(54) 发明名称
光固化性热固化性树脂组合物、光固化性热固化性薄膜、固化物、具备固化物的印刷电路板

(57) 摘要
本发明提供适合于获得与基板的密合性、耐化学药品性、耐焊接热性能、PCT耐性、耐冷热冲击性、耐化学侵蚀性、电绝缘性等优异的固化覆膜的稀癌显影型的光固化性热固化性树脂组合物。本发明的光固化性热固化性树脂组合物的特征在于，其含有低分子量树脂、具有下述通式(1)(2)(3)示结构的感光性树脂以及光聚合引发剂。式(1)中，R^1表示下述式(2)的基团；R^2表示甲基或OR基；n=m=1.5~6.0，m=0~6.0，1=0~3，n=m=100；0<100。式(2)中，R^1表示氢或甲基；R^1表示下述式(3)的基团。k=0.3~10.0。式(3)中，R^1表示氢或甲基。
1. 一种光固化性热固化性树脂组合物，其特征在于，其含有：含羧基树脂，具有下述通式(1)～(3)所示的结构的感光性树脂以及光聚合引发剂，

![化学结构式](image1)

式(1)中，R₁表示下述式(2)的基团；R²表示甲基或OR¹基；n+m=1.5～6.0、n=0～6.0、m=0～6.0、l=0～3、n:m=100:0~100；

![化学结构式](image2)

式(2)中，R³表示氢或甲基；R⁴表示下述式(3)的基团或氢；k=0.3～10.0；

![化学结构式](image3)

式(3)中，R⁵表示氢或甲基。

2. 一种光固化性热固化性树脂组合物，其特征在于，其含有：具有下述通式(4)～(7)所示结构的含羧基感光性树脂和光聚合引发剂，

![化学结构式](image4)

式(4)中，R₁表示下述式(5)的基团；R²表示甲基或OR¹基；n+m=1.5～4.0、n=0～4.0、m=0～4.0、l=0~3、n:m=100:0~100；

![化学结构式](image5)

式(5)中，R³表示氢或甲基；R⁴表示下述式(6)或(7)的基团或氢；k=0.3～10.0；

![化学结构式](image6)

式(6)中，R⁵表示氢或甲基；

![化学结构式](image7)

式(7)中的X表示酸酯残基。

3. 一种光固化性热固化性薄膜，其特征在于，其通过在薄膜上涂布权利要求1或权利要求2所述的光固化性热固化性树脂组合物并干燥而获得。

4. 一种固化物，其特征在于，其通过照射活性能量射线和/或加热，使权利要求1或权
权利要求 2 所述的光固化性热固化性树脂组合物，或权利要求 3 所述的薄膜固化而获得。

5. 一种具备固化物的印刷电路板，其特征在于，所述固化物是通过照射活性能量射线
和/或加热，使权利要求 1 或权利要求 2 所述的光固化性热固化性树脂组合物，或权利要求
3 所述的薄膜固化而获得的。
光固化性热固化性树脂组合物、光固化性热固化性薄膜、固化物、具备固化物的印刷电路板

技术领域

[0001] 本发明涉及作为印刷电路基板的阻焊剂等使用的光固化性热固化性树脂组合物，尤其涉及适合于 IC 封装用的抗蚀剂的稀酸显影型的光固化性热固化性树脂组合物。

[0002] 背景技术

[0003] 目前，从高精度、高密度的观点出发，在一部份的民用印刷电路板以及大部分工业用印刷电路板的阻焊剂，使用通过在紫外线照射后显影来形成图像。用于热及/或光照射进行最终固化（全固化）。液态显影型光感性阻焊剂。在这种阻焊剂中，从对环境问题的顾虑出发，使用稀酸水溶液作为显影液的碱显影型阻焊剂成为主流。在实际的印刷电路板的制造中被大量使用。另外，应对近年来的电子设备的轻薄短小化所伴随的印刷电路板的高密度化，对阻焊剂还提出了操作性、高性能化的要求。

[0004] 然而，现有的碱显影型的光感性阻焊剂在耐久性方面仍然存在问题。即，与以往的热固化型、溶剂显影型的光感性阻焊剂相比，耐碱性、耐水性、耐热性等差。通常认为，碱显影型光感性阻焊剂为了能进行碱显影而使氟丙基基团的物质作为主要成分，化学试剂、水、水蒸气等容易渗入，会使耐化学品性降低、抗蚀覆盖铜的密合性降低。结果，作为耐化学品的耐碱性变低，特别是在 BGA(球栅阵列, Ball Grid Array) 或 CSP（芯片尺寸封装）等半导体封装中，尤其需要作为耐湿热性的 PCT 耐性（压力锅试验（pressure cooker test）耐性），但现状是，在如此严酷条件下，仅仅能耐数小时～十几小时左右。另外，在加湿条件下施加电压的状态下的 HAST 试验（高加速寿命试验）中，在几乎所有情况下，数小时内就确认到因发生迁移导致的不良。

[0005] 近年来，存在向表面安装转变，对环境问题的顾虑所伴随的无铅焊剂的使用等封装所涉及的温度变得非常高的倾向。随之而来，封装内外部的到达温度显著增高，在现有的液态感光性抗蚀剂中，存在因热冲击而涂膜上产生开裂或者从基板、密封材料上剥离的问题，因此需要对其进行改良。

[0006] 另一方面，在现有的阻焊剂中通常使用通过环氧树脂的改性而衍生出的环氧丙稀酸酯改性树脂作为主要基树脂。例如，报告了由对酚醛醇洗型环氧化合物与不饱和一元酸的反应产物加成酸酐而获得的感光性树脂、光聚合引发剂、稀释剂以及环氧化合物形成的阻焊剂组合物（例如参照专利文献 1 等）。

[0007] 另外，公开了由感光性树脂、光聚合引发剂、有机溶剂等形成的阻焊剂组合物，所述感光性树脂是在环氧树脂上加成（甲基）丙稀酸，再与多元羧酸或其酸酐反应而获得的，所述环氧树脂是使用丙烯酸酯和一元酚的反应产物和环氧氧丙稀烷反应而获得的（例如参照专利文献 2 等）。然而，这些现有的阻焊剂组合物中使用的含羧基树脂的电特性差。

[0008] 现有技术文献

[0009] 专利文献

[0010] 专利文献 1：日本特开昭 61-243869 号公报（权利要求书）

[0011] 专利文献 2：日本特开平 3-250012 号公报（权利要求书）
发明内容
[0012] 发明要解决的问题
[0013] 本发明的目的在于，提供一种适合于获得基板的密合性，耐化学药品性，耐焊接热性能，PCT耐性，耐冷热冲击性，耐化学镀金性，电绝缘性等优异的固化覆膜的稀疏显影型的光固化性热固性树脂组合物。
[0014] 应用于解决该问题的方案
[0015] 为了实现上述目的，根据本发明的一个实施方式，提供一种光固化性热固性树脂组合物，其含有，含羧基树脂，具有下述通式(1)~(3)所示结构的感光性树脂以及光聚合引发剂。
[0016]

(式(1)中，R_I表示下述式(2)的基团；R_II表示基团或OR基；n+m=1.5~6.0，n=0~6.0，m=0~6.0，l=0~3，n:m=100:0~0:100。)

[0018]

(式(2)中，R^3表示氢或甲基；R^4表示下述式(3)的基团或氢；k=0.3~10.0。)

[0019] (式(3)中，R^5表示氢或甲基。)

