Title: POLYVINYLIDENE FLUORIDE RESIN COMPOSITION, FILM, BACK SHEET, AND SOLAR CELL MODULE

Abstract: Provided is a polyvinylidene fluoride resin composition in which an inorganic pigment is well dispersed and which can form a film that suffers from little defect caused by poor dispersion and that has mechanical strengths suitable for practical use. Also provided are a film, a back sheet, and a solar cell module. A resin composition obtained by blending 100 parts by mass of a resin component consisting of 50 to 95% by mass (in total) of two kinds of polyvinylidene fluorides which are different in shape or melt flow characteristics and 5 to 50% by mass of methyl methacrylate with both 7 to 40 parts by mass of a white inorganic pigment and 0.01 to 7 parts by mass of an inorganic pigment for color matching, wherein at least one of the polyvinylidene fluoride resin compositions exhibits an MFR (230 °C, 2.16 kg load) of 3 to 35 g/10 min and the methyl methacrylate composition exhibits an MFR (230 °C, 10 kg load) of 2 to 20 g/10 min.

International Classification:
H01L 31/04 (2006.01)
H01L 33/12 (2006.01)
H01L 33/10 (2006.01)
H01L 33/06 (2006.01)
H01L 33/08 (2006.01)

Inventors:
Yasutaka Aoyama (Japan)
Kazuo Kato (Japan)
Makoto Takahashi (Japan)
Naoyuki Ono (Japan)
Hiroshi Ito (Japan)
Naoki Tanaka (Japan)
Kazuhiko Endo (Japan)
Naoko Iwata (Japan)
Yoshio Umeda (Japan)
Kenichi Ootomo (Japan)
Shigeharu Endo (Japan)
Satoshi Kato (Japan)
Takashi Sato (Japan)
Takashi Sato (Japan)
Koji Fujimoto (Japan)

Assignee:
Waseda University (Japan)
NVIDIA Corporation (United States of America)

Priority Date:
2009-01-26

Publication Date:
2011-06-06

Application Date:
2009-01-26

Priority Application:
JP2009-271573

Application Number:
WO2011/065234

Inventors:
Yasutaka Aoyama
Kazuo Kato
Makoto Takahashi
Naoyuki Ono
Hiroshi Ito
Naoki Tanaka
Kazuhiko Endo
Naoko Iwata
Yoshio Umeda
Shigeharu Endo
Satoshi Kato
Takashi Sato
Takashi Sato
Koji Fujimoto

Assignee:
Waseda University
NVIDIA Corporation

Priority Date:
2009-01-26

Publication Date:
2011-06-06

Application Date:
2009-01-26

Priority Application:
JP2009-271573

Application Number:
WO2011/065234
明細書

発明の名称:
ポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュール

技術分野
[0001] 本発明は、ポリフッ化ビニリデン系樹脂組成物、ポリフッ化ビニリデン系樹脂フィルム、太陽電池モジュール用バックシート及び太陽電池モジュールに関する。より詳しくは、太陽電池モジュールのバックシートを構成する耐候性フィルムを製膜するための樹脂組成物及びこの樹脂組成物を用いて製膜した耐候性フィルムに関する。

背景技術
[0002] ポリフッ化ビニリデン（以下、PVDと略す。）は、機械的強度及び耐薬品性に優れており、化学プラントの配管材料や貯槽、反応缶内面のライニング材料として用いられている。また、PVDは、耐候性にも優れていることから、各種建築物や自動車の内外装用プラスチック板、金属板等の基材の表面保護用フィルム、及び電気・電子機器の部品の絶縁材料としても用いられている。

[0003] 更に、近年、太陽光発電モジュールのバックシートを構成する耐候性フィルム材料として、PVDが注目されてきている（例えば、特許文献1参照）。太陽電池モジュールは、屋外で長時間の耐久性を要求されるため、一般に、ガラス等からなる透明基板、エチレン酢酸ビニル共重合体（EVA）等の熱可塑性樹脂シート等からなる封止材、光起電力素子である太陽電池セル及びバックシートを、この順で積層し、加圧加熱等の方法でラミネートして一体化した構造となっている。

[0004] この太陽電池用バックシートは、太陽電池セル及び配線の保護の目的で太陽電池モジュールの最下層に用いられるが、保護目的の他に太陽光の反射率を高め、太陽電池モジュールの発電効率を高める効果も求められる。このた
め、従来の太陽電池モジュールでは、主に、白色のシートが用いられており、太陽電池用のPVDFフィルムには、通常、白色顔料が配合されている（例えば、特許文献2参照）。更に、従来、フィルムの隠蔽力を高めるため、白色顔料の他に調色用の有機無機顔料を若干量配合した太陽電池用バックシートも提案されている（例えば、特許文献3参照）。

先行技術文献
特許文献
特許文献1：特開2000-294813号公報
特許文献2：特開2009-71236号公報
特許文献3：特開2008-28294号公報

発明の概要
発明が解決しようとする課題

太陽電池モジュールでは、水蒸気や酸素及び他の腐食性の気体等が侵入すると配線の腐食や太陽電池セルの機能低下の原因となるため、そのバックシートには、長期の耐候性、耐熱性等の他に水蒸気バリア性、ガスバリア性等の性能も要求される。しかしながら、前述した従来の白色系PVDFフィルムは、酸化チタン等の白色顔料及び調色用の無機顔料の分散性が悪く、これらが凝集物となって、フィルムに欠点が生成しやすいという問題点がある。

そして、バックシートに欠点があると、そこから大気中の水分や酸素、腐食性のガス等が太陽電池モジュール内に侵入し、配線の腐食、太陽電池セルの機能低下及び絶縁不良等の原因となる。更に、このような欠点部分は、機械的強度や柔軟性を低下させるため、欠点を起点にフィルムの裂けが発生するという問題点もある。

そこで、本発明は、無機顔料の分散性が良好で、フィルムを形成したときに、分散不良による欠点が発生にくく、実用的な機械的強度特性を有するポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュールを提供することを主目的とする。
課題を解決するための手段

本発明者は、前述した課題を解決するために、鋭意検討した結果、樹脂成分を、PVDFとポリメタクリル酸メチル（以下、PMMAと略す。）の混合系とし、更に、溶解流動性が比較的高い2種類のPVDFを併用することにより、フィルム製膜したときの無機顔料の分散不良が著しく改善され、分散不良による欠点が大幅に減少することを見出し、本発明に至った。

