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CIRCUIT SIMULATION USING DYNAMIC
PARTITIONING AND ON-DEMAND EVALUATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of integrated circuit (IC) design.

More specifically, the present invention relates to circuit simulation.

2. Background Information

Circuit simulation involves taking a description of a circuit usually called a
netlist, and a description of the input stimulus and then solving certain mathematical
equations to determine the response of the circuit to the given input stimulus over
the simulation time period. An example of a circuit simulator is the SPICE simulator,
originally developed by W. Nagel. See e.g. W. Nagel, “SPICE2, A computer
program to simulate semiconductor circuits”, University of California, Berkeley,
Memo No. ERL-M520, May 1975. Circuit simulators like SPICE represent a circuit
as a set of coupled first order non-linear differential equations. Well-known
techniques like Modified Nodal Analysis is used to perform this mathematical
representation. The set of coupled non-linear equations are then solved using a
sequence of steps, as illustrated in Fig. 10. The steps involve determining the time-
step of integration, linearising the differential equations, and solving the resulting set
of linear algebraic equations. A test is performed to determine if convergence has
been achieved. The process is repeated till convergence is reached. Once
convergence has been achieved, time is advance and the entire process is
repeated.

This traditional method of circuit simulation has a time complexity of O(NS) in
the worst case and O(N1'5) in the average case. This is due to the step involving the
solution of the linear algebraic equations. This solution requires solving a matrix
which has thie time complexity of O(NS). Due to this super-linear time complexity of
the algorithm in circuit simulators like SPICE, they are incapable of solving large

circuits. Usually the limits of such simulators are reached when circuit sizes reach
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100,000 devices. Solving circuits larger than this size becomes impossible since the
time taken to find the solution becomes very large.

The need to solve large circuits is becoming ever more important due to the
advances of silicon process technology. Integrated circuits or chips with multi-million
transistors are quite common. In order to address this need, alternative algorithms
have been developed. For example, algorithms developed by C.X Huang etc, as
disclosed in C. X. Huang et al., “The design and implementation of Powermill”,
Proceedings of the International Symposium on Low Power Design, pp. 105-120,
1995, by Y.-H. Shih etc as disclosed in Y. H. Shin et al., “ILLIADS: A new Fast MOS
Timing Simulator Using Direct Equation Solving Approacg” Proceedings of 28"
ACM/IEEE Design Automation Conference, 1991, and by A. Devgan as disclosed in
A. Devgan, “Transient Simulation of Integrated Circuits in the Charge-Voltage
Plane”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, VI. 15, No. 11, November 1996. These algorithms are characterized by a
linear O(N) time complexity, thereby allowing them to handle large circuits.

The linear time complexity in these algorithms is achieved by partitioning the
circuit into small partitions. To avoid the super-linear time of matrix solution, these
algorithms use an approximate (i.e. inaccurate) solution instead. Under Huang's
approach, an algorithm called one-step relaxation is used. This algorithm often has
inaccuracies of up to 20% and has serious problems on stiff circuits. In common
circuits, relaxation based algorithms do not obtain the correct results. Circuits
characterized by tight feedback or coupling cause problem for this algorithms. Under
Shih’s approach, a direct equation solving technique is used; this works well in very
limited situations where the device models can be accurately modeled by the
second-order Shichman and Hodges model. This is rarely true with the latest silicon
process technologies that requires the very complex and highly non-linear BSIM3
models for accurate device models. Devgan uses an explicit integration technique
but as evidenced from the waveforms in this paper, the accuracy is inadequate. The
common problem with using any approximate algorithm for solving the matrix
equations is vthat accuracy is usually not consistently good for all circuit designs
styles, especially for stiff circuits.

Standard matrix based algorithms do not suffer from the inaccuracy of

relaxation and other approximate algorithms. Using matrix based algorithms along
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with partitioning can result in good accuracy; only the nodes at the boundaries of
partitions can have degraded accuracy. However, use of single time-step for all
partitions produces significantly reduced performance.

Thus, an improved approach to circuit simulation is desired.

SUMMARY OF THE INVENTION

An EDA tool is provided with a circuit simulator that simulates circuit operation

using dynamic partitioning and on-demand evaluation. The circuit simulator includes
a static partitioner, a dynamic partitioner and an evaluation scheduler. The static
partitioner pre-forms a number of static partitions for the circuit. During simulation,
the dynamic partitioner forms and re-forms a number of dynamic partitions,
referencing the static partitions. At each simulation time step, the evaluation
scheduler determines which, if any, of the dynamic partitions have to be evaluated,
and evaluating on-demand only those where evaluations are necessary.

In one embodiment, the static partitioner forms the static partitions by
organizing devices of the IC design into connected sets. The static partitioner also
pre-processes the static partitions into a form tailored the dynamic patrtitioner's
needs. In one embodiment, the dynamic partitioner determines if the devices of the
IC design are in an On or an Off state, and forms the dynamic partitions accordingly.
In one embodiment, the evaluation scheduler determines whether any of the
dynamic partitions are in steady state, and schedules the dynamic partitions for
evaluation accordingly. In one embodiment, the evaluations, when performed, are

performed through matrix solution when accuracy is needed.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will be described by way of exemplary embodiments,

but not limitations, illustrated in the accompanying drawings in which like references
denote similar elements, and in which:

Figure 1 illustrates an overview of the present invention in accordance with
one embodirhent;

Figures 2-3 illustrate the operation flow of two aspects of the static partitioner

of Fig. 1, in accordance with one embodiment each;
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Figure 4 illustrates the overall operation flow of the simulation engine of Fig.
1, in accordance with one embodiment;

Figures 5 and 6a-6b illustrate the operation flow of three aspects of the
dynamic partitioner of Fig. 1, in accordance with one embodiment;

Figure 7 illustrates the operation flow of the evaluation scheduler of Fig. 1, in
accordance with one embodiment;

Figure 8 illustrates an example EDA tool incorporated with the circuit
simulator of the present invention, in accordance with one embodiment; and

Figure 9 illustrates an example computer system suitable to be programmed
with the programming instructions implementing the EDA tool of Fig. 8;

Figure 10 illustrates a prior art approach to circuit simulation;

Figures 11a-11b illustrate four example graphical representations of devices;

Figure 12 illustrates an example static partition of an IC design;

Figure 13 illustrates example graphical representations of the static
partitions;

Figure 14 illustrates an example signal flow representation of the partitioned
IC design;

Figure 15 illustrates an example graphical representation of biconnected
components;

Figure 16 illustrates an example serial parallel reduction operation;

Figures 17a-17d illustrate four example device ON/OFF determinations;

Figures 18a-18b illustrate one example each of merging and breaking
dynamic partitions;

Figure 19 illustrates the concept of simulation time step; and

Figure 20 illustrates the phenomenon of zero-delay trigger loop.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, various aspects of the present invention will be

described, and various details will be set forth in order to provide a thorough
understanding of the present invention. However, it will be apparent to those skilled in
the art that the present invention may be practiced with only some or all aspects of

the present invention, and the present invention may be practiced without the specific
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details. In other instances, well known features are omitted or simplified in order not
to obscure the present invention.