[0020] 另外，根据本发明的一个实施方式，提供一种光固化性热固性树脂组合物，其含有具有下述通式(4)~(7)所示结构的含羧基感光性树脂和光聚合引发剂。

[0022]

(式(4)中，R_I表示下述式(5)的基团；R_II表示甲基或OR基；n+m=1.5~4.0，n=0~4.0，m=0~4.0，l=0~3，n:m=100:0~0:100。)

[0024] (式(5)中，R_I表示下述式(6)的基团；R_II表示甲基或OR基。)
说明 书

式 (5) 中，R^1 表示氢或甲基；R^4 表示下述 (6) 或 (7) 的基团或氢；k=0.3~10.0。

\[ \begin{array}{c}
\text{R}^3 \\
\text{O}
\end{array} \]

\[ \begin{array}{c}
\text{C} \equiv \text{CH}-
\end{array} \]

式 (6) 中，R^5 表示氢或甲基。

式 (7) 中的 X 表示羧酸残基。

通过为上述构成，可获得基板的密合性、耐化学药品性、耐焊接热性能、PCT 耐性、耐冷热冲击性、耐化学镀金性、电绝缘性等优异的固化覆盖。

另外，根据本发明的一个实施方式，提供一种光固化性热固化性的薄膜，其通过在薄膜上涂布上述光固化性热固化性树脂组合物并干燥而获得。通过使用这样的薄膜，可不必在基材上涂布光固化性树脂组合物而容易地形成抗蚀剂层。

另外，根据本发明的一个实施方式，提供一种固化物，其通过照射活性能量射线和/或加热，使上述光固化性热固化性树脂组合物或薄膜固化而获得。在这样的固化物中，可获得耐化学药品性、耐焊接热性能、PCT 耐性、耐冷热冲击性、耐化学镀金性、电绝缘性等优异的固化物。

另外，根据本发明的一个实施方式，提供一种具备固化物的印刷电路板，所述固化物是通过照射活性能量射线和/或加热，使上述的光固化性热固化性树脂组合物或薄膜固化而获得的。由此，可提供具有上述特性的可靠性高的印刷电路板。

发明的效果

根据本发明的光固化性热固化性树脂组合物，其操作性优异，并且其固化物的与基板的密合性、耐化学药品性、耐焊接热性能、PCT 耐性、耐冷热冲击性、耐化学镀金性、电绝缘性等优异，可有利地应用于例如印刷电路基板的阻焊剂等，特别是 IC 封装用的抗蚀剂的形成。

具体实施方式

本发明的发明人等鉴于上述课题进行了深入的研究，结果发现，通过使用含有含羧基树脂液，具有下述式 (1)~(3) 所示结构的感光性树脂以及光聚合引发剂的光固化性热固化性树脂组合物，可实现上述课题，从而完成了本发明。
[0039] 式(1)中，R⁴表示下述式(2)的基团；R⁵表示甲基或OR⁴基；n+m=1.5~6.0，n=0~6.0，m=0~6.0，\( l=0 \sim 3 \)。n:m=100:0~0:100。

[0040]

\[
\begin{array}{c}
\text{CH}_2 \text{CH-O} \\
R^4
\end{array}
\] \hspace{1cm} (2)

[0041] 式(2)中，R³表示氢或甲基；R⁴表示下述式(3)的基团或氨；\( k=0.3~10.0 \)。

[0042]

\[
\begin{array}{c}
\text{O} \\
\text{C} \text{C}=\text{CH}_2 \\
R^5
\end{array}
\] \hspace{1cm} (3)

[0043] 式(3)中，R⁵表示氢或甲基。

[0044] 另外，本发明的发明人等还发现，通过使用含有导入了下述通式(4)~(7)所示结构的含羧基感光性树脂和光聚合引发剂的光固化性热固化性树脂组合物，也能够实现上述课题。

[0045]

[0046] 式(4)中，R⁴表示下述式(5)的基团；R⁵表示甲基或OR⁴基；n+m=1.5~4.0，n=0~4.0，m=0~4.0，\( l=0 \sim 3 \)。n:m=100:0~0:100。

[0047]

\[
\begin{array}{c}
\text{CH}_2 \text{CH-O} \\
R^4
\end{array}
\] \hspace{1cm} (5)

[0048] 式(5)中，R³表示氢或甲基；R⁴表示下述式(6)或(7)的基团或氨；\( k=0.3~10.0 \)。

[0049]

\[
\begin{array}{c}
\text{O} \\
\text{C} \text{C}=\text{CH}_2 \\
R^5
\end{array}
\] \hspace{1cm} (6)

[0050] 式(6)中，R⁵表示氢或甲基。

[0051]

\[
\begin{array}{c}
\text{O} \\
\text{C} \text{X} \text{C-OH}
\end{array}
\] \hspace{1cm} (7)
[0052] 式(7)中的X表示酸酐残基。)
[0053] 以下，对本实施方式的光固化性热固化性树脂组合物进行详细说明。
[0054] 首先，对第一实施方式的光固化性热固化性树脂组合物进行详细说明。第一实施方式的光固化性热固化性树脂组合物的特征在于，其含有：含羧基树脂、具有下述通式(1)～(3)所示结构的感光性树脂以及光聚合引发剂。

![化学结构式]

[0056] 通式(1)中，R卜表示下述通式(2)的基团；R’表示甲基或OR基；n+m=1.5〜6.0，n=0〜6.0，m=0〜6.0，l=0〜3，n:m=100:0〜100。
[0057] 通式(2)中，R卜表示氢或甲基；R’表示下述(3)的基团或氢，k=0.3〜10.0。
[0059] 通式(3)中，R卜表示氢或甲基。

[0060] 关于用于第一实施方式的光固化性热固化性树脂组合物的感光性树脂，通过使通式(1)所对应的酚醛树脂与环氧烷或环碳酸酯发生加成反应，可得到基链增长的挠性、伸长率优异的低聚物；另外，通过使其增长链的末端生成的羟基与含不饱和基团的单羧酸反应，可得到具有反应性基团的低聚物。
[0061] 另外，这些通式(1)所对应的酚醛骨架具有优异的疏水性、耐热性，因此，通过使该低聚物发生反应、组入到固化物中，可以表现出优异的诸多特性。

[0062] 进而，由于上述感光性树脂实质上不含亲水性的醇性羟基且具有上述优异的疏水性高的骨架，因此，可以显著提高耐湿性、提高PCT耐性、HAST耐性。另外，关于上述感光性树脂的前体的酚类，作为其实用，可列举出与通常的苯酚或甲苯型酚醛清漆树脂相比羟基当量大。即，可赋予所得的固化物良好的挠性。随之来，可提高耐冲击性和PCT耐性、HAST耐性，可赋予例如1C封装用的抗蚀剂所需要的诸多优异的特性。

[0064] 这样，具有通式(1)～(3)所示结构的感光性树脂为低聚物，因此，对于通过光照射进行反应之后使用稀水溶液进行的显影可以表现出优异的耐显影性，另外，表现出来源于其主骨架的优异的疏水性、耐热性，进而可赋予固化物来源于主骨架的、或者由环氧烷或环碳酸酯改性引起的链增长效果带来的挠性、伸长率优的诸多物性。

