Title: INHIBITION OF SEROTONIN EXPRESSION IN GUT ENDOCRINE CELLS RESULTS IN CONVERSION TO INSULIN-POSITIVE CELLS

Abstract: Disclosed herein are methods involving the targeting of 5HT biosynthesis in gut insulin-negative cells to convert them into insulin-positive cells. Also disclosed are methods for treating a disease or disorder in a mammal, preferably a human, associated with impaired pancreatic endocrine function, by administering a therapeutically effective amount of an enumerated active agent that reduces the expression, biosynthesis, signaling or biological activity of serotonin or increases its degradation, wherein administering comprises delivering the agent to Gut Ins- cells in the mammal. Other embodiments of the method are directed to therapy wherein an agent that significantly reduces FOXO1 expression, biosynthesis, signaling or biological activity or increases its degradation is administered in addition to the agent that reduces serotonin, or alternatively an agent that reduces FOXO1 expression is targeted to serotonin-positive gut endocrine cells.
— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Published:
— with international search report (Art. 21(3))
INHIBITION OF SEROTONIN EXPRESSION IN GUT ENTEROENDOCRINE CELLS
RESULTS IN CONVERSION TO INSULIN-POSITIVE CELLS

STATEMENT OF GOVERNMENTAL INTEREST

[0001] This invention was made with Government support under grants DK057539 and DK58282 awarded by the National Institutes of Health. The Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

2. Description of the Related Art

[0003] Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors, we have shown that gut endocrine progenitor cells of mice can be differentiated into glucose responsive, insulin-producing cells by ablation of transcription factor Foxol.

[0004] Since 1922, lifelong insulin replacement has been the mainstay of type 1 diabetes treatment. Efforts to generate surrogate insulin-producing cells that could serve as a "permanent cure" of the disease have been underway for nearly two decades, and progress has been made toward the generation of pancreatic hormone-producing cells from either embryonic stem or induced pluripotent stem cells (iPS)1-3. However, cells thus generated are often polyhormonal, and are characterized by an indifferent response to glucose, unless transplanted into mice, where they acquire undetermined factors required for their functional "maturation"2-4. Although terminally differentiated β-cells are only present in the pancreas, endocrine progenitors with similar features to pancreatic endocrine progenitors are also found in the intestine, the site of the body's largest endocrine system5.
We have shown in previous work that genetic inactivation of Foxola in mice in vivo results in the expansion of the enteroendocrine Neurogenin3 (Neurog3)-positive progenitor cell pool, and the appearance of functional insulin-producing cells that express all markers of mature pancreatic β-cells, secrete insulin in response to physiologic and pharmacologic cues, and can readily regenerate to alleviate diabetes caused by the β-cell toxin, streptozotocin.

Although there is evidence in mice that enteric and pancreatic endocrine cells can convert into different subtypes, possibly through a dedifferentiation process. There is still a great need for new long-term regimens for the treatment, prevention, and/or reduction in the risk of developing diabetes or other disorders associated with impaired pancreatic endocrine function.

Before the embodiments of the present invention are described, it is to be understood that this invention is not limited to the particular processes, compositions, or methodologies described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. Unless defined, otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein, are incorporated by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which:

[0009] FIG. 1: Survey of FOXOl expression in human duodenum. FIG. 1A-E, FOXOl (red) co-localization with secretory markers, MUCIN2 (MUC2), LYSOXYME (LYS), CHROMOGRANINA (CGA), OLFACTOMEDIN-4 (OLFM4) (all green) and EPHB3 (gray). FIG. 1F-L, Co-localization of FOXOl with endocrine cell markers GIP, somatostatin (SSN), serotonin (5HT), secretin, gastrin, cholecystokinin (CCK), and GLPl. Scale bars: 100 µm in a-e, and 50 µm in f-l (n=3).

[0010] FIG. 2A: Quantitative analysis of the position of FOXOl-positive cells in human duodenum. FIG. 2B-D, FOXOl immunostaining in (B) jejunum, (C) ileum, (D) colon. FIG. 2E, qPCR analysis of FOXOl mRNA in human intestine (D: duodenum; J: jejunum; I: ileum; and C: colon). FIG. 2F-N, Immunostaining of FOXOl with PCl/3, PC2, and SUR1 in human colon. Scale bars: 100 µm (n=3 for histology and qPCR) (*p < 0.05). Data is presented as means ± SEM.

[0011] FIG. 3: Marker analysis of 150-day-old human iPS-derived gut organoids. FIG. 3A, CDX2 (green) in 8-day-old organoids; FIG. 3B, LYS (green) and VILLIN (red); FIG. 3C, MUC2 (yellow) and CDX2 (magenta); FIG. 3D, CGA (green) in 14-day-old organoids by immunohistochemistry. FIG. 3E, Villin; FIG. 3F, CDX2; FIG. 3G, MUC2; FIG. 3H, LYS; FIG. 3I, CGA; FIG. 3J, vimentin (green) and VILLIN (red) in 150-day-old gut organoids. FIG. 3K-R, Analysis of endocrine cells; GLPl, GIP, 5HT, SSN, ghrelin, cholecystokinin (CCK), tuft cells (DCAMKL1), FOXOl (green) and 5HT (red) in 150-day-old organoids. FIG. 3S, Quantification of CGA-, LYS- and MUC2-positive cells by immunohistochemistry. FIG. 3T-U, Time course qPCR analysis of VILLIN, LYSOZYME, MUCIN2 and CGA (T); FIG. 3V, Time qPCR analysis of INSULIN and NEUROG3 (U); SLC6A4 (serotonin transporter), GLUCAGON, GIP, CCK, GASTRIN, GHRELIN, and SSN during gut differentiation. Scale bars: 100 µm in panels a-j; 50 µm in panels k-r (n=3 each for histology and qPCR) (*p < 0.05). Data is presented as means ± SEM.
[0012] FIG. 4: Insulin-positive cells in 184-day-old human gut organoids. FIG. 4A-B, qPCR analysis of different markers in gut organoids transduced with control (empty bars) or HA-Δ256 FOXOl adenovirus (black bars). FIG. 4C, Quantification of insulin- and GLP1-positive cells in gut organoids transduced with control (empty bars) or HA-Δ256 FOXOl adenovirus (black bars). FIG. 4D-E, Immunohistochemistry with insulin (green), C-peptide (red), and CGA (magenta). FIG. 4F, Magnification of a typical flask-shaped insulin-positive cell from panel e. FIG. 4G-H, Co-immunohistochemistry with insulin (green), HA (to detect HA-Δ256 Foxol adenovirus) (red), and CGA (magenta). FIG. 4I-L, Co-immunohistochemistry with insulin (green) and FOXOl (red), or (K, L) insulin (green), a-SMA (red) and CDX2 (magenta). Insets in h, j, and l show magnifications of individual cells. DAPI (blue) was used throughout to visualize DNA. Scale bars: 50 μm in a-e; 10 μm in f (n=3-6 for qPCR and 3 for histology) (* p < 0.05). Quantitative data is presented as means ± SEM.

[0013] FIG. 5: Pancreatic lineage marker analysis. FIG. 5A, Immunohistochemistry with antibodies against insulin (green) and CGA (magenta) in 36-day-old gut organoids transduced with HA-Δ256 FOXOl adenovirus. FIG. 5B, qPCR analysis of 230-day-old gut organoids transduced with control (empty bars) or FOXOl lentiviral shRNA (black bars). FIG. 5C-D, Immunohistochemistry with anti-insulin (green) and CGA (magenta) antibodies in 230-day-old gut organoids transduced with control or FOXOl shRNA lentivirus. FIG. 5E, Immunohistochemistry with glucagon (green) and MAFB (red); FIG. 5F, insulin (green) and GLP-1 (red); FIG. 5G, insulin (green) and somatostatin (red) in 184-day-old gut organoids transduced with HA-Δ256 adenovirus. FIG. 5H-J, qPCR analysis in 184-day-old gut organoids transduced with control (empty bars) or HA-Δ256 adenovirus (black bars) of transcripts encoding (H) intestinal lineage markers, (I) intestinal stem cell and pan-secretory lineage markers, and (J) genes associated with Notch signaling.

[0014] FIG. 6: Changes to enteroendocrine cells following FOXOl inhibition. FIG. 6A, Quantification of cells expressing CGA, 5HT, GLP1 and SSN in 230-day-old gut organoids transduced with control (empty bars), HA-Δ256 FOXOl adenovirus (gray bars), or human duodenum (black bars). FIG. 6B-D, Immunohistochemistry with 5HT (green) and CGA (red) in 230-day-old gut organoids transduced with HA-Δ256 FOXOl (1) or control adenovirus (m). FIG. 6E, Immunohistochemistry of insulin (green), FOXOl (red) and 5HT (white) in 230-day-
old gut organoids transduced with HA-Δ256 FOXOl adenovirus. Insets on the left show magnifications of a cluster of 5HT-, FOX01-, and insulin-positive cells. Scale bars: 50 µη (n=3 for histology and qPCR) (*p < 0.05 vs. organoids transduced with control shRNA lentivirus or HA-Δ256 adenovirus). Data is presented as means ± SEM.

[0015] FIG. 7: Pancreatic marker analysis in 184-day-old gut organoids. FIG. 7A-C, qPCR analysis of transcripts of markers associated with β-cell specification and maturation in organoids transduced with control (empty bars) or HA-Δ256 FOXOl adenovirus (black bars). FIG. 7D-R, Colocalization of insulin (green) with (D-F) MAFA (The inset in panel e shows green MafA immunoreactivity in human pancreatic islets), (G-H) Urocortin-3, (I-J) PC2, (K-L) SU1, (M-N) PCL3, (O-P) glucokinase, and (Q-R) glucose transporter 2 (all in red). Scale bars: 50 µη in d-r (n=3-6 for qPCR, 3 for histochemistry) (*p < 0.05 vs. organoids transduced with control virus). Data is presented as means ± SEM.

[0016] FIG. 8: Human C-peptide assay using 200-day-old human gut organoids and pancreatic islets. FIG. 8A, Human C-peptide release from gut organoids normalized by protein levels in organoid lysates. C: control adenovirus; D: HA-Δ256 FOXOl adenovirus, B: basal glucose (2 mM); H: high glucose (22mM); A: arginine (10 mM); K: KCl (30 mM); ND: not detected. FIG. 8B, C-peptide secretion by human islets. Abbreviations are the same as in panel a. The numbers below the brackets refer to number of islets used. FIG. 8C, C-peptide content in gut organoids and human islets *p < 0.05 vs. organoids transduced with control virus (panel c) or basal vs. glucose- and arginine-stimulated conditions (panel b) (** p < 0.05 vs. human islets in panel c). Data is presented as means ± SEM (n = 3).

[0017] FIG. 9 Immunohistochemistry of insulin and intestinal lineage markers in 200-day-old gut organoids recovered three weeks following transplantation into immunodeficient mice. a-b, insulin (green) and CGA (red); c-d, MUC2; e-f, LYS; and g-h, CGA (green). Scale bars: 100 µη (n=3).
DETAILED DESCRIPTION

1. Definitions

[0018] As used herein, the terms "animal," "patient," or "subject" include mammals, e.g.,
humans, dogs, cows, horses, kangaroos, pigs, sheep, goats, cats, mice, rabbits, rats, and
transgenic non-human animals. The preferred animal, patient, or subject is a human.

[0019] "An enumerated disease or disorder" and "a disease or disorder characterized by impaired
pancreatic endocrine function" are used interchangeably and include inappropriately low insulin
levels, diabetes types 1 and 2, metabolic syndrome, obesity, glucose intolerance, hyperglycemia;
decreased insulin sensitivity, increased fasting glucose, increased post-prandial glucose, elevated
glycohemoglobin Ale. By inappropriately low insulin levels means insulin levels that are low
enough to contribute to at least one symptom of the disease or disorder. Impaired pancreatic
endocrine function is one in which the pathology is associated with a diminished capacity in a
subject for the pancreas to produce and/or secrete insulin and/or an altered capacity (increased or
decreased) to secrete pancreatic peptides such as glucagon, pancreatic polypeptide, somatostatin.
Disorders associated with impaired pancreatic endocrine function include pathologies sometimes
referred to as latent autoimmune diabetes of adulthood, pre-diabetes, impaired fasting glucose,
impaired glucose tolerance, fasting hyperglycemia, insulin resistant syndrome, and
hyperglycemic conditions.

[0020] "Foxo Protein" includes Foxol, Foxo2, Foxo3 and Foxo4 from mouse; FOXOl, FOXO2,
FOXO3 and FOXO4 from human, and Foxo 1-4 proteins from any other animal, including
variants, and orthologs, and biologically active fragments thereof. FOXO2 was discovered
independently but turned out to be the same gene as FOXO3. There are two NM numbers but
they point to the same genomic location.

[0021] "An active agent" means any agent, polypeptide, nucleic acid, or small molecule that
causes any Ins- cell, enteroendocrine cell such as serotonin, Tphl or somatostatin-expressing
cells, or N3 progenitor in the gut to differentiate into an Ins-i- cell. Certain active agents are those
that reduce the expression, biosynthesis, signaling or biological activity of serotonin or FOXOl,
or increase serotonin or FOXOl degradation biosynthesis or biological activity of serotonin or
increase serotonin degradation, or that reduce the expression or biological activity of FOXOl
protein (including by reducing transcription or translation of the gene or mRNA, respectively). Specific active agents that reduce serotonin expression are described below.

[0022] The term "pluripotent cell" as used herein refers to a stem cell that has the potential to differentiate into any of the three germ layers: endoderm (interior stomach lining, gastrointestinal tract, the lungs), mesoderm (muscle, bone, blood, urogenital), or ectoderm (epidermal tissues and nervous system). Pluripotent stem cells can give rise to any fetal or adult cell type. Induced pluripotent stem cells are a type of pluripotent stem cells.

[0023] The term "multipotent cell" as used herein refers to a cell that has potential to give rise to cells from multiple, but a limited number of lineages.

[0024] "Stem cells" means undifferentiated cells that can self-renew for unlimited divisions and differentiate into multiple cell types. Stem cells can be obtained from embryonic, fetal, postnatal, juvenile or adult tissue.

[0025] "Progenitor cells" in the gut means cells descended from stem cells that are multipotent, but self-renewal property is limited.

[0026] "iPS cells" or "induced pluripotent stem cells" or "inducible pluripotent stem cells" refer to stem cell(s) that are generated from a non-pluripotent cell, e.g., a multipotent cell (for example, mesenchymal stem cell, adult stem cell, hematopoietic cell), a somatic cell (for example, a differentiated somatic cell, e.g., fibroblast), and that have a higher potency than the non-pluripotent cell. iPS may also be capable of differentiation into progenitor cells that can produce progeny that are capable of differentiating into more than one cell type. In one example, iPS cells possess potency for differentiation into endoderm. iPS cells as used herein may pertain to cells that are either pluripotent or multipotent. In one specific example, iPSC cells may be generated from fibroblasts such as according to the teachings of US Patent Publication 201 10041857, or as further taught herein.

[0027] "Gut organoid" or "gutoid" refers to a group of cells that possess microstructures and cell formation of cells found in the mammalian gut, including human gut. Gut organoids typically possess one or more cell types of mature mammalian gut, including epithelial cells, enteroendocrine progenitors or mature endocrine cells. Gut organoids may express markers of
such cell types, including villin (epithelial cell marker), mucin (paneth cell marker), Neurogenin-3 (endocrine progenitor marker), serotonin, Glp-1, Gip and/or CCK.

[0028] "Stem cells" means undifferentiated cells that can self-renew for unlimited divisions and differentiate into multiple cell types. Stem cells can be obtained from embryonic, fetal, post-natal, juvenile or adult tissue.

[0029] "Progenitor cells" in the gut means cells descended from stem cells that are multipotent, but self-renewal property is limited.

[0030] "N3 Enteroendocrine Progenitors" and "N3 Prog" mean a subset of insulin-negative gut progenitor cells expressing neurogenin 3 that give rise to Ins- enteroendocrine cells. It has been discovered that N3 Prog in the gut, hereafter "Gut N3 Prog," have the potential to differentiate into cells that make and secrete biologically active insulin ("Gut Ins+ Cells"), but this fate is restricted by Foxol during development. Pancreatic N3 Prog differentiate into pancreatic insulin-producing cells during fetal development, but it remains unclear whether there is pancreatic N3 Prog after birth or whether pancreatic N3 Prog can differentiate postnatally into pancreatic hormone-producing cells under normal or disordered conditions. It should be noted here that enteroendocrine (gut) and pancreas N3 Prog have different features, even though they are commonly referred to as N3 cells.

[0031] "Noninsulin-producing gut progenitor cells" or "Ins- Gut Prog" broadly means any gut progenitor cell including stem cells and N3 Prog that is capable of differentiating into an insulin producing gut cell (Gut Ins+ cell).

[0032] "Gut Ins- Cells" broadly means any non-insulin producing cell in the gut. Enteroendocrine cells that do not express insulin are a subset of Gut Ins- cells. Terminally differentiated cells in the gut that do not produce insulin are also gut ins- cells.

[0033] "Gut Ins+ Cells" broadly means any cell in the gut that has differentiated into an Insulin+ cell in response to contact with an active agent as described herein. Ins-i- enteroendocrine cells are a subset of gut ins-i- cells as are any Ins-i- cell in the gut that have differentiated in response to contact with an active agent as described herein.
"Enteroendocrine cells" means specialized Insulin-negative cells endocrine cells in the gastrointestinal tract, most of which are daughters of N3 Prog cells that no longer produce Neurogenin 3. Enteroendocrine cells (a subset of Gut Ins cells) produce various other hormones such as gastrin, ghrelin, neuropeptide Y, peptide YY_{3-36} (PYY_{3-36}), serotonin, secretin, somatostatin, motilin, cholecystokinin, gastric inhibitory peptide, neurotensin, vasoactive intestinal peptide, glucose-dependent insulinotropic polypeptide (GIP) or glucagon-like peptide-1. Enteroendocrine cells and any other gut insulin-negative cell capable of differentiating into an insulin-positive cell are the targets of the active agents of the invention.

"Insulin-producing enteroendocrine cells" mean any enteroendocrine cells that make and secrete insulin; they are a subset of Gut Ins-i- cells. Insulin-producing enteroendocrine cells have the insulin positive phenotype (Ins^+) so that they express markers of mature beta-cells, and secrete insulin and C-peptide in response to glucose and sulfonylureas. Insulin-producing enteroendocrine cells arise primarily from N3 Prog and also from gut stem cells.

"NKO mice" or "Foxol knockout mice" means transgenic mice that do not express Foxol in N3 Prog. Not all enteroendocrine cells in the gut of Foxol knockout mice (hereafter "NKO mice") make and secrete insulin; some are non-insulin producing (hereafter "Ins-").

"Significantly lower" in the context of the present invention means reducing expression, biosynthesis, signaling or biological activity of serotonin or FOXOl protein or serotonin to a level low enough so that non-insulin-producing enteroendocrine cell or other cell in the gut differentiates to an Ins-i- phenotype, including expressing and secreting biologically active insulin. In the context of this invention, a significant reduction in the amount of serotonin or serotonin signaling in enteroendocrine cells is a reduction by about 50%, 70%, 90% or more. In the context of the present invention a significant reduction in FOXOl expression is a reduction of at least about 50%.