Parts of the description will be presented using terminology commonly
employed by those skilled in the art to convey the substance of their work to others
skilled in the art, such as netlist, graphical representations, nodes, and so forth. Also,
parts of the description will also be presented in terms of operations performed by a
computer system, using terms such as traversing, generating, determining, and the
like. As well understood by those skilled in the art, these quantities or operations take
the form of electrical, magnetic, or optical signals being stored, transferred, combined,
and otherwise manipulated through electrical, magnetic and optical components of a
digital system; and the term digital system includes general purpose as well as special
purpose data processing machines, systems, and the like, that are standalone,
adjunct or embedded.

Various operations will be described as multiple discrete steps performed in
turn in a manner that is most helpful in understanding the present invention.

However, the order of description should not be construed as to imply that these
operations are necessarily performed in the order they are presented, or even order
dependent. Lastly, repeated usage of the phrase “in one embodiment” does not
necessarily refer to the same embodiment, although it may.

Referring now Figure 1, wherein a block diagram illustrating an overview of

the present invention in accordance with one embodiment is shown. As illustrated,
IC design simulation tool 100 of the present invention is constituted with design
reader 102, static partitioner 103 and simulation engine 104 comprising dynamic
partitioner 107, scheduler 109, node evaluator 108 and model evaluators 106. The
elements are operatively coupled to each other as shown. As will be described in
more detail below, static partitioner 103, dynamic partitioner 107 and scheduler 109
are incorporated with the teachings of the present invention. Certain aspects of
design reader 102 and model evaluators 106 are the subject of co-pending U.S.
patent application, number <to be assigned>, contemporaneously filed and entitled
Adaptive Integrated Circuit Design Simulation Transistor Modeling And
Evaluation, which is hereby fully incorporated by reference.

As in the prior art, design reader 102 is used to read design description 110

provided by a designer. Design description 110 includes connectivity information
5
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connecting various models modeling electronic devices in the IC design. In one
embodiment, in addition to flattening a hierarchical design, design reader 102 also
assigns device characterizations to selected ones of the electronic devices of the IC
design. Static partitioner 103 pre-compiles or pre-partitions the IC design into static
partitions as well as pre-probesses the static partitions into a form particularly
suitable for the dynamic partitioner 107. During simulation, dynamic partitioner 107
further forms and re-forms dynamic partitions of the IC design that are relevant,
referencing the pre-formed static partitions. Scheduler 109 determines whether
evaluations are necessary for the dynamic partitions for the particular simulation
time step, and schedules the dynamic partitions for evaluation on an as-needed or
on-demand basis. Accordingly, node evaluator 108 and model evaluators 106 are
selectively invoked on an as needed or on-demand basis to evaluate the states of
the connections connecting the models, and various parameter values of the
models, such as current, voltage and so forth, respectively. In one embodiment, at
least one of the model evaluators adaptively performs the model evaluations at
different accuracy or performance levels in accordance with the assigned device
characterizations of the devices. Where accuracy is needed, the evaluations are
performed through matrix solution.

Device characterization and employment of such device characterizations to
adaptively perform model evaluation is explained in the above identified incorporated
by reference co-pending U.S. patent application. Static partitioner 103, dynamic
partitioner 107 and scheduler 109 will be describe in more detail below in turn. As
those skilled in the art will appreciate from the description to follow, the present
invention advantageously allow accuracy to be achieved where needed, but
otherwise, performance to be achieved where accuracy are unnecessary. As a
result, the present invention achieves an overall level of performance and accuracy
that is superior to that of the prior art approaches.

Referring now to Figures 2-3, wherein two block diagrams illustrating the
operational flow for two aspects of the static partitioner of Fig. 1 are shown. As
illustrated, at 202, static partitioner 103 first represents the design as a graph. In the
graph representation, the primitive devices (or elements) are each represented by a
graph model, and the connectivity of the primitive devices (hereinafter simply

devices) is represented via the connectivity of the graph models. (Figs. 11a-11d
6
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illustrate how four example devices can be graphically represented. Other devices
may be similarly represented.) Then, at 204, static partitioner 103 analyzes the
graph and partitions the devices into connected sets. Starting at each node in the
graph, static partitioner 103 traverses every edge connected to that node, and brings
the node connected to the bpposite side of that edge into the connected set of this
node. Once all the edges have been traversed, static partitioner 103 performs the
operation on the next node. The process is repeated until all nodes have been
operated on. At such time, a number of connected sets or static partitions have
been formed. (Figs. 12-13 illustrate an example application of this process to an
example IC design, partitioning the 1C design into three static partitions, with each
static partition having its own graph representation.)

For the illustrated embodiment, upon partitioning an IC design into a number
of static partitions, static partitioner 103 further orders the static partitions in
accordance with signal flow, 206. Signal flow ordering is accomplished by first
creating a directed graph (see Fig. 14). In this directed graph, a node represents a
static partition. A directed edge from node, to node; represents the flow of a signal
from node; to nodex.