[0065] 本实施方式的具有通式(1)～(3)所示结构的感光性树脂可通过例如下述所示的方法容易地获得。以下示出具体例。
[0066] [1] 使酚醛树脂与环氧烷反应而获得的反应产物，与含不饱和基团的单羧酸反应而获得的感光性树脂。
[0067] [2] 使酚醛树脂与环碳酸酯化合物反应而获得的反应产物，与含不饱和基团的单羧酸反应而获得的感光性树脂。
[0068] 通常认为，添加低聚物作为固化剂会提高优异的耐显影性，但使所得的固化物的物性得到提高。以往有使用使环氧树脂与含不饱和基团的单羧酸反应而得的环氧（甲基）丙烯酸酯的低聚物等的例子，但其效果小于预期。
[0069] 环氧（甲基）丙烯酸酯的低聚物含有大量羟基，因此，确认其通过作为目标的提高耐显影性。确认到，通常羟基的存在具有使密合性提高的效果，但相反地，为了提高密合性，其水性即使其耐PCT耐性、绝缘可靠性变差。而由基材由环氧树脂的合成的观点来看，由于混入非常多的氯离子杂质，因此担心对绝缘可靠性带来不良影响，未得到广泛应用。
[0070] 另一方面，本实施方式的感光性树脂可由酚醛树脂作为起始原料来获得，可提供几乎没有氯离子杂质的感光性树脂，可大体抑制氯离子杂质浓度。这样的感光性树脂的氯离子杂质含量优选为100ppm以下，更优选为50ppm以下。
[0071] 另外，利用这种方法可获得实质上不含羟基的感光性树脂。其中，实质上不含羟基是指允许包含微量的羟基。
[0072] 进而从主骨架具有优异的疏水性、耐热性的观点来看，发现会赋予以往未被确认的优异的耐显影性、PCT耐性、绝缘可靠性。
[0073] 这样，本实施方式的感光性树脂可抑制氯离子杂质、实质上不含羟基，可使来自于具有良好的物性的主骨架的优异的绝缘可靠性，PCT耐性显现。
[0074] 在本实施方式的感光性树脂中使用的酚醛树脂具有联苯骨架、或亚苯基骨架，其两者的骨架，通过使用苯酚、邻甲酚、对甲酚、间甲酚、2,3-二甲苯酚、2,4-二甲苯酚、2,5-二甲苯酚、6-二甲苯酚、3,4-二甲苯酚、3,5-二甲苯酚、邻苯二酚、间苯二酚、对苯二酚、甲基对苯二酚、二甲基对苯二酚、三甲基对苯二酚、连苯三酚、间苯三酚等作为含酚性羟基化合物，能够衍生出具有各种骨架的酚醛树脂。即，可在考虑作为目标的诸多特性的基础上进行各种分子设计。
[0075] 作为本实施方式的感光性树脂中使用的环氧烷，可列举出环氧乙烷、环氧丙烷、环氧环丁烷、四氢呋喃、四氢吡喃等，其从价格、供给体制等方面考虑，优选为环氧乙烷、环氧丙烷。这些环氧烷可单独使用或混合两种以上使用。
[0076] 另外，作为环碳酸酯化合物，可使用公知的碳酸酯化合物，可列举出例如，碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、2,3-碳酸酯、2,3-碳酸酯、丙烯酸酯（2,3-carbonate propyl methacrylate）等，从反应性、供给体制方面考虑，优选为五元环的碳酸乙烯酯、碳酸丙烯酯。这些碳酸酯化合物可单独使用或混合两种以上使用。
[0077] 这些环氧烷或环碳酸酯化合物可通过使用碱性催化剂使具有通式（1）所示结构的树脂所对应的酚醛树脂的酚性羟基发生加成反应，由酚性羟基改性为含有醇羟基的树脂。
[0078] 作为含不饱和基团的单羧酸，可列举出（甲基）丙烯酸，或是进一步列举出（甲基）丙烯酸丁酯、（甲基）丙烯酸羟丙酯、（甲基）丙烯酸羟丁酯、三羟甲基丙烷（甲基）丙烯酸酯。
酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、(甲基)丙烯酸苯基缩水甘油酯、(甲基)丙烯酸己内酯加成物等含羟基丙烯酸酯的不饱和二元酸酯加成物等，更优选为(甲基)丙烯酸。这些含不饱和基团的单羧酸可单独使用或组合两种以上使用。
[0079] 具有通式(1)～(3)所示结构的感光性树脂中通式(1)所示的n+m 优选在1.5~6.0的范围。n+m 为1.5 以下时，由于分子量小，有时无法期待作为目标的诸多特性的提高。另一方面，为6.0 以上时，有可能对显著性产生不良影响。具有通式(1)～(3)所示结构的感光性树脂的最佳情况为 n 为2.0~5.0 左右。
[0080] 本实施方式的感光性树脂的重均分子量根据树脂骨架有所不同，优选为1000~30000。重均分子量不足1000 时，有时无法充分发挥本性能。另一方面，重均分子量超过30000 时，有时显著性显著变差，有时使作为抗蚀剂组合物的显著性大幅降低。更优选为1000~20000 的范围。
[0081] 这样的感光性树脂的配混量相较于含羧基树脂 100 质量份，优选为5~60 质量份。配混量不足5.0 质量份时，缺乏赋予诸多特性的效果，超过60 质量份时，担心会使对碱显影液的显影性降低。更优选为10~50 质量份。
[0082] 作为第一实施方式的光固化性热固性树脂组合物中使用的含羧基树脂，可使用公知的含羧基树脂。优选的，作为可认为不会使绝缘可靠性变差的卤化物离子含量非常少的含羧基树脂，理想的是使用未使用过烯类树脂作为主要原料的含羧基树脂。其中，从光固化性、耐显影性的方面考虑，优选分子中具有乙烯性不饱和双键的含羧基感光性树脂。而且，其不饱和双键优选来来源于丙烯酸或者甲基丙烯酸或它们的衍生物的不饱和双键。其中，仅使用不具有乙烯性不饱和双键的含羧基树脂时，为了使组合物具有光固化性，需要组合使用如下所述的分子中具有一个以上乙烯性不饱和基团的化合物(感光性单体)。
[0083] 作为这样的含羧基树脂的具体例子，例如可列举出以下列举的化合物(低聚物和聚合物均可)。
[0084] (1)使后述的二官能或其以上的多官能(固态)环氧树脂与(甲基)丙烯酸进行反应，使在侧链中存在的羟基与邻苯二甲酸酯、四氢邻苯二甲酸酯、六氢邻苯二甲酸酯等二元酸酯进行加成而获得的含羧基感光性树脂。
[0085] (2)使利用环氧氧丙烷将后述的二官能(固态)环氧树脂 的羟基进一步环氧化而获得的多官能环氧树脂与(甲基)丙烯酸进行反应，使生成的羟基与二元酸酯进行加成而获得的含羧基感光性树脂。
[0086] (3)使1 分子中具有多个环氧基的环氧化合物、1 分子中具有至少一个醇性羟基和一个酚性羟基的化合物以及(甲基)丙烯酸等的含不饱和基团的单羧酸进行反应，对于所得的反应产物的醇性羟基，使马来酸酯、四氢邻苯二甲酸酯、偏苯三酸酯、均苯四酸酯、己二酸酯等多元酸酯进行反应而获得的含羧基感光性树脂。
[0087] (4)使双酚A、双酚F、双酚S、酚醛清漆(novolac)型酚醛树脂、聚对羟基苯乙烯、丙烯酸酯的组合物、二羟基苯与醇类的组合物等1 分子中具有多个酚性羟基的化合物与环氧乙烷、环氧丙烷等环氧烷反应而得到的反应产物与(甲基)丙烯酸等含不饱和基团的单羧酸反应，并使所得反应产物与多元酸酯反应而得到的含羧基感光性树脂。
[0088] (5)使1 分子中具有多个酚性羟基的化合物与丙烯酸，丙烯酸丙酯等环状羧酸酯化合物反应而得到的反应产物与(甲基)丙烯酸等含不饱和基团单羧酸反应，并使所得
反应产物与多元酸酐反应而得到的含羧基感光性树脂。