即ち、本発明に係るポリフッ化ビニリデン系樹脂組成物は、2種類のポリフッ化ビニリデン：合計で50〜95質量%及びポリメタクリル酸メチル：5〜50質量%からなる樹脂成分を100質量部とし、白色無機顔料を7〜40質量部とし、調色用無機顔料を0.01〜7質量部とし、を含有するものであり、2種類のポリフッ化ビニリデンのうち少なくとも1種は、JIS K 7210のA法により、温度を230℃、荷重を3.8kgとして測定したMFR（Melt Flow Rate）が3〜35g/10minであり、ポリメタクリル酸メチルは、JIS K 7210のA法により、温度を230℃、荷重を10kgにして測定したMFR（Melt flow rate）が2〜20g/10minである。

この組成物では、2種類のポリフッ化ビニリデンのうち、一方をペレット体として、他方を粉体としてもよい。

その場合、ペレット体のポリフッ化ビニリデンとして、例えばJIS K 0069で規定されている乾式ふるい分け試験法により測定した平均粒子径（メジアン径）が1〜6μmのものを使用すると共に、粉体のポリフッ化ビニリデンとして、例えばJIS Z 8825_1に規定されているレーザー回折装置により測定した平均粒子径（メジアン径）が3〜30μmのものを使用し、ポリフッ化ビニリデン全体におけるペレット体の割合を40〜97質量%、粉体の割合を3〜60質量%とすることができる。

又は、JIS K 7210のA法により、温度を230℃、荷重を3.8kgとして測定したMFR（Melt Flow Rate）が3〜35g/10minであるポリフッ化ビニリデンと、JIS K 7210のA法により、温度
を230℃、荷重を10kgとして測定したMFR（Melt Flow Rate）が2〜30g/10minであるポリフッ化ビニリデンと、を含有させてもよい。

また、白色無機顔料としては、例えばJIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径（メジアン径）が0.1〜2パミのものを使用することがができる。

更に、調色用無機顔料としては、例えばJIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径（メジアン径）が0.1〜2パミのものを使用することができる。

[0014]（第1の実施形態）

発明の効果

[0012]本発明によれば、2種類のPVDを併用し、少なくともその一方を比較的溶融流動性が高いものにしているため、無機顔料の分散性が向上し、分散不良による欠点が少なく、耐候性に優れ、実用的な機械的強度特性を有し、太陽電池モジュール用バックシートとして好適なポリフッ化ビニリデン系樹脂フィルムが得られる。

発明を実施するための形態

[0013]以下、本発明を実施するための形態について、詳細に説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより発明の範囲が狭く解釈されることはない。

[0014]（第1の実施形態）
先ず、本発明の第1の実施形態に係るポリフッ化ビニリデン系樹脂組成物（以下、単に樹脂組成物ともいう。）について説明する。本実施形態の樹脂組成物は、形態が異なる2種類のPVDFとPMMAからなる樹脂成分に、少なくとも、白色無機顔料及び調色用無機顔料が配合されている。

[0015] [PVDF:樹脂成分中に合計で50〜95質量%]

PVDFは、耐候性及び耐熱性に優れており、本実施形態の樹脂組成物の主成分である。しかしながら、配合するPVDFを、2種類ともMFRが3 g/10 min未満のものにすると、PVDFに対する白色無機顔料及び調色用無機顔料の分散が低下し、フィルムとした時の欠点が発生しやすくなる。一方、PVDFを、2種類ともMFRが35 g/10 minを超えるものにすると、フィルムの引っ張り強度等の機械的性能が低下すると共に、成形性が低下する。

[0016] よって、本実施形態の樹脂組成物では、PVDFの一方又は両方に、JIS K 7210のA法により、温度を230℃、荷重を3.8kgとして測定したMFR（Melt Flow Rate）が3〜35 g/10 minの樹脂を使用する。なお、PVDFのMFRは、5〜30 g/10 minが好ましく、より好ましくは10〜25 g/10 minである。これにより、白色無機顔料及び調色用無機顔料の分散性が著しく向上し、フィルムにしたときの欠点発生がほとんどなく、更に、フィルムの機械的性能も向上させることができる。

[0017] 更に、本実施形態の樹脂組成物では、2種類のPVDFのうち一方をペレット体とし、他方を粉体とすることが望ましい。このように、ペレット体と粉体を併用することにより、溶融混練（コンパウンド）工程における原料樹脂の溶融過程で、顔料を高分散させるために必要な高いせん断力を得ることが可能となる。

[0018] その際、ペレット体としては、JIS K 0069化学製品のふるい分け試験方法の乾式ふるい分け試験方法によって求めた平均粒子径（メジャン径）が1〜6 μmのものを使用することが望ましい。また、粉体として
は、J I S Z 8 8 2 5 - 1 粒子径解析—レーザー回折法—第1部:測定原理」のレーザー回折装置で測定した平均粒子径（メジアン径）が3〜30 μmのものを使用することが望ましい。これにより、取り扱い性を低下させることなく、溶融過程におけるせん断力を高めることができる。

そして、本実施形態の樹脂組成物においては、P V D F全に占めるペレット体と粉体の割合が、ペレット体が40〜97質量%、粉体が3〜60質量%であることが好ましい。ペレット体の割合が多くなり、粉体の割合が全体の3質量%未満になると、P V D Fと白色無機顔料及び調色用無機顔料の分散混合が十分でなく、不均一組成となることがある。また、逆にペレット体の割合が少なく、粉体が全体の60質量%を超えると、加熱混練時にP V D Fの溶融が短時間で完結するため、白色無機顔料及び調色用無機顔料の分散混合が十分進まず、顔料の凝集体となることがある。なお、P V D F全体に占めるペレット体と粉体の割合のより好ましい範囲は、ペレット体が60〜80質量%、粉体が20〜40質量%である。

本実施形態の樹脂組成物に配合されるP V D Fは、M F Rが前述した範囲のものであればよく、市販の樹脂を用いることもできる。具体的には、フッ化ビニリデンのホモポリマーが好ましいが、フッ化ビニリデンを主成分とし、他の含フッ素モノマーを50質量%以下の範囲で共重合した共重合体であってもよい。このフッ化ビニリデンと共重合体を形成する含フッ素モノマーとしては、例えばヘキサフルオロプロピレン、テトラフルオロエチレン、ヘキサフルオロイソブチレン、各種のフルオロアルキルビニルエーテル等の公知の含フッ素モノマーが挙げられる。