A significantly higher level of insulin in a test sample means detectable by commonly employed assays (such as ELISA or RIA), whereas in the control population insulin cannot be detected by such assays. In the context of determining the level of insulin expression in the control and the test population after contacting with an agent that causes the test population to become insulin-producing cells, significantly higher means any reliably detectable level of
insulin since untreated cells are noninsulin-producing. A person of skill in the art of screening assays can define significantly higher or significantly lower depending on the assay.

[0039] "Preventing a disease" includes, but is not limited to, preventing or slowing the development of a disease from occurring in a subject that may be predisposed to the disease (or disorder), but has not yet been diagnosed as having the disease, for example by preventing reoccurrence of the disease in a subject where the disease has been relieved or regressed, or ameliorating a pre-disease state that is known to progress into the target disease. An example is reducing blood glucose levels in a hyperglycemic subject (e.g. 100-125 mg/dl), and/or maintaining acceptable control of blood glucose levels in the subject prior to a full diabetic state. Such treatment, prevention, symptoms and/or conditions can be determined by one skilled in the art and are described in standard textbooks.

[0040] "Treating" a disease, disorder or condition in a patient refers to taking steps to obtain beneficial or desired results, including clinical results. For purposes of this invention, beneficial or desired clinical results include, but are not limited to reduction, alleviation or amelioration of one or more symptoms of the disease; diminishing the extent of disease; delaying or slowing disease progression; amelioration and palliation or stabilization of the disease state and its complications.

[0041] Where the disease is diabetes type 1, symptoms include frequent urination, excessive thirst, extreme hunger, unusual weight loss, increased fatigue, irritability, blurry vision, genital itching, odd aches and pains, dry mouth, dry or itchy skin, impotence, vaginal yeast infections, poor healing of cuts and scrapes, and excessive or unusual infections. These symptoms are associated with characteristic clinical laboratory findings that include hyperglycemia (excessively elevated sugar concentrations in the blood, i.e. >125 mg/dl), loss of glycemic control (i.e., frequent and excessive swings of blood sugar levels above and below the physiological range, generally maintained between 40-125 mg/dl), fluctuations in postprandial blood glucose, fluctuations in blood glucagon, fluctuations in blood triglycerides and include reduction in rate of or diminution of or improved outcomes of conditions that are accelerated by and/or occur because of or more frequently with diabetes including microvascular and microvascular disease inclusive but not limited to cerebrovascular impairment with or without, stroke, angina, coronary heart disease, myocardial infarction, peripheral vascular disease,
nephropathy, kidney impairment, increased proteinuria, retinopathy, neovascularization of
vessels in the retina, neuropathy including central, autonomic and peripheral neuropathy that
may lead to loss of sensation of extremities and amputation and/or from neuropathy or
diminished vascular flow, skin conditions including but not limited to diabetic dermopathy,
Necrobiosis Lipoidica Diabeticorum, bullosis diabeticorum, scleroderma diabeticorum,
granuloma annulare, bacterial skin infections, but limited to Staphylococcus, which can result in
deeper infections, and gastoparesis (abnormal emptying of the stomach). Type 1 diabetes may be
diagnosed by methods well known to one of ordinary skill in the art. For example, commonly,
diabetics have a plasma fasting blood glucose result of greater than 126 mg/dL of glucose.
Prediabetes is commonly diagnosed in patients with a blood glucose level between 100 and 125
mg/dL of glucose. Other symptoms may also be used to diagnose diabetes, related diseases and
conditions, and diseases and conditions affected by diminished pancreatic endocrine function.

[0042] "Pathology associated with impaired pancreatic endocrine function" or pancreatic
endocrine malfunction is one in which the pathology is associated with a diminished capacity in
a subject for the pancreas to produce and/or secrete one or more pancreatic hormones including
insulin and/or pancreatic peptides such as glucagon, pancreatic polypeptide, or somatostatin.
Pathologies that are associated with impaired pancreatic endocrine function include type 1
diabetes, and type 2 diabetes. Other pathologies include those sometimes referred to as latent
autoimmune diabetes of adulthood, pre-diabetes, impaired fasting glucose, impaired glucose
tolerance, fasting hyperglycemia, insulin resistant syndrome, and hyperglycemic conditions.

[0043] "Administering" or "administration of an enumerated active agent or therapeutic
pharmaceutical composition to a subject in the methods of the present invention any method
known in the art that would facilitate delivery to the gut cells described herein. It includes both
direct administration, including self-administration (including oral administration or intravenous,
subcutaneous, intramuscular or intraperitoneal injections, rectal administration by way of
suppositories), local administration directly into or onto a target tissue (such as a region of the
gut that has Ins+ enteroendocrine cells) or administration by any route or method that delivers a
therapeutically effective amount of the drug or composition to the gut. Administration includes
implanting pumps and matrices comprising the Ins+ cells of the invention.
A "subject" or "patient" is a mammal, typically a human, but optionally a mammalian animal of veterinary importance, including but not limited to horses, cattle, sheep, dogs, and cats.

A "therapeutically effective amount" of an active agent or pharmaceutical composition is an amount that achieves the intended therapeutic effect, e.g., reduction, alleviation, amelioration, palliation or elimination of one or more symptoms or manifestations of the disease or condition in the subject. For diabetes, a therapeutically effective amount can also be an amount that increases insulin secretion, increases insulin sensitivity, increases glucose tolerance, or decreases weight gain, weight loss, or fat mass. The full therapeutic effect does not necessarily occur by administration of one dose and may occur only after administration of a series of doses. Thus, a therapeutically effective amount may be administered in one or more administrations.

A "prophylactically effective amount" of a drug is an amount of a drug that, when administered to a subject, will have the intended prophylactic effect, e.g., preventing or delaying the onset (or reoccurrence) of the disease or symptoms, or reducing the likelihood of the onset (or reoccurrence) of the disease or symptoms. The full prophylactic effect does not necessarily occur by administration of one dose and may occur only after administration of a series of doses. Thus, a prophylactically effective amount may be administered in one or more administrations.

An "effective amount" of an agent is an amount that produces the desired effect.

By "pharmaceutically acceptable," it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.

"Foxo Gene" or "serotonin pathway gene" means any gene encoding a Foxo protein or genes required for serotonin synthesis, signaling, and degradation, respectively, including orthologs, and biologically active fragments thereof.

"Foxo mRNA" and "serotonin pathway mRNA" means any mRNA encoding a Foxo protein or proteins required for serotonin synthesis, signaling, and degradation, respectively, including orthologs, and biologically active fragments thereof.

An "antagonist of a serotonin receptor," as used herein, refers to a substance which reduces the biological action or effect of signaling through the serotonin receptor. Serotonin
receptor antagonists for use in the invention are those reduce serotonin signaling and its biological actions on enteroendocrine cells thereby mimicking the effect of inhibiting serotonin production.

[0052] 5HTr2b antagonists include: RS-127445 specific 5HTr2b antagonists, Terguride is a potent 5-HTR2A/2B antagonist [R. Dumitrascu et al., Eur Respir J 2011; 37: 1104-1118], Sarpogrelate: a mixed 5-HT2A/B antagonist, Lisuride: a dopamine agonist of the of the ergoline class, that is also a 5-HT2B antagonist, Tegaserod: primarily a 5-HT4 agonist, but also a 5-HT2B antagonist, RS-127,445: high affinity; subtype selective (100x), selective over at least eight other 5-HTR types; orally bioavailable, SDZ SER-082: a mixed 5-HT2B/C antagonist, SB-215,505, SB-228,357, LY-266,097, EGIS-7625: high selectivity over 5-HT2A, PRX-08066, SB-200,646, SB-204,741, SB-206,553: mixed 5-HT2B/C antagonist and PAM at a7 nAChR and LY-272,015.

[0054] "Gut organoid" or "gutoid" refers to a group of cells that possess microstructures and cell formation of cells found in the mammalian gut, including human gut. Gut organoids typically possess one or more cell types of mature mammalian gut, including epithelial cells, enteroendocrine progenitors or mature endocrine cells. Gut organoids may express markers of such cell types, including villin (epithelial cell marker), mucin (paneth cell marker), Neurogenin-3 (endocrine progenitor marker), serotonin, Glp-1, Gip and/or CCK.
[0055] Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors, it is known that gut endocrine progenitor cells in mice can differentiate into glucose-responsive, insulin-producing cells by reducing or ablating transcription factor Foxol. It is now discovered that FOXO1 colocalizes with serotonin in certain human gut non-insulin-producing endocrine cells. Using gut organoids derived from human iPS cells, it was shown that FOXO1 inhibition using a dominant-negative mutant or lentivirus-encoded shRNA promoted generation of insulin-positive cells that express all markers of mature pancreatic β-cells, release C-peptide in response to secretagogues, and survive in vivo following transplantation into mice. It has further been discovered that inhibition or ablation of FOXO1 in human enteroendocrine cells in the gut coincides with a significant reduction of about 60% in number of serotonin-expressing enteroendocrine progenitor cells. While FOXO+ cells that underwent conversion to insulin+ cells did not express 5HT, it was also observed that FOXO+ cells that continue to express 5HT did not convert to insulin+ cells.

[0056] Based on these observations, certain embodiments of the present invention are directed to methods for treating a disorder associated with impaired endocrine pancreatic function in a subject by administering a therapeutically effective amount of an active agent that reduces the expression, biosynthesis, signaling or biological activity of serotonin or increases its degradation, either alone or as a combination therapy with an active agent that reduces FOXO1 expression or biological activity, wherein administering comprises delivering the agent or agents to Gut Ins-cells including enteroendocrine cells or other non-insulin-producing gut cell in the mammal, preferably a human. The active agent causes the Gut Ins- cells to differentiate into glucose-responsive (Gut Ins-i- cells) enteroendocrine cells that make and secrete biologically active insulin. The therapeutically effective amount is an amount that reduces one or more symptoms of the disorder.

[0057] Other embodiments are described below and in the claims.
2. Overview

[0058] Transcription factor Foxol expression (a structural and functional ortholog of human FOXOl, 3 and/or 4) regulates multiple aspects of pancreatic beta-cell function (4) and is widely expressed in Neurog3+ pancreatic endocrine progenitors (5). Foxol is also expressed in most Neurog3+ enteroendocrine progenitors (EEP), whereas in the adult mouse it is localized to a subset of cells that, based on morphology and localization, include secretory cells, endocrine and stem cells throughout the gut. Enteroendocrine cells are sub-set of secretory cells. There are 3 secretory cell types: goblet, Paneth, and enteroendocrine cells. Goblet and Paneth cells do not normally produce hormones. FOXOl -producing Neurogenin 3+ enteroendocrine progenitors (N3 Prog) under normal conditions differentiate into enteric hormone-positive daughter cells that produce neither N3 nor insulin (they are Ins-). The enteroendocrine system is comprised of many different cell types, some of which are shared in common with the endocrine pancreas (e.g., somatostatin- and ghrelin-producing cells), and some of which are organ-specific.

[0059] Much is known in mice about the consequences of genetic inactivation of Foxol a, however, in contrast to the mouse, little is known about the effect of FOXOl on endocrine differentiation in human gut, especially whether FOXOl loss-of-function can alter the fate of enteroendocrine cells toward the insulin-producing lineage. It is now shown that FOXOl inhibition in vitro in human gut enteroendocrine cells in organoid cultures caused their conversion into insulin-positive cells that express markers of mature pancreatic β-cell and secrete C-peptide in response to glucose, arginine, and KCl.

[0060] It has further been discovered that inhibition of FOXOl in human gut enteroendocrine cells that express serotonin coincides with a dramatic reduction of about 60% in the number of serotonin-expressing cells. This reduction of serotonin-positive cells is therefore associated with the appearance of the insulin-positive phenotype. In a study described below FOXOl inhibition correlated positively with an increase in expression of the 5HTr2b receptor, which increase is compensatory resulting from the reduction in serotonin expression. Therefore contacting an enteroendocrine cells with a 5HTr2b antagonist would reduce serotonin signaling and its biological actions, mimicking the effect of inhibiting serotonin production. Based on these
observations and others described herein and in the attached appendices, certain embodiments of the invention are directed to:

[0061] (1) Human gut organoid cultures comprising Gut Ins+ cells including enteroendocrine cells or other gut cells that make and secrete biologically active insulin, which Gut Ins+ cells are produced by contacting gut organoid cultures with an active agent(s) as described herein in an amount that reduces the expression, biosynthesis, biological activity or amount of serotonin in the insulin-negative cells or that increases serotonin degradation thereby causing the cells to differentiate into Gut Ins+ cells. In other embodiments Gut Ins+ cells are produced by contacting insulin-negative cells in the cultures with both an agent that that reduces the expression 5HTsynthesis/degradation related genes, biosynthesis, biological activity or amount of serotonin in the cells or that increases serotonin degradation and an agent such as an inhibitory oligonucleotides that block expression of FOXO1 protein in amounts that cause the cells to differentiate into Gut Ins-i- cells. In certain embodiments the amount of active agent reduces 5-HT biosynthesis by at least about 50%, 70%, 90% or more. Use of inhibitory oligonucleotides is preferable to using viral vectors to inhibit expression of targeted genes. In certain embodiments FOXO1 expression is reduced by at least about 50%.

[0062] (2) Isolated human Gut Ins-i- cells comprising enteroendocrine cells or gut cells that make and secrete biologically active insulin, isolated from the human gut organoid cultures of (1).

[0063] (3) Methods of treating type 1 and type 2 diabetes and other of the enumerated disorders associated with impaired pancreatic function in a subject, by administering, delivering or implanting in a subject, a therapeutically effective amount of the isolated human Gut Ins-i- cells that make and secrete biologically active insulin of (2). The therapeutically effective amount is an amount that reduces one or more symptoms of the disorder. In certain other embodiments the administered cells are autologous to the subject. The Gut Ins-i- cells can be implanted in the gut of the subject or in a device (similar to an Ommaya reservoir) that can deliver insulin to the body on specific cues. Such device could be implanted under the skin in any location throughout the body, or could be connected to the body by way of a small catheter or infusion needle. In other embodiments the cells are implanted in a scaffold or other matrix to facilitate delivery. Other variations are described below.
(4) A method for treating a disease or disorder in a mammal, preferably a human, associated with impaired pancreatic endocrine function, by administering a therapeutically effective amount of an enumerated active agent that reduces the expression, biosynthesis, signaling or biological activity of serotonin or increases its degradation, wherein administering comprises delivering the agent to Gut Ins- cells in the mammal. The active agent causes the cells to differentiate into Gut-Ins+ glucose-responsive cells that make and secrete insulin. The therapeutically effective amount is an amount that reduces one or more symptoms of the disorder. Other embodiments of the method are directed to combination therapy wherein an agent that significantly reduces FOXO1 expression, biosynthesis, signaling or biological activity or increases its degradation is administered in addition to the agent that reduces serotonin.

(5) A method for treating a disease or disorder in a mammal, preferably a human, associated with impaired pancreatic endocrine function, by administering a therapeutically effective amount of an enumerated active agent that reduces the expression, biosynthesis, signaling or biological activity of Foxo protein (typically Foxol), wherein administering comprises delivering the agent to Gut Ins- cells in the mammal that are serotonin positive. The active agent causes the cells to differentiate into Gut-Ins+ (typically glucose-responsive) cells that make and secrete insulin. The therapeutically effective amount is an amount that reduces one or more symptoms of the disorder.

Agents that reduce FOXO1 expression include isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding either FOXO1, to reduce expression. A significant reduction in FOXO1 is a reduction of about 50% or more. Agents that reduce serotonin production in gut cells include isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding involved in 5HT synthesis, to reduce expression. A significant reduction in expression is a reduction of about 50% or more. Enzymes involved in 5HT synthesis include tryptophan hydrolase (1 and/or 2) and L-aromatic amino acid decarboxylase and monoamine oxidase (A and/or B) is involved in 5HT degradation.
[0067] (6) A method for making insulin-positive gut cells that make and secrete biologically active insulin (Gut Ins+ cells), by a) obtaining a human gut cell culture (typically a gut organoid culture) comprising insulin-negative cells (Gut Ins- cells) comprising enteroendocrine cells (optionally serotonin-positive) or other gut insulin-negative cell, and b) contacting the insulin-negative cells in the gut (Gut Ins- cells) in the cell culture with: (i) an agent that reduces expression, biosynthesis, signaling or biological activity of serotonin or increases serotonin degradation in an amount and under conditions that permit a significant portion of the insulin-negative cells to differentiate into insulin-positive cells that make and secrete biologically active insulin (Gut Ins-i- cells), and/or (ii) an agent that reduces the expression or biological activity of forkhead box 0 1 (Foxol) protein or biologically active fragments thereof, in an amount and under conditions that permit a significant portion of the insulin-negative cells to differentiate into insulin-positive cells that make and secrete biologically active insulin (Gut Ins-i- cells).

4. Detailed Description of Embodiments

A. Antisense nucleotides and siRNA

[0068] Other embodiments of the present invention are directed to the use of antisense nucleic acids or small interfering RNA (siRNA) or shRNA to reduce or inhibit expression and hence the biological activity of FOXO1 or enzyme in the serotonin biosynthetic pathway. Based on these known sequences of these proteins and genes encoding them, antisense DNA or RNA that are sufficiently complementary to the respective gene or mRNA to turn off or reduce expression can be readily designed and engineered, using methods known in the art. In a specific embodiment of the invention, antisense or siRNA molecules for use in the present invention are those that bind under stringent conditions to the targeted mRNA or targeted gene identified by the Genbank numbers, or to variants or fragments that are substantially homologous to the mRNA or gene encoding FOXO1 or serotonin biosynthetic enzyme. The antisense compounds of the invention are synthesized in vitro and do not include antisense compositions of biological origin.

[0069] Methods of making antisense nucleic acids are well known in the art. As used herein, the terms "target nucleic acid" encompass DNA encoding the target proteins and RNA (including pre-mRNA and mRNA) transcribed from such DNA. The specific hybridization of a nucleic acid oligomeric compound with its target nucleic acid interferes with the normal function of the target
nucleic acid. This modulation of function of a target nucleic acid by compounds which specifically hybridize to it is generally referred to as "antisense." The functions of DNA to be interfered with include replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulating or reducing the expression of the protein encoded by the DNA or RNA. In the context of the present invention, "modulation" means reducing or inhibiting in the expression of the gene or mRNA for one or more of the targeted proteins.

[0070] The targeting process includes determination of a site or sites within the target DNA or RNA encoding the targeted protein for the antisense interaction to occur such that the desired inhibitory effect is achieved. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the mRNA for the targeted proteins. Since, as is known in the art, the translation initiation codon is typically 5' - AUG (in transcribed mRNA molecules; 5' - ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon." A minority of genes have a translation initiation codon having the RNA sequence 5' - GUG, 5' - UUG or 5' - CUG, and 5' - AUA, 5' - ACG and 5' - CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine in eukaryotes. It is also known in the art that eukaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene. Routine experimentation will determine the optimal sequence of the antisense or siRNA.

[0071] It is also known in the art that a translation termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5' - UAA, 5' - UAG and 5' - UGA (the corresponding DNA sequences are 5' - TAA, 5' - TAG and 5' - TGA, respectively). The terms "start codon region" and
"translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

[0072] The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene.

[0073] It is also known in the art that variants can be produced through the use of alternative signals to start or stop transcription and that pre-mRNAs and mRNAs can possess more that one start codon or stop codon. Variants that originate from a pre-mRNA or mRNA that use alternative start codons are known as "alternative start variants" of that pre-mRNA or mRNA. Those transcripts that use an alternative stop codon are known as "alternative stop variants" of that pre-mRNA or mRNA. One specific type of alternative stop variant is the "polyA variant" in which the multiple transcripts produced result from the alternative selection of one of the "polyA stop signals" by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites.