(6) 使通过脂肪族二异氰酸酯、支链脂肪族二异氰酸酯、脂环式二异氰酸酯、芳香族二异氰酸酯等二异氰酸酯合计的多聚碳酸酸酯系多元醇、聚醚系多元醇、聚酯系多元醇、聚烯烃系多元醇、丙烯酸系多元醇、双酚 A 系环氧烷加成物二元醇、具有酚羟基和醇羟基的化合物等二元醇化合物的加聚反应得到的聚氨酯树脂的末端与酸酐反应而得到的末端含羧基聚氨酯树脂。

(7) 在通过二异氰酸酯与二羟甲基丙酸、二羟甲基丁酸等含羧基的二醇化合物和二元醇化合物的加聚反应而进行的含羧基聚氨酯树脂的合成中，加入二(甲基)丙烯酸烷基酯等分子中具有 1 个羟基和 1 个以上(甲基)丙烯酸烷基酯的化合物而得到的末端(甲基)丙烯酸化的含羧基聚氨酯树脂。

(8) 在通过二异氰酸酯与含羧基的二醇化合物、二元醇化合物的加聚反应而进行的含羧基聚氨酯树脂的合成中，加入异佛尔酮二异氰酸酯和季戊四醇三丙烯酸酯的等摩尔反应物等分子中具有 1 个异氰酸酯基和 1 个以上(甲基)丙烯酸酯的化合物而得到的末端(甲基)丙烯酸化的含羧基聚氨酯树脂。

(9) 通过(甲基)丙烯酸酯等不饱和羧酸与苯乙烯、α-甲基苯乙烯、(甲基)丙烯酸低级烷基酯、异丁烯等含不饱和基团化合物共聚而得到的含羧基树脂。

(10) 使前后的多官能交环丁烷树脂与己二酸、邻苯二甲酸、六氢邻苯二甲酸等二羧酸反应，在生成的伯羟基上加成二元酸酐而得到的含羧基聚酯树脂中进一步加成(甲基)丙烯酸缩水甘油酯、(甲基)丙烯酸酯、α-甲基缩水甘油酯等 1 分子中具有 1 个环氧基和 1 个以上(甲基)丙烯酸酯的化合物而得到的含羧基感光性树脂。

(11) 在前述(1)～(10)的含羧基树脂中加成 1 分子中具有环状醚基和(甲基)丙烯酸酯的化合物而得到的含羧基感光性树脂。需要说明的是，在本说明书中，(甲基)丙烯酸酯是统称丙烯酸酯、甲基丙烯酸酯和它们的混合物的用语，规定其他类似表达也是同样的。

(12) 这些含羧基树脂中，如上所述，可适宜地使用未用环氧树脂作为起始原料的含羧基树脂。这样的含羧基树脂由于未使用环氧树脂为起始原料，因此具有氯离子杂质非常少的特征。可在本实施方式中适宜使用的含羧基树脂的氯离子杂质含量优选为 100ppm 以下，更优选为 50ppm 以下，进一步优选为 30ppm 以下，所以，可特别适宜地使用上述列举的含羧基树脂(4)～(8)

(13) 另外，未使用环氧树脂作为起始原料的含羧基树脂可以容易地得到不含羟基的树脂。通常，已知羟基的存在还具有通过氯键来提高密合性等优异的特征，但会显著降低耐湿性。以下说明与通常的阻焊剂所使用的环氧丙烯酸酯改性树脂相比较的、未使用以环氧树脂做为起始原料的含羧基树脂的优点。

(14) 没有氯成分的苯酚酚醛清漆树脂可以容易地获得。通过将对其进行烷基醚(alkyl oxide)改性的酚醛树脂的酮基丙烯酸化，和酸酐的导入，可以得到双键含量为 300～550，酸值为 40～120mgKOH/g 范围的理论上不具有羟基的树脂。

(15) 另一方面，将由类似的苯酚酚醛清漆树脂合成的环氧树脂的环氧基完全丙烯酸化，并在所有羟基上导入酸酐时，双键含量变为 400～500，酸值变得非常大，无法得到即使在曝光后也具有耐显影性的涂层。
羟基是非常困难的。

[0099] 另外，聚氨酯树脂也可以通过调合羟基与异氰酸酯基的当量容易地合成不含羟基的树脂。优选的树脂为由未使用光气作为起始原料的异氰酸酯化合物，未使用表卤代醇的原料合成的氯离子重量为 30ppm 以下的含羧基树脂，进一步优选以理论上不含羟基的方式合成的树脂。

[0100] 从这样的观点出发，也可以使用前面作为具体例子示出的含羧基树脂(1)～(3)，但为了得到具有作为半导体封装用阻焊剂的更优异的 PCT 耐性、HAST 耐性、耐冷热冲击性的阻焊剂组合物，可更适宜地使用上述含羧基树脂(4)～(8)

[0101] 另外，在先前示出的通过与不饱和基团化合物的共聚而得到的含羧基树脂(9)～(11)中具有环状醚基和(甲基)丙烯酰基的化合物(甲基)丙烯酸 3,4-环氧环己基甲基反应而得到的含羧基含羧基感光性树脂也由于使用脂环式环氧化物，因此氯离子杂质少，可以适宜地使用。

[0102] 另一方面，关于使含羧基树脂(9)～(11)中具有环状醚基和(甲基)丙烯酰基的化合物的甲基丙烯酸缩水甘油酯反应而得到的物质，使含羧基树脂(9)～(11)中具有不饱和基团化合物的(甲基)丙烯酸缩水甘油酯共聚而得到的物质，有氯离子杂质质量变多的担心。另外，合成聚氨酯树脂时，还可以使用环氧丙烯酸酯改性原料作为二醇化合物。虽然引入了氯离子杂质，但从能够控制氯离子杂质含量的观点考虑是可以使用的。

[0103] 上述这种含羧基树脂由于在主链-聚合物的支链上具有多个羧基，因此可以通过碱水溶液显影。

[0104] 另外，上述含羧基树脂的酸值优选为 40～150mgKOH/g 的范围。酸值小于 40mgKOH/g 时，显影性变得困难，另一方面，超过 150mg KOH/g 时，由于显影液导致的曝光部的溶解加速，线变得比所需要的更细，有时曝光部和未曝光部无区别地被显影液溶解剥离，难以描绘正常的抗蚀图案。更优选上述酸值为 40～130mg KOH/g。

[0105] 另外，上述含羧基树脂的重均分子量根据树脂骨架有所差异，通常优选为 2000～100000。重均分子量低于 2000 时，有时不粘性差，曝光后的涂膜的耐湿性差，显影时发生膜厚损失，有时图像分辨率大幅恶化。另一方面，重均分子量超过 100000 时，显影性有时显著变差，贮藏稳定性差。更优选为 2000～80000 的范围。

[0106] 这样的含羧基树脂的配混等为全体组合物中的 20～60 质量%，优选为 30～50 质量%。小于上述范围时，有时涂膜强度会降低。另一方面，大于上述范围时，有时粘性增高，或涂布性降低。