Next, at 208, static partitioner 103 analyzes the signal flow graph for strongly
connected components to “levelize” the static partitions. Identification of strongly
connect components may be accomplished using any one of a number of known
techniques, e.g. the strongly connected component algorithm disclosed by Tarjan,
“Depth-First Search and Linear Graph Algorithms”, SIAM Journal on Computing, Vol.
1, No. 2, June 1972. All nodes (i.e. partitions) in the same strongly connected
component are considered to be in the same level. Each node (i.e. partition) is
assigned a level. The nodes (i.e. partitions) with no edge incident on them get the
smallest level assignment, level 0. For a node (i.e. partition) at level n, static
partitioner 103 traverses all edges going out this node (i.e. partition) and assigns a
level n+1 to the node (i.e. partition) across the edge. Once all nodes (i.e. partitions)
at level n have been processed, static partitioner 103 proceeds to nodes i.e.
partitions) at level n+1, until all nodes (i.e. partitions) have been processed. Thus,
through the levelization process, the signals are ensured to flow from partitions

assigned with the lower numbers to partitions assigned with the higher numbers.
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Additionally, for the illustrated embodiment, static partitioner 103 also keeps
partitions that form a loop from being assigned the same level number. At an
arbitrary point, static partitioner 103 increases the level number assignment.

Next, static partitioner 103 analyzes and pre-processes the structure of each
static partition into a form that is particularly suitable for dynamic partitioner 107 to
form dynamic partitions during simulation, thereby making it possible for simulation
engine 104 to realize even greater performance improvements. More specifically,
for each static partition, static partitioner 103 establishes an order for the nodes and
edges of the graph representation of the static partition. As illustrated in Fig. 3, the
order establishment process for each static partition is a three-step process. At 302,
static partitioner 103 traverses the graph representation in a depth-first manner to
identify the biconnected components. At 304, static partitioner 103 orders the
biconnected components into a tree structure (see Fig. 15). Once a root is chosen,
all other biconnected components can be ordered based on their tree connection.
For the illustrated embodiment, static partitioner 103 selects the biconnected
component with the largest number of nodes as the root.

At 306, static partitioner 103 orders the nodes within each of the biconnected
components. For the illustrated embodiments, static partitioner 103 classifies
biconnected components into three types. Type | is a biconnected component with
a single edge. Type Il is a biconnected component with multiple edges, however the
nodes are connected in such a way that the biconnected component can be
separated into two unconnected parts by removing exactly two edges. This type of
graph is more commonly called two-connected or series-parallel. Type lll is a
biconnected component that cannot be classified as either Type | or Type Il.

In general, the ordering operation involves ordering the nodes and from the
node, the edges are ordered. The nodes are ordered from small to large. An edge
is always connected between two nodes. The south node of an edge is always of
lower order than the north edge.

For each Type | biconnected component, the node closer to the root gets a
higher order than the other node. The edge is therefore arranged such that the

higher order node is the north node and the lower order node is the south node.
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For each Type Il biconnected component, a series and parallel reduction
process is performed. The process reduces a Type |l biconnected component into a
Type | biconnected component. The newly formed Type | biconnected component is
then ordered as described earlier. Once the reduced biconnected component is
ordered as a Type | biconnected component, the series and parallel reduction
process is reversed, unfolding the reduced nodes and edges, which are then
ordered as they are unfolded.

Skipping briefly to Fig. 16, an example application of the serial and parallel
reduction process is illustrated. The illustration applies to biconnected component 5
as well as biconnected component 1 (both are Type II, per above definition). As
illustrated, serially connected edge pairs 1602a and 1602b, and 1604a and 1604b,
can be replaced by edges 1606a and 1606b respectively. Then, parallel edge pairs
1606a and 1606¢, and 1606b and 1606d, can be replaced by edges 1608a and
1608b respectively. Likewise, serially connected edge pairs 1608a and 1608¢, and
1608b and 1608d, can be replaced by edges 1610a and 1610b respectively.

Finally, parallel edge pair 1610a and 1610b can be replaced by edge 1612. The
reversal process is exactly the opposite.

Returning now to Figure 3, more specifically, the performance of operation
306 for Type il biconnected components, for each Type Il biconnected component,
all nodes are collected and sorted based on the number of edges connected to the
node. The number of edges connected to the node is referred to as the node
degree. Then, among the sorted nodes (or the remaining ones, in subsequent
passes), static partitioner 103 selects a node with the smallest node degree, visits all
unordered edges of the node, and makes the selected node the south node of these
edges. Once the selected node has been made the south node of these edges, the
edges are considered ordered, and marked accordingly. Next, the node degrees of
the north nodes of these edges are all reduced by 1. Furthermore, fill-edges are
inserted for the selected node. The process is then repeated for the next node with
the smallest node degree. The repetition continues until all nodes have been
processed.

Fill-edges are inserted to complete the node and edges ordering such that the
matrix solution operation can be performed on the static partition during simulation

(when evaluation is needed). Fill-edges represent the same function as fill-ins in
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matrix computation. By determining all the fill-edges prior to simulation, the amount
of computations required during evaluation is advantageously reduced, thereby
improving performance. Fill-edges of a node n7 is determined by looking at the
north edges of the node n1. For each north edge with north node m17, the north
node m2 of each following north edge is examined. If there is no edge connecting
nodes m1 and m2, a fill-edge is added between these two nodes, with node m71 as
the south node, and node m2 as the north node. The node degree of nodes m7 and
m2 are each increased by 1. The fill-edge insertion process is itself also
incrementally repeated until all north edges of node n7 have been processed.
Referring now to Figure 4, wherein the operational flow of the simulation
engine in general, in accordance with one embodiment, is illustrated. An overview of
the operational flow will first be given, before selected ones of the operations are
described in detail. As shown, at 402, dynamic partitioner 107 first determines the
states of the various devices of the IC design, i.e. whether they are in an ON state or
in an OFF state. In general, devices are considered to be ON or OFF, depending on
the voltages on the terminals of the devices. (Fig. 17a-17d illustrate four specific
example models or rules for determining whether devices of four device types are in
the ON or the OFF state. Other models and rules may also be employed.) At 404,
dynamic partitioner 107 forms dynamic partitions in accordance with whether the
devices are in the ON or OFF state. That is, a dynamic partition is formed with
nodes that are connected together through devices that are in the ON state. For the
ilustrated embodiment, by virtue of the way the static partitions are formed and pre-
processed (ordered), dynamic partitioner 107 is able to form the dynamic patrtitions,
referencing the static partitions, i.e. static partition by static partition. As a result, all
dynamic partitions, if formed, are by default subsets of corresponding static
partitions, thereby significantly streamlining the dynamic partition formation
operation, and improving overall performance. Furthermore, once formed, each
dynamic partition remains unchanged unless it is affected by devices going from
OFF to ON or from ON to OFF, which too significantly streamlines the dynamic
partition formation operation, and improves performance. When devices do go from
OFF to ON or from ON to OFF, it is necessary to consider whether existing dynamic
partitions should be merged or broken up. The dynamic partition formation process,

including merging and breaking of dynamic partitions will be described more fully
10
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below, after the overall simulation strategy employing these dynamic partitions and
on-demand evaluations have been described.