[0074] Once one or more target sites have been identified, nucleic acids are chosen which are sufficiently complementary to the target; meaning that the nucleic acids will hybridize sufficiently well and with sufficient specificity, to give the desired effect of inhibiting gene expression and transcription or mRNA translation.
In the context of this invention, "hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. "Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of a nucleic acid is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the nucleic acid and the DNA or RNA are considered to be complementary to each other at that position. The nucleic acid and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the nucleic acid and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of function, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

While antisense nucleic acids are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 50 nucleobases (i.e., from about 8 to about 50 linked nucleosides). Particularly preferred antisense compounds are antisense nucleic acids comprising from about 12 to about 30 nucleobases. Antisense compounds include ribozymes, external guide sequence (EGS) nucleic acids (oligozymes), and other short catalytic RNAs or catalytic nucleic acids which hybridize to the target nucleic acid and modulate its expression. Nucleic acids in the context of this invention include "oligonucleotides," which refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes
oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

[0077] Antisense nucleic acids have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense nucleic acid drugs, including ribozymes, have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that nucleic acids can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans, for example to down-regulate expression of one or more Foxo proteins or enzymes involved in the serotonin synthesis or degradation pathway.

[0078] The antisense and siRNA compounds of the present invention can be utilized for diagnostics, therapeutics, and prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder such as diabetes, metabolic syndrome, glucose intolerance, and/or obesity where there is an inappropriately low level of insulin, which can be treated by reducing the expression of one or more Foxo proteins or enzymes involved in the serotonin synthesis or degradation pathway, is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. The antisense compounds and methods of the invention are useful prophylactically, e.g., to prevent or delay the appearance of diabetes, glucose intolerance, metabolic syndrome or obesity. The antisense compounds and methods of the invention are also useful to retard the progression of metabolic syndrome, glucose intolerance, diabetes, atherosclerosis or obesity.

[0079] The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds described herein.
US Patent Application 2004/0023390 (the entire contents of which are hereby incorporated by reference as if fully set forth herein) teaches that double-stranded RNA (dsRNA) can induce sequence-specific posttranscriptional gene silencing in many organisms by a process known as RNA interference (RNAi). However, in mammalian cells, dsRNA that is 30 base pairs or longer can induce sequence-nonspecific responses that trigger a shut-down of protein synthesis and even cell death through apoptosis. Recent work shows that RNA fragments are the sequence-specific mediators of RNAi (Elbashir et al., 2001). Interference of gene expression by these small interfering RNA (siRNA) is now recognized as a naturally occurring strategy for silencing genes in C. elegans, Drosophila, plants, and in mouse embryonic stem cells, oocytes and early embryos (Cogoni et al., 1994; Baulcombe, 1996; Kennerdell, 1998; Timmons, 1998; Waterhouse et al., 1998; Wianny and Zernicka-Goetz, 2000; Yang et al., 2001; Svoboda et al., 2000).

In mammalian cell culture, a siRNA-mediated reduction in gene expression has been accomplished by transfecting cells with synthetic RNA nucleic acids (Caplan et al., 2001; Elbashir et al., 2001). The 2004/0023390 application, the entire contents of which are hereby incorporated by reference as if fully set forth herein, provides exemplary methods using a viral vector containing an expression cassette containing a pol II promoter operably-linked to a nucleic acid sequence encoding a small interfering RNA molecule (siRNA) targeted against a gene of interest.

As used herein RNAi is the process of RNA interference. A typical mRNA produces approximately 5,000 copies of a protein. RNAi is a process that interferes with or significantly reduces the number of protein copies made by an mRNA. For example, a double-stranded short interfering RNA (siRNA) molecule is engineered to complement and match the protein-encoding nucleotide sequence of the target mRNA to be interfered with. Following intracellular delivery, the siRNA molecule associates with an RNA-induced silencing complex (RISC). The siRNA-associated RISC binds the target through a base-pairing interaction and degrades it. The RISC remains capable of degrading additional copies of the targeted mRNA. Other forms of RNA can be used such as short hairpin RNA and longer RNA molecules. Longer molecules cause cell death, for example by instigating apoptosis and inducing an interferon response. Cell death was the major hurdle to achieving RNAi in mammals because dsRNAs longer than 30 nucleotides
activated defense mechanisms that resulted in non-specific degradation of RNA transcripts and a
general shutdown of the host cell. Using from about 19 to about 29 nucleotide siRNAs to
mediate gene-specific suppression in mammalian cells has apparently overcome this obstacle.
These siRNAs are long enough to cause gene suppression.

[0083] Certain embodiments of the invention are directed to the use of shRNA, antisense or
siRNA to block expression of the targeted protein or orthologs, analogs and variants thereof in an
animal. The antisense compounds of the invention are synthesized in vitro and do not include
antisense compositions of biological origin, or genetic vector constructs designed to direct the in
vivo synthesis of antisense molecules.

[0084] There are tested delivery methods to achieve in vivo transfection such as coating siRNA
with liposomes or nanoparticles. There is also a novel technology that specifically targets siRNA
delivery to gut epithelium, called "Transkingdom RNA interference." The inventors of this
technique have genetically engineered non-pathogenic E. Coli bacteria that are able to produce
short hairpin RNA (shRNA) targeting a mammalian gene (Xiang, S., et al., 2009. In vitro and in
factors were used to facilitate shRNA transfer: the invasin (Inv) and listeriolysin O (HlyA)
genesis. They have shown that the recombinant E. coli can be administered orally to deliver an
shRNA against Catenin b1 (Ctnnbl) that inhibits expression of this gene in intestinal epithelial
cells without demonstrable systemic complications from leaking of bacteria into the bloodstream.
Certain embodiments of the invention are directed to using the Transkingdom RNA interference
method adapted to siRNA that silences one or more targeted proteins.

[0085] Others have used this technique to knock down Abcbl (Kruhn, A., et al., 2009. Delivery
of short hairpin RNAs by transkingdom RNA interference modulates the classical ABCB1-
mediated multidrug-resistant phenotype of cancer cells. Cell Cycle 8).

[0086] Bacteria encoding the shRNA can be purchased from Cequent Technologies, and can be
administered inter alia it by oral gavage at the recommended concentrations. Doses can be
determined using analysis of Foxol knock-down in intestinal cells in biopsies, for example or in
test animals.
In the context of this invention, the term "oligonucleotide" refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922.

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize sufficiently with or bind to cellular mRNA and/or genomic DNA encoding the protein of interest to thereby reduce expression of the protein, e.g., by reducing transcription and/or translation. The hybridization can be by conventional nucleotide complementary to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the
antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

[0090] An antisense nucleic acid molecule of the invention can be an alpha-anomeric nucleic acid molecule. An a-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids. Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330). All of the methods described in the above articles regarding antisense technology are incorporated herein by reference.

[0091] The invention also encompasses ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave targeted mRNA transcripts thereby inhibiting translation. A ribozyme having specificity for a targeted-encoding nucleic acid can be designed based upon the nucleotide sequence of its cDNA. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in the targeted mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, a targeted FOXO mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 261:1411-1418, incorporated herein by reference.

[0092] As used herein, the term "nucleic acid" refers to both RNA and DNA, including cDNA, genomic DNA, and synthetic (e.g., chemically synthesized) DNA. The nucleic acid can be double-stranded or single-stranded (i.e., a sense or an antisense single strand). As used herein, "isolated nucleic acid" refers to a nucleic acid that is separated from other nucleic acid molecules that are present in a mammalian genome, including nucleic acids that normally flank one or both sides of the nucleic acid in a mammalian genome (e.g., nucleic acids that flank an ARPKD
gene). The term "isolated" as used herein with respect to nucleic acids also includes any non-naturally-occurring nucleic acid sequence, since such non-naturally-occurring sequences are not found in nature and do not have immediately contiguous sequences in a naturally-occurring genome.

[0093] An isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule (e.g., a chemically synthesized nucleic acid, or a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences as well as DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, lentivirus, adenovirus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include an engineered nucleic acid such as a DNA molecule that is part of a hybrid or fusion nucleic acid. A nucleic acid existing among hundreds to millions of other nucleic acids within, for example, cDNA libraries or genomic libraries, or gel slices containing a genomic DNA restriction digest, is not to be considered an isolated nucleic acid.

[0094] As used herein, a "therapeutically effective amount" of the siRNA is an amount sufficient to cause RNAi-mediated degradation of the target mRNA, or an amount sufficient to inhibit the progression of an enumerated disease in a subject or to change the phenotype of an Insulín-N3 Prog or Ins-enteroendocrine cell to an Ins+ cell.

[0095] As used herein, "isolated" means altered or removed from the natural state through human intervention. For example, an siRNA naturally present in a living animal is not "isolated," but a synthetic siRNA, or an siRNA partially or completely separated from the coexisting materials of its natural state is "isolated." An isolated siRNA can exist in substantially purified form, or can exist in a non-native environment such as, for example, a cell into which the siRNA has been delivered. Unless otherwise indicated, all nucleic acid sequences herein are given in the 5' to 3' direction. Also, all deoxyribonucleotides in a nucleic acid sequence are represented by capital letters (e.g., deoxythymidine is "T"), and ribonucleotides in a nucleic acid sequence are represented by lower case letters (e.g., uridine is "u").
[0096] Antisense molecules that bind to a reduce expression of FOXO1 include, but are not limited to, those taught in U.S. Patent No. 7,807,649, Ropelle et al., Journal of Physiology, 2009 587:2341-2351, Samuel et al, Diabetes. 2006 Jul;55(7):2042-50 and US Patent Publication 20130216554. The teachings of these applications as they relate to FOXO1 antisense are incorporated herein.

[0098] shRNA molecules targeting FOXO1 include, but are not limited to, those taught in US Patent Pub 20130216554, and commercially available from Sigma Aldrich (for example, product nos SH 1911, SH1921, and SH1931; and TRC Nos TRCN0000039580; TRCN0000039582; TRCN0000010333).

[0099] Further, it is known that certain transcription factors such as Nkx2.2, FevI and Lmxl control genes associated with 5HT synthesis and degradation. Blocking expression of these transcription factors is an alternate method of reducing 5HT synthesis in enteroendocrine cells. Oligonucleotide inhibitors such as antisense, siRNA and shRNA or antibodies targeting these transcription factors in enteroendocrine may utilized to reduce expression of TPH and AAAD. Human Nkx2.2 gene is provided as NCBI Reference Sequence: NG_042186.1. Human Nkx2.2 antisense strand is provided as Genbank Accession No. AI675189. siRNA molecules targeting Nkx2.2 for use in accord with the teachings herein are commercially available (e.g. Life
Technologies, product nos. 143628, 41684, 41765, 41833, and Santa Cruz Biotechnology cat. No. sc-38723).

[0100] Human Fev sequence is provided as NCBI Reference Sequence: NG_023323.1. Antisense molecules that target and bind to this gene are clearly envisionable based on the known genetic sequence and are straightforward to make based on known techniques. siRNA and shRNA molecules targeting Fev for use in accord with the teachings herein are commercially available (e.g. Santa Cruz Biotechnology, sc-37859, sc-37859-SH). Lmx is another transcription factor associated with 5HT biosynthesis. The mRNA sequence of human Lmx1A is found at NCBI Reference Sequence: NM_177398.3. Antisense molecules that target and bind to this gene are clearly envisionable based on the known genetic sequence and are straightforward to make based on known techniques. siRNA and shRNA molecules targeting Lmx1 for use in accord with the teachings herein are commercially available (e.g. Santa Cruz Biotechnology, product nos sc-38721, sc-38721-SH (Lmx IB), sc-72343, sc-72343-SH (Lmx1A)).

[0101] TH tyrosine hydroxylase (also known as TYH; DYT14; DYT5b) [Homo sapiens]: Gene ID: 7054; Species Human. Entrez 7054; RefSeq (mRNA) NM_000360; RefSeq (protein) NP_000351; Location (UCSC) Chr 11:

[0102] NCBI GenBank AF057280 = Homo sapiens tryptophan hydroxylase (TPH) gene, alternative splice products, partial cds. DNA linear; Accession No. NG_011947 (Genbank TPH1) Accession No. NG_008279 (Genbank TPH2). TPH1 protein sequence (SEQ ID No. 103)

MIEDNKENKDHSLERGRASLIFSLLKNEVGGLIKALKIFQEKLGVNLLHIESRKSKRKNSEFE IFVDCIDINREQLNDIFHLLKSHTNVLSVNLPDNFTLKEQDMETWPFIPKISDLHDCANR VLMYGESEDADHPGKDNVYRRKRKYFADLAMNYKHGDPIDPKVEFTEEEIKTWGTVFQ ELNKLYPEHICREYKLNLPLLSSKCYGREDNIPQLEDVSNFLKERTGFSIRPVAGLYLSPR DFLSGLAFRVFHCTQYVRHSDDPFTYPEPDTCHELLELGHPVPLAEPSFAQFSQEGILASLGA SEEAVQKALTCCFTVEFGLCKQDGDQQLRFGAGLLSISELKHALSGHAKVFPDPKITEK KQECCLITTFQDVYYFVESFEDAKEKMRFTKTIKRPG VKNYPYTRSIQILKDTKSITSAM NELQHDLDVVDALAKVSRKPSI

TPH2 protein sequence is as follows:
[0103] NCBI GenBank M88070 = Human aromatic L-amino acid decarboxylase gene, exon 1; synonyms = dopa decarboxylase, tryptophan decarboxylase, aromatic L-amino acid decarboxylase, and hydroxytryptophan decarboxylase, Also, Accession no. NG_008742 (Genbank DDC). L-aromatic amino acid decarboxylase protein sequence (SEQ ID No. 104).

MNASEFRRRGKEMVDYVANYMEGIEGRQVYPDVEPGYLRPLIPAAAPQEPDTFEDIIND VEUHFGVTHWHSPYFAYFPFTASSYPMALDMLCGAIGCIGFSWAASPACTELETVM MDWLGMKMLELPKAILNEKAGEGGG VIQGSAEATLVLALLAARTKVIIHRQ AASPELTQA AIMEKLV AYSSQAHSSIVERALIGGKVLKAIPSGNFAMRSAALQEALERDKAAGLI PFFMVATLGTTCFSCFDNILLEVGPPINEKEDIWLV VDAAYAGSAFICPEFRHLLNGVEFAD SFNFNPWHKLWVNFDCSAMWVKKRTDLTGAFRLDPTYLKSHIQDGLITDYRHWQIPL GRRFRSLKMWFVFRMYGVKGLQAYIRKHVQLSHEFCVRQDRPRFEICVEVILGLVCFR LKGSNKVNEALLRINSAKKIHLPCHLKDKFVLRAICSRTVESAHVQRAWEHIKELA ADVLRAERE

These TPH and AAD protein sequences and nucleotide sequences encoding same are relevant and useful for designing oligonucleotide inhibitors that will reduce expression of these enzymes.

[0104] siRNA targeting TPH is commercially available (e.g. Santa Cruz Biotechnology, sc-41526 (TPHI), sc-61700 (TPH2)). shRNA is provided as sc-61700-SH. siRNA targeting AAAD is commercially available (e.g. Santa Cruz Biotechnology, sc-60516). shRNA is provided as sc-60516-SH.

[0105] Gene information related to Foxo are provided herein below.
B. Antibodies

[0106] As an alternative to oligonucleotide or small molecule based inhibitors, antibodies (including portions or fragments or variants of antibody fragments or variants of antibodies) targeting a FOXO protein or proteins involved in 5HT synthesis or degradation, or transcription factors involved in 5HT synthesis may be used to reduce expression or activity of the relevant target. In the case of binding to transcription factors, antibodies can result in reducing expression of the target protein.

[0107] An "antibody" refers to an intact immunoglobulin or to an antigen-binding portion (fragment) thereof that competes with the intact antibody for specific binding, and is meant to include bioactive antibody fragments. Therapeutically useful antibodies in treating or preventing an enumerated disease or changing a phenotype as described include any antibody to any FOXO protein or analog, ortholog or variant thereof, preferably FOXO1, proteins involved in 5HT biosynthesis, and transcription factors involved in 5HT biosynthesis.

[0108] Once produced, antibodies or fragments thereof can be tested for recognition of the target polypeptide by standard immunoassay methods including, for example, enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay assay (RIA). See, Short Protocols in Molecular Biology eds. Ausubel et al., Green Publishing Associates and John Wiley & Sons (1992).

[0109] The term "epitope" refers to an antigenic determinant on an antigen to which an antibody binds. Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains, and typically have specific three-dimensional structural characteristics, as well as specific charge characteristics. Epitopes generally have at least five contiguous amino acids. The terms "antibody" and "antibodies" include polyclonal antibodies, monoclonal antibodies, humanized or chimeric antibodies, single chain Fv antibody fragments, Fab fragments, and F(ab')2 fragments. Polyclonal antibodies are heterogeneous populations of antibody molecules that are specific for a particular antigen, while monoclonal antibodies are homogeneous populations of antibodies to a particular epitope contained within an antigen. Monoclonal antibodies are particularly useful in the present invention.
Antibody fragments that have specific binding affinity for the polypeptide of interest can be generated by known techniques. Such antibody fragments include, but are not limited to, F(ab')₂ fragments that can be produced by pepsin digestion of an antibody molecule, and Fab fragments that can be generated by reducing the disulfide bridges of F(ab')₂ fragments. Alternatively, Fab expression libraries can be constructed. See, for example, Huse et al. (1989) Science 246:1275-1281. Single chain Fv antibody fragments are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge (e.g., 15 to 18 amino acids), resulting in a single chain polypeptide. Single chain Fv antibody fragments can be produced through standard techniques, such as those disclosed in U.S. Pat. No. 4,946,778.

An "isolated antibody" is an antibody that (1) is not associated with naturally-associated components, including other naturally-associated antibodies, that accompany it in its native state; (2) is free of other proteins from the same species; (21) is expressed by a cell from a different species, or (4) does not occur in nature.

The term "human antibody" includes all antibodies that have one or more variable and constant regions derived from human immunoglobulin sequences. In a preferred embodiment, all of the variable and constant domains are derived from human immunoglobulin sequences (a fully human antibody). These antibodies may be prepared in a variety of ways, as described below.

A humanized antibody is an antibody that is derived from a non-human species, in which certain amino acids in the framework and constant domains of the heavy and light chains have been mutated so as to avoid or abrogate an immune response in humans. Alternatively, a humanized antibody may be produced by fusing the constant domains from a human antibody to the variable domains of a non-human species. Examples of how to make humanized antibodies may be found in U.S. Pat. Nos. 6,054,297, 5,886,152 and 5,877,293, incorporated herein by reference.

The term "chimeric antibody" refers to an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies.

Fragments, portions or analogs of antibodies can be readily prepared by those of ordinary skill in the art following the teachings of this specification. Preferred amino- and carboxy-termini
of fragments or analogs occur near boundaries of functional domains. Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases. Preferably, computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are known. Bowie et al. Science 253:164 (1991).

[0116] Human anti-Foxol antibodies are commercially available (e.g. Thermo Scientific Pierce Antibodies, cat no. MA1-23230 and Novus Biologicals cat no. NBP2-31376). Human anti-Tph antibodies are commercially available (e.g. Abeam, product no. ab46757). Human anti-L-aromatic amino acid decarboxylase antibodies are commercially available (e.g. Abeam product no. ab3905).

