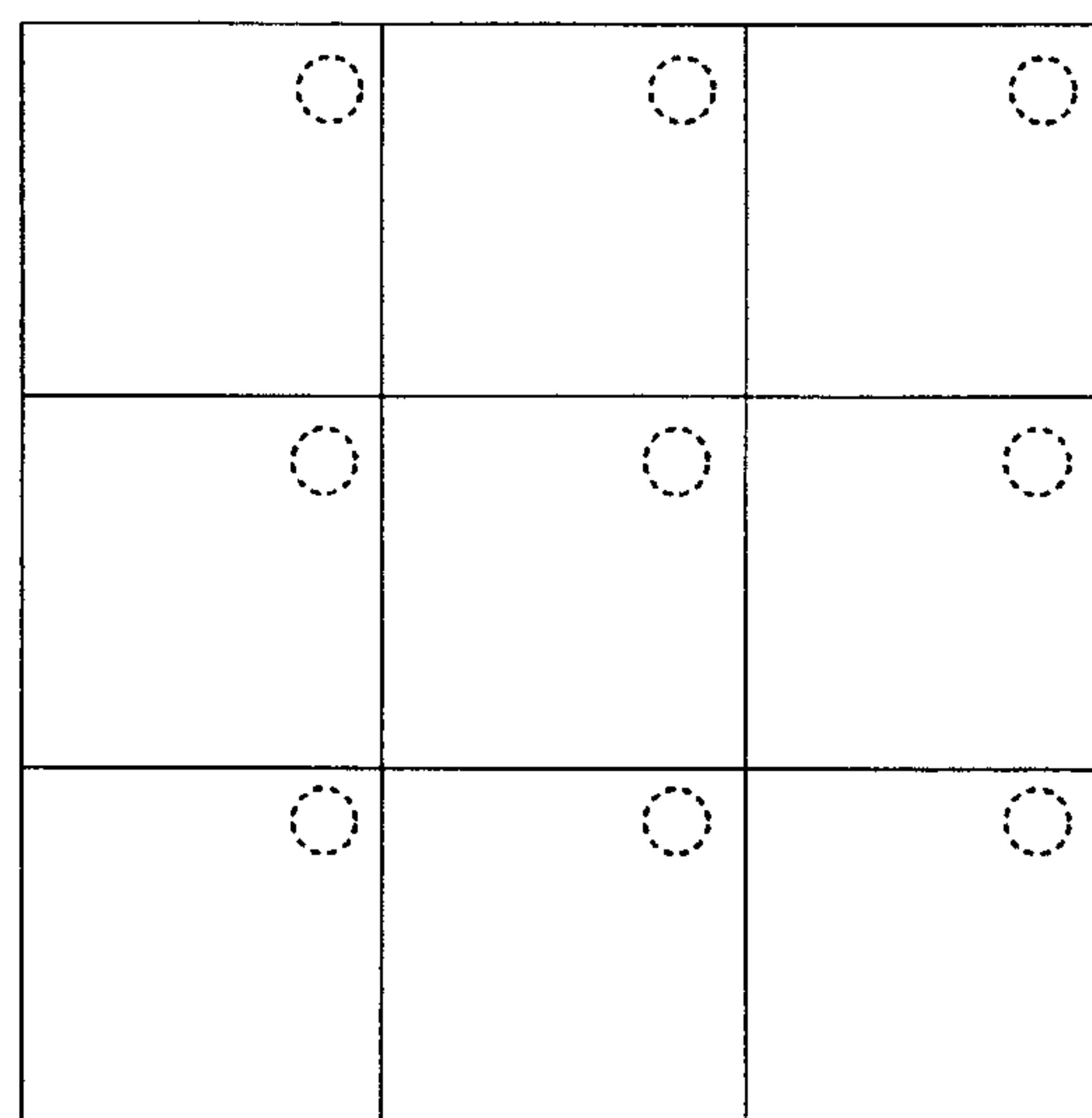