Continuing now to refer to Fig. 4, once the dynamic partitions have been
formed, at 406, scheduler 109 advances the simulation time. At 408, scheduler 109
further determines which dynamic partitions, if any, need evaluation. At 410,
scheduler 109 schedules only those dynamic partitions that require evaluations. In
other words, under the present invention, node and device model evaluations are
performed only on an as needed or on-demand basis. As a result, experience has
shown, substantial improvement in simulation performance can be realized.
Furthermore, as described earlier, when evaluations are performed, they are
performed through matrix solution when accuracy is needed, thereby, allowing
performance and accuracy to be achieved at the same time.

After all the necessary evaluations have been performed (accurately, if
necessaty), 412, scheduler 109 determines whether sufficient amount of simulation
cycles have been applied, 414. If the desired number of simulation cycles have not
been applied, the process returns to operation 402, where the device states are
reassessed. Upon reassessment, the dynamic partitions are re-formed if necessary,
which may include merging and/or breaking of existing dynamic partitions.
Operations 402-414 are repeated as many times as it is necessary, until eventually,
it is determined at 414, sufficient number of simulation cycles have been applied. At
such time, the process terminates.

Returning back to operation 404, as described earlier, dynamic partitioner 107
forms dynamic partitions in accordance with whether the devices are in the ON or
OFF state. A dynamic partition is formed with nodes that are connected together
through devices that are in the ON state. For the illustrated embodiment, dynamic
partitioner 107 forms the dynamic partitions referencing the static partitions, i.e.
static partition by static partition. Figure 5 illustrates the operational flow for forming
dynamic partitions within a static partition, in accordance with one embodiment. As
illustrated, at 502, dynamic partitioner 107 first sorts the nodes of each static
partition according to the order established by static partitioner 103. At 504,
dynamic partitioner 107 starts gathering up members of a dynamic partition, by

starting tracing with the nodes in the lowest order. At 506, dynamic partitioner 107
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determines if the north edge of the node is in the ON state. If it is “ON”, the node is
included in the dynamic partition being formed, 508. Then, the next higher order
node is selected for examination, 510, and the process continues at 506.
Operations 506-510 are repeated over and over again, until a “terminal” node is
reached, i.e. a node without a north edge in the “ON” state. At such time, the
process terminates. At this time, all “terminal” nodes and all nodes south of them
have been included, forming a dynamic partition.

Figures 6a-6b illustrate the operation flows for merging two dynamic
partitions and breaking a dynamic partition, in accordance with one embodiment
each. As illustrated in Fig. 6a, for examining devices going from the OFF state to
the ON state, dynamic partitioner 107 first selects one of these devices, i.e. one that
went from the OFF state to the ON state, 602. Next, at 604, dynamic partitioner 107
determines if nodes across the device are located in different dynamic partitions
(see e.g. Fig. 18a). If the nodes across the device are indeed located in different
dynamic partitions, dynamic partitioner 107 merges the two dynamic partitions, 606.
Otherwise, operation 606 is skipped. Upon merging the two dynamic partitions or
skipping the operation, at 608, dynamic partitioner 107 determines if there are more
“OFF to ON” devices to be examined. If so, the process continues at 602.
Otherwise, the process terminates.

As illustrated in Fig. 6b, for examining devices going from the ON state to the
OFF state, dynamic partitioner 107 first selects one of such devices, i.e. a device
that went from the ON state to the OFF state, 610. Next, at 612, dynamic partitioner
107 breaks the dynamic partition into two dynamic patrtitions, splitting the original
dynamic partition along where the device went from the ON state to the OFF state
(see e.g. Fig. 18b). Upon breaking the dynamic partition, at 614, dynamic partitioner
107 determines if there are more “ON to OFF” devices to be examined. If so, the
process continues at 610. Otherwise, the process terminates.

Returning now to operation 408 of Fig. 4, as described earlier, scheduler 109
determines which dynamic partitions, if any, need evaluation. For the illustrated
embodiment, first and foremost, dynamic partitions are eligible to be considered for
evaluation if and only if their simulation time steps are “in sync” with the current

simulation time step (see e.g. Fig. 19). The simulation time step of each dynamic
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partition is independent of each other. The simulation time step of each dynamic
partition is determined based on the requirements imposed by the devices and
nodes in the dynamic partitions, as well as the signals that affect the dynamic
partitions. For example, the rate at which voltage changes on a node determines the
time-step for the partition. Usually, the time-step chosen for the dynamic partition is
the smallest time-step determined from each node in the dynamic partition. The
independent treatment of the simulation time steps is another factor that contributes
to the improved performance of the simulation tool of the present invention, without
sacrificing accuracy. Since at each simulation time step, not all dynamic partitions
have to be examined, smaller simulation time steps may actually be employed to
improve accuracy in one dynamic partition, but without incurring performance cost
since the other dynamic partitions can continue to choose larger time steps.

Additionally, evaluation for one of these dynamic partitions is deem necessary
only if the dynamic partition is not in steady state, When a dynamic patrtition is
considered not in steady state, it is also referred to as in evaluation state. This is
another factor that contributes to the improvement of performance of the simulation
tool of the present invention, without sacrificing accuracy. For the illustrated
embodiment, scheduler 109 employs a number of decision rules to determine
whether one of these dynamic partitions should be considered in steady state, and
therefore no evaluation is necessary.

These decision rules include:

a) a dynamic partition enters steady state when none of the nodes in the
dynamic partition changes by more than a pre-set value;

b) a dynamic partition cannot enter steady state if the gate nodes of any
device in the dynamic partition is changing due a user defined input;

c) a dynamic partition in steady state cannot go to steady state after one
evaluation (to prevent a zero-delay loop from being formed, to be explained more
fully below);

d) as long as the input signals or the nodes of a dynamic partition are
changing, the dynamic partition is to be evaluated.