[0117] Human anti-NKX2.2 antibody is commercially available (e.g. Abeam product no. ab86024). anti-FEV antibody commercially available (e.g. Santa Cruz Biotechnology, cat. No. sc-6530). Anti-Lmxl antibodies are commercially available (e.g. Santa Cruz Biotechnology, product nos sc-54273 (Lmx1A), sc-54274 (Lmx 1A), sc-134990 (Lmx1A), sc-21231 (Lmx1B), sc-133745 (Lmx1B).

[0118] Human anti-TPH antibody is commercially available (e.g. ABM, cat nos. Y060271 and Y060182). Human anti-AAAD antibody is commercially available (e.g. Abeam, ab3905).

C. Small Molecule Inhibitors of Serotonin Biosynthesis

[0119] Agents that reduce serotonin biosynthesis include any agent that inhibits an enzyme including tryptophan hydroxylase (TPH, there is TPH1 and TPH2, EC no. 1.14.16.4), and L-aromatic amino acid decarboxylase (AAAD, EC no. 4.1.1.28). Inhibitors of serotonin biosynthesis include oligonucleotides that inhibit expression of an enzyme in the serotonin biosynthetic pathway, as well as the TPH inhibitors such as p-Chlorophenylalanine, p-Ethynlphenylalanine, a-Propyldpacetamide, 6-Flurotyptophan, pChloroamphetamine, Fenfluramine, LP-533401, 1x1031, 5 hydroxytryptophan inhibitor L-phenylalanine; and peripheral AAAD inhibitors such as MK-486, brocresine, carbidopa, 3-hydroxybenzylhydrazine, a-methyldopa, and benserazide.
Agents that increase serotonin degradation include any agent that increases the activity or expression of an enzyme in the serotonin degradation pathway including monoamine oxidase and ALDH1a3. Inhibitors of monoamine oxidase A include, but are not limited to, clorgyline, harmaline, moclobemide, brofaromine toloxatone, M30 dihydrochloride, rasagiline, and befloxatone. Inhibitors of aldehyde dehydrogenase include disulfiram, cyanamide, daidzein, genistin, propioldehyde, phenethyl isothiocyanate, methylene blue. Analogs of monoamine oxidase and ALDH1a3 also have therapeutic utility. Androgen dihydrotestosterone (DHT) caused a 4-fold increase in ALDH1A3 mRNA levels in human prostate. Trasino SE et al.; Exp Biol Med (Maywood). 2007 Jun; 232(6):762-71.

Agents that reduce serotonin signaling include antagonists that bind to serotonin receptors 5HTr2b or 5HTr1a, or both, on the surface of gut enteroendocrine serotonin-producing cell. In certain embodiments, binding of the antagonists causes a significant reduction of at least about 50%, 70%, 90% or more in serotonin signaling. Contacting non-insulin-producing gut cells with the antagonist would reduce serotonin signaling and its biological actions, mimicking the effect of inhibiting serotonin production.

Evidence of the insulin-producing gut enteroendocrine cells in the subject can be obtained by determining an increase in circulating insulin the in subject, glucose tolerance testing, c-peptide, proinsulin or by determining improvement in the symptoms of the enumerated disorders, including a reduction in the amount of exogenous insulin delivered by injection or through a subcutaneous continuous insulin infusion ("Insulin pump").
5HT Biosynthesis

Provided above is a diagram showing the synthetic pathway of Serotonin. In most cases, unless stated otherwise, discussion on enzymes that are involved in "biosynthesis of serotonin," "synthesis of serotonin," "serotonin biosynthesis pathway." or "synthetic pathway of serotonin" is intended to also involve enzymes involved in degradation of serotonin.

D. Pharmaceutical compositions

[0123] Certain embodiments of the present invention are directed to pharmaceutical compositions and formulations that include one or more active agents as defined herein, including but not limited to small molecules, polypeptides, inhibitory oligonucleotides (including
antisense RNA, siRNA, microRNAs, and ribozymes that reduce the expression and/or biological activity of FOXO1 proteins or of enzymes in the serotonin biosynthesis pathway in human Gut Ins- enteroendocrine cells, thereby causing them to differentiate into Gut Ins+ Cells that make and secrete biologically active insulin. The pharmaceutical compositions will have one or more of the following effects of increasing insulin secretion and serum insulin, increasing insulin sensitivity, increasing glucose tolerance, reducing intracellular serotonin. Alternatively, pharmaceutical compositions are directed to Ins-i- enteroendocrine cells. Typically, the Ins+ enteroendocrine cells are in a form suitable for transplantation into the subject.

[0124] The therapeutic agents are generally administered in an amount sufficient to treat or prevent an enumerated disease associated with impaired pancreatic endocrine function, including diabetes type 1 and 2, metabolic syndrome, and obesity in a subject; or to reduce fat mass. The pharmaceutical compositions of the invention provide an amount of the active agent effective to treat or prevent an enumerated disease or disorder.

[0125] Active agents of the invention may be chemically modified to facilitate uptake by Gut Ins- cells such as enteroendocrine cells. For example, it could be fused to a bile acid or fatty acid to facilitate uptake by gut cells; or it may be packaged in liposomes or another lipid-based emulsion system to facilitate its uptake; it may be encoded by bacteria expressing a modified cell surface antigen that promotes its binding to gut epithelial cells, including N3 Progenitor cell-permeable peptides was used to improve cellular uptake (Gratton et al., Nature Medicine 9, 357-362 (2003)).

[0126] The term "administer" is used in its broadest sense and includes any method of introducing the compositions of the present invention into a subject. Administration of an agent "in combination with" includes parallel administration of two agents to the patient over a period of time such as administration of an agent that reduces expression, biosynthesis, signaling or activity of serotonin and an agent that reduces the expression of FOXO1 expression or biological activity over a period of time, co-administration (in which the agents are administered at approximately the same time, e.g., within about a few minutes to a few hours of one another), and co-formulation (in which the agents are combined or compounded into a single dosage form suitable for oral, subcutaneous or parenteral administration).
The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. The gastrointestinal (G.I.) tract is a desired route for the administration of pharmacological agents. Drugs are normally well absorbed from the intestines, and dosage forms such as capsules, tablets, and suspensions are well accepted by the general population. The gut regions that have the highest density of Gut Ins+ cells in mice with FOXO1 ablation are located in the distal ileum and colon and duodenum. Drug delivery systems targeted to the colon are known in the art to include covalent linkage compositions, polymer coated compositions, compositions embedded in matrices, time release compositions, redox-sensitive polymer compositions, bioadhesive compositions, microparticle coating compositions, and osmotic delivery compositions. See U.S. Patent No. 8,470,885. A number of different formulations are available for delivery of desired compositions to the colon including amylose coated tablets, enterically coated chitosan tablets, matrix within matrix or multimatrix systems or polysaccharide coated tablets. Multimatrix controlled release systems are disclosed in U.S. Patent No. 7,421,943. Therefore in some embodiments the pharmaceutical compositions are administered orally or locally to the colon or in formulations that target them for absorption in the duodenum or it can be administered by implanting an osmotic pump, preferably at a site or subcutaneous that is proximal to the duodenum, distal ileum or colon.

Administration can also be intravenous, parenteral/ intra-arterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. The pharmaceutical compositions may be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. The compositions so formulated will be designed to give an effective dosage to the colon in addition to other areas a rectal administration might affect.

In recent years there has been a tendency towards the development of controlled release dosage forms that will provide therapy over an extended period of time. Normally this would be once a day and it is believed that such a change in dosage regimen will reduce adverse reactions and side effects and also improve patient compliance. The design and evaluation of controlled release dosage forms must, however, take into account the properties of the G.I. tract, including

37
the rapid transit of material through the small intestine. The use of synthetic polymers that may have muco- or bio-adhesive properties has been investigated and is disclosed in WO 85/02092.

[0130] In some embodiments a slow release preparation comprising the active agents is formulated. It is desirable to prolong delivery with these slow release preparations so that the drug may be released at a desired rate over this prolonged period. By extending the period, the drug can if required be released more slowly, which may lead to less severe adverse reactions and side effects. The preparation of sustained, controlled, delayed or anyhow modified release form can be carried out according to different known techniques: 1. The use of inert matrices, in which the main component of the matrix structure opposes some resistance to the penetration of the solvent due to the poor affinity towards aqueous fluids; such property being known as lipophilia; 2. The use of hydrophilic matrices, in which the main component of the matrix structure opposes high resistance to the progress of the solvent, in that the presence of strongly hydrophilic groups in its chain, mainly branched, remarkably increases viscosity inside the hydrated layer; and 3. The use of bioerodible matrices, which are capable of being degraded by the enzymes of some biological compartment. See. U.S. Patent No. 7,431,943.

[0131] The term "slow release" refers to the release of a drug from a polymeric drug delivery system over a period of time that is more than one day wherein the active agent is formulated in a polymeric drug delivery system that releases effective concentrations of the drug. Drug delivery systems may include a plurality of polymer particles containing active drug material, each of the particles preferably having a size of 20 microns or less, and incorporating on the outer surface of at least some of the particles a bioadhesive material derived from a bacterium such that in use the bioadhesive material will adhere to the small intestine of the gut. Such drug delivery systems have been described in U.S. Patent No. 6,355,276. The use of these microorganisms in the design allow for a controlled release dosage form with extended gastrointestinal residence.

[0132] In certain embodiments, dosage forms of the compositions of the present invention include, but are not limited to, implantable depot systems. The depot systems may include FOXO or serotonin affecting agents or include Ins+ enteroendocrine cells. In one embodiment, the depot system includes Ins+ enteroendocrine cells imbedded in a three-dimensional matrix.
The three-dimensional matrices to be used are structural matrices that provide a scaffold to hold and support the cells, and are porous to allow fluid flow. Scaffolds can take forms ranging from fibers, gels, fabrics, sponge-like sheets, and complex 3-D structures with pores and channels fabricated using complex Solid Free Form Fabrication (SFFF) approaches. As used herein, the term "scaffold" means a three-dimensional (3D) structure (substrate and/or matrix). It may be composed of biological components, synthetic components or a combination of both. Further, it may be naturally constructed by cells or artificially constructed. In addition, the scaffold may contain components that have biological activity under appropriate conditions. The structure of the scaffold can include a mesh, a sponge or can be formed from a hydrogel. In certain embodiments, the scaffold is biodegradable.

[0133] Examples of biodegradable depot systems include but are not limited to PLGA based injectable depot systems; non-PLGA based injectable depot systems, and injectable biodegradable gels or dispersions. Each possibility represents a separate embodiment of the invention. The term "biodegradable" as used herein refers to a component which erodes or degrades at its surfaces over time due, at least in part, to contact with substances found in the surrounding tissue fluids, or by cellular action. In particular, the biodegradable component is a polymer such as, but not limited to, lactic acid-based polymers such as polylactides e.g. poly(D,L-lactide) i.e. PLA; glycolic acid-based polymers such as polyglycolides (PGA) e.g. Lactel® from Durect; poly(D,L-lactide-co-glycolide) i.e. PLGA, (Resomer® RG-504, Resomer® RG-502, Resomer® RG-504H, Resomer® RG-502H, Resomer® RG-504S, Resomer® RG-502S, from Boehringer, Lactel® from Durect); polycaprolactones such as Poly(e-caprolactone) i.e. PCL (Lactel® from Durect); polyanhydrides; poly(sebacic acid) SA; poly(ricenolic acid) RA; poly(fumaric acid), FA; poly(fatty acid dimmer), FAD; poly(terephthalic acid), TA; poly(isophthalic acid), IPA; poly(p-{carboxyphenoxy} methane), CPM; poly(p-{carboxyphenoxy} propane), CPP; poly(p-{carboxyphenoxy}hexane)s CPH; polyamines, polyurethanes, polyesteramides, polyorthoesters {CHDM: cis/trans- cyclohexyl dimethanol, HD:1,6-hexanediol, DETOU: (3,9-diethylidene-2,4,8,10-tetraoxaspiro undecane); polydioxanones; polyhydroxybutytrates; polyalkylene oxalates; polyamides; polyesteramides; polyurethanes; polycetals; polyketals; polycarbonates; polyorthocarbonates; polysiloxanes; polyphosphazenes; succinates; hyaluronic acid; poly(malic acid); poly(amino acids); polyhydroxy valerates; polyalkylene succinates; polyvinylpyrrolidone; polystyrene; synthetic
cellulose esters; polyacrylic acids; polybutyric acid; triblock copolymers (PLGA- PEG-PLGA),
triblock copolymers (PEG-PLGA-PEG), poly (N-isopropylacrylamide) (PNIPAAm), poly
(ethylene oxide)- poly (propylene oxide)- poly (ethylene oxide) triblock copolymers (PEO-PPO-
PEO), poly valeric acid; polyethylene glycol; polyhydroxyalkylcellulose; chitin; chitosan;
polyorthoesters and copolymers, terpolymers; lipids such as cholesterol, lecithin; poly(glutamic
acid-co-ethyl glutamate) and the like, or mixtures thereof.

[0134] Self emulsifying microemulsion drug delivery systems (SMEDDS) are known in the art
as effective delivery systems into the G.I. tract. See U.S. Patent Application 2001/00273803. The
term SMEDDS is defined as isotropic mixtures of oil, surfactant, cosurfactant and drug that
rapidly form oil in water microemulsion when exposed to aqueous media or gastrointestinal fluid
under conditions of gentle agitation or digestive motility that would be encountered in the G.I.
tract.

[0135] Thermostable nanoparticles may be contained in a drug delivery system targeted for the
G.I. tract. See U.S. Patent Application 2000/60193787. These drug delivery systems may include
at least one type of biodegradable and/or bioresorbable nanoparticle and at least one drug that
possesses at least one of the following properties: emulsifier or mucoadhesion. The drug may
substantially cover the surface of the nanoparticle and may be used for delivering at least one
drug across a mucosal membrane such as the lining of the gut.

[0136] Certain medications, for example resins that prevent bile acid absorption, or inhibitors of
sugar breakdown, are used in the treatment of type 2 diabetes and are not absorbed at all in the
plasma. Such formulations are useful for the pharmaceutical formulations of the present
invention.

[0137] In certain embodiments, the pharmaceutical compositions of the present invention
comprise about 0.1 mg to 5 g, about 0.5 mg to about 1 g, about 1 mg to about 750 mg, about 5
mg to about 500 mg, or about 10 mg to about 100 mg of therapeutic agent.

[0138] In addition to continuous administration using osmotic pumps, active agents can be
administered as a single treatment or, preferably, can include a series of treatments, that continue
at a frequency and for a duration of time that causes one or more symptoms of the enumerated
disease to be reduced or ameliorated, or that achieves the desired effect including effects of increasing insulin secretion and serum insulin, increasing insulin sensitivity, increasing glucose tolerance, decreasing weight gain, decreasing fat mass, and causing weight loss.

[0139] It is understood that the appropriate dose of an active agent depends upon a number of factors within the ken of the ordinarily skilled physician, veterinarian, or researcher. The dose(s) vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, and the effect which the practitioner desires the active agent to have. It is furthermore understood that appropriate doses of an active agent depend upon the potency with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein. When one or more of these active agents are to be administered to an animal (e.g., a human) in order to modulate expression or activity a Foxo protein, a relatively low dose may be prescribed at first, with the dose subsequently increased until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.

[0140] Type 1 diabetes is usually diagnosed in children and young adults—but can occur at any age, and was previously known as juvenile diabetes. In type 1 diabetes, the body does not produce insulin. Insulin is a hormone that is needed to convert sugar (glucose), starches and other food into energy needed for daily life. Conditions associated with type 1 diabetes include hyperglycemia, hypoglycemia, ketoacidosis and celiac disease.

[0141] Type 2 diabetes is the most common form of diabetes. In type 2 diabetes, either the body does not produce enough insulin or the cells ignore the insulin. Conditions associated with type 2 diabetes include hyperglycemia and hypoglycemia.

[0142] Disorders associated with energy metabolism include diabetes, glucose intolerance, decreased insulin sensitivity, decreased pancreatic beta-cell proliferation, decreased insulin secretion, weight gain, increased fat mass and decreased serum adiponectin.
[0143] The therapeutic agent can be formulated with an acceptable carrier using methods well known in the art. The actual amount of therapeutic agent will necessarily vary according to the particular formulation, route of administration, and dosage of the pharmaceutical composition, the specific nature of the condition to be treated, and possibly the individual subject. The dosage for the pharmaceutical compositions of the present invention can range broadly depending upon the desired effects, the therapeutic indication, and the route of administration, regime, and purity and activity of the composition.

[0144] A suitable subject, preferably a human, can be an individual or animal that is suspected of having, has been diagnosed as having, or is at risk of developing an enumerated disease, and like conditions as can be determined by one knowledgeable in the art.

[0145] Techniques for formulation and administration can be found in "Remington: The Science and Practice of Pharmacy" (20th edition, Gennaro (ed.) and Gennaro, Lippincott, Williams & Wilkins, 2000), incorporated herein by reference. The pharmaceutical compositions of the present invention can be administered to the subject by a medical device, such as, but not limited to, catheters, balloons, implantable devices, biodegradable implants, prostheses, grafts, sutures, patches, shunts, or stents. A detailed description of pharmaceutical formulations of oligonucleotides is set forth in US Patent No. 7,563,884.

[0146] The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be-oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2′-O-methoxyethyl modification are believed to be particularly useful for oral administration.

[0147] Active agents may be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to,
U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; ... For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor hydroxide.

[0148] Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

[0149] The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

[0150] Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylene diamine tetra acetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.

[0151] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where the therapeutic agents are water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor...
EL® (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms such as bacteria and fungi.

[0152] The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, and sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

[0153] Sterile injectable solutions can be prepared by incorporating the active agent in the required amount in an appropriate solvent with one or a combination of the ingredients enumerated above, as required, followed by filter sterilization. Generally, dispersions are prepared by incorporating the active agent into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[0154] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. Depending on the specific conditions being treated, pharmaceutical compositions of the present invention for treatment of atherosclerosis or the other elements of metabolic syndrome can be formulated and administered systemically or locally. Techniques for formulation and administration can be found in "Remington: The Science and Practice of Pharmacy" (20th edition, Gennaro (ed.) and Gennaro,
Lippincott, Williams & Wilkins, 2000). For oral administration, the agent can be contained in enteric forms to survive the stomach or further coated or mixed to be released in a particular region of the GI tract by known methods. For the purpose of oral therapeutic administration, the active agent can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, PRIMOGEN® or corn starch; a lubricant such as magnesium stearate or STEROTES® a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

[0155] The composition may be formulated, for example, as a tablet or capsule or as a unit dose that may be suspended in a liquid immediately prior to use. The tablet or capsule may have an enteric coating. The enteric coating (and the capsule, if appropriate) may dissolve or disintegrate, preferably rapidly (e.g. up to 5, 10, 15, 20, 30, 60, 120, 240, 300, or 360 minutes or longer), when it reaches alkaline conditions, for example on entering the small intestine.

[0156] Alternatively, the tablet or capsule may not have an enteric coating but may disintegrate in the stomach to release an enteric coated composition comprising agents.

[0157] Examples of enteric release materials are pH-sensitive polymers which provide an aqueous barrier and do not dissolve or disintegrate in acidic aqueous environs typical of the stomach, but which do dissolve or disintegrate in the higher pH aqueous environs typical of the intestines. The time duration of the disintegration upon reaching a higher pH condition dictates where in the intestine the agent is released.

[0158] Dosage unit forms of certain embodiments include enteric coated capsules or tablets, or enteric coated active agent. Other related dosage unit forms active agent encased in hard- or soft-shelled capsules with the shell made of an enteric release material. Another dosage unit form
provides active agent embedded in a matrix which is soluble or erodible in the intestines but not in the stomach.