また、これらの樹脂を製造する方法も特に限定されるものではなく、一般的な懸濁重合又は乳化重合等の方法で重合され、通常、密閉反応器に水等の溶媒、重合開始剤、懸濁剤（又は乳化剤）、連鎖移動剤等を仕込んだ後、反応器を脱気ににより減圧してガス状のフッ化ビニリデン単量体を仕込み、反応温度を制御しながらフッ化ビニリデン単量体の重合を進める等の方法で製造することができる。
その際、重合開始剤としては、通常、過硫酸塩のような無機過酸化物や有機過酸化物が用いられ、例えばジノルマルプロピルバーオキシジカーボネート（NPP）、ジイソプロピルバーオキシジカーボネート等が挙げられる。

連鎖移動剤としては、アセトン、酢酸イソプロピル、酢酸エチル、炭酸ジェチル、炭酸ジメチル、炭酸エチル、プロピオン酸、トリプロピ酸、トリプロピロエチルアルコール、ホルムアルデヒドジメチルアセタール、1,3-ブタンジェンエポキサイド、1,4-ジオキサン、β-ブチルラクトン、エチレンカーボネート、ビニレンカーボネート等が挙げられ、特に入手や取り扱いの容易さ等からアセトン、酢酸エチル等が好適に用いられる。

懸濁剤（乳化剤）としては、部分ケン化ポリビニルアルコール、メチルセルロース、ヒドロキシエチルセルロース等の水溶性セルロースエーテル、アクリル酸系重合体、ゼラチン等の水溶性ポリマーが挙げられる。

なお、PVDのMFRは、重合温度、重合開始剤の種類と量、連鎖移動剤の種類と量等によって調整することができる。例えば、重合開始剤と連鎖移動剤の種類が同一のときには重合温度を高くすれば、MFRを高くすることができる。

更にまた、本実施形態の樹脂組成物では、樹脂成分中のPVDの割合を、ペレット体と粉体との合計で50〜95質量％とする。PVDの配合割合が、50質量％未満の場合、顔料の分散が低下し、フィルムとした時に欠点が発生しやすくなる。一方、樹脂成分におけるPVDの配合割合が95質量％を超えると、フィルム強度等の機械的性能が低下する。なお、樹脂成分におけるPVDの配合割合の好適な範囲は50〜90質量％（PMMA：10〜50質量％）であり、更に好ましくは60〜85質量％（PMMA：15〜40質量％）である。

[PMM :樹脂成分中に5〜50質量％]

PVDにPMA配合すると、フィルムなどに加工した際に、他の基材と積層するために必要な接着性を付与することができる。しかしながら、樹脂成分中のPMAの配合量が5質量％未満の場合、十分な接着性が得られ
なかったり、フィルム強度等の機械的特性が低下したりする。一方、樹脂成分中のPMMの配合量が50質量％超になると、フィルム自体の耐候性が低下し、太陽電池パックシートに必要な耐候性が得られない虞がある。よって、樹脂成分中のPMMの含有量は5〜50質量％とする。

[0028] 本実施形態の樹脂組成物に配合されるPMMは、特に限定されるものではないが、好ましくはアステチホルミアルデヒド、アセトアルデヒド、アセチルホルミアルデヒド、アセチルホルミアルデヒド等で製造したメタクリル酸メチルを主成分とする耐候性に優れた樹脂が好ましい。メタクリル酸メチルに共重合できる主なモノマーとしては、例えばエチル（メタ）アクリレート、2プロピル（メタ）アクリレート、n-プロピル（メタ）アクリレート等である。可塑性を付与する目的で、ブチル（メタ）アクリレート、2エチルヘキシル（メタ）アクリレート等が挙げられる。

[0029] また、本実施形態の樹脂組成物で使用するPMMは、JIS K 7210のA法により、温度を230℃、荷重を1kNにして測定したMFR（Melt flow rate）が2〜20g/10minである。MFRがこの範囲のPMMは、PVDFとの相溶性が良好であるため、フィルムとしての使用が可能である。なお、PMMのMFRは、4〜15g/10minであることが好ましく、より好ましくは6〜12g/10minである。

[0030] [白色無機顔料：樹脂成分100質量部に対して7〜40質量部]

白色無機顔料は、例えば太陽電池モジュール用パックシートに使用されるフィルムに必要とされる遮蔽性を確保するために配合されている。しかしながら、白色無機顔料の配合量が樹脂成分100質量部あたり7質量部未満であると、十分な遮蔽性や可視光の光線反射率が得られない。一方、白色無機顔料の配合量が樹脂成分100質量部あたり40質量部を超えると、フィルムにしたときの機械的強度が低下したり、分散不良による外観欠陥の発生が多くなったりする。よって、白色無機顔料の配合量は、PVDFとPMMからなる樹脂成分100質量部に対して7〜40質量部とする。

[0031] なお、白色無機顔料の配合量は、樹脂成分100質量部あたり、10〜3
5 質量部が好ましく、更に好ましくは 15 〜 30 質量部である。これにより、可視光の全光線反射率が大きく、更に、機械的強度及び柔軟性が適正で、取り扱い性が良好なフィルムが得られる。

また、白色無機顔料は、JIS Z 8825_1 に規定されているレーザー回折装置により測定した平均粒子径（メジアン径）が、0. 1〜2 μm であることが好ましく、更に好ましくは 0. 20〜1 μm である。これにより、溶融混練時の分散性が良好となり、外観欠陥の少ないフィルムを得ることができる。

本実施形態の樹脂組成物に配合される白色無機顔料の材質は、特に限定されるものではないが、例えば酸化マグネシウム、硫酸バリウム、酸化チタン、塩基性炭酸鉛、酸化亜鉛等が挙げられる。各種白色無機顔料の中でも、特に、屈折率と着色力が大きく、光触媒作用が少ないルチル型結晶のニ酸化チタンを使用することが望ましい。

また、この白色無機顔料は、粒子の表面をアルミニナ及び／又はシリカでコーティングした酸化チタンであることが好ましい。これにより、白色無機顔料のフィルムへの分散が更に良好で、樹脂組成物製造の際の加熱混練時及び製膜時に触媒作用により P V D F が加熱分解するのを防止し、更にフィルムを屋外使用した場合の光線劣化を防止し耐候性を確保することができる。

[調色用無機顔料 : 樹脂成分 100 質量部に対して 0 . 01 〜 7 質量部]