Furthermore, when a node changes voltage, scheduler 109 determines
whether any dynamic partitions that are adjacent to the node need to be evaluated.

To make the determination, all devices whose gate is connected to the node are
13
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traversed If the device is in the OFF state, and the new state of this device is
determined to be the ON state, then evaluations for the dynamic partitions on the
drain and source nodes of this device will be deem necessary. If these dynamic
partitions are in steady state, they will be changed to evaluation state and scheduled
for evaluation. If these dynamic partitions are already in the evaluating state, then
consideration is given on whether the simulation time step of these dynamic
partitions should be reduced. The simulation time step is reduced when the gate
node changes rapidly. However, if it is determined that the gate node change is not
rapid enough, the time step is left unchanged. If the new state of the device,
however, is the same OFF state, then no action is taken. If the device is in the ON
state and the new state is the OFF state, then also no action is taken. If the new
state is the ON state, then the same rules as in the OFF to ON transition is applied.
Turning now to the topic of zero-delay trigger loop. A zero-delay trigger loop
is formed when a loop of dynamic partitions are triggered for evaluation (see Fig.
20). Since all the dynamic partitions involved in such a loop are being evaluated, the
zero-delay loop can exist only if at least one of the dynamic partitions in the loop is
not in the evaluating state. That is, there must exists at least one dynamic partition
that transitions from the steady state to the evaluating state and back to the steady
state after one evaluation in order for a zero-delay loop to sustain itself. The way to
prevent it from happening is to prevent a dynamic partition that was in the steady
state and moved to the evaluating state for evaluation, from going to steady state
after one evaluation. Thus, for the illustrated embodiment, it is made impossible for
a dynamic partition to go from steady state to evaluating state and then immediately
to steady state. Since the transition from steady state to evaluating state can
happen with zero-delay, but the transition from evaluating to steady state cannot
happen with zero-delay, triggering of zero-delay loop is thereby prevented.
Returning now to operation 410 of Fig. 4, wherein dynamic partitions requiring
evaluation are scheduled. For the illustrated embodiment, accuracy of the
evaluations are ensured by carefully choosing the time when the evaluations are
performed for certain cases. In the case where the gate node of a device that is in
the OFF state, and undergoing a voltage change that will cause the device to go to
the ON state, the evaluation of the dynamic partition in which this device belongs is

“triggered” immediately, at the present time. This “triggering” for evaluation happens
14
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with zero-delay, ensuring accuracy. It is important to note that without the ability to
prevent zero-delay loops, such zero-delay triggers would not be possible, thus
resulting in significant loss of accuracy. In another case, where a long chain of
inverters, all of which are at a steady state voltage, when the input of the first
inverter changes, the zeronelay triggering causes all the inverters to be evaluated at
this time. Even a small delay in the triggering will cause the inverters at the end of
the chain to be evaluated significantly late, thus leading to significant inaccuracy.

Returning now to operation 412 of Fig. 4, wherein the dynamic partitions
scheduled for evaluations are evaluated. In general, all nodes in a dynamic partition
to be evaluated are inserted in a stack in the order they appear in the dynamic
partition from root to leaf. Once inserted in the evaluation stack, the nodes in the
stack are evaluated in the order from leaf to root in sequence. In this bottom-up
traversal of the nodes, the Gaussian Elimination step of a matrix solution is
performed. Once the root node has been reached, the traversal is reversed. From
“the root, a top-down traversal of the nodes performing the forward substitution step
of a matrix solution is performed. At the end of this top-down traversal, the solution
is available. As alluded to earlier, in selected ones of the model evaluations, some
of the evaluations are performed adaptively, which is described in detail in the
incorporated by reference patent application.

Referring now to Figure 8, wherein an EDA tool incorporated with the circuit
simulator of the present invention in accordance with one embodiment is shown. As
illustrated, EDA tool suite 800 includes circuit simulator 802 incorporated with the
teachings of the present invention as described earlier with references to the various
figures. Additionally, EDA tool suite 800 includes other tool modules 804. Examples
of these other tool modules 802 include but not limited to synthesis module, layout
verification module and so forth.

Figure 9 illustrates one embodiment of a computer system suitable for use to
practice the present invention. As shown, computer system 900 includes processor
902 and memory 904 coupled to each other via system bus 906. Coupled to system
bus 906 are non-volatile mass storage 908, such as hard disks, floppy disk, and so
forth, input/output devices 910, such as keyboard, displays, and so forth, and

communication interfaces 912, such as modem, LAN interfaces, and so forth. Each
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of these elements performs its conventional functions known in the art. In particular,
system memory 904 and non-volatile mass storage 908 are employed to store a
working copy and a permanent copy of the programming instructions implementing
the above described teachings of the present invention. System memory 904 and
non-volatile mass storage 906 may also be employed to store the IC designs. The
permanent copy of the programming instructions to practice the present invention
may be loaded into non-volatile mass storage 908 in the factory, or in the field, using
distribution source/medium 914 and optionally, communication interfaces 912.
Examples of distribution medium 914 include recordable medium such as tapes,
CDROM, DVD, and so forth. In one embodiment, the programming instructions are
part of a collection of programming instructions implementing EDA too! 800 of Fig. 8.
The constitution of elements 902-914 are well known, and accordingly will not be
further described.

In general, those skilled in the art will recognize that the present invention is
not limited to the embodiments described. Instead, the present invention can be
practiced with modifications and alterations within the spirit and scope of the
appended claims. The description is thus to be regarded as illustrative, instead of
restrictive on the present invention.

Thus, a circuit simulator for simulating an IC design have been described.

16
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CLAIMS

What is claimed is:

1. A computer implemented method for simulating a circuit, the method
comprising: |

forming a plurality of dynamic partitions of the circuit;

at each simulation time step, determining whether the dynamic partition has

to be evaluated, and evaluating only the dynamic partitions that require evaluation.

2. The method of claim 1, wherein said formation of dynamic partitions of the

circuit is performed referencing pre-formed static partitions.

3. The method of claim 2, wherein the method further comprises pre-forming

said static partitions.

4, The method of claim 3, wherein said pre-formation of static partitions
comprises organizing devices of the circuit into connected sets, with each connected

set forming a static partition.