[0159] For the pharmaceutical compositions in dosage unit form, each dosage unit form may contain from about 0.1 mg to about 1000 mg of active agent, more typically from about 1 mg to about 500 mg of active agent, more typically still from about 5 mg to about 200 mg of active agent.

[0160] In a specific embodiment, a dosage unit form is directed to an enteric coated tablet comprising a tablet core containing active agent surrounded by an enteric coating. Tablet cores area typically made by mixing granular or powdered active agent with a pharmaceutical carrier and compressing the resulting mixture into a tablet core by conventional means. The tablet core is then coated with an enteric release material by conventional means, such as in a pan coater or a fluidized bed coater. Examples of commercially available enteric release materials which may be used to produce dosage unit forms of the present invention include cellulose acetate trimellitate, hydroxypropyl methylcellulose phthalate, carboxymethylcellulose, co-polymerized methacrylic acid/methacrylic acid methyl esters such as, for instance, materials known under the trade name EUDRAGIT® L12.5, L100, or EUDRAGIT® S12.5, S100 or similar compounds used to obtain enteric coatings, methacrylic acid copolymers (Eudragit® L, S and L30D from Rohm Pharma GmbH, Darmstadt, West Germany); cellulose acetate phthalate (Aquateric® from FMC Corp., Philadelphia, PA); polyvinyl acetate phthalate (Coterie® from Colorcon Inc., West Point, PA); and hydroxypropyl methylcellulose phthalate (HP50 and HP55 from Shin-Etsu Chemical Co., Ltd., Tokyo, Japan). The preferred thickness of enteric coating used is sufficient to protect the active agent from exposure in the stomach but disintegrates rapidly in the intestines, preferably in the small intestine, more preferably in the duodenum or jejunum, to expose the active agent, such that it contacts gut cells, preferably serotonin+ enteroendocrine cells in the intestine.

[0161] Another dosage unit form embodiment is an enteric coated hard gelatin capsule containing active agent. Active agent is typically mixed with a pharmaceutical carrier and filled into hard gelatin capsule shells. The capsules are then enteric coated using a coating as described for enteric coated tablets above.
Another dosage unit form embodiment is enteric coated granules of active agent. Granules comprising active agent and, preferably, a pharmaceutical carrier are prepared and enterically coated using an enteric coating material as described herein above. A dosage unit form of the enteric coated granules is prepared by, preferably blending them with an appropriate pharmaceutical carrier, and compressing them into tablets or filling them into hard gelatin capsule shells by conventional means.

Another dosage unit form embodiment pertains to a soft gelatin capsule containing a solution, suspension or emulsion of active agent. The soft gelatin capsule shell is made of an enteric release material which remains intact in the stomach and prevents exposure of the active agent in the stomach, but which dissolves or disintegrates in the intestines and releases the active agent in the intestine as described above.

Systemic administration can also be by transmucosal means to the intestinal or colon. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active agents are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active agents are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polylactic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to particular cells with, e.g., monoclonal antibodies) can also be used as
pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811

[0167] In an embodiment of the invention, the agent can be delivered by long-term, automated drug delivery to the gut using an osmotic pump to infuse a desired dose of the agent for a desired time. Insulin pumps can be adapted to deliver the agent to the gut. The delivery rate of the agent to control glucose intolerance, diabetes types 1 or 2 can be readily adjusted through a large range to accommodate changing insulin requirements of an individual (e.g., basal rates and bolus doses). New pumps permit a periodic dosing manner, i.e., liquid is delivered in periodic discrete doses of a small fixed volume rather than in a continuous flow manner. The overall liquid delivery rate for the device is controlled and adjusted by controlling and adjusting the dosing period. The pump can be coupled with a continuous blood glucose monitoring device and remote unit, such as a system described in U.S. Pat. No. 6,560,471, entitled "Analyte Monitoring Device and Methods of Use." In such an arrangement, the hand-held remote unit that controls the continuous blood glucose monitoring device could wirelessly communicate with and control both the blood glucose monitoring unit and the fluid delivery device delivering therapeutic agents of the present invention. In certain embodiments, the agent may be administered at a rate of from about 0.3-100 ng/hour, preferably about 1-75 ng/hour, more preferably about 5-50 ng/hour, and even more preferably about 10-30 ng/hour. The agent may be administered at a rate of from about 0.1-100 pg/hr, preferably about 1-75 micrograms/hr, more preferably about 5-50 micrograms/hr, and even more preferably about 10-30 micrograms/hr. It will also be appreciated that the effective dosage of an active agent used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from monitoring the level of insulin and/or monitoring glycemia control in a biological sample, preferably blood or serum.

5. Detailed Description of Experimental Results

FOX01 and Serotonin (5HT) colocalize in human gut

[0168] Experiments were first done to reproduce in humans the observation that Foxol ablation in mouse gut endocrine progenitor cells gives rise to insulin-secreting cells. Immunohistochemistry was used to survey FOXO1 localization in the human gut. FOXO1
immunoreactivity was detected in 5HT+ cells in duodenum (FIG. 1H), jejunum, and colon (not shown). 90% of intestinal 5HT cells were FOXO1+. Interestingly, pancreatic b-cells also make 5HT.

[0169] Fluorescence immunohistochemistry was used to survey FOXO1 localization in the human gut (FIG. 1). FOXO1-expressing cells were most abundant near the bottom of crypts; 60% of FOXO1-positive cells were located between positions 0 to +9 relative to the crypt bottom in duodenum and colon, with lower frequencies at positions more distal than +10, and in jejunum and ileum (FIG. 2A-D). FOXO1 mRNA levels correlated with the abundance of FOXO1-immunoreactive cells (FIG. 2E). Intestinal lineage marker analysis indicated that FOXO1 expression was virtually restricted to CHROMOGRAININ A (CGA)-positive endocrine cells (FIG. 1A-D). 95.3 ± 1.8% of FOXO1-positive cells were CGA-positive, whereas 61.8 ± 3.8% of CGA-positive cells had immunoreactivity with FOXO1 in three human duodenal specimens. FOXO1-positive crypt cells were OLFACTOMEDIN4 (OLFM4)-negative (FIG. 1E), indicating that they are unlikely to be intestinal stem cells. They were, however, immunoreactive with EPHB3, a pro-endocrine marker in pancreas that localizes to columnar cells at the crypt base and Paneth cells (FIG. 1C). These findings are consistent with FOXO1-positive crypt cells being endocrine progenitors.

[0170] More than 80% of FOXO1-positive cells in villi were immunoreactive with serotonin antibodies and 85 ± 11% of serotonin (5HT)-positive cells were FOXO1-positive (FIG. 1H). Interestingly, pancreatic β-cells also make serotonin. In addition, FOXO1-immunoreactive cells showed reactivity with prohormone convertases (PC) 1/3 and 2, as well as the ATP-dependent potassium channel SUR1, an important protein for glucose-dependent insulin secretion in β-cells (FIG. 2F-N). These findings indicate that FOXO1-positive gut cells share features with pancreatic β-cells. A small fraction of somatostatin-producing cells (<5% of total) also express FOXO1.

Generation and analysis of human gut organoids.

[0171] To assess the role of FOXO1 in human enteroendocrine cell differentiation, gut organoids were generated using three lines of human iPS cells derived from healthy donors. Time course analyses with immunohistochemical markers indicated that CDX2-expressing cells

49
appeared in 8-day-old organoids (FIG. 3A), followed by MUCIN (MUC2), LYSOZYME (LYS), and CGA-positive cells at day 14 of differentiation (FIG. 3B-D); no terminally differentiated enteroendocrine cells were detected at this stage. 150-day-old gut organoids resembled human gut morphology, including mesenchymal and enteroendocrine cells (FIG. 3E-R). The secretory lineages marked by MUC2 and LYS were present at physiologic frequencies, while CGA-positive cells were twice as abundant in iPS derived organoids as in gut (2.6 ± 0.2 vs. 1.0 ± 0.2%, p < 0.05) (FIG. 3S). Time course analyses of mRNA expression indicated that lineage markers increased exponentially during differentiation, with a notable step-up between day 8 and 22, coincident with the transition from budding microspheres to tridimensional culture in matrigel (FIG. 3T). Using immunohistochemistry, all principal endocrine cell types were shown to be present at physiologic levels (not shown) - including GLP1, GIP, somatostatin, gastrin, CCK, ghrelin, secretin, and serotonin. In certain embodiments, gut Ins-i- cells are made by reducing expression of serotonin, in some cases with a reduction of FOXO1 expression.

The presence and abundance of terminally differentiated enteroendocrine cells in human gut organoids have been characterized only in part. It was found that glucagon-like peptide 1 (GLP1)-, gastric inhibitory peptide (GIP)-, somatostatin (SSN)-, cholecystokinin (CCK)-, and 5HT-positive cells first appeared in ~90-days-old organoids. In contrast, gastrin-, secretin-, substance P-, and tufts cells appeared in 150-day-old organoids. (FIG. 3K-Q). qPCR analyses also revealed the time-dependent increases in mRNA levels of genes associated with endocrine progenitor and terminally differentiated enteroendocrine cells, including INSULIN (FIG. 3V-U and Supplementary Table 3). When the frequency of representative cell types (CGA, 5HT, GLP1 and SSN) in 230-day-old organoids with human duodenum was compared, it was found that CGA- and GLP1-positive cells were approximately twice as abundant in organoids as in duodenum; 5HT cells were present at comparable levels, whereas SSN cells were half as abundant in organoids compared to duodenum (FIG. 5K).

Enteroendocrine cells in human gut organoids transduced with adenovirus expressing a dominant-negative mutant FOXO1 can differentiate into insulin-producing cells

To determine whether human enteroendocrine cells can be manipulated to yield insulin-producing cells, 170 days-old organoids were transduced with adenovirus expressing a dominant-negative mutant FOXO1 (HA-Δ256) tagged with a hemagglutinin epitope to enhance
detection (HA-Δ256) (Ref. 24) and analyzed 2 weeks thereafter. mRNA analyses showed that gut organoids were efficiently transduced with this mutant, without affecting other FOXO isoforms (FIG. 4A). HA-Δ256 expression significantly increased transcripts of INSULIN, NEUROG3, and CGA by 8-, 6-, and 2-fold, respectively (FIG. 4B) (/?<0.05). It should be noted however that CGA transcripts were ~8,000-fold more abundant than NEUROG3 transcripts, and ~40,000-fold more abundant than insulin transcripts at this stage (Supplementary Table 3).

[0174] Immunohistochemical analyses of multiple differentiation experiments conducted with three separate iPS lines demonstrated the presence of insulin/C-peptide/CGA-positive cells (FIG. 4C-F). These cells represented 0.5% of CGA-positive cells in control organoids transduced with GFP adenovirus (~2 of 5,000 cells scored in each experiment), but their frequency increased to ~5% in gut organoids expressing dominant-negative FOXOl (~31 of 4,000 cells scored in each experiment) (FIG. 2C) (p<0.05). In the latter, immunohistochemistry demonstrated that insulin-positive cells were immunoreactive with HA antibodies, indicating that the induction of insulin immunoreactivity occurred in cells with inactivated FOXOl (FIG. 4G-H). Not all HA-positive cells were insulin-positive, possibly reflecting expression of the adenovirus in cells whose fate was not affected by FOXOl ablation. Moreover, co-immunostaining with insulin and FOXOl indicated that insulin-immunoreactive cells were invariably immunoreactive with cytoplasmic (i.e., inactive) FOXOl (FIG. 4I-J). Immunostaining with insulin and CDX2 or ?SMA (a marker of mesenchymal cells) showed that insulin-positive cells were immunoreactive with the former, but not with the latter, making it unlikely that the insulin-positive cells result from epithelial-mesenchymal transition (FIG. 4K-L). We have not detected insulin-positive cells in human intestinal samples. Therefore, we think that the presence of insulin-positive cells in gut organoid cultures is an artifact of the organoid system.

FOXOl inhibition increased the generation of human insulin+ cells in organoids

[0175] To provide independent evidence that FOXOl inhibition increased the generation of insulin-positive cells, 36-day-old organoid cultures were studied. At that stage, insulin-immunoreactive cells were absent in untransduced organoids and INSULIN transcripts were exceedingly low (FIG. 3U and Supplementary Table 3). In contrast, following transduction with
HA-Δ256, insulin-positive cells were detected, albeit at lower frequency than in 184-day-old organoids (FIG. 5A). In addition, lentivirus encoding FOXOl shRNA was used as an alternative approach to inhibit FOXOl function. Transduction of 230-day-old organoids with the virus decreased significantly FOXOl mRNA (FIG. 5B), accompanied by the appearance of insulin-immunoreactive cells (FIG. 5C-D). Quantitative analyses of the data indicated that insulin-positive cells accounted for 8.5 ± 1.7% of FOXOl-positive cells in organoids transduced with FOXOl shRNA lentivirus vs. 0.8 ± 0.5% in controls (p <0.05).

[0176] In earlier mouse experiments, FOXOl ablation in gut endocrine progenitors resulted in the appearance of pancreatic glucagon-immunoreactive (β-like) cells, in addition to β-like-cells. Likewise, glucagon-/MAFB-positive cells were found in 184-day-old gut organoids following FOXOl inhibition, consistent with the generation of pancreatic β-cell-like cells (FIG. 5E). The immunoreactivity with MAFB was remarkable, as thus far this β-cell-enriched transcription factor has failed to be induced in endoderm-derived pancreatic endocrine cells. The frequency of glucagon-positive cells in gut organoids transfected with Δ256 was 10% of insulin-positive cells. Notably, glucagon-positive cells were not seen in organoids transduced with control adenovirus at this stage, consistent with an independent effect of FOXOl inactivation on endocrine cell lineage determination.

Pancreatic beta cell markers are seen in human in insulin+ cells in human gut organoids

[0177] Insulin-producing cells obtained from ES or iPS differentiation are often polyhormonal (1), but investigation into Gut insulin+ cells found no evidence that they express other endocrine markers, including GLP1, somatostatin (FIG. 5F-G), glucagon, and PP. FOXOl loss-of-function did not affect levels of transcripts encoding intestinal stem and pan-secretory markers, including Notch25 (FIG. 5H-J).

Marker analysis of insulin-immunoreactive cells in cells transduced with HA-Δ256

[0178] Analysis of markers of β-cell differentiation showed that transduction with HA-Δ256 significantly increased transcripts of genes involved in β-cell specification and maturation in 184-day-old gut organoids (FIG. 6A-C and Supplementary Table 4). It should be noted that NKX2.2, NKX6.1, and NEUROD transcripts were 10- to 100-fold less abundant than those of
other transcription factors (Supplementary Table 3). Immunohistochemistry confirmed that insulin-positive cells were positive for MAFA and UROCRINT3 (FIG. 6D-I). The induction of MAFA—as noted above for that of MAFB—is remarkable, not having been observed in endoderm-derived β-like-cells\(^1,3\). Insulin-positive cells scored positive for all tested markers of pancreatic β-cells, including PC2, SURI, PC1/3, glucokinase (GCK), and glucose transporter 2 (GLUT2) (FIG. 6I-R)\(^2,26\).

FOXO1 inhibition was associated with a dramatic reduction in Serotonin expression in insulin+ cells

[0179] FOXO1 is predominantly expressed in 5HT cells, and conversion to insulin-immunoreactive cells following FOXO1 loss-of-function was associated with a dramatic reduction in 5HT expression. 230-day-old-organoids transduced with HA-Δ256 adenovirus showed an increase in the frequency of CGA-positive cells by -twofold, and a dramatic decrease in the number of CGA/5HT-positive cells in insulin+ organoid cells by -60% (p<0.05) (FIG. 7A-D). This reduction in serotonin occurred even though there was a concerted increase of the activity of the serotonergic pathway, including transcriptional regulators (FEV, LMX1A), 5HT-processing enzyme TPH2 (no changes to TPH1 were detected), 5HT transporters, and receptors. This in theory would be expected to increase 5HT levels. However, it was also found that FOXO1 loss of function resulted in a significant increase of ALHDLa3, the enzyme that catalyzes conversion of 5HT to 5HIAA.\(^16\) Importantly, there is a similar effect of Foxol ablation in pancreatic β-cells of mice (not shown).

[0180] FIG. 6 b-d shows the immunohistochemistry with 5HT (green) and CGA (red) in 230-day-old gut organoids transduced with HA-Δ256 FOXO1 (1) or control adenovirus (m). As can be seen in FIG. 6 b, Foxol and 5HT are not seen in insulin+ cells.

[0181] It was further discovered and is shown below, that a 3.5 fold reduction in serotonin is associated with a 2.5 fold increase in the 5HTr2b receptor. This increase in 5HTr2b is likely compensating for the reduction in serotonin, therefore contacting enteroendocrine cells with 5HTr2b antagonists will reduce intracellular serotonin signaling, which in turn will cause the cells to differentiate into insulin+ cells.
Insulin-producing cells in human gut organoids transduced with HA-Δ256 release insulin in response to different secretagogues

[0182] Insulin-positive cells in human 200 day-old gut organoids transduced with HA-Δ256 or control adenovirus with glucose, arginine or KCl have the ability to release insulin in a regulated manner. Under basal conditions, C-peptide was undetectable in organoids. However, it rose to levels between 10 and 20 pmol/g protein in response to 22 mM glucose in both control and HA-Δ256 organoids, respectively (p<0.05). Likewise, there was a robust response to arginine and to the depolarizing agent, KCl. In both instances, HA-Δ 256 organoids showed a significantly greater response than controls (FIG. 8A). In parallel experiments with collagenase-purified human islets, it is estimated that 40 organoids transduced with HA-Δ 256 (or 70 untransfected organoids) secrete as much C-peptide as 1 human islet (FIG. 8B). Given the heterogeneity of cellular composition and viability in donor-derived human islets, and in organoids, it is difficult to compare insulin content per cell between the two systems. However, when normalized by protein content, C-peptide secretion in control and HA-Δ256 organoids was 1.0% and 1.6% of human islets, respectively (FIG. 8A-B). C-peptide content was significantly higher in gut organoids transduced with HA-Δ256 adenovirus compared with controls (FIG. 8C) (p<0.05).

[0183] Transplantation into immunodeficient mice improved the function of endoderm-derived pancreatic β-like-cells 23. To study the effect of transplantation on 200-day-old gut organoids grafts were maintained for three weeks, and at the end of this time they retained an epithelial
structure and demonstrated all intestinal lineages, including insulin-positive cells (FIG. 9). The number and proportion of β-like cells was similar to pre-transplantation organoids, indicating that no significant proliferation or cell death had occurred in vivo (FIG. 9). 200-day-old gut organoids transduced with control or HA-Δ256 FOXOl adenovirus (10 organoids in each group, n=3) were transplanted under the skin of immunodeficient NOD.Cg-Prkdcscid IHermtlWjllSzi mice (005557; The Jackson Laboratory), using biocompatible "Gelfoam" Dental sponges (size 4) to preserve the anatomy. Three weeks after transplantation, organoids were recovered and used in the experiment described above.

[0184] Insulin-positive gut organoid cells generated by FOXOl inhibition displayed several important features making them suitable for administration/implantation to treat any of the enumerated diseases. These features are expected to be seen in Insulin-positive gut organoid cells generated by significantly reducing serotonin expression, biosynthesis, signaling or biological activity, with or without treating the cells to inhibit FOXOl: (1) they express markers of terminally differentiated β-cells, such as MAFA, that have proved thus far resistant to induction in endoderm-derived β-like-cells (1); (2) they secrete insulin in a strictly stimulus-dependent manner, and (3) they survive following in vivo transplantation.