[0107] 此外，作为实施方式的光固化性热固性树脂组合物中使用的含羧基树脂，可以使用具有后述的第二实施方式的通式(4)～(7)所示结构的含羧基感光性树脂。

[0108] 作为本实施方式的光固化性热固性树脂组合物中使用的光聚合作用反应剂，可以使用由具有酯基的酯系光聚合作用反应剂、甲基苯甲酮系光聚合作用反应剂、酯基光聚合作用反应剂组合而成的组中选出的一种以上的光聚合作用反应剂。

[0109] 作为酯系光聚合作用反应剂的市售品，可以列举出 Ciba Japan K.K. 制造的 CGI-325、IRGACURE OXE01、IRGACURE OXE02、Adeka Corporation 制造的 N-1919、ADEKA ARKLE NC-831 等。另外，分子内具有 2 个酚基的氧化物聚合作用反应剂也是可以适用的，具体而言，可以列举出上述通式(8)所示的具有咔唑结构的酚酯化合物。
(0111) 式中，X 表示氢原子、碳数 1~17 的烷基、碳数 1~8 的烷氧基、苯基、苯基（被碳数 1~17 的烷基、碳数 1~8 的烷氧基、氨、具有碳数 1~8 的烷基的烷基氨基或二烷基氨基取代），烃基（被碳数 1~17 的烷基、碳数 1~8 的烷氧基、氨基，具有碳数 1~8 的烷基的烷基氨基或二烷基氨基取代），Y、Z 分别表示氢原子、碳数 1~17 的烷基、碳数 1~8 的烷氧基、卤素基团、苯基、苯基（被碳数 1~17 的烷基、碳数 1~8 的烷氧基、氨、具有碳数 1~8 的烷基的烷基氨基或二烷基氨基取代），烃基（被碳数 1~17 的烷基、碳数 1~8 的烷氧基、氨基，具有碳数 1~8 的烷基的烷基氨基或二烷基氨基取代），氢基、吡啶基、苯并呋喃基（benzofuryl）、苯并喹啉基（benzothienyl），Ar 表示碳数 1~10 的亚烷基、亚乙烯基、亚苯基、联苯基、亚吡啶基（pyridylene）、亚苯基、亚苯基（anthrylene）、亚喹啉基（thienylene）、亚苯基（furylene）、2,5-吡咯基－二基、4,4'-二苯乙烯－二基、4,2'-苯乙烯－二基，n 表示 0 或 1 的整数。

(0112) 其中优选的是，式中，X、Y 各自是甲基或乙基，Z 是甲基或苯基，n 是 0，Ar 是亚苯基、亚苯基或亚苯基。

(0113) 相对于前述 100 质量份前述含羧基聚氨酯树脂，这种聚酯系光聚合引发剂的配混量优选为 0.01~5 质量份。配混量低于 0.01 质量份时，在钢的光固化性不足，涂层会剥离且耐化学性品性等涂膜特性降低。另一方面，超过 5 质量份时，阻焊涂膜表面的光吸收变得强烈，存在深部固化性降低的倾向。更优选为 0.5~3 质量份。

(0114) 作为 a-氨基苯乙酮系光聚合引发剂，具体而言，可列举出 2-甲基-1-[4-(甲硫基)苯基]-2-吗啉代丙酮-1,2-苯基-2-二甲基氨基酸-1-(4-吗啉代苯基)-丁烷-1-酮、2-(二甲基氨基)-2-[4-(甲基苯基)苯基]-1-丁酮、N,N-二甲基苯乙酮等。作为市售品，可列举出 Ciba Japan K.K. 制造的 IRGACURE907、IRGACURE369、IRGACURE379 等。

(0115) 作为酰基氧化膦系光聚合引发剂，具体而言，可列举出 2,4,6-三甲基苯甲酰基二苯基氧化膦、双(2,4,6-三甲基苯甲酰基)-苯基氧化膦、双(2,6-二甲基苯甲酰基)-二甲基-戊基氧化膦等。作为市售品，可列举出 BASF 公司制造的 LucirinTPO、Ciba Japan K.K. 制造的 IRGACURE819 等。

(0116) 相对于 100 质量份前述含羧基聚氨酯树脂，这些 a-氨基苯乙酮系光聚合引发剂、酰基氧化膦系光聚合引发剂的配混量优选为 0.01~15 质量份。配混量低于 0.01 质量份时，同样地钢的光固化性不足，涂层会剥离且耐化学品性等涂膜特性降低。另一方面，超过 15 质量份时，不能获得排气的降低效果，进而，阻焊涂膜表面的光吸收变得强烈，存在深部固化性降低的倾向。更优选为 0.5~10 质量份。

(0117) 作为其他可适用于本实施方式的光固化性热固化性树脂组合物的光聚合引发剂、
光引发助剂和敏化剂，可列举出苯偶姻化合物、苯乙酮化合物、嚏酮化合物、噻吨酮化合物、缩酮化合物、苯甲酰胺化合物、敏化化合物和噻唑酮等。

【0118】作为苯偶姻化合物，具体而言，可列举出例如苯偶姻、苯偶姻甲醚、苯偶姻乙醚、苯偶姻丙醚等。

【0119】作为苯乙酮化合物，具体而言，例如可列举出苯乙酮、2-甲基苯乙酮、2-苯基苯乙酮、2-苯基乙酰胺、1-丙基苯乙酮等。

【0120】作为嚏酮化合物，具体而言，例如可列举出2-甲基嚏酮、2-乙基嚏酮、2-叔丁基嚏酮、1-丙基嚏酮等。

【0121】作为噻吨酮化合物，具体而言，例如可列举出2,4-二甲基噻吨酮、2-乙基噻吨酮、2-氯噻吨酮、2,4-二异丙基噻吨酮等。

【0122】作为缩酮化合物，具体而言，例如可列举出苯乙酮二甲基缩酮、苯偶姻二甲基缩酮等。

【0123】作为苯甲酰胺化合物，具体而言，例如可列举出苯甲酰胺、4-苯甲酰基苯甲酰胺（Hodogaya Chemical Co. Ltd. 制造的EAB）等二苯基氨基二苯甲酰胺、7-二甲基苯甲酰胺、2-苯并吡喃-2-苯甲酰胺（Hodogaya Chemical Co. Ltd. 制造的KAYACURE EPA）、2-二甲基氨基安息香酸乙酯（International Bio-Synthetics公司制造的Quantacure DMB）、4-二甲基氨基安息香酸乙酯（International Bio-Synthetics公司制造的Quantacure BEA）、对二甲基氨基安息香酸异戊基乙酯（日本化药株式会社制造的KAYACURE DMBI）、4-二甲基氨基安息香酸乙酯（Van Dyk公司制造的Esolol507）、4,4’-二乙氨基二苯甲酰胺（Hodogaya Chemical Co. Ltd. 制造的EAB）等。

【0125】在它们当中，噻吨酮化合物和噻酮化合物是优选的。特别是从低毒和固化性的方面考虑，含有噻吨酮化合物是优选的。其中，含有2,4-二甲基噻吨酮、2,4-二乙基噻吨酮、2-氯噻吨酮、2,4-二异丙基噻吨酮等噻吨酮化合物是优选的。

【0126】相对于100质量份前述含羧基树脂，这种噻吨酮化合物的配比优选为20质量份以下。配比超过20质量份时，厚膜固化性降低，并且混合剂的成本会增高。更优选为10质量份以下。