5. The method of claim 4, wherein said pre-formation of static partitions further
comprises ordering the pre-formed static partitions in accordance with at least signal

flow.

6. The method of claim 5, wherein said ordering of the pre-formed static
partitions is performed further in accordance with where strongly connected

components are located.

7. The method of claim 3, wherein the method further comprises ordering nodes

and edges of a graphic representation of each of the pre-formed static partitions.

8. The method of claim 7, wherein each of said ordering of nodes and edges of

a graphic representation of one of the pre-formed static partitions comprises

17
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identifying bi-connected components and performing said ordering using the

identified bi-connected components.

9. The method of claim 1, wherein said formation of dynamic partitions
comprises identifying devices that are ON, and identifying nodes in graphical
representations that are connected by the identified ON devices, with each

interconnected collection of nodes forming a dynamic partition.

10.  The method of claim 1, wherein said formation of dynamic partitions

comprises merging and/or breaking dynamic patrtitions.

11. The method of claim 1, wherein said determination of whether a dynamic
partition has to be evaluated comprises determining whether a dynamic partition is in

steady state.

12. The method of claim 11, wherein said determination of whether a dynamic
partition has to be evaluated further comprises preventing a zero-delay trigger loop

from being formed.

13.  The method of claim 1, wherein said evaluation of a dynamic partition
requiring evaluation comprises traversing a graphical representation of the dynamic
partition in an bottom-up manner, and computing a matrix solution for each node of

the graphical representation of the dynamic partition.

14.  An article of manufacture comprising:
a recordable medium having stored therein a plurality of programming
instructions to be executed by a processor, wherein when executed, causes the

method as set forth in claim 1 to be performed.

15.  The article of claim 14, wherein the programming instructions, when
executed, further causes the additional operations set forth in claim 2 to be

performed.

18
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16.  The article of claim 14, wherein the programming instructions, when
executed, further causes the additional operations set forth in claim 9 to be

performed.

17.  The article of claim 14, wherein the programming instructions, when
executed, further causes the additional operations set forth in claim 12 to be

performed.

18. A computer system comprising:

a storage medium having stored therein a plurality of programming
instructions implementing a circuit simulator to simulate a circuit, the circuit simulator
including

a dynamic partitioner to form a plurality of dynamic partitions of the
circuit; and
an evaluation scheduler determining, at each simulation time step,
whether each of the dynamic partitions has to be evaluated, and
evaluating only the dynamic partitions that require evaluation; and
a processor coupled to the storage medium to execute the programming

instructions to operate the circuit simulator.

19.  The computer system of claim 18, wherein

said dynamic partitioner of the implemented circuit simulator forms said
dynamic partitions of the circuit referencing pre-formed static partitions; and

said implemented circuit simulator further comprises a static partitioner to pre-

form said static partitions.

20.  The computer system of claim 18, wherein said dynamic partitioner forms the
dynamic partitions by identifying devices that are ON, and identifying nodes in
graphical representations that are connected by the identified ON devices, with each

interconnected collection of nodes forming a dynamic partition.

21.  The computer system of claim 18, wherein said circuit simulator further

comprises node and model evaluators that evaluate a dynamic partition requiring
19
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evaluation by traversing a graphical representation of the dynamic partition in an
bottom-up manner, and computing a matrix solution for each node of the graphical

representation of the dynamic partition.

22. A method for formin'g dynamic partitions to simulate a circuit, the method
comprising:

identifying devices of the circuit that are ON; and

identifying nodes in graphical representations of the circuit that are connected
by the identified ON devices, with each interconnected collection of nodes forming a

dynamic partition.

23.  The method of claim 22, wherein the method further comprises merging

and/or breaking previously formed dynamic partitions.

24. A method for evaluating a dynamic partition of a circuit on demand to
simulate the circuit, the method comprising:

determining whether the dynamic partition is in steady state;

scheduling the dynamic partition for evaluation if the dynamic partition is

determined to be in steady state.

25.  The method of claim 24, wherein said determining of whether the dynamic
partition is in steady state comprises examining a plurality of decision rules that
include at least one of the followings:

whether any node of the dynamic partition changes by more than a pre-set
value;

whether any gate node of a device in the dynamic partition changes due to a
user defined input;

whether if all other dynamic partitions are in steady state; and

whether at least one input signal or at least one node of the dynamic partition

is changing.A
26. A computer system comprising:

20
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a storage medium having stored therein a plurality of programming
instructions; and

a processor coupled to the storage medium to execute the programming
instructions to form dynamic partitions of a circuit while the circuit is being simulated,
including identification of devices of the circuit that are ON, and identification of
nodes in graphical representations of the circuit that are connected by the identified
ON devices, with each interconnected collection of nodes forming a dynamic

partition.

27.  The computer system of claim 26, wherein the processor further executes the
programming instructions to merge and/or break previously formed dynamic

partitions.

28. A computer system comprising:

a storage medium having stored therein a plurality of programming
instructions; and

a processor coupled to the storage medium to execute the programming
instructions to evaluate a dynamic partition of a circuit on demand at a time step
while the circuit is being simulated, including determining whether the dynamic
partition is in steady state, and scheduling the dynamic partition for evaluation if the

dynamic partition is determined to be not in steady state.

29.  The computer system of claim 28, wherein the processor further executes the
programming instructions to examining a plurality of rules to determine whether a
dynamic partition is in steady state, the rules including at least one of the followings:

whether any node of the dynamic partition changes by more than a pre-set
value;

whether any gate node of a device in the dynamic partition changes due to a
user defined input;

whether if all other dynamic partitions are in steady state; and

whether at least one input signal or at least one node of the dynamic partition

is changing.
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30. A method for evaluating a dynamic partition of a circuit to simulate the circuit,
the method comprising:

during simulation, forming dynamic partitions referencing ordered static
partitions earlier formed; and

evaluating selected ones of the dynamic partitions formed, with each selected

dynamic partition being evaluated in an ordered manner through matrix solution.

31.  The method of claim 30, wherein said selective evaluations of the dynamic

partitions formed are performed on-demand, on an as needed basis.