Summary

[0185] FOXOl immunoreactivity in the human gut is known to be restricted to endocrine progenitor and serotonin-producing cells, the latter arguably being the closest endocrine cell type to insulin-producing pancreatic β-cells 10 17. The data presented here and the figures shows that human iPS-derived gut organoids in which FOXOl is inhibited by at least 50%, yield insulin+ cells that secrete biologically active insulin (C-peptide) in response to physiologic stimuli. These cells are present at low frequency in "old" organoids (i.e., kept in culture for >6 months), therefore to optimize the frequency of insulin+ cells, organoids less than about 3 months old should be used.

[0186] Insulin+ enteroendocrine cells made from human cells as described herein by reducing serotonin with or without also reducing FOXOl intended for transplantation can be autologous to a subject in need of treatment, such as a subject with Type 1 diabetes, thereby dramatically reducing the risk of rejection. These herein described insulin+ cells enteroendocrine cells
obtained from human gut organoids have the advantage of rapid turnover that makes them outrun immune attack in type 1 diabetes, and establishes a reservoir of self-renewing progenitors that would replenish shed cells. There are many recent advances in manipulating gut stem cells 18 and their potential use for gut transplantation 19 that will permit a person of skill in the art to manipulate and optimize the human gut organoid cultures to produce insulin+ cells suitable for transplantation/administration to individuals having type 1 or type 2 diabetes.
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>FOXO1 Alternate Symbols:</th>
<th>Afxh, FKHR, Fkhr1, Foxo1a</th>
<th>Organism: Mouse</th>
<th>Gene Id: 56458</th>
<th>Gene Name: forkhead box O1</th>
<th>Accession Numbers: NM_019739</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene Symbol:</td>
<td>FOXO1 Alternate Symbols:</td>
<td>FKH1,FKHR,FOXO1A</td>
<td>Organism: Rat</td>
<td>Gene Id: 84482</td>
<td>Gene Name: forkhead box O1</td>
<td>Accession Numbers: XM_00105672 6: XM_342244</td>
</tr>
<tr>
<td>Gene Symbol:</td>
<td>FOXO1 Alternate Symbols:</td>
<td>Fkhr,Foxo1a</td>
<td>Organism: Mouse</td>
<td>Gene Id: 56484</td>
<td>Gene Name: forkhead box O3</td>
<td>Accession Numbers: NM_019740</td>
</tr>
<tr>
<td>Gene Symbol:</td>
<td>FOXO4 Alternate Symbols:</td>
<td>AFX,AFX1,MGC1 20490,MLLT7</td>
<td>Organism: Human Gene Id: 4303</td>
<td>Gene Name: forkhead box O4</td>
<td>Accession Numbers: NM_005938</td>
<td></td>
</tr>
<tr>
<td>Gene Symbol:</td>
<td>Foxo4 Alternate Symbols:</td>
<td>afx, Afxh, Foxo4, Afxh, MGC117660, MLLT7</td>
<td>Organism: mouse Gene Id: 54601</td>
<td>Gene Name: forkhead box O4</td>
<td>Accession Number NM_019739.3</td>
<td></td>
</tr>
<tr>
<td>Gene Symbol:</td>
<td>Foxo4 Alternate Symbols:</td>
<td>LOC302415, RGD1561201</td>
<td>Organism: Rat Gene Id: 302415</td>
<td>Gene Name: forkhead box O4 Accession Number NM_00110694 3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Symbol:</td>
<td>Foxo3 Alternate Symbols:</td>
<td>Fkhr1,Foxo3a</td>
<td>Organism: Rat Gene Id: 294515</td>
<td>Gene Name: forkhead box O3</td>
<td>Accession Numbers: NM_001106395</td>
<td></td>
</tr>
<tr>
<td>Gene Symbol:</td>
<td>FOXO3 Alternate Symbols:</td>
<td>AF6q21,DKFZp7 81A0677,FKHRL1,FKHRL1P2,FOXO2,FOXO3A,MOGC12739,MGC3 1925</td>
<td>Organism: Human Gene Id: 2309</td>
<td>Gene Name: forkhead box O3</td>
<td>Accession Numbers: NM_001455; NM_201559</td>
<td></td>
</tr>
</tbody>
</table>
In our previous work, Matsumoto et al. The Journal of Clinical Investigation, Volume 116 Number 9 September 2006, shRNA was used to reduce Foxol expression by targeting the sequence GCACCCGACTTTATGAGCAACC SEQ ID NO: 1 of Foxol using short-hairpin RNA (from BD Biosciences) as a control siRNA target sequence. Because of the sequence homology, this sequence or a substantially homologous sequence in human FOXOl may be a good target. Liu et al., Cancer Gene Therapy 14, 945-952 December 2007 also describe using RNA inhibitors in mice to reduce expression of Foxol in skeletal muscle. Labied, S., et al. Molecular Endocrinology 20(1):35-44, provides a description of antisense molecules that inactivate various human FOXO proteins, including: FOXOl-antisense (TTG GGT CAG GCG GTT CA SEQ ID NO: 2); FOXO3a-sense (CCC AGC CTA ACC AGG GAA GT SEQ ID NO: 3) and FOXO3a-antisense AGC GCC CTG GGT TTG G SEQ ID NO: 4); FOX04-sense (CCT GCA CAG CAA GTT CAT CAA SEQ ID NO: 5) and FOX04-antisense (TTC AGC ATC CAC CAA GAG CTT SEQ ID NO: 6). S. Stephen, et al., Cancer Research 70, 367, January 1, 2010, describes using microRNA (miR) target prediction algorithms, to identify several miRs that bound to the 3'-
untranslated region (UTR) of FOXO1 transcripts in human endometrial cancer cell lines thereby inhibiting FOXO1 expression. These inhibitory oligonucleotides can be used in certain embodiments of the present invention.

6. Methods related to experimental results section (5).

[0195] **Intestinal Samples.** Specimens of duodenum, jejunum, ileum, and colon were obtained from patients undergoing intestinal resection procedures or from pancreatic organ donors. Informed consent was obtained from individuals or relatives who donated tissue for this study. Samples were processed immediately for paraffin embedding by formalin fixation or for frozen section preparation, as described below. The Columbia University IRB has approved all procedures.

[0196] **Immunohistochemistry.** Gut organoids were isolated from Matrigel, rinsed in PBS, and fixed in 4% phosphate-buffered paraformaldehyde for 15 min at room temperature. Human gut specimens were fixed in the same buffer overnight. After fixation, organoids or gut specimens were incubated in 30% phosphate-buffered sucrose overnight at 4°C and embedded into Cryomold (Sakura Finetek) for subsequent frozen block preparation. 6-μm-thick sections were cut from frozen blocks and incubated with HistoVT One, using Blocking One (both from Nacalai USA) to block nonspecific binding. Sections were incubated with primary antibodies for 12 h at 4°C, followed by incubation with secondary antibodies for 30 min at room temperature. (Catalog numbers and dilutions used for each antibody are reported in Supplementary Table 1.) Alexa-conjugated donkey and goat secondary antibodies (Molecular Probes) were used. After the final wash, cells were viewed using a confocal microscopy (Zeiss LSM 710). DNA was counterstained with DAPI (Cell Signaling). For immunostaining of human gut, 100 sets of villi and crypts that could be viewed longitudinally were surveyed and the number and position of enteroendocrine and FOXO1-positive cells were counted. In 3 independent experiments in human duodenum, 2.8 ± 0.3 CGA-positive, and 2.1 ± 0.4 FOXO1-positive cells/set of villi and crypts were found. For immunohistochemistry of 200-day-old gut organoids transduced with control and Δ256-HA adenovirus, at least 5 organoids were pooled, containing on average 5087 ± 328 and 4222 ± 851 nuclei, 346 ± 35 and 615 ± 225 CGA-positive cells in one section, respectively (n=3). For immunohistochemistry of 230-day-old organoids transduced with shRNA...
lentivirus, at least 5 organoids were scored for each virus. Each organoid contained an average of 4546 ± 556 and 4099 ± 646 nuclei in experiments with the control and FOXO1 shRNA (n=3). In each experiment, 224 ± 32 and 193 ± 36 FOXO1 -positive cells, and 2.0 ± 1.0 and 16.0 ± 3.1 insulin-positive cells, respectively, were detected.

[0197] Fluorescent tracers for use in the embodiments include GFP and derivatives, Diamidino yellow, Fast blue, Horseradish peroxidase, Cholera toxin B, Pseudorabies virus, Hydroxystilbamidine, Texas Red, and Fluorescein isothiocyanate, and any others known in the art. Green fluorescent protein (GFP) was used in the experiments described herein, however there are now many different mutants of GFP (Shaner N, Steinbach P, Tsien R [2005] "A guide to choosing fluorescent proteins," Nat Methods 2 [12]: 905-9). A list of various fluorescent proteins can be found at http://nic.ucsf.edu/dokuwiki/doku.php?id=fluorescent_proteins.

[0198] Cell Culture. Human iPS cells were generated from fibroblast of three healthy control subjects as previously described. Briefly, upper arm skin biopsies were obtained from healthy subjects using local anesthesia. The biopsies were processed as described and placed in culture medium containing DMEM, fetal bovine serum, GlutMAX, and Penicillin/Streptomycin (all from Invitrogen) for 4 weeks. The CytoTune-iPS Sendai Reprogramming Kit (Invitrogen) was used to convert primary fibroblasts into pluripotent stem cells using 50,000 cells per well in 6-well dishes. Cells were grown in human ES medium. The Columbia University Institutional Review Board has approved all procedures. iPS cells were cultured in MTeSR (Stemgent) on Matrigel (BD Biosciences)-coated plates and passaged according to the manufacturer's instructions.

[0199] Generation of gut organoids. Human iPS cells were differentiated into gut organoids as described with some modifications. STEMdiffX Definitive Endoderm Kit (Stemcell Technologies) was used instead of Activin A for differentiation towards definitive endoderm. Gut organoids were passaged every 2-3 weeks until 360 days; the morphology was assessed periodically using immunohistochemistry. Organoids from 3 different iPS cell lines were prepared all experiments were performed using at least 3 independent biological replicates. In each biological replicate at least 5 organoids were used for immunohistochemistry and at least 3 organoids for qRT-PCR.
[0200] **Adenovirus and lentivirus transduction.** The recombinant adenoviral vector Ad-CMV-FOXOl-Δ256 expressing a mutant version of FOXOl containing its amino domain (corresponding to amino acid residues 1-256) has been described\(^\text{24}\). Adenoviruses were prepared by CsCl density centrifugation to a titer of 2.5x10^{12} viral particles/ml (1.6x10^{11} plaque-forming units/ml) for Ad- CMV-FOXOl-Δ256, and 2.4x10^{12} viral particles ml (1.9x10^{11} pfu/ml) for the Gfp control. Gut organoids were mechanically dissociated from Matrigel, cut in half and incubated in DMEM/F12 containing 10 μM ROCK inhibitor (Y27632) with 1 fl of adenovirus solution for 3 hours at 37°C in a 5% CO\(_2\) incubator and then washed with PBS three times. After transduction, mini-guts were embedded into fresh Matrigel again and incubated with intestinal growth medium\(^\text{23}\). For lentiviral experiments, human GIPZ lentiviral FOXOl shRNA plasmids were purchased (Clone ID: V3LHS_405827, 638215, 638212, 638211, Thermo Scientific) and transfected in 293 FT cells (Invitrogen) with packaging mix plasmids (Thermo Scientific) using Lipofectamine\(^\text{TM}\) 2000 (Invitrogen). Plasmids were diluted by Opti-MEM, and Lipofectamine\(^\text{TM}\) 2000 was added and incubated at room temperature for 20 min. After incubation, the mixture was added to 293 FT cells. Viral supernatants were collected 48 and 72 h after transfection and centrifuged at 6,000 rpm x 2 hr to concentrate them.

[0201] **Organoid transplantation.** 200-day-old gut organoids transduced with control or HA-Δ256 FOXOl adenovirus (10 organoids in each group, n=3) were transplanted under the skin of immunodeficient NOD.Cg-Prkdcscid IहпртюModernWjllSzi mice (005557; The Jackson Laboratory), using biocompatible "Gelfoam" Dental sponges (size 4) to preserve the anatomy. Three weeks after transplantation, organoids were recovered and immuno staining performed as described above.

[0202] **RNA isolation and RT-PCR.** Standard methods of RNA extraction and qRT-PCR (Invitrogen) were used. Primer sequences are listed in Supplementary Table 2.

[0203] **C-peptide assay.** 200-days-old organoids were incubated in serum-free medium for 3 days prior to the experiment. For each determination, 10 organoids were incubated in 1 mL of Krebs-Ringer buffer containing 10 mM HEPES, 1.19 mM MgSO\(_4\), 119 mM NaCl, 4.74 mM KCl, 1.19 mM KH2P04, 2.54 mM CaCl2-2H2O, 25 mM NaHC03, 1% BSA) and 2.0 mM glucose, at 37°C for 30 min before the medium was replaced and the incubation continued for 30
This medium was collected for basal determination. Subsequently, 1 mL of Krebs-Ringer buffer containing 22 mM glucose, or 10 mM arginine, or 30 mM KC1 was added and the organoids incubated at 37°C for 30 min, after which the medium was collected. At the end of final incubation, the organoids were lysed by buffer containing 2% SDS, 50 mM Tris-HCl, 5 mM EDTA, and protease/phosphatase inhibitors (Thermo Scientific), the extract sonicated and clarified by centrifugation. C-peptide secretion and intracellular content of organoids were measured using an ultrasensitive human C-peptide ELISA kit (Mercodia) and protein in lysate was measured using Pierce BCA Protein Assay Kit (Thermo Scientific). C-peptide release by protein levels in lysates of gut organoids (pmol/g protein) was normalized.

[0204] Statistical analysis. Paired or unpaired t-test was used to determine statistical significance between two groups and one-way ANOVA for group comparison, with post-hoc Bonferroni correction, as appropriate. The customary threshold of $p < 0.05$ was used to declare a statistically significant difference.

[0205] In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

[0206] The invention is illustrated herein by the experiments described above and by the following examples, which should not be construed as limiting. The contents of all references, pending patent applications and published patents, cited throughout this application are hereby expressly incorporated by reference. Those skilled in the art will understand that this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will fully convey the invention to those skilled in the art. Many modifications and other embodiments of the invention will come to mind in one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing description. Although specific terms are employed, they are used as in the art unless otherwise indicated.
REFERENCES