【0127】另外，作为噻酮化合物，优选具有二烷基氨基苯结构的化合物。其中，特别优选二烷基氨基苯甲酰化合物。最大吸收波长为350nm~450nm的含有二烷基氨基的香豆素化合物及香豆素化合物（ketocoumarin）类。

【0128】作为二烷基氨基苯甲酰化合物，4,4’-二苯基苯甲酰化合物毒性也低，是优选的。由于含有二烷基氨基的香豆素化合物的最大吸收波长在350nm~410nm的紫外线区域，因此，不仅可以提供着色少、无色透明的感光性组合物，还可以提供使用着色颜料并可以提供使用着色颜料自身的颜色的着色阻隔膜。从波长400nm~410nm的激光显示优异的敏化效果的观点考虑，特别优选7-（二乙基氨基）-4-甲基-2H-1-苯并吡喃-2-酮。
相对于100质量份前述含羧基树脂，这种改性化合物的配混物优选为0.1~20质量份。配混物低于0.1质量份时，存在不能获得充分的硬化效果的倾向。另一方面，超过20质量份时，因羧基化合物导致的干燥阻止涂膜表面的光吸收会变得强烈，存在深部固化性降低的倾向。更优选为0.1~10质量份。这些光聚合引发剂、光引发助剂和敏化剂可以单独使用或者作为两种以上的混合物使用。

相对于100质量份前述含羧基树脂，这种光聚合引发剂、光引发助剂和敏化剂的总量优选为35质量份以下。超过35质量份时，存在由于它们的光吸收导致深部固化性降低的倾向。

此外，这些光聚合引发剂、光引发助剂和敏化剂由于吸收特定的波长，所以根据情况感光度变低，有时作为紫外光吸收剂起作用。然而，它们并非仅仅出于提高组合物的感光度的目的而使用。根据需要能够使其吸收特定波长的光，提高表面的光反应性，使抗蚀膜的抗蚀膜及开口变化为垂直、锥形状、倒锥形状，并且能够提高线宽、开口直径的加工精度。

进而在本实施方式的光固化性热固性树脂组合物中，为了赋予耐热性，可以添加耐热固化性成分。作为热固化性成分，具体而言，可以使用端基氮丙酮化合物、氨基树脂、马来酰亚胺化合物、苯并噻唑树脂、碳化二亚胺树脂、环碳酸酯化合物、多官能环氧化合物、多官能氮杂环丁烷化合物、环硫化物树脂等已知的热固化性树脂。在它们当中，优选的热固化性成分是在分子中含有多个环状醚基和/或环状醚基（以下简称环状（硫）醚基）的热固化性成分。这些具有环状（硫）醚基的热固化性成分的市售种类繁多，根据其结构的不同可以赋予各种特性。这种分子中含有多个环状（硫）醚基的热固化性成分是分子中含有多个三、四或五元环的环状醚基，或环状醚基中的至少一种类型的基团或两种类型的基团的化合物，例如，可以列举出分子中含有多个环氧基的化合物，即多官能环氧化合物，分子中具有多个氧杂环丁基的化合物，即多官能氧杂环丁烷化合物，分子中具有多个硫醚基的化合物，即环硫化物树脂等。

(双酚A型环硫化物树脂)等。另外，也可以使用同样地合成方法将酚醛清漆型环氧树脂的环氧基的氧原子替换成硫原子而形成的环硫化物树脂等。

【0137】相对于上述含羧基树脂的1当量羧基，这种分子中具有多个环状(硫)醚基的热固化性成分的配混量优选为0.6~2.5当量。配混量低于0.6时，在阻焊膜中会有羧基残留，耐热性、耐碱性、电绝缘性等降低。反之，超过2.5当量时，由于低分子量的环状(硫)醚基在干燥涂膜中残留，因此涂膜的强度等降低。更优选为0.8~2.0当量。

【0138】进而，作为能够适用的热固化性成分，可列举出三聚氰胺衍生物、苯并脉胺衍生物等。例如有羟基三聚氰胺衍物、羟基苯并脉胺衍物、羟基三聚氰胺衍物和羟基甲基尿素衍物等。进而，烷基氨基甲基化三聚氰胺衍物、烷基氨基甲基化苯并脉胺衍物、烷基氨基甲基化三聚氰胺衍物和烷基氨基甲基化尿素衍物，可通过将羟基三聚氰胺衍物、羟基苯并脉胺衍物、羟基三聚氰胺衍物和羟基甲基尿素衍物的羟基甲基分别变换为烷基氨基甲基衍物而得到。对该烷基氨基甲基的种类没有特别的限定，例如可以为甲氧基甲基、乙氧基甲基、丙氧基甲基、丁氧基甲基等。特别优选对人体、环境友好的福尔马林浓度为0.2%以下的三聚氰胺衍生物。

【0139】作为它们的市售品，例如可列举出Cymel 300、Cymel 301、Cymel 303、Cymel 370、Cymel 325、Cymel 327、Cymel 701、Cymel 266、Cymel 267、Cymel 238、Cymel 1141、Cymel 272、Cymel 202、Cymel 1156、Cymel 1158、Cymel 1123、Cymel 1170、Cymel 1174、Cymel UFR65、Cymel 300（以上由Mitsui-Cyanamid.Ltd.制造）、NIKALAC Mx-750、NIKALAC Mx-320、NIKALAC Mx-270、NIKALAC Mx-280、NIKALAC Mx-290、NIKALAC Mx-706、NIKALAC Mx-708、NIKALAC Mx-40、NIKALAC Mx-31、NIKALAC Ms-11、NIKALAC Ms-30、NIKALAC Mw-390、NIKALAC Mw-100LM、NIKALAC Mw-750LM（以上由SANWitchemical Co.,Ltd.制造）等。这些热固化性成分可以单独使用或将两种以上组合使用。

【0140】另外，在本实施方式的光固化性热固化性树脂组合物中，为了提高组合物的固化性和所得固化膜的强韧性，可以添加在1分子中具有多个异氰酸酯基或封端异氰酸酯基的化合物。关于这种在1分子中具有多个异氰酸酯基或封端异氰酸酯基的化合物，可列举出在1分子中具有多个异氰酸酯基的化合物，即多异氰酸酯化合物，或在1分子中具有多个封端异氰酸酯基的化合物，即封端异氰酸酯化合物等。

【0141】作为多异氰酸酯化合物，可以使用例如芳香族多异氰酸酯、脂肪族多异氰酸酯或环状多异氰酸酯。作为芳香族多异氰酸酯的具体例子，可列举出4,4′-二苯甲烷二异氰酸酯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、萘-1,5-二异氰酸酯、邻二甲苯二异氰酸酯、间二甲苯二异氰酸酯以及2,4-甲苯二异氰酸酯二聚体。为脂肪族多异氰酸酯的具体例子，可列举出三亚甲基二异氰酸酯、六亚甲基二异氰酸酯、亚甲基二异氰酸酯、三亚甲基六亚甲基二异氰酸酯、4,4′-亚甲基双(环己基异氰酸酯)以及异佛尔酮二异氰酸酯。作为脂肪环状多异氰酸酯的具体例子，可列举出二环己烷三异氰酸酯。还可列举出先前提到的异氰酸酯化合物的加合物(aduct)、缩二脲体和异氰脲酸酯体。