調色用無機顔料は、フィルムにしたときの色調を微調整すると共に、耐熱性を向上させるために配合されている。しかしながら、調色用無機顔料の配合量が樹脂成分 100 質量部あたり 0 . 01 質量部未満であると、着色力や耐熱性向上効果が十分に得られない。一方、調色用無機顔料の配合量が樹脂成分 100 質量部あたり 7 質量部を超えると、樹脂中に均一に分散させることが困難になり、フィルムの外観欠陥が増加する。よって、調色用無機顔料の配合量は、P V D F と PMMA からなる樹脂成分 100 質量部に対して 0 . 01〜7 質量部とする。なお、調色用無機顔料の配合量は、樹脂成分 100 質量部あたり、0 . 1〜5 質量部であることが好ましく、更に好ましくは
0.5〜3質量部である。

また、調色用無機顔料の平均粒子径は、十分な着色力や隠蔽性を有し、凝集粒子の生成を抑制するという観点から、0.1〜2μmであることが好ましく、更に好ましくは0.2〜1μmである。なお、ここでいう平均粒子径は、JISZ8825-1に規定されているレーザー回折装置により測定したメジアン径である。

本実施形態の樹脂組成物に配合される調色用無機顔料の材質は、特に限定されるものではないが、例えばクロム、亜鉛、銅、ニッケル、アルミニウム、コバルト、マンガン及び銅等の酸化物の中から選ばれた数種を、焼成により固溶させた複合酸化物系顔料等を用いることができる。更に、1種又は数種の複合酸化物顔料を混合して使用することもできる。

また、この調色用無機顔料は、配合前にシランカップリング剤で表面をコーティングすることが好ましい。その際、各種のシランカップリング剤を使用することができるが、特に反応性官能基がヘキシリ基、加水分解性基がメトキシ基のn-ヘキシリメトキシシランが、フィルムを製膜したときの欠点の発生を抑制するのに有効である。

[製造方法]

本実施形態の樹脂組成物は、例えば前述したペレット体のPVDFと粉体のPVDF、PMMA、白色無機顔料及び調色用無機顔料を一般の方法で溶融混練することにより得られる。その混練方法は特に限定されるものではないが、二軸押出機、連続式及びパッチ式のニーダー等の加熱装置を備えた各種混合機又は混練機を使用することができる。なお、汎用性の面から溶融混練に最適な装置は、二軸押出機である。

[フィルム]

本実施形態の樹脂組成物は、150〜260℃の温度範囲で溶融混練した後、押出成形することにより、ポリフッ化ビニリデン系樹脂フィルムを得ることができる。その製膜方法は特に限定されるものではなく、一般的な方法で製膜できるが、押出機によりフィルム用Tダイを用いて製膜する方法が好
ましい。その際、原料の供給は、前述した方法で溶融混練して作成した樹脂組成物を用いてもよいが、個々の原料を混合して、直接単軸又は二軸の押出機に供給して溶融混練し、フィルム用のダイを通じて押出成形することにより製膜してもよい。

ただし、溶融混練の温度が150℃未満の場合、PDVFの溶融に必要な熱量が不足する可能性があり、また260℃を超えるとPDVFが熱分解する虞がある。よって、溶融混練の際の温度は、150〜260℃の範囲とする。

[パックシート]

前述した方法で形成されたポリフッ化ビニリデン系樹脂フィルムは、ポリエチレンテレフタレート（PET）系フィルムを積層し、貼り合わせることにより、太陽電池モジュール用のパックシートとすることができる。これらフィルムの貼り合わせには、各種接着剤による接着が可能である。

このパックシートは、太陽電池モジュールに好適に使用することができる。太陽電池モジュールのパックシートとして使用する場合は、封止材と呼ばれるEVA等の熱可塑性樹脂のシートとを貼り合わせ必要があるが、本実施形態の樹脂組成物からなるフィルムを使用したパックシートは、100〜150℃の加熱プレスにより貼り合わせることが可能である。

以上詳しくしたように、本実施形態の樹脂組成物では、ベレット体と粉体のように形状の異なる2種のPDVFを併用し、その一方又は両方のMFを3〜35g/10minとしているため、溶融混練工程において顔料を高分散させるために必要な高せん断力を得ることができる。その結果、白色無機顔料及び調色用無機顔料の分散性を向上させることができ、分散不良による欠点が少なく、耐候性及び機械的強度特性に優れたフィルムが得られる。

（第2の実施形態）

次に、本発明の第2の実施形態に係るポリフッ化ビニリデン系樹脂組成物について説明する。本実施形態の樹脂組成物は、溶融流動特性が異なる2種
類のPVDFを配合している以外は、前述した第1の実施形態の樹脂組成物と同様である。

[0046] [PVDF:樹脂成分中に合計で50～95質量%]

本実施形態の樹脂組成物では、溶融流動特性が異なる2種類のPVDF（PVDF1及びPVDF2）を使用する。これらの樹脂はペレット形状のものでも粉状のものであってもよく、これらを混合して用いてもよい。なお、以下に示す各原料樹脂成分の溶融流動特性は、特に断らない限り、JIS K7210のA法に規定されたMFR（Melt Flow Rate）の測定法により測定した値である。

[0047] 2種類のPVDFのうちの一方（PVDF1）は、温度を230℃、荷重を3.8kgとして測定したMFRが3～35g/10min、好ましくは5～30g/10min、更に好ましくは10～25g/10minのものを利用している。また、他方（PVDF2）には、温度を230℃、荷重を10kgとして測定したMFRが2～30g/10min、好ましくは10～27g/10min、更に好ましくは15～25g/10minのものを利用する。

[0048] PVDF2はそのMFRが著しく低く、PVDF1と同じ測定条件では、前述したJISに記載された範囲に入らないので、より高荷重での測定値で示している。ここで、同一条件での対比のため、温度を230℃、荷重を3.8kgにしたときのMFRが3～35g/10minであるPVDF1を、温度を230℃、荷重を10kgにして測定した場合、MFRは50～160g/10minとなる。

[0049] このように、溶融流動特性の異なる2種類のPVDF樹脂を用いることにより、溶融混練したときの無機顔料の分散性が向上する。ただし、PVDF1の温度230℃、荷重3.8kgにおけるMFRが3g/10minの未満の場合、樹脂組成物中での無機顔料の分散性が低下し、フィルムとしたときの欠点が発生しやすくなる。また、PVDF1におけるこの条件でのMFRが35g/10minを超えると、無機顔料の分散性が低下すると共に、
フィルムとしたときの引張り強度が低下する。