Supplementary Tables

Supplementary Table 1 Primary antibodies used for immunofluorescence.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Species</th>
<th>Dilution</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-SMA</td>
<td>Mouse</td>
<td>100</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>MUC2</td>
<td>Rabbit</td>
<td>500</td>
<td>Abcam</td>
</tr>
<tr>
<td>UROCORTIN 3</td>
<td>Rabbit</td>
<td>300</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>GHRELIN</td>
<td>Goat</td>
<td>300</td>
<td>Ask Lisa</td>
</tr>
<tr>
<td>GLUT2</td>
<td>Goat</td>
<td>200</td>
<td>Millipore</td>
</tr>
<tr>
<td>SUR1</td>
<td>Goat</td>
<td>100</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>PC1</td>
<td>Rabbit</td>
<td>500</td>
<td>Millipore</td>
</tr>
<tr>
<td>SEROTONIN</td>
<td>Mouse</td>
<td>100</td>
<td>Novus Biologicals</td>
</tr>
<tr>
<td>LYSOZYME</td>
<td>Rabbit</td>
<td>100</td>
<td>Abcam</td>
</tr>
<tr>
<td>VILIN</td>
<td>Mouse</td>
<td>100</td>
<td>Millipore</td>
</tr>
<tr>
<td>CHROMOGRANIN A</td>
<td>Mouse</td>
<td>100</td>
<td>Millipore</td>
</tr>
<tr>
<td>CHROMOGRANIN A</td>
<td>Rabbit</td>
<td>400</td>
<td>LSBio</td>
</tr>
<tr>
<td>CDX2</td>
<td>Mouse</td>
<td>200</td>
<td>Biogenex</td>
</tr>
<tr>
<td>CDX2</td>
<td>Rabbit</td>
<td>500</td>
<td>Abcam</td>
</tr>
<tr>
<td>CCK</td>
<td>Rabbit</td>
<td>100</td>
<td>Aviva System Biology</td>
</tr>
<tr>
<td>DCAMKL1</td>
<td>Rabbit</td>
<td>50</td>
<td>LSBio</td>
</tr>
<tr>
<td>GLP1</td>
<td>Mouse</td>
<td>100</td>
<td>Novus Biologicals</td>
</tr>
<tr>
<td>SECRETIN</td>
<td>Rabbit</td>
<td>100</td>
<td>LSBio</td>
</tr>
<tr>
<td>GASTRIN</td>
<td>Rabbit</td>
<td>500</td>
<td>LSBio</td>
</tr>
<tr>
<td>HA</td>
<td>Mouse</td>
<td>200</td>
<td>Abcam</td>
</tr>
<tr>
<td>PCSK2</td>
<td>Rabbit</td>
<td>200</td>
<td>R&D system</td>
</tr>
<tr>
<td>PCSK2</td>
<td>Rabbit</td>
<td>100</td>
<td>Millipore</td>
</tr>
<tr>
<td>C-PEPTIDE</td>
<td>Mouse</td>
<td>1000</td>
<td>Millipore</td>
</tr>
<tr>
<td>NNX6.1</td>
<td>Mouse</td>
<td>300</td>
<td>DSHB</td>
</tr>
<tr>
<td>FOXO1</td>
<td>Rabbit</td>
<td>50</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>FOXO1</td>
<td>Goat</td>
<td>50</td>
<td>LSBio</td>
</tr>
<tr>
<td>GIP</td>
<td>Mouse</td>
<td>50</td>
<td>Abcam</td>
</tr>
<tr>
<td>SOMATOSTATIN</td>
<td>Rabbit</td>
<td>100</td>
<td>Novus Biologicals</td>
</tr>
<tr>
<td>Protein</td>
<td>Species</td>
<td>Dilution</td>
<td>Supplier</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>SOMATOSTATIN</td>
<td>Rabbit</td>
<td>25</td>
<td>DAKO</td>
</tr>
<tr>
<td>INSULIN</td>
<td>Guinea pig</td>
<td>2000</td>
<td>DAKO</td>
</tr>
<tr>
<td>MAF A</td>
<td>Rabbit</td>
<td>50</td>
<td>Abeam</td>
</tr>
<tr>
<td>MAF B</td>
<td>Rabbit</td>
<td>50</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>GLUCOKINASE</td>
<td>Rabbit</td>
<td>100</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>OLFM4</td>
<td>Rabbit</td>
<td>100</td>
<td>LS Bio</td>
</tr>
</tbody>
</table>
Supplementary Table 2 Primer sequences used for qRT-PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Seq ID No.</th>
<th>Reverse</th>
<th>Seq ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSULIN</td>
<td>CCAGCTGGTAGAGGGGAGCAGAT</td>
<td>7</td>
<td>TACCTAGTGTCGGGGGAGAG</td>
<td>8</td>
</tr>
<tr>
<td>NEUROGENIN</td>
<td>TACATCTGGCCGTGACTCAA</td>
<td>9</td>
<td>AGCCCTGGAGACTGGGAGTAG</td>
<td>10</td>
</tr>
<tr>
<td>CHROMOGRAIN A</td>
<td>GTCCCGCTGGACACCCCTATG</td>
<td>11</td>
<td>CGAGGCGAGTGGACCTTCTGAG</td>
<td>12</td>
</tr>
<tr>
<td>FOXO1</td>
<td>GTGGTGTAAGAGCTGGCTGCTA</td>
<td>13</td>
<td>TTGATTGAGCACTCCACAAAGA</td>
<td>14</td>
</tr>
<tr>
<td>FOXO3</td>
<td>TTGGTGTCGGCTACTTCAAGAGT</td>
<td>15</td>
<td>AGAGCTGCTGGTGGCTGCTGCTTCA</td>
<td>16</td>
</tr>
<tr>
<td>FOXO4</td>
<td>TCAAGGACAAAGGGGTGACAGCA</td>
<td>17</td>
<td>AGGGTTCCAGCATCCACAAAGA</td>
<td>18</td>
</tr>
<tr>
<td>VILIN</td>
<td>CATGACCAACCAAGCAGACACG</td>
<td>19</td>
<td>ATGGATGTTGAGCAGTCCACCTTC</td>
<td>20</td>
</tr>
<tr>
<td>LYSOZYME</td>
<td>TGGTCTAGGGGAGAATAGGCTCTG</td>
<td>21</td>
<td>TTAACTGCTGCTGAGTGGTTTGC</td>
<td>22</td>
</tr>
<tr>
<td>MUC2</td>
<td>TTGGAGTCCAGAGCAGGCTATG</td>
<td>23</td>
<td>TACACACATGGGTCTGCTGCCC</td>
<td>24</td>
</tr>
<tr>
<td>CDX2</td>
<td>ATCGAGTGGGTACACGGGACCA</td>
<td>25</td>
<td>CTCTCTTTTGGGCTGCGTCTCTT</td>
<td>26</td>
</tr>
<tr>
<td>PC1</td>
<td>TAATACACAAATGGCGGGAAGGTTG</td>
<td>27</td>
<td>ATCATACATTAGGGACCCCGCTTCA</td>
<td>28</td>
</tr>
<tr>
<td>PC2</td>
<td>TTGCTATAGGGGAGGAGGGAACCA</td>
<td>29</td>
<td>CTCTCAGTTGACGACCTTCTCTTTCA</td>
<td>30</td>
</tr>
<tr>
<td>GLUT2</td>
<td>TGGAGTGGTTTGGGCTGCTGCA</td>
<td>31</td>
<td>CAGAGCTGGTGCTCTGCTGCTG</td>
<td>32</td>
</tr>
<tr>
<td>GCK</td>
<td>TGAGTGCATCTCCAGGCTGCTG</td>
<td>33</td>
<td>CGTTTGTATAGCTGCGTCTGCA</td>
<td>34</td>
</tr>
<tr>
<td>KIF6.2</td>
<td>TTGGTAGCAAGCGACAGCAACCTCTA</td>
<td>35</td>
<td>TCCACGACTCAAATGGG gagGCA</td>
<td>36</td>
</tr>
<tr>
<td>SUR1</td>
<td>AGTGGCCACACACATGGCTCAT</td>
<td>37</td>
<td>GAAGGAGTGGTGGTGTGGTGA</td>
<td>38</td>
</tr>
<tr>
<td>PAX6</td>
<td>ACTCTGCTGGTCCGACAAACTC</td>
<td>39</td>
<td>GGGTGAGGGTGGGCTCAATGGAAGG</td>
<td>40</td>
</tr>
<tr>
<td>PAX4</td>
<td>GGCTGTCTAGTACAAAGGGGTIG</td>
<td>41</td>
<td>GCAGGGTGGTGACAGGCTCTTTA</td>
<td>42</td>
</tr>
<tr>
<td>NKX2.2</td>
<td>TTCTACGCAAGCAACAGCAACCTCTA</td>
<td>43</td>
<td>TTGCTATTGCTGCGTCTGCTG</td>
<td>44</td>
</tr>
<tr>
<td>NKX6.1</td>
<td>GCCTTATCTGGTGAGGTAGCAG</td>
<td>45</td>
<td>CGAGTTGGGACACGAGGCTCTTTA</td>
<td>46</td>
</tr>
<tr>
<td>ARX</td>
<td>GAAACGCAACAAAAGAGGCGCTAC</td>
<td>47</td>
<td>GTTCTTGGAACAGACAGGGTCAG</td>
<td>48</td>
</tr>
<tr>
<td>NEUROD1</td>
<td>AAGAGACGCGGCGCCCAAAGGAA</td>
<td>49</td>
<td>TCTGGCCCAAGCCAGACTCTC</td>
<td>50</td>
</tr>
<tr>
<td>MAFA</td>
<td>TCTCTGTACAGTGCTCCGCTCTT</td>
<td>51</td>
<td>CAGTGCCACCTGCTGCTGCTGCTG</td>
<td>52</td>
</tr>
<tr>
<td>MAFB</td>
<td>GTGCTCTGACATCCAGATGCTA</td>
<td>52</td>
<td>TGAGTTGAGCATTCCACAAAGG</td>
<td>54</td>
</tr>
<tr>
<td>PDX1</td>
<td>CTGCTCTTCCATCTGGTATGGAAT</td>
<td>53</td>
<td>GGGCGTGAGTGATCTGATTGTTG</td>
<td>56</td>
</tr>
<tr>
<td>ISLET1</td>
<td>AGCAGAGGCGACATGACAAACAC</td>
<td>57</td>
<td>CAGTGTCTGAAAGCAGGGCTGA</td>
<td>58</td>
</tr>
<tr>
<td>RFX6</td>
<td>ATCAGACAGATTCGCTTGCTGC</td>
<td>59</td>
<td>GGAAGAAAGGAGTGGGTTTGC</td>
<td>60</td>
</tr>
<tr>
<td>SLC30A-8</td>
<td>GAGCGCCCTGCTGATCTGCTATT</td>
<td>61</td>
<td>ATGCAACAAAGCAGCTGCTAG</td>
<td>62</td>
</tr>
<tr>
<td>UROCORTINS</td>
<td>AGGCGCTCCCAAGAATTCTTAC</td>
<td>63</td>
<td>TTCTCTCTGGGCCCTCTTCTCCTCT</td>
<td>64</td>
</tr>
<tr>
<td>LGR5</td>
<td>TTCTCTCAAAGCCCTGTGACAACTCA</td>
<td>65</td>
<td>GAGGCTAAGCAACTGCTGCTGAA</td>
<td>66</td>
</tr>
<tr>
<td>OLFM4</td>
<td>TGTCCTGTCGACAGCAACCTGGA</td>
<td>67</td>
<td>GTAATTCCTACCCCAACGACCA</td>
<td>68</td>
</tr>
<tr>
<td>BMI1</td>
<td>TGCGCTCAGATCTCTAATGGA</td>
<td>69</td>
<td>TTGCTGCTGGGACTGTAAGTA</td>
<td>70</td>
</tr>
<tr>
<td>MATH1</td>
<td>AATGGGGTGACAGAAACAGGAC</td>
<td>71</td>
<td>TCGGACAAGGGGCTTAGTGAAG</td>
<td>72</td>
</tr>
<tr>
<td>SUBSTANCE P</td>
<td>TACGACACAGCCACAGGCTCAAAGG</td>
<td>73</td>
<td>GACGCTTTAAAACAGGGCAGCTTG</td>
<td>74</td>
</tr>
<tr>
<td>GHRL</td>
<td>AAAGGGTGCAAGAAGGACACCAA</td>
<td>75</td>
<td>TGTGCTGACTGAAACCCCTGAGA</td>
<td>76</td>
</tr>
<tr>
<td>PPY</td>
<td>CCACCTCGTGCTGGCTCTGATCT</td>
<td>77</td>
<td>CCAGGGTGCTCCTTCTGCTGTC</td>
<td>78</td>
</tr>
<tr>
<td>GLUCAGON</td>
<td>AGGCAGACCCACTGCTAGTGATCC</td>
<td>79</td>
<td>CATCGTGACTGTTGGGCTATTG</td>
<td>80</td>
</tr>
<tr>
<td>5HT</td>
<td>CACCACCTGCTAGGGCTGAGCTT</td>
<td>81</td>
<td>CCATGATGCAGGTGGGAGAGAGAG</td>
<td>82</td>
</tr>
<tr>
<td>SECRETIN</td>
<td>AGCAGACAGGACAGGAACAGCAG</td>
<td>83</td>
<td>GCCAGGCTGCTGCTGAAAACCTATA</td>
<td>84</td>
</tr>
<tr>
<td>CCK</td>
<td>AGGGTGACCGAGAAAGGAGGATG</td>
<td>85</td>
<td>TTGTCGGTGCCTGCTGCTGCTG</td>
<td>86</td>
</tr>
<tr>
<td>Gene</td>
<td>Sequence</td>
<td>Strand</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>GASTRIN</td>
<td>ACCCTTAGGTACAGGGGCCAAC</td>
<td></td>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCCGAAGTCCATCCATCCATAG</td>
<td></td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>GIP</td>
<td>GCCCAAAAGGGGAAGAAGAATG</td>
<td></td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCCAACAGCTCTTGAATCAGCA</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>SOMATOSTATIN</td>
<td>GACCCCCAGACTCGTCAGTTTC</td>
<td></td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTGCAGCTCAAGCCTCATTCA</td>
<td></td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>HES1</td>
<td>CAACACGACACCGGATAACCA</td>
<td></td>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CATTCCAGAATGTCCGCTTC</td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>HESR1</td>
<td>CCGACGAGACCGGATCAATAAC</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTGCAGTATGCAAGCATTTCAG</td>
<td></td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>HEYL</td>
<td>AAGCTGGAGAAGCCGAGGTCT</td>
<td></td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAACCAATGCTCCGGAAGTCAA</td>
<td></td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>AES</td>
<td>GCCTCAAGCTCAGATGACAA</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGTTGCTTGGGGAGAGGTAGG</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>HPRT</td>
<td>AATGACCAGTCAACAGGGGACA</td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CACTTCGTGGGGTCCTTTCAC</td>
<td></td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table 3 mRNA expression in human gut organoids during differentiation.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mean Day 0</th>
<th>SE Day 0</th>
<th>Mean Day 4</th>
<th>SE Day 4</th>
<th>Mean Day 8</th>
<th>SE Day 8</th>
<th>Mean Day 22</th>
<th>SE Day 22</th>
<th>Mean Day 36</th>
<th>SE Day 36</th>
<th>Mean Day 184</th>
<th>SE Day 184</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxo1</td>
<td>1.557417</td>
<td>0.120279</td>
<td>3.598765</td>
<td>0.653531</td>
<td>2.545899</td>
<td>0.079206</td>
<td>1.288813</td>
<td>0.108885</td>
<td>1.414794</td>
<td>0.191918</td>
<td>0.876028</td>
<td>0.65403</td>
</tr>
<tr>
<td>Foxo3</td>
<td>2.252112</td>
<td>0.478212</td>
<td>0.561494</td>
<td>0.066739</td>
<td>1.053899</td>
<td>0.053874</td>
<td>1.942102</td>
<td>0.168681</td>
<td>4.019615</td>
<td>0.487795</td>
<td>4.192344</td>
<td>0.627453</td>
</tr>
<tr>
<td>Foxo4</td>
<td>0.513709</td>
<td>0.058905</td>
<td>0.714333</td>
<td>0.061331</td>
<td>0.468777</td>
<td>0.052408</td>
<td>1.525656</td>
<td>0.256800</td>
<td>1.623709</td>
<td>0.028419</td>
<td>1.359027</td>
<td>0.270383</td>
</tr>
<tr>
<td>Villin</td>
<td>0.129686</td>
<td>0.009888</td>
<td>0.458574</td>
<td>0.054688</td>
<td>0.375812</td>
<td>0.033531</td>
<td>5.384168</td>
<td>0.761846</td>
<td>10.06858</td>
<td>1.851017</td>
<td>48.59651</td>
<td>6.159125</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>0.001354</td>
<td>0.000746</td>
<td>0.001410</td>
<td>0.000792</td>
<td>0.018025</td>
<td>0.006163</td>
<td>4.725360</td>
<td>0.335488</td>
<td>42.31775</td>
<td>24.02228</td>
<td>163.4495</td>
<td>40.471311</td>
</tr>
<tr>
<td>MUC2</td>
<td>0.000081</td>
<td>0.000036</td>
<td>0.000278</td>
<td>0.000749</td>
<td>0.000809</td>
<td>0.000226</td>
<td>0.044237</td>
<td>0.022287</td>
<td>0.024735</td>
<td>0.006228</td>
<td>6.376352</td>
<td>1.200474</td>
</tr>
<tr>
<td>Insulin</td>
<td>0.000072</td>
<td>0.000058</td>
<td>0.000173</td>
<td>0.000084</td>
<td>0.000044</td>
<td>0.000024</td>
<td>0.000165</td>
<td>0.000098</td>
<td>0.001368</td>
<td>0.000365</td>
<td>0.002680</td>
<td>0.002205</td>
</tr>
<tr>
<td>Neurog3</td>
<td>0.000243</td>
<td>0.000031</td>
<td>0.000387</td>
<td>0.000004</td>
<td>0.004796</td>
<td>0.003987</td>
<td>0.004023</td>
<td>0.000729</td>
<td>0.005489</td>
<td>0.002548</td>
<td>0.010548</td>
<td>0.001948</td>
</tr>
<tr>
<td>CgA</td>
<td>1.580648</td>
<td>0.224190</td>
<td>0.175635</td>
<td>0.019760</td>
<td>0.125747</td>
<td>0.014755</td>
<td>0.882200</td>
<td>0.165648</td>
<td>14.01394</td>
<td>3.114811</td>
<td>82.93569</td>
<td>31.81144</td>
</tr>
<tr>
<td>SLC6A4</td>
<td>0.003077</td>
<td>0.001343</td>
<td>0.037453</td>
<td>0.004358</td>
<td>0.025013</td>
<td>0.002054</td>
<td>0.167478</td>
<td>0.035988</td>
<td>0.421448</td>
<td>0.084309</td>
<td>0.464832</td>
<td>0.074382</td>
</tr>
<tr>
<td>Glucagon</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.110178</td>
<td>0.984352</td>
<td>0.705088</td>
<td>53.51102</td>
<td>21.04996</td>
</tr>
<tr>
<td>GIP</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.11618</td>
<td>0.000798</td>
<td>0.028677</td>
<td>0.010168</td>
<td>0.010168</td>
</tr>
<tr>
<td>CCK</td>
<td>0.016199</td>
<td>0.000109</td>
<td>0.007024</td>
<td>0.003496</td>
<td>0.017282</td>
<td>0.003594</td>
<td>0.008903</td>
<td>0.001499</td>
<td>0.077003</td>
<td>0.011052</td>
<td>0.049494</td>
<td>0.000391</td>
</tr>
<tr>
<td>Gastrin</td>
<td>0.149596</td>
<td>0.029731</td>
<td>0.239073</td>
<td>0.022239</td>
<td>0.447024</td>
<td>0.06250</td>
<td>1.524565</td>
<td>0.534751</td>
<td>2.783928</td>
<td>1.221507</td>
<td>1.061386</td>
<td>0.409483</td>
</tr>
<tr>
<td>Ghrerin</td>
<td>0.001631</td>
<td>0.000453</td>
<td>0.001623</td>
<td>0.00136</td>
<td>0.00237</td>
<td>0.000989</td>
<td>0.026196</td>
<td>0.016926</td>
<td>1.881976</td>
<td>0.671368</td>
<td>3.091087</td>
<td>0.839246</td>
</tr>
<tr>
<td>Somatostatin</td>
<td>0.011641</td>
<td>0.0001307</td>
<td>0.021783</td>
<td>0.000465</td>
<td>0.019725</td>
<td>0.002345</td>
<td>13.5029</td>
<td>1.220281</td>
<td>30.53252</td>
<td>5.939474</td>
<td>51.15832</td>
<td>14.22948</td>
</tr>
</tbody>
</table>
Supplementary Table 4 mRNA expression in gut organoids transduced with control and HA-Δ256 FOX01 adenovirus.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>SE</th>
<th>Mean</th>
<th>SE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOX01</td>
<td>0.846555</td>
<td>0.1</td>
<td>0.13497</td>
<td>4.009534</td>
<td>0.556462</td>
</tr>
<tr>
<td>Foxo3</td>
<td>4.331418</td>
<td>0.359165</td>
<td>4.762217</td>
<td>1.308275</td>
<td>NS</td>
</tr>
<tr>
<td>Foxo4</td>
<td>0.763258</td>
<td>0.042208</td>
<td>0.8308</td>
<td>0.230761</td>
<td>NS</td>
</tr>
<tr>
<td>Insulin</td>
<td>0.01 9516</td>
<td>0.003898</td>
<td>0.14454</td>
<td>0.000657</td>
<td><0.05</td>
</tr>
<tr>
<td>Neurog3</td>
<td>0.045927</td>
<td>0.005656</td>
<td>0.260422</td>
<td>0.030423</td>
<td><0.05</td>
</tr>
<tr>
<td>CgA</td>
<td>13.67444</td>
<td>0.937486</td>
<td>21.143811</td>
<td>1.333514</td>
<td><0.05</td>
</tr>
<tr>
<td>CDX2</td>
<td>5.23775</td>
<td>1.58234</td>
<td>16.63944</td>
<td>2.905261</td>
<td>NS</td>
</tr>
<tr>
<td>Villin</td>
<td>28.1 9776</td>
<td>4.682933</td>
<td>18.91874</td>
<td>6.064737</td>
<td>NS</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>158.555</td>
<td>24.60191</td>
<td>136.2488</td>
<td>53.2402</td>
<td>NS</td>
</tr>
<tr>
<td>Muc2</td>
<td>8.61 7466</td>
<td>2.031311</td>
<td>14.49713</td>
<td>6.156312</td>
<td>NS</td>
</tr>
<tr>
<td>LGR5</td>
<td>1.6581 12</td>
<td>0.440981</td>
<td>1.650161</td>
<td>0.445046</td>
<td>NS</td>
</tr>
<tr>
<td>Olfm4</td>
<td>85.21344</td>
<td>51.92498</td>
<td>76.29359</td>
<td>2.089699</td>
<td>NS</td>
</tr>
<tr>
<td>Bim1</td>
<td>1.520503</td>
<td>0.149423</td>
<td>2.203499</td>
<td>0.116843</td>
<td>NS</td>
</tr>
<tr>
<td>Mathl</td>
<td>0.897732</td>
<td>0.261626</td>
<td>3.091502</td>
<td>1.093768</td>
<td>NS</td>
</tr>
<tr>
<td>Hes1</td>
<td>13.4084</td>
<td>1.108315</td>
<td>13.9184</td>
<td>1.589168</td>
<td>NS</td>
</tr>
<tr>
<td>HesR1</td>
<td>0.71 732</td>
<td>0.105136</td>
<td>2.090294</td>
<td>0.723214</td>
<td>NS</td>
</tr>
<tr>
<td>HeyL</td>
<td>0.136213</td>
<td>0.064531</td>
<td>0.220304</td>
<td>0.075566</td>
<td>NS</td>
</tr>
<tr>
<td>AES</td>
<td>42.07569</td>
<td>14.94373</td>
<td>6.10454</td>
<td>11.41413</td>
<td>NS</td>
</tr>
<tr>
<td>PDX1</td>
<td>0.569858</td>
<td>0.144733</td>
<td>0.898912</td>
<td>0.106247</td>
<td>NS</td>
</tr>
<tr>
<td>Nkx2.2</td>
<td>0.001288</td>
<td>0.000205</td>
<td>0.002451</td>
<td>0.000453</td>
<td><0.05</td>
</tr>
<tr>
<td>Nkx6.1</td>
<td>0.01 8393</td>
<td>0.005162</td>
<td>0.142881</td>
<td>0.052814</td>
<td><0.05</td>
</tr>
<tr>
<td>NeuroD1</td>
<td>0.024278</td>
<td>0.014222</td>
<td>0.182801</td>
<td>0.00275</td>
<td><0.05</td>
</tr>
<tr>
<td>Pax4</td>
<td>0.684699</td>
<td>0.139704</td>
<td>2.24176</td>
<td>0.020548</td>
<td><0.05</td>
</tr>
<tr>
<td>Pax6</td>
<td>4.059091</td>
<td>1.956735</td>
<td>0.953035</td>
<td>2.842897</td>
<td><0.05</td>
</tr>
<tr>
<td>MafA</td>
<td>0.054917</td>
<td>0.017666</td>
<td>0.382146</td>
<td>0.064296</td>
<td><0.05</td>
</tr>
<tr>
<td>MafB</td>
<td>0.14707</td>
<td>0.031138</td>
<td>0.927882</td>
<td>0.189238</td>
<td><0.05</td>
</tr>
<tr>
<td>Isl-1</td>
<td>0.21 1731</td>
<td>0.062167</td>
<td>0.385543</td>
<td>0.071277</td>
<td>NS</td>
</tr>
<tr>
<td>Rtx6</td>
<td>0.107037</td>
<td>0.003212</td>
<td>0.42365</td>
<td>0.139787</td>
<td><0.05</td>
</tr>
<tr>
<td>Arx</td>
<td>0.01 3988</td>
<td>0.003166</td>
<td>0.058559</td>
<td>0.020689</td>
<td>NS</td>
</tr>
<tr>
<td>SLC30A8</td>
<td>0.000076</td>
<td>0.000021</td>
<td>0.317700</td>
<td>0.205205</td>
<td><0.05</td>
</tr>
<tr>
<td>UCN3</td>
<td>0.647476</td>
<td>0.0753344</td>
<td>2.8092592</td>
<td>0.218692</td>
<td><0.05</td>
</tr>
<tr>
<td>Kir2.2</td>
<td>0.2537708</td>
<td>0.069613</td>
<td>1.853189</td>
<td>0.667138</td>
<td>NS</td>
</tr>
<tr>
<td>Sur1</td>
<td>0.2713117</td>
<td>0.191671</td>
<td>0.426128</td>
<td>0.071866</td>
<td>NS</td>
</tr>
<tr>
<td>Glut2</td>
<td>0.2779970</td>
<td>0.0527430</td>
<td>0.4574555</td>
<td>0.086376</td>
<td>NS</td>
</tr>
<tr>
<td>PC2</td>
<td>0.9606606</td>
<td>0.0100187</td>
<td>1.4714312</td>
<td>0.293444</td>
<td>NS</td>
</tr>
<tr>
<td>Gck</td>
<td>0.0449448</td>
<td>0.0058264</td>
<td>0.0778999</td>
<td>0.011639</td>
<td>NS</td>
</tr>
<tr>
<td>PC 1/3</td>
<td>3.8472895</td>
<td>2.102031</td>
<td>3.972181</td>
<td>0.879261</td>
<td>NS</td>
</tr>
</tbody>
</table>
What is claimed is:

1. A method comprising administering to a mammal having a disease or disorder associated with impaired pancreatic endocrine function, a therapeutically effective amount of an agent that reduces the expression, biosynthesis, signaling or biological activity of serotonin or increases serotonin degradation, wherein administering comprises delivering the agent to insulin-negative cells in the gut (Gut Ins- cells) comprising enteroendocrine cells insulin-negative cell, thereby producing insulin-positive cells that make and secrete biologically active insulin (Gut Ins-i cells) and treating the disease or disorder.

2. The method of claim 1, wherein the agent that reduces serotonin biosynthesis is selected from the group consisting of an isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding an enzyme in the serotonin biosynthetic pathway selected from the group consisting of tryptophan hydroxylase (Tph) 1, Tph2, and aromatic L amino acid decarboxylase thereby reducing expression of enzyme.

3. The method of claim 1, wherein the agent that reduces serotonin biosynthesis is selected from the group consisting of inhibitors of an enzyme selected from the group consisting of Tph 1, Tph2, and aromatic L amino acid decarboxylase.

4. The method of claim 3, wherein the agent is a small molecule.

5. The method of claim 3, wherein the agent is an antibody or biologically active fragment thereof that binds to the enzyme.

6. The method of claim 1, wherein the insulin-positive cells are glucose responsive.

7. The method of claim 1, wherein the agent that increases serotonin degradation is a monoamine oxidase analog or an agent that increases the activity of monoamine oxidase.

8. The method of claim 1, wherein the agent that reduces serotonin signaling or biological activity is selected from the group consisting of inhibitors 5HTr2b and rHTrla antagonists.

9. The method of claim 1, further comprising administering to the mammal a therapeutically effective amount of an agent that reduces the expression or biological activity of forkhead box 01 (Foxol) protein or biologically active fragments thereof, comprising an agent selected from
the group consisting of an isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding the Foxol protein thereby reducing Foxol expression or biological activity, wherein administering comprises delivering the agent to enteroendocrine progenitor cells in the mammal to produce enteroendocrine cells that make and secrete biologically active insulin.

10. The method of claim 1, wherein the disease or disorder is selected from the group consisting of diabetes type 1, diabetes type 2, metabolic syndrome, glucose intolerance, hyperglycemia, decreased insulin sensitivity, increased fasting glucose, increased post-prandial glucose and obesity.

11. The method of claim 1, wherein the therapeutically effective amount is an amount that produces an effect selected from the group consisting of an increase in glucose tolerance, an increase in serum insulin, an increase insulin sensitivity, a decrease in fasting glucose, a decrease in post-prandial glucose, a decrease in weight gain, a decrease in fat mass, an increase in weight loss and the generation enteroendocrine cells in the gastrointestinal tract that produce and secrete insulin.

12. The method of claim 1, wherein the agent is administered orally, or parenterally or as a suppository.

13. The method of claim 1, wherein the agent is orally administered in an enteric form that releases the therapeutically effective amount in a region of the gut comprising insulin-negative cells comprising enteroendocrine cells or other gut insulin-negative cell or is locally administered directly into or onto the gut region.

14. The method of claim 13, wherein the gut region is the duodenum, ileum or colon.

15. A pharmaceutical formulation for treating or preventing a disease or disorder in an mammal associated with impaired pancreatic endocrine function in a subject, comprising an effective amount of an agent that either reduces expression, biosynthesis, signaling or biological activity of serotonin or increases serotonin degradation, together with an agent that reduces the expression or biological activity of Foxol or biologically active fragments thereof formulated
delivering the agent to insulin-negative cells in the gut (Gut Ins- cells) comprising enteroendocrine cells or other gut insulin-negative cell.

16. The pharmaceutical formulation of claim 15, wherein the agent that reduces serotonin biosynthesis is selected from the group consisting of an isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding an enzyme in the serotonin biosynthetic pathway selected from the group consisting of Tphl, Tph2, and aromatic L amino acid decarboxylase thereby reducing expression of the enzyme.

17. The pharmaceutical formulation of claim 15, wherein the agent that reduces serotonin biosynthesis is selected from the group consisting of inhibitors of an enzyme selected from the group consisting of Tphl, Tph2, and aromatic L amino acid decarboxylase.

18. The pharmaceutical formulation of claim 17, wherein the agent is a small molecule.

19. The pharmaceutical formulation of claim 17, wherein the agent is an antibody or biologically active fragment thereof that binds to the enzyme.

20. The pharmaceutical formulation of claim 15, wherein the agent that increases serotonin degradation is a monoamine oxidase analog, or an agent that increases the activity of monoamine oxidase.

21. The pharmaceutical formulation of claim 15, wherein the agent that reduces serotonin signaling or biological activity is selected from the group consisting of inhibitors 5HTr2b and rHTr1a antagonists.

22. The pharmaceutical formulation of claim 15, wherein the agent that reduces the expression or biological activity of forkhead box 0 1 (Foxol) protein or biologically active fragments thereof, comprises an agent selected from the group consisting of an isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding the Foxol protein thereby reducing Foxol expression or biological activity.
23. The pharmaceutical composition of claim 15, wherein the effective amount is an amount that produces an effect selected from the group consisting of an increase in glucose tolerance, an increase in serum insulin, an increase insulin sensitivity, a decrease in fasting glucose, a decrease in post-prandial glucose, a decrease in weight gain, a decrease in fat mass, an increase in weight loss and the generation enteroendocrine cells in the gastrointestinal tract that produce and secrete ribozymes producing insulin cells.

24. A method for producing cells in the gut that make and secrete biologically active insulin (Gut Ins+ cells) in a mammal, comprising administering to the mammal an agent that reduces the expression, biosynthesis, signaling or biological activity of serotonin or increases serotonin degradation, wherein administering comprises delivering the agent to insulin-negative cells in the gut (Gut Ins- cells) comprising enteroendocrine cells or other gut insulin-negative cell thereby producing gut cells that make and secrete biologically active insulin (Gut Ins-i- cells).

25. The method of claim 24, wherein the cells are glucose responsive.

26. The method of claim 24, further comprising administering to the mammal a therapeutically effective amount of an agent that reduces the expression or biological activity of forkhead box 0 l (Foxol) protein or biologically active fragments, comprising an agent selected from the group consisting of an isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding the Foxol protein thereby reducing Foxol expression or biological activity, wherein administering comprises delivering the agent to the insulin-negative cells in the gut (Gut Ins- cells).

27. A method for making insulin-positive gut cells that make and secrete biologically active insulin (Gut Ins-i- cells), comprising

a) obtaining a human gut cell culture comprising insulin-negative cells (Gut Ins- cells) comprising enteroendocrine cells or other gut insulin-negative cells, and

b) contacting the insulin-negative gut cells (Gut Ins- cells) in the cell culture with:

(i) an agent that reduces expression, biosynthesis, signaling or biological activity of serotonin or increases serotonin degradation in an amount and under conditions that permit a significant portion of the insulin-negative cells to differentiate into
insulin-positive cells that make and secrete biologically active insulin (Gut Ins+ cells), or
(ii) the agent in (i) that reduces serotonin, and an agent that reduces the expression or biological activity of forkhead box 0 1 (Foxol) protein or biologically active fragments thereof, in an amount and under conditions that permit a significant portion of the insulin-negative cells to differentiate into insulin-positive cells that make and secrete biologically active insulin (Gut Ins-i cells).

28. Human gut insulin-positive cells isolated from human gut cell cultures made by the method of claim 27.

29. A method for treating a disease or disorder in a human subject associated with impaired pancreatic endocrine function, comprising administering to the subject the isolated human gut insulin-positive cells of claim 27 in sufficient numbers to treat the disease or disorder.

30. The method of claim 29, wherein the isolated human gut insulin-positive cells are administered locally to the gut of the subject.

31. The method of claim 29, wherein the human gut cell culture comprising insulin-negative cells (Gut Ins- cells) is obtained from the human subject to whom the isolated human gut insulin-positive cells will be administered.

32. A method comprising administering to a human subject having a disease or disorder associated with impaired pancreatic endocrine function, a therapeutically effective amount of the isolated gut insulin-positive cells produced according to the method of claim 27.

33. The method of claim 32, wherein administering comprises transplanting the cells at a transplant location in the mammal.

34. The method of claim 33, wherein the location is in the gut.

35. The method of claim 33, wherein the cells become integrated at the transplant location.

36. The method of claim 33, wherein the administering comprises delivering the cells to the transplant location in an implantable depot or a 3-dimensional scaffold.

37. The method of claim 27, wherein the Ins-i cells are glucose-responsive.
38. The method of claim 27, wherein the agent that reduces serotonin biosynthesis is selected from the group consisting of inhibitors of an enzyme selected from the group consisting of Tphl, Tph2, and aromatic L amino acid decarboxylase.

39. The method of claim 27, wherein the agent that increases serotonin degradation is a monoamine oxidase analog, or an agent that increases the activity of monoamine oxidase.

40. The method of claim 27, wherein the agent that reduces serotonin signaling or biological activity is selected from the group consisting of inhibitors 5HTr2b and rHTrla antagonists.

41. A medicament for preventing a disease or disorder in a mammal associated with impaired pancreatic endocrine function, comprising administering an agent in a therapeutically effective amount that reduces expression, biosynthesis, signaling or biological activity of serotonin or increases serotonin degradation and an agent that reduces the expression or biological activity of FOXOl, or biologically active fragments thereof.

42. The method of claim 1, wherein the insulin-positive gut cells further express C-peptide.

43. A method comprising administering to a mammal having a disease or disorder associated with impaired pancreatic endocrine function, a therapeutically effective amount of an agent that reduces the expression, biosynthesis, signaling or biological activity of Foxol, wherein administering comprises delivering the agent to insulin-negative, serotonin-positive enteroendocrine cells in the gut thereby producing insulin-positive cells that make and secrete biologically active insulin (Gut Ins-i-cells) thereby treating the disease or disorder.

44. The method of claim 43, wherein the insulin-positive cells are glucose-responsive cells.

45. The method of claim 43, wherein the agent is selected from the group consisting of an isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding the Foxol protein thereby reducing Foxol expression, wherein administering comprises delivering the agent to enteroendocrine progenitor cells in the mammal to produce enteroendocrine cells that make and secrete biologically active insulin.

46. The method of claim 43, wherein the agent is an anti-Foxol antibody or biologically active fragment thereof.
47. The method of claim 43, wherein the agent is orally administered in an enteric form that releases the therapeutically effective amount in a region of the gut comprising insulin-negative, serotonin-positive cells comprising enteroendocrine cells insulin-negative cell or is locally administered directly into or onto the gut region.

48. The method of claim 47, wherein the gut region is the duodenum, ileum or colon.

49. The method of claim 43, wherein the disease or disorder is selected from the group consisting of diabetes type 1, diabetes type 2, metabolic syndrome, glucose intolerance, hyperglycemia, decreased insulin sensitivity, increased fasting glucose, increased post-prandial glucose and obesity.

50. The method of claim 43, wherein the therapeutically effective amount is an amount that produces an effect selected from the group consisting of an increase in glucose tolerance, an increase in serum insulin, an increase insulin sensitivity, a decrease in fasting glucose, a decrease in post-prandial glucose, a decrease in weight gain, a decrease in fat mass, an increase in weight loss and the generation enteroendocrine cells in the gastrointestinal tract that produce and secrete insulin.

51. The method of claim 43, wherein the agent is administered orally, or parenterally or as a suppository.

52. A method for producing cells in the gut of a mammal that make and secrete biologically active insulin (Gut Ins-i- cells) in a mammal, comprising administering to the mammal an agent that reduces the expression, biosynthesis, signaling or biological activity of Foxol, wherein administering comprises delivering the agent to insulin-negative cells in the gut (Gut Ins- cells) comprising serotonin-positive, insulin-negative enteroendocrine cells or other gut insulin-negative cell thereby producing gut cells that make and secrete biologically active insulin (Gut Ins-i- cells).

53. The method of claim 52, wherein the gut ins-i- cells are glucose responsive.

54. The method of claim 52, wherein the agent comprises an agent selected from the group consisting of an isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding the Foxol protein.
thereby reducing Foxol expression or biological activity, wherein administering comprises delivering the agent to the insulin-negative cells in the gut (Gut Ins- cells).

55. The method of claim 52, wherein the agent comprises anti-Foxol antibody, or biologically active fragment thereof.

56. A method for making insulin-positive gut cells that make and secrete biologically active insulin (Gut Ins-i cells), comprising

a) obtaining a human gut cell culture comprising insulin-negative cells (Gut Ins- cells) comprising serotonin-positive, insulin-negative enteroendocrine cells or other gut insulin-negative cell, and

b) contacting the insulin-negative cells in the gut (Gut Ins- cells) in the cell culture with an agent that reduces the expression or biological activity of forkhead box 01 (Foxol) protein or biologically active fragments thereof, in an amount and under conditions that permit a significant portion of the serotonin-positive, insulin-negative cells to differentiate into insulin-positive cells that make and secrete biologically active insulin (Gut Ins-i cells).

57. The method of claim 56, wherein the insulin-positive gut cells are glucose-responsive.

58. Human insulin-positive gut cells isolated from human cell cultures made by the method of claim 56.

59. A method for treating a disease or disorder in a human subject associated with impaired pancreatic endocrine function, comprising administering to the mammal the human gut insulin-positive cells of claim 56 in sufficient numbers to treat the disease or disorder.

60. The method of claim 59, wherein the isolated human gut insulin-positive cells are administered locally to the gut of the subject.

61. The method of claim 59, wherein the isolated human gut insulin-positive cells are obtained from an autologous cell culture.

62. A method comprising administering to a human subject having a disease or disorder associated with impaired pancreatic endocrine function, a therapeutically effective amount of the isolated gut insulin-positive cells produced according to the method of claim 56.
63. The method of claim 62, wherein administering comprises transplanting the cells at a location in the mammal.

64. The method of claim 63, wherein the location is in the gut.

65. The method of claim 63, wherein the cells become integrated at the transplant location.

66. The method of claim 63, wherein the administering comprises delivering the cells to the transplant location in an implantable depot.

67. The method of claim 1, wherein the agent that reduces serotonin biosynthesis is from the group consisting of an isolated small hairpin RNA (shRNA), small interfering RNA (siRNA), antisense RNA, antisense DNA, chimeric antisense DNA/RNA, microRNA, and ribozymes that are sufficiently complementary to specifically bind to a gene or mRNA encoding a transcription factor selected from the group consisting of Nkx2.2, Fev and Lmx thereby reducing production of the transcription factor and consequently enzyme in the serotonin biosynthetic pathway.

68. The method of claim 1, wherein the insulin-negative cells are serotonin-positive.

69. The method of claim 27, wherein the human gut cell culture comprises a gut organoid.

70. The method of claim 56, wherein the human gut cell culture comprises a gut organoid.
Figure 2
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 15/38 186

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8): A61K 39/395, C12N 15/1 13 (2015.01)
CPC: A61K 39/3955, C12N 15/1 13, G01N 2333/62

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8): A61K 39/395, 31/7088, 38/00; A61L 31/16; C07K 14/435, C12N 15/113; G01N 33/50 (2015.01)
CPC: A61K 39/3955, 31/7088, 38/00; A61L 31/16; C07K 14/435, C12N 15/1 13, 231/00; G01N 33/5005, 2333/62

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2011/14351 1 A2 (COLUMBIA UNIVERSITY) November 17, 2011; paragraphs [0030], [0032], [0034], [0035], [0037], [0044], [0045], [0055], [0057], [0061], [0064], [0072], [0147]</td>
<td>43-63</td>
</tr>
<tr>
<td>A</td>
<td>WO 2004/00630 A1 (BAYER HEALTHCARE AG) January 29, 2004; page 9 lines 13-14; page 10, lines 1-2</td>
<td>1-42</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
“T” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“Y” document member of the same patent family

Date of the actual completion of the international search
22 September 2015 (22.09.2015)

Date of mailing of the international search report
19 OCT 2015

Name and mailing address of the ISA/Authorized officer
Mail Stop PCT, Attn: ISA-US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Facsimile No. 571-273-8300

Form PCT/ISA/210 (second sheet) (January 2015)