【0142】封端异氰酸酯化合物中所含有的封端化异氰酸酯基是异氰酸酯基通过与封端剂反应而被保护的，暂时被惰化性的基团。在加热至规定的温度时，该封端剂解离，生成异氰酸酯基。
[0143] 作为封端异氰酸酯化合物，可以使用异氰酸酯化合物与异氰酸酯封端剂的加成反应产物。作为可与封端剂反应的异氰酸酯化合物，可列举出异氰尿酸酯型、缩二脲型、加合物型等。作为这种异氰酸酯化合物，可以使用例如芳香族多异氰酸酯、脂肪族多异氰酸酯或脂环式多异氰酸酯。作为芳香族多异氰酸酯、脂肪族多异氰酸酯、脂环族多异氰酸酯的具体例子，可列举出以下例示的化合物。

[0144] 作为异氰酸酯封端剂，例如可列举出苯酚、甲酚、二甲酚、氯酚和乙基苯酚等酚系封端剂；e-己内酰胺、δ-戊内酰胺、γ-丁内酰胺、β-丙内酰胺等内酰胺系封端剂；乙酰乙酸乙酯和乙酰丙酮等活性亚甲基系封端剂；甲醇、乙醇、丙醇、丁醇、戊醇、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丙醚、乙二醇单丁醚、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丙醚、乙二醇单丁醚、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丙醚、乙二醇单丁醚、苯基醚、乙苯甲醇、乙醇二丁酯、二丙酮醇、乳酸甲酯和乳酸乙酯等醇系封端剂；甲醚肟、乙醚肟、丙酮肟（acetoimide）、甲乙酮肟、乙酮单肟、环己烷肟等肟系封端剂；二硫化、己硫化、叔丁基硫醇、苯硫酚、甲基苯硫酚、乙基苯硫酚等硫醇系封端剂；乙酰胺、苯酰胺等酰胺系封端剂；琥珀酰亚胺和马来酰亚胺等酰亚胺系封端剂；二甲苯胺、苯胺、丁胺、二丁胺等胺系封端剂；咪唑、2-乙基咪唑等咪唑系封端剂；亚甲基亚胺和亚丙基亚胺等亚胺系封端剂等。

[0145] 封端异氰酸酯化合物可以是市售品，例如可列举出Sumidule BL-3175、BL-4165、BL-1100、BL-1265、Desmodur TPLS-2957、TPLS-2062、TPLS-2078、TPLS-2117、Desmotherm2170、Desmotherm 2265（以上由Sumika Bayer Urethane Co., Ltd. 制造，商品名），CORONATE 2512、CORONATE 2513、CORONATE 2520（以上由日本聚氨酯工业公司制造，商品名），B-830、B-815、B-846、B-870、B-874、B-882（MITSUI TAKEDACHEMICALS, INC. 制造，商品名），TPA-B80E、17B-60FX、E402-B80T（Asahi Kasei Chemicals Corporation 制造，商品名）等。其中，Sumidule BL-3175、BL-4265 是使用甲基乙基酮作为封端剂而获得的。上述在 1 分子中具有多个异氰酸酯基或封端异氰酸酯基的化合物可以单独使用一种或者组合两种以上使用。

[0146] 相对于 100 质量份前述含氨基树脂，这种在 1 分子中具有多个异氰酸酯基或封端化异氰酸酯基的化合物的配混量优选为 1~100 质量份。配混量低于 1 质量份时，不能获得充分的涂膜强度。另一方面，超过 100 质量份时，保存稳定性降低。更优选为 2~70 质量份。

[0147] 在本实施方式的光固化性热固化性树脂组合物中，为了促进羟基、羧基与异氰酸酯基的固化反应，可以添加氨基甲酸酯化催化剂。作为氨基甲酸酯化催化剂，优选使用由锡系催化剂、金属氯化物、乙酰丙酮金属盐、金属硫酸盐、胺化合物或/和胺盐组成的组中选出的一种以上的氨基甲酸酯化催化剂。

[0148] 作为锡系催化剂，例如可列举出辛酸亚锡、二月桂酸二丁基锡等有机锡化合物、无机锡化合物等。

[0149] 作为金属氯化物，可列举出由 Cr、Mn、Co、Ni、Fe、Cu 或 Al 组成的金属的氯化物，例如氯化高钴、二氯化镍、氯化铁等。

[0150] 作为乙酰丙酮金属盐，可列举出由 Cr、Mn、Co、Ni、Fe、Cu 或 Al 组成的金属的乙酰丙酮盐，例如乙酰丙酮钴、乙酰丙酮镍、乙酰丙酮铁等。

[0151] 作为金属硫酸盐，可列举出由 Cr、Mn、Co、Ni、Fe、Cu 或 Al 组成的金属的硫酸盐，例如硫酸铜等。
作为胺化合物，例如可列举出现有公知的三亚乙基二胺、N,N,N’-四甲基-1,6-己二胺、双（2-二甲基氨基乙基）醚、N,N,N’,N”,N”’-五甲基二亚乙基三胺、N-甲基吗啉、N-乙基吗啉、N-二甲基乙醇胺、二吗啉基二乙醚、N-甲基咪唑、二甲基氨基吡啶、三嗪、N'-（2-羟乙基）-N,N-三甲基-双（2-氨基乙基）醚、N,N-二甲基己醇胺、N,N-二甲基氨基乙氧基乙醇、N,N,N'-三甲基-双（2-羟乙基）乙二胺、N-（2-羟乙基）-N,N',N”,N”’-四甲基三亚乙基三胺、N,N,N’-三甲基-双（2-羟乙基）丙二胺、N-甲基-N'-(2-羟乙基)咪喃、双(N,N’-二甲基氨基丙基)胺、双(N,N'—二甲氨基丙基)异丙醇胺、2-氨基奎宁环、3-氨基奎宁环、4-氨基奎宁环、2-奎宁醇、3-奎宁醇、4-奎宁醇、1-（2’-羟丙基）咪唑、1-（2’-羟丙基）咪唑、1-（2’-羟乙基）咪唑、1-（2’-羟乙基）咪唑、1-（2’-羟丙基）-2-甲基咪唑、1-（3’-羟丙基）咪唑、1-（3’-羟丙基）咪唑；N,N’-二甲基氨基甲基丙基-N’-(2-羟乙基)胺、N,N’-二甲氨基甲基丙基-N’-双(2-羟乙基)胺、N,N’-二甲氨基甲基丙基-N’-双(2-羟丙基)胺、N,N’-二甲氨基甲基丙基-N’-双(2-羟乙基)胺、N,N’-二甲氨基甲基丙基-N’-双(2-羟丙基)胺。三聚氰胺等/或苯并胍胺等。

作为胺盐，例如可列举出DBU (1,8-二氮杂-双环 [5.4.0] 十一碳烯 -7) 的有机酸盐系的胺盐等。

氨基甲酸酯化催化剂的配混量按通常的量的比例即是足够的，例如，相对于 100 质量份含羧基树脂，优选为 0.1~20 质量份，更优选为 0.5~10.0 质量份。

使用分子中具有多个环状 (硫) 隐基的热固定化成分时，优选含有热固定化催化剂。作为这种热固定化催化剂，例如可列举出咪唑、2-甲基咪唑、2-乙基咪唑、2-乙基 -4- 甲基咪唑、2-苯基咪唑、4-苯基咪唑、1-氯基乙基-2-苯基咪唑、1-（2-氯基乙基）-2-苯基咪唑、4-甲基咪唑等咪唑衍生物；双氮胺、苯基二胺、4-（二甲氨基氨基）-N,N-二甲基苄基胺、4-甲氧基-N,N-二甲基苄基胺、4-甲基-N,N-二甲基苄基胺等胺化合物；乙二酸二酰肼、癸二酸二酰肼甲酰胺化化合物；苯甲酰基等磷酸化合物等。