一方、溶融流動特性の低い側のP V D F 2 の温度 \(230 ^\circ C\)、荷重10 k g における M F R が2 g / 1 O m i n 未満の場合、無機顔料の分散が著しく低下し、フィルムに多数の欠点を生じる。また、P V D F 2 におけるこの条件の M F R が3 0 g / 1 O m i n を超えると、フィルムの引張り強度が低下する。

更に、P V D F 1 、P V D F 2 及びP M M A のいずれかの比率が、前述した範囲から外れると、フィルムとしたとき欠点の生成が多くなる。更にまた、樹脂成分中のP M M A 量が5 0 質量％を超えると、耐候性フィルムとしての特徴を十分得ることができないばかりか、弓張り強度が著しく低下する。

前述したように、本実施形態の樹脂組成物では、溶融流動特性が異なる2種のP D F F を併用し、その M F R を特定の範囲内にしているため、白色無機顔料及び調色用無機顔料の分散性を向上させることができる。これにより、分散不良による欠点が少なく、耐候性及び機械的強度特性に優れたフィルムが得られる。特に、溶融流動特性が異なる2種のP D F F の一方をベレット、他方を粉体とすることにより、顔料の分散性を更に向上させることができるため、欠陥が極めて少ないフィルムを実現することができる。

なお、本実施形態の樹脂組成物における上記以外の構成及び効果は、前述した第1の実施形態と同様である。

実施例

以下、本発明の実施例及び比較例を挙げて、本発明の効果について説明する。なお、本発明はこれらの実施例に限定されるものではない。先ず、本発明の第1実施例として、形態が異なる2種類のP V D F を使用したポリフッ化ビニリデン系樹脂組成物を調製し、そのフィルム特性を評価した。

(1) 調色用無機顔料の調製

クロム、マンガン及び銅の酸化物固溶体からなる黒色の無機顔料粉末 0.8 k g 、亜鉛、鉄、ニッケル及びアルミニウムの酸化物固溶体からなる茶
色顔料粉末 : 1.6 kg、アルミ酸コバルトからなる青色顔料粉末 : 0.6 kg を、乾式の混合機で混ぜ合わせて、調色用無機顔料を製造した。次に、0.1 質量%酢酸水溶液 : 0.3 kg とエタノール : 0.3 kg の混合液に、n—ヘキシルトリメトキシシラン : 0.03 kg を添加し、シランカップリング剤溶液を調製した。そして、調色用無機顔料をミキサーに仕込み、攪拌しながら、シランカップリング剤溶液を滴下して混合した。混合後、取り出して、乾燥機にて乾燥した後、粉砕して粉末状にした。得られた調色用無機顔料の平均粒子径 (メジアン径) は、0.3 μm であった。

[0056] (2) 樹脂成分

樹脂成分には、下記の物性を有する樹脂を用いた。なお、MFR は JIS K 7210 の A 法に規定された測定法により測定した。また、平均粒子径 (メジアン径) は、ペレット体は JIS K 0069 化学製品のふるい分け試験方法」の乾式ふるい分け試験方法で、粉末は JIS Z 8825-1 粒子径解析—レーザー回折法—第 1 部 : 測定原理」のレーザー回折装置により測定した。

[0057] < P V D F (A) >

MFR (温度 : 230℃、荷重 : 3.8 kg) が 20 g / 10 min で、平均粒子径 (メジアン径) が 3 μm であるペレット体のポリフッ化ビニリデン樹脂。

< P V D F (B) >

MFR (温度 : 230℃、荷重 : 3.8 kg) が 20 g / 10 min で、平均粒子径 (メジアン径) が 10 μm である粉末のポリフッ化ビニリデン樹脂。

< P M M A >

MFR (温度 : 230℃、荷重 : 10 kg) が 9 g / 10 min であるポリメタクリル酸メチル樹脂。

[0058] (3) 樹脂組成物の調製

先ず、前述したシランカップリング剤で表面コートした調色用無機顔料 :
3kgと、白色無機顔料としてルチル型結晶の二酸化チタン粉末（メジアン径：3μm）をミキサーにて混合した。次に、樹脂組成物調製のための混練装置として、スクリュー径30mm、L/D=40の二軸押出機に、前述した調色用無機顔料、PVDF（A）、PVDF（B）及びPMMAを、それぞれ個別の定量フィーダーにて、各成分の配合比に対応する速度で供給して溶融混練した。その後、穴径3mm、3穴のストランドダイを通じてベレット状の樹脂組成物を得た。そして、得られた樹脂組成物の各成分の組成は、PVDF（A）が60質量部、PVDF（B）が20質量部、PMMAが20質量部、白色無機顔料が20質量部、調色用無機顔料が3質量部であった。

[0059]（4）フィルムの製膜とフィルムの欠点評価
得られた樹脂組成物を、スクリュー径40mm、L/D=30の単軸押出機に幅400mmのTダイを取り付けた製膜機にて、スクリュー回転数：35rpm、バレル設定温度：240℃で押出し、フィルム幅：300mm、平均厚さ：18μmのフィルムを製膜した。得られたフィルムの欠点の評価として、巻き取ったフィルム（幅300mm×長さ2000m）について、欠点検出器を用いて50m²内の欠点数を評価した。なお、本実施例では、欠点数評価の目安として、フィルムの欠点サイズが0.05mm以上のものの個数を数えた。

[0060]（5）フィルムの特性評価
得られたフィルムについて、JIS K 7127に規定されている方法で、引張り強度を測定した。なお、引張り強度の測定では、試料幅を10mm、チャック間距離を40mmとした。また、併せて、JIS K 7105に準拠して、可視光の全光線反射率を評価した。

[0061]（実施例2、3、8～14、比較例1、2、9～12）
各原料成分の定量フィーダーの供給量を調整して、樹脂組成物中の各成分の組成比率を変更した以外は、実施例1と同様の方法で評価を行った。

[0062]（実施例4、5、比較例3、4）
ペレット体のP V D F（A）及び粉体のP V D F（B）として、温度：230℃、荷重3.8kgにおけるM F R力、それぞれ5g/10min、3.3g/10min、1g/10min、40g/10minのP V D F樹脂を用いた以外は、前述した実施例1と同様の方法で評価を行った。

（実施例6, 7, 比較例5, 6）

PMMAの樹脂として、温度：230℃、荷重：10kgにおけるM F R力、それぞれ4g/10min、18g/10min、1g/10min、25g/10minのものを用いた以外は、前述した実施例1と同様の方法で評価を行った。