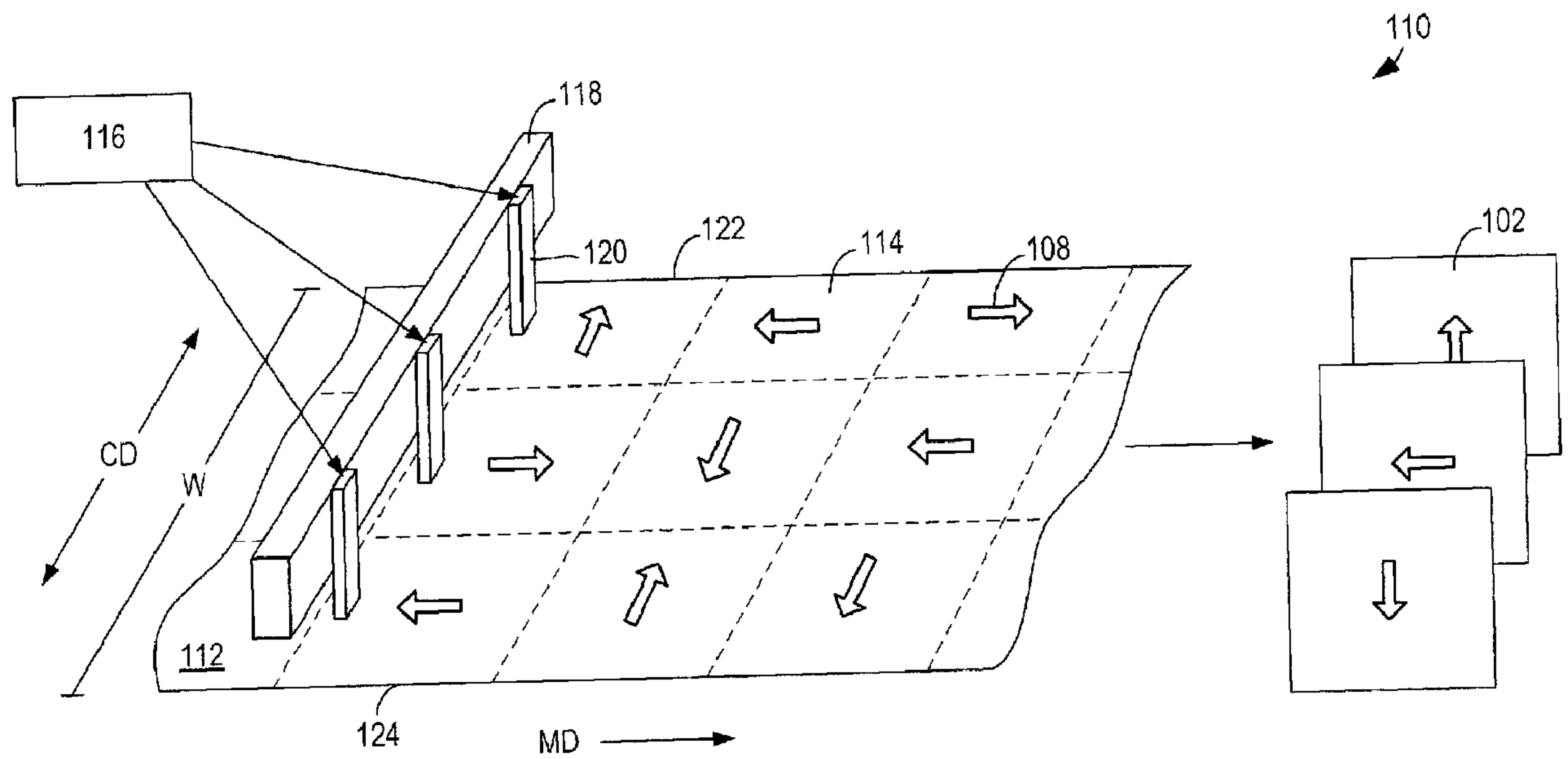




FIG. 3A

FIG. 3B