32. A computer system comprising:

a storage medium having stored therein a plurality of programming
instructions; and

a processor coupled to the storage medium to execute the programming
instructions to form dynamic partitions of a circuit referencing ordered static
partitions earlier formed, and to evaluate selected ones of the dynamic partitions
formed in an ordered manner through matrix solution, while the circuit is being

simulated.
33.  The computer system of claim 32, wherein the processor further executes the

programming instructions to perform said selective evaluations of the dynamic

partitions on-demand, on an as needed basis.

22



PCT/US00/11508

1/14

WO 00/77693

7 D/

SAOLYNTVAZ A0LVMYAI | noisae |
1300 ol 340N | aanowLavd Tep,
90! % A A
4INOILILAV
)_\ 431NAIHIS _ ouvls =
601 7y X
501 )_\%zoEEs_ < n._\ A30v3Y
INIONT NOLLYINWIS oy T ITWYNAG .00 zwx_mms
oot]

NOILdI¥9$30
0l NO9IS3a

SUBSTITUTE SHEET (RULE 26)



WO 00/77693 PCT/US00/11508

2/14

REPRESENT DESIGN AS A GRAPH

202
N~

Y
ANALYZE THE GRAPH AND PARTITION DEVICES J_204
INTO CONVERTED SETS

v

ORDER PARTITIONS IN ACCORDANCE WITH r\3°6
SIGNAL FLOW

Y

ANALYZE SIGNAL FLOW GRAPH TO IDENTIFY  }. 208

STRONGLY CONNECTED COMPONENTS AND ASSIGN
LEVELS TO ALL NODES

F1G, 2

IDENTIFY BICONNECTED COMPONENTS | 302

v

ORDER IDENTIFIED BICONNECTED  } 304
COMPONENTS

v

ORDER NODE IN BICONNECTED COMPONENTS -

306
el

Y

16, 3 n

SUBSTITUTE SHEET (RULE 26)




WO 00/77693

PCT/US00/11508

3/14

(_START )

N,
>

Y

DETERMINE DEVICES -
ON/OFF STATE

v

FORM DYNAMIC PARTITIONS A
(MERGING/BREACHING)

402
I~

404

Y
ADVANCE SIMULATION TIME -

JOé

Y

DETERMINE WHICH DYNAMIC 1]
PARTITIONS NEED EVALUATION

! 4o

SCHEDULE EVALUATIONS T~

JO8

412

EVALUATIONS
COMPLETED

YES

CONTINUE
?

716, 4

SUBSTITUTE SHEET (RULE 26)



WO 00/77693 PCT/US00/11508

4/14

SORT NODE BY ORDER ESTABLISHED | 502

BY STATIC PARTITIONER ™ ﬁ 6, _5

Y 504
SELECT LOWEST NODE 1\/

506

508 510
YES INCLUDE IN T~ | sELECT NEXT T~
PARTITION HIGHER NODE

NORTH

EDGE ON
?

SELECT A DEVICE ] 602

CsTarT) FROM OFF TO ON
>

SELECT A DEVICE J 610 N
FROM ON T OFF ACROSS DEVICE
\L IN DIFFERENT DYNAMIC
BREAK 612 PARTLTIONS
PARTITON T~ ?
YES
614 MERGE DYNAMIC ] 606
MORE PARTITIONS T~

YES

|l
N

DEVICE ON TO
OFF?

608
DEVICE OFF TO

716G, 6B
F1G, 64

SUBSTITUTE SHEET (RULE 26)



WO 00/77693

PCT/US00/11508

5/14

702
DETERMINE IF DYNAMIC 1‘/

PARTITIONS ARE IN STEADY STATE

v

SCHEDULE DYNAMIC PARTITIONS NoT 4704
IN STEADY STATE FOR EVALUATION

END

G 7

SUBSTITUTE SHEET (RULE 26)



WO 00/77693

PCT/US00/11508

6/14
800
EDA TOOL SUITE =
SIMULATION OTHER
T00L MODULES ﬁ 6. 8
b Y
802 (804
904
9°°§ PROCESSOR 4292 MEMORY
]
06
0% BUS
MASS STORAGE 0 COMM.
8005 DEVICES ] INTERFACE _l
N 1 N L ~
DISTRIBUTION 914
SOURCE/MEDIUM A~
ﬁ 6 Q EDA TOOL SUITE
! (800a

SUBSTITUTE SHEET (RULE 26)



WO 00/77693

7/14

PCT/US00/11508

READ CIRCUIT DESCRIPTION AND INITIALIZE DATA STRUCTURE

¢,<

UPDATE VALUE OF INDEPENDENT SOURCES AT #y+ ¢

v

PREDICT VALUES OF UNKNOWN VARIABLES AT t,. ¢

y

INTEGRATE LINEAR CAPACITORS AND INDUCTORS

>y

INTEGRATE NON-LINEAR DEVICES

v

SET-UP LINEAR MATRIX EQUATIONS

Y

SOLVE LINEAR MATRIX EQUATIONS

NEWTON-RAPHSON

CONVERGENCE
?

YEST

TEST ACCURACY OF SOLUTION

v

ACCEPT SOLUTION

v

SELECT NEW TIME-STEP AND NEW t,+ ¢

7/ 6 70 (PRIOR ART)

SUBSTITUTE SHEET (RULE 26)

©
G 14



PCT/US00/11508

WO 00/77693

8/14

PIT Dl

TIGOW HdVAD 40151533

L=

977 DI

1300W HdVA9 A0LSISNVAL SOW ILVANIIV

Dot

IT T Bl
13G0N HdYd9 40119V4V9
1
&
1

vI T bl

TIA0W HAVA9 JOLSISNVAL SOW 1SV

= -l

SUBSTITUTE SHEET (RULE 26)



WO 00/77693 PCT/US00/11508

9/14

+

0

SUBSTITUTE SHEET (RULE 26)



WO 00/77693 PCT/US00/11508

10/ 14

b

FIG, 13

+

O

SUBSTITUTE SHEET (RULE 26)



WO 00/77693 PCT/US00/11508

11/14

ROOT

5
ROOTED TREE OF BICONNECTED
COMPONENTS

O
™~
\B-
TN

SUBSTITUTE SHEET (RULE 26)



PCT/US00/11508

WO 00/77693

12/ 14

N_e_w

EENELZ ﬂ %0191
\ ] U
,V IOV | EN
90191} 28091

97 DI

E8091
||\| _ P8091
&
1FNVAYd

==~
98091

P9091 9909

REIREN

92091

4091

€209!