（比較例7）

P V D F樹脂として、ペレット体のP V D F（A）を用いず、粉体のP V D F（B）のみを80質量部用いた以外は、前述した実施例1と同様の方法で評価を行った。

（比較例8）

P V D F樹脂として、粉体のP V D F（B）を用いず、ペレット体のP V D F（A）のみを80質量部用いた以外は、前述した実施例1と同様の方法で評価を行った。

これら実施例1〜14の樹脂組成物の評価結果を下記表1に、比較例1〜12の樹脂組成物の評価結果を下記表2に、それぞれまとめて示す。
<table>
<thead>
<tr>
<th>実施例</th>
<th>A</th>
<th>B</th>
<th>A/B</th>
<th>合計</th>
<th>配合量</th>
<th>空気飽和3.8kg/MFR (g/10min)</th>
<th>空気飽和3.8kg/MFR (g/10min)</th>
<th>引張り強度 (MPa)</th>
<th>引張り伸長 (％)</th>
<th>耐熱変形点 (℃)</th>
<th>可溶性の含有率 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
<td>14</td>
<td>100</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>12</td>
<td>100</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>100</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>20</td>
<td>8</td>
<td>100</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>20</td>
<td>6</td>
<td>100</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>100</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>20</td>
<td>2</td>
<td>100</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>100</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>10</td>
</tr>
</tbody>
</table>

表1
表2

<table>
<thead>
<tr>
<th></th>
<th>比較例1</th>
<th>比較例2</th>
<th>比較例3</th>
<th>比較例4</th>
<th>比較例5</th>
<th>比較例6</th>
<th>比較例7</th>
<th>比較例8</th>
<th>比較例9</th>
<th>比較例10</th>
<th>比較例11</th>
<th>比較例12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVDF(A)ペレット</td>
<td>配合量</td>
<td>34</td>
<td>73</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(粒径3mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>荷重3.8kgのMFR</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>－</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(g/10min)</td>
<td></td>
</tr>
<tr>
<td>PVDF(B)粉体</td>
<td>配合量</td>
<td>11</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>80</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(粒径10μm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>荷重3.8kgのMFR</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>－</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(g/10min)</td>
<td></td>
</tr>
<tr>
<td>PVDF合計</td>
<td>配合量</td>
<td>45</td>
<td>98</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(質量%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A)/(B)</td>
<td>76/24</td>
<td>74/26</td>
<td>75/25</td>
<td>75/25</td>
<td>75/25</td>
<td>0/100</td>
<td>100/0</td>
<td>75/25</td>
<td>75/25</td>
<td>75/25</td>
<td>75/25</td>
</tr>
<tr>
<td>PMMA</td>
<td>配合量</td>
<td>55</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(質量%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>荷重10kgのMFR</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>25</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(g/10min)</td>
<td></td>
</tr>
<tr>
<td>白色無機顔料</td>
<td>配合量</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>45</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(質量%)</td>
<td></td>
</tr>
<tr>
<td>綠色用無機顔料</td>
<td>配合量</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0.003</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(質量%)</td>
<td></td>
</tr>
<tr>
<td>評価結果</td>
<td>引張り強度 (MPa)</td>
<td>53</td>
<td>41</td>
<td>41</td>
<td>51</td>
<td>51</td>
<td>25</td>
<td>50</td>
<td>30</td>
<td>60</td>
<td>45</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>引張りせん断伸び (%)</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>300</td>
<td>300</td>
<td>600</td>
<td>440</td>
<td>500</td>
<td>460</td>
<td>440</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>フィルムの欠点数 (個/50m²)</td>
<td>1150</td>
<td>980</td>
<td>1670</td>
<td>1340</td>
<td>780</td>
<td>1580</td>
<td>1100</td>
<td>760</td>
<td>750</td>
<td>1400</td>
<td>790</td>
</tr>
<tr>
<td></td>
<td>可視光の全光線反射率 (%)</td>
<td>75</td>
<td>75</td>
<td>80</td>
<td>65</td>
<td>75</td>
<td>75</td>
<td>50</td>
<td>80</td>
<td>45</td>
<td>77</td>
<td>100</td>
</tr>
</tbody>
</table>
幅に低減していた。これにより、MFRが特定の範囲内にあるペレット体と
粉体の2種類のPVDFを併用すると、分散不良による欠点が少なく、耐候
性に優れ、実用的な機械的強度特性を有し、太陽電池モジュール用パックシ
ーテトとして好適なポリフッ化ビニリデン系樹脂フィルムが得られることが確
認された。

次に、本発明の第2実施例として、溶融流動特性が異なる2種類のPVDF
を使用したポリフッ化ビニリデン系樹脂組成物を調製し、そのフィルム特
性を評価した。

（実施例21）

（1）着色用顔料の調製

クロム、マンガン及び銅の酸化物固溶体からなる黒色の無機顔料粉末：0
8kg、亜鉛、鉄、ニッケル及びアルミニウムの酸化物固溶体からなる茶
色顔料粉末：1.6kg、アルミニ酸コバルトからなる青色顔料粉末：0.
6kgを、乾式の混合機で混ぜ合わせて、調色用無機顔料を調製した。次に
、0.1質量％酢酸水溶液：0.3kgとエタノール：0.3kgの混合液
に、n—ヘキシルトリメトキシシラン：0.03kgを添加し、シランカッ
プリング剤溶液を調製した。そして、調色用無機顔料をミキサーに仕込み、
攪拌しながら、シランカップリング剤溶液を滴下して混合した。混合後、取
り出して、乾燥機にて乾燥した後、粉砕して粉末状にした。得られた調色用
無機顔料の平均粒子径（メジアン径）は、0.3μmであった。

（2）樹脂成分

樹脂成分には、下記の樹脂を用いた。なお、MFRはJIS K 721
0のA法に規定された測定法により測定した。

<PVDF1>

MFR（温度：230℃、荷重：3.8kg）が20g/10minである
ポリフッ化ビニリデン樹脂。

<PVDF2>

MFR（温度：230℃、荷重：10kg）が20g/10minである
ポリフッ化ビニリデン樹脂。

<PMM A>

MFR（温度：230°C、荷重：10kg）が9g/10minであるポリメタクリル酸メチル樹脂。

[0073]（3）樹脂組成物の調製

先ず、前述したシランカップリング剤で表面コーティング調色用無機顔料：3kgと、白色無機顔料としてルチル型結晶の二酸化チタン粉末（メジアン径：0.3μm）をミキサーにて混合した。次に、樹脂組成物調製のための混練装置として、スクリュー径30mm、L/D=40の二軸押出機に、前述した調色用無機顔料、PVDF1、PVDF2及びPMMAを、それぞれ個別の定量フィーダーにて、各成分の配合比に対応する速度で供給して溶融混練した。その後、穴径3mm、3穴のストランドダイを通してペレット状の樹脂組成物を得た。

[0074]得られた樹脂組成物における各成分の組成は、PM0１が35質量部（28質量％）、PM0２が45質量部（37質量％）、PMMAが20質量部（16質量％）、白色無機顔料が20質量部（16質量％）、調色用顔料が3質量部（2質量％）であった。

[0075]（4）フィルムの製膜及びフィルムの欠点評価

得られた樹脂組成物を、スクリュー径40mm、L/D=30の単軸押出機に幅400mmのTダイを取り付けた製膜機にて、スクリュー回転数：35rpm、バレル設定温度：240°Cで押出し、フィルム幅：300mm、平均厚さ：18μmのフィルムを製膜した。得られたフィルムの欠点の評価として、巻き取ったフィルム（幅300mm×長さ2000m）について、欠点検出器を用いて50m²内の欠点数を評価した。なお、本実施例では、欠点数評価の目安として、フィルムの欠点サイズが0.05mm以上のものの個数を数えた。

[0076]（5）フィルムの特性評価

得られたフィルムについて、JISK7127に規定されている方法
で、引張り強度を測定した。なお、引張り強度の測定では、試料幅を10mm、チャック間距離を40mmとした。また、併せて、JIS K 7105に準拠して、可視光の全光線反射率を評価した。

[0077]（実施例22〜27、比較例21〜26）
各原料成分の定量フィーダーの供給量を調整して、樹脂組成物中の各成分の組成比率を変更した以外は、前述した実施例21と同様の方法で評価を行った。

[0078]これら実施例21〜27の樹脂組成物の評価結果を下記表3に、比較例21〜26の樹脂組成物の評価結果を下記表4に、それぞれまとめて示す。
実施例

PVDF1 (質量部) 35	20	50	20	45	20		
PVDF2 (質量部) 45	45	45	30	28	37		
PMMA (質量部) 37	37	37	24	61	41		
白色用無機顔料 (質量部) 20	35	5	35	4	4		
引張り破壊 (MPa) 51	45	43	58	55	41		
可視光の全光線反射率 (%) 450	500	400	370	300	250	150	180

[0080]
実施例28, 29、比較例27, 28

PVDF1に、温度: 230°C, 荷重: 3.8 kgにおけるMFR力で、それそれぞれ、5 g/10 min, 33 g/10 min, 2 g/10 min, 40 g/10 minであるポリフッ化ビニリデン樹脂を用いた以外は、前述した実施例21と同様の方法で、評価を行った。

実施例30, 31、比較例29, 30

PVDF2に、温度: 230°C, 荷重: 10 kgにおけるMFR力で、それ
ぞれ、4g/10min、30g/10min、1g/10min、35g/10minであるポリフッ化ビニリデン樹脂を用いた以外は、前述した実施例21と同様の方法で、評価を行った。

[0083]（実施例32、33、比較例31、32）
PMMAとして、温度：230°C、荷重：10kgにおけるMFRが、ぞれぞれ、2g/10min、20g/10min、1g/10min、27g/10minであるポリメチルメタクリレート樹脂を用いた以外は、前述した実施例21と同様の方法で、評価を行った。

[0084]これら実施例28〜33の樹脂組成物の評価結果を下記表5に、比較例27〜32の樹脂組成物の評価結果を下記表6に、ぞれぞれまとめて示す。

[0085]
<table>
<thead>
<tr>
<th>組成</th>
<th>対象</th>
<th>實施例</th>
<th>實施例</th>
<th>實施例</th>
<th>實施例</th>
<th>實施例</th>
<th>實施例</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>荷重3.8kgのMFR (g/10min)</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>PVDF1</td>
<td>（質量部）</td>
<td>5</td>
<td>33</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>（質量％）</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>PVDF2</td>
<td>荷重10kgのMFR (g/10min)</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>（質量部）</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>（質量％）</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>PMMA</td>
<td>荷重10kgのMFR (g/10min)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>（質量部）</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>（質量％）</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>白色無機顔料</td>
<td>（質量部）</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>調色用無機顔料</td>
<td>（質量部）</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

評価結果	引張り強度 (MPa)	53	48	54	49	55	49
	引張りせん断伸び (%)	450	470	450	460	440	530
	サイズが0.05mm以上の欠点数 (個/50m²)	280	250	290	290	290	290
	可視光の全光線反射率 (%)	75	75	75	75	75	75
白色無機顔料又は調色無機顔料の配合比率を変更した以外は、前述した実施例2と同様の方法で、評価を行った。これらの実施例34〜37及び比較例33〜36の評価結果を、下記表7にまとめて示す。
上記表3～7に示すように、実施例21～37の樹脂組成物は、本発明の範囲から外れる比較例23～36の組成物に比べて、フィルムの欠点数が大幅に低減していた。これにより、溶融流動特性が異なる2種類のPVDFを
併用すると、分散不良による欠点が少なく、耐候性に優れ、実用的な機械的強度特性を有し、太陽電池モジュール用バックシートとして好適なポリフッ化ビニリデン系樹脂フィルムが得られることが確認された。

産業上の利用可能性

[0090] 本発明のポリフッ化ビニリデン系樹脂組成物は、顔料の分散不良による欠点が極めて少なく、かつ耐候性や可視光の全光線反射率の良好なフィルムが得られるので、特に太陽電池モジュールのバックシートの素材として、太陽電池の長寿命化に寄与することが期待できる。また、本発明の樹脂組成物から得られるフィルムは、耐熱性及び絶縁性が高いため、電気・電子分野における保護フィルム、建築物や自動車の内外装保護フィルムとして利用することもできる。
請求の範囲

[請求項1] 2種類のポリフッ化ビニリデン系の樹脂成分を合計で50 〜 95質量％及ぶポリメタクリル酸メチル : 5 〜 50質量％からなる樹脂成分を100質量部と、

白色無機顔料を7 〜 40質量部と、
調色用無機顔料を0. 01 〜 7質量部と、を含有し、

2種類のポリフッ化ビニリデンのうち少なくとも1種は、JIS K 7210のA法により、温度を230℃、荷重を3. 8k gとし、て測定したM FR (Melt Flow Rate) が3 〜 35 g / 10 minであり、