84091

SUBSTITUTE SHEET (RULE 26)



PCT/US00/11508

WO 00/77693

13/14

pLT ‘D

13Q0W HdVAD 4015153
NO SAYMTY

o

9L T DI

A0LSISNVAL SOW 3dALd

WA =< 507 1440

Y > 87 N
A 303n0S

xing @.%_?o °A 31v9

PA NIVQ

LT ‘DL

d0LIDVAVD
NO SAVMTY

"
I

VLT ‘DI

JOLSISNVAL SOW 3dALN

A => 50 1340
Yy o by .
SA 204N0S A<TANO

A ¥ing @.%_Io °A 31v9

PA NIVaQ

SUBSTITUTE SHEET (RULE 26)



WO 00/77693 PCT/US00/11508

14/ 14

Po

D (O

F1G. 18a
F1G. 184

SUBSTITUTE SHEET (RULFE 26)



INTERNATIONAL SEARCH REPORT

M .tional Application No

PCT/US 00/11508

CLASSIFICATION OF SUBJECT MATTER

TPC 7 CGOBF17

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Flectronic data base consuited during the intemational search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TQ BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 553 008 A (HUANG XIAOLI ET AL) 1-33

3 September 1996 (1996-09-03)

column 2, line 37 -column 3, line 5

column 10, line 48 -column 15, line 42

figures 8-15

X MENG-LIN YU ET AL: "VLSI timing 1-33

simulation with selective dynamic

regionization”

PROCEEDINGS 27TH ANNUAL SIMULATION

SYMPOSIUM (CAT. NO. 94TH0642-9), 27TH

ANNUAL SIMULATION SYMPOSIUM, LA JOLLA, CA,

USA, 11-15 APRIL 1994,

pages 208-216, XP002145553

1994, Los Alamitos, CA, USA, IEEE Comput.

Soc. Press, USA

ISBN: 0-8186-5620-4

the whole document

-/—-

m Further documents are listed in the continuation of box C. E Patent family members are listed in annex.

° Special categories of cited documents :

“T* later document published after the intemational filing date

wnn - L or prionity date and not in conflict with the application but
A" document defining the general state of the art which is not : o :
considered to be of particular relevance ::rl‘tve:n :i% ;‘mderstand the principle or theory underlying the
"E* eadlier document but published on or after the intemational X" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
“L* document which may throw ﬂoubtiglon prior;ijty clafim(s) rt])r involve an inventive step when the document is taken alone
which is cited to establish the publication date of another "* document of " X . . .
L : P particular relevance; the claimed invention
citation or ome{v special reasofjl (as specified) cannot be considered to involve an inventive step when the
"0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
“P* document published prior to the intemational filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the intemational search Date of mailing of the intemational search report
23 August 2000 08/09/2000
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 eponl, s
Fax: (+31-70) 340-3016 Guingale, A

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 3




INTERNATIONAL SEARCH REPORT

It Ltional Application No

PCT/US 00/11508

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropnate, of the relevant passages

Relevant to claim No.

A US 5 305 229 A (DHAR SANJAY)
19 April 1994 (1994-04-19)

column 3, line 17 - line 41
column 10, line 1 - 1ine 50

figures 5,8,18
A ADLER D: "Switch-level simulation using
dynamic graph algorithms”

TIEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN
OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH
1991, USA,

vol. 10, no. 3, pages 346-355,
XP002145274

ISSN: 0278-0070

abstract

paragraphs ‘0002!',°0008!, ‘0010!-°0013!

A SIMIC N ET AL: "Partitioning strategies
within a distributed multilevel logic
simulator including dynamic
repartitioning”
PROCEEDINGS EURO-DAC ’93. EUROPEAN DESIGN
AUTOMATION CONFERENCE WITH EURO-VHDL ’93
(CAT. NO.93CH3352-2), PROCEEDINGS OF
EURO-DAC 93 AND EURO-VHDL 93- EUROPEAN
DESIGN AUTOMATION CONFERENCE, HAMBURG,
GERMANY, 20-24 SEPT. 1993,

pages 96-101, XP002145275
1993, Los Alamitos, CA, USA, IEEE Comput.
Soc. Press, USA
ISBN: 0-8186-4350-1

paragraphs ‘0002!,°04.1!

figure 3
A ACKLAND B D ET AL: "EVENT-EMU: AN EVENT
DRIVEN TIMING SIMULATOR FOR MOS VLSI
CIRCUITS"

INTERNATIONAL CONFERENCE ON COMPUTER AIDED
DESIGN,US,LOS ALAMITOS, IEEE COMP. SOC.
PRESS,

vol. CONF. 7,

5 November 1989 (1989-11-05), pages 80-83,
XP000163716

ISBN: 0-8186-1986-4

paragraphs ‘0002!, ‘0005!

1-8,18,
24,26,
28,30,32

1-9,18,
20,22,
24,26,
28,30,32

1,18,22,
24,26,
28,30,32

1,18,22,
24,26,
28,30,32

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 3




INTERNATIONAL SEARCH REPORT

It .tlonal Application No

PCT/US 00/11508

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

PAYER M: "PARTITIONING AND ORDERING OF
CMOS CIRCUITS FOR SWITCH LEVEL ANALYSIS"
INTEGRATION, THE VLSI
JOURNAL ,NL ,NORTH-HOLLAND PUBLISHING
COMPANY. AMSTERDAM,

vol. 10, no. 2, 1991, pages 113-141,
XP000207814

ISSN: 0167-9260

abstract

paragraphs ‘0003!, ‘0005!

WO 98 24039 A (WEVER UTZ ;ZHENG QINGHUA
(DE); SIEMENS AG (DE))
4 June 1998 (1998-06-04)

1-8,18,
20,22,
24,26,
28,30,32

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 3 of 3




INTERNATIONAL SEARCH REPORT

information on patent family members

Inte: onal Application No

PCT/US 00/11508

s, | e e e
US 5553008 A 03-09-1996 us 5446676 A 29-08-1995
US 5305229 A 19-04-1994 NONE

W0 9824039 A 04-06-1998 EP 1008075 A 14-06-2000

Form PCT/ISA/210 (patent family annex) (July 1992)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