ポリメタクリル酸メチルは、JIS K 7210のA法により、
温度を230℃、荷重を10k gにして測定したM FR (Melt flow rate) が2 〜 20 g / 10 minであるポリフッ化ビニリデン系樹脂組成物。

[請求項2] 2種類のポリフッ化ビニリデンは、一方がベレット体であり、他方が粉体であることを特徴とする請求項1に記載のポリフッ化ビニリデン系樹脂組成物。

[請求項3] ベレット体のポリフッ化ビニリデンは、JIS K 0069で規定されている乾式ふるい分け試験法により測定した平均粒子径（メジアン径）が1 〜 6 mmであり、

粉体のポリフッ化ビニリデンは、JIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径（メジアン径）が3 〜 30 バルンであり、

ポリフッ化ビニリデン全体におけるベレット体の割合が40 〜 97質量％、粉体の割合が3 〜 60質量％であることを特徴とする請求項2に記載のポリフッ化ビニリデン系樹脂組成物。

[請求項4] JIS K 7210のA法により、温度を230℃、荷重を3. 8k gとして測定したM FR (Melt Flow Rate) が3 〜 35 g / 10
m i n であるポリフッ化ビニリデンと、
J IS K 7 2 1 0 の A 法により、温度を2 3 0 ℃、荷重を1 0
k g として測定したM F R (M e l t Flow Rate) が2 〜 3 0 g ／ 1 O m
i n であるポリフッ化ビニリデンと、

を含有することを特徴とする請求項 1 乃至 3 のいずれか 1 項に記載
のポリフッ化ビニリデン系樹脂系物。

【請求項5】 白色無機顔料は、J IS Z 8 8 2 5 - 1 に規定されているレーザー回折装置により測定した平均粒子径 (メジアン径) が0 . 〜 2
μ m であることを特徴とする請求項 1 乃至 4 のいずれか 1 項に記載の
ポリフッ化ビニリデン系樹脂系物。

【請求項6】 調色用無機顔料は、J IS Z 8 8 2 5 - 1 に規定されているレーザー回折装置により測定した平均粒子径 (メジアン径) が0 . 〜 2
μ m であることを特徴とする請求項 1 乃至 5 のいずれか 1 項に記載
のポリフッ化ビニリデン系樹脂系物。

【請求項7】 請求項 1 〜 6 のいずれか 1 項に記載のポリフッ化ビニリデン系樹脂
組成物を、1 5 0 〜 2 6 0 ℃の温度範囲で溶融混練した後、押出成形
して得たポリフッ化ビニリデン系樹脂フィルム。

【請求項8】 請求項 7 に記載のポリフッ化ビニリデン系樹脂フィルムと、ポリエチレンテレフタラート系樹脂フィルムを積層した太陽電池モジュール
用パックシート。

【請求項9】 請求項 8 に記載のパックシートを用いた太陽電池モジュール。
INTERNATIONAL SEARCH REPORT

International application No. PCT / JP 2010 / 070088

A. CLASSIFICATION OF SUBJECT MATTER

C08L 2/71, 6(2006.01)i, C08K3/00, 0(2006.01)i, C08L33/1, 2(2006.01)i, H01L31/042

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C08L 27/16, C08K3/00, C08L33/12, H01L31/042

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 64-090733 A (Denki Kagaku Kabyo Kabu shiki Kai sha), 07 April 1989 (07.04.1989), every text (Family: none)</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>JP 02-022352 A (Dainichi seika Color & Chemi cal Mfg. Co., Ltd.), 25 January 1990 (25.01.1990), every text (Family: none)</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>JP 07-009152 A (Kureha Chemi cal Indus try Co., Ltd.), 04 April 1995 (04.04.1995), every text (Family: none)</td>
<td>1-9</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. | See patent family annex.

"A" document defining the general state of the art on which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
21 January, 2011 (21.01.11)

Date of mailing of the international search report
08 February, 2011 (08.02.11)

Name and mailing address of the ISA/Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 11-207887 A (Denki Kagaku Kogyo Kabushiki Kaisha), 03 Aug 1999 (03.08.1999), entire text (Family: none)</td>
<td>1-9</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT／JP 2010／070088

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. C08L27/16（2006.01）i，C08K3/00（2006.01）i，C08L33/12（2006.01）i，H01L31/042（2006.01）i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. C08L27/16，C08K3/00，C08L33/12，H01L31/042

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国实用新案公報 1922-1
日本国公開实用新案公報 1971-2
日本国实用新案登録公報 1996-2
日本国登録实用新案公報 1994-2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

WPI

C. 関連すると認められる文献

引用文献のカテゴリー・引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する請求項の番号

A JP 64-090733 A（電気化学工業株式会社）1989-04.07，全文（ファミリーなし） 1-9

A JP 02-02352 A（大日精化工株式会社）1990-01.25，全文（ファミリーなし） 1-9

A JP 07-090152 A（呉羽化学工業株式会社）1995-04.04，全文（ファミリーなし） 1-9

C 根の続きにも文献が列挙されている。

I・Ⅱ同１バレンテスタファミリーに関する別紙を参照。

引用文献のカテゴリー

ⅠA 特に関連のある文献ではなく、一般的な技術水準を示すもの

ⅠE 国際出願 日前の出願または特許であるが、国際出願日以後に公表されたもの

ⅡE 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

ⅡB 口頭による開示、使用、展示等に言及する文献

ⅡP 国際出願 日前の、かつ優先権の主張の基礎となる出願

の日及び公表された文献

Ⅲ 特に関連のある文献であって、国際出願 日又は優先 日後公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

ⅢX 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

ⅢY 特に関連のある文献であって、当該文献と他の 1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

国際調査を完了した日 21.01.2011 国際調査報告の発送日 08.02.2011

国際調査機関の名称及びあて先 特許庁審査官（権限のある職員）
日本国特許庁（ISA／JP）
郵便番号100-8915 特許庁審査官（権限のある職員）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号
電話番号03-3581-1101 内線3457
| 引用文献のカテゴリー | 引用文献名及一部の箇所が関連するときは、その関連する箇所の表示 | 関連する請求項の番号 |
|----------------------|--|
| A JP 11-207887 A (電気化学工業株式会社) 1999.08.03,全文（ファミリーなし） | | 1-9 |

国際調査報告 国際出願番号 PCT/JP2010/070088

様式 PCT/ISA/210（第2ページの続き）（2009年7月）