另外，作为市售品，例如可列举出四国化成立工业公司制造的 2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ（均为咪唑系化合物的商品名），SAN-APRO Ltd. 制造的 U-CAT（注册商标）3503N、U-CAT3502T（均为二甲胺的封端异氰酸酯化合物的商品名）、DBU、DBN、U-CATSA 102、U-CAT5002（均为二环烷化合物及其盐）等。特别是并不限于这些化合物，只要是环氧树脂、氧杂环丁烷化合物的热固定化催化剂、或促进环氧基和/或亲水环丁基与羧基的反应的物质即可，可以单独使用或将两种以上混合使用。另外，还可以使用胺胶、甲基胺胶、苯并胺胶、三聚氰胺、2,4-二氨基-6-甲基丙烯酰氧基乙基-均三嗪、2-乙烯基-2,4-二氨基-均三嗪、2-乙烯基-4,6-二氨基-均三嗪・异氰脲酸加成物、2,4-乙烯基-6-甲基丙烯酰氧基乙基-均三嗪・异氰脲酸加成物等均三嗪衍生物，优选将这些还起密合性赋予剂作用的化合物与上述热固定化催化剂组合使用。

这些热固定化催化剂的配混量为通常的量的比例即是足够的，例如，相对于 100 质量份含羧基树脂或分子中具有多个环状 (硫) 隐基的热固定化成分，优选为 0.1~20 质量份，更优选为 0.5~15.0 质量份。

本实施方式的光固定化热固定化性树脂组合物可以配混着色剂。作为着色剂，可以
使用红、蓝、绿、黄等公知的着色剂，可以是颜料，染料，色素的任何一种。然而，从降低环境
负荷以及对人体的影响的观点考虑，优选不含卤素。

【0159】作为红色着色剂，有单偶氮系、双偶氮（disazo）系、偶氮色淀系、苯并咪唑酮
（benzimidazolon）系、花卉系、二酮基吡咯并吡咯系、缩合偶氮系、蒽醌系、喹呧啶酮系等，具体而言，可列举出以下这样的附有染料索引（C.I.;The Society of Dyers and
Colourists 发行）编号的物质。

【0160】单偶氮系：颜料红 1,2,3,4,5,6,8,9,12,14,15,16,17,21,22,23,31,32,112,
114,146,147,151,170,184,187,188,193,210,245,253,258,266,267,268,269。

【0161】双偶氮系：颜料红 37,38,41。

【0162】单偶氮色淀系：颜料红 48:1,48:2,48:3,48:4,49:1,49:2,50:1,52:4,52:2,
53:1,53:2,57:1,58:4,63:1,63:2,64:1,68。

【0163】苯并咪唑酮系：颜料红 171,175,176,185,208。

【0164】花卉系：溶剂红 135,179,颜料红 123,149,166,178,179,190,194,224。

【0165】二酮基吡咯并吡咯系：颜料红 254,255,264,270,272。

【0166】缩合偶氮系：颜料红 220,144,166,214,220,221,242。

【0167】蒽醌系：颜料红 168,177,216,溶剂红 149,150,52,207。

【0168】喹呧啶酮系：颜料红 122,202,206,207,209。

【0169】蓝色着色剂：

【0170】作为蓝色着色剂，有酞菁系、蒽醌系，颜料系是被分类为颜料（pigment）的化合物，
具体而言，可列举出如下所述的化合物：颜料蓝 15,15:1,15:2,15:3,15:4,15:6,16,60。为
作为染料系，可以使用溶剂蓝 35,63,68,70,83,87,94,97,122,136,67,70 等。除了上述以外，
还可以使用金属取代或未取代的酞菁化合物。

【0171】绿色着色剂：

【0172】作为绿色着色剂，同样地有酞菁系、蒽醌系，具体而言，可以使用颜料绿 7,
36,溶剂绿 3,5,20,28 等。除了上述以外，还可以使用金属取代或未取代的酞菁化合物。

【0173】黄色着色剂：

【0174】作为黄色着色剂，有单偶氮系、双偶氮系、缩合偶氮系、苯并咪唑酮系、异吲哚啉酮
系、蒽醌系等，具体而言，可列举出以下的化合物。

【0175】蒽醌系：溶剂黄 163，颜料黄 24,108,193,147,199,202。

【0176】吲哚啉酮系：颜料黄 110,109,139,179,185。

【0177】缩合偶氮系：颜料黄 93,94,95,128,155,166,180。

【0178】苯并咪唑酮系：颜料黄 120,151,154,156,175,181。

【0179】单偶氮系：颜料黄 2,12,3,4,5,6,9,10,12,61,62,63,64,65,73,74,75,97,100,
104,105,111,116,167,168,169,182,183。

【0180】双偶氮系：颜料黄 12,13,14,16,17,55,63,81,83,87,126,127,152,170,172,
174,176,188,198。

【0181】此外，为了调和色调，可以添加紫色、橙色、棕色、黑色等着色剂。

【0182】作为具体示例，有颜料紫 19,23,29,32,36,38,42,溶剂紫 13,36，C.I. 颜料棕 1、
5,13,14,16,17,24,34,36,38,40,43,46,49,51,61,63,64,71,73，颜料棕 23,25，颜料黑 1、
说明书

7 等。

【0183】对这些着色剂的配混比例没有特别限制，相对于 100 质量份上述含羧基树脂，优选为 10 质量份以下，特别优选为 0.1~5 质量份的比例即足够。

【0184】本实施方式的固化性热固性树脂组合物中使用的分子中具有多个乙烯性不饱和基团的化合物是通过活性能量射线照射发生固化，使上述含羧基树脂不溶于碱水溶液，或有助于使上述含羧基树脂不溶于碱水溶液的物质。

【0185】作为这种化合物，可以使用公知的聚酯（甲基）丙烯酸酯、聚醚（甲基）丙烯酸酯、氨基甲酸酯（甲基）丙烯酸酯、甲酸酯（甲基）丙烯酸酯、环氧化（甲基）丙烯酸酯等。具体而言，可列举出丙烯酸 2-羟乙酯、丙烯酸 2-羟丙酯等丙烯酸酯类；乙二醇、甲氧基四乙二醇、聚乙二醇、丙二醇等二醇的二丙烯酸酯类；N,N-二甲基丙烯酰胺、N,N-二甲基氨基丙基丙烯酰胺等丙烯酰胺类；丙烯酸 N,N-二甲基氨基乙酯、丙烯酸 N,N-二甲基氨基丙酯等丙烯酸氨基烷基酯类；己二醇、三羟甲基丙腈、季戊四醇、季戊四醇、三羟甲基异氰脲酸酯等多元醇或它们的环氧乙烷加成物、环氧丙烷加成物，或 e-己内酯加成物等的多元丙烯酸酯类；苯氧基丙烯酸酯、双酚 A 二丙烯酸酯以及这些酚类的环氧乙烷加成物或环氧丙烷加成物等的多元丙烯酸酯类；丙三醇二缩水甘油醚、丙三醇三缩水甘油醚、三羟甲基丙腈三缩水甘油醚、三缩水甘油基异氰脲酸酯等缩水甘油醚的多元丙烯酸酯类；不局限于上述化合物，还列举出聚酯多元醇，聚碳酸酯，二羟基末端聚丁二烯，聚酯多元醇等多元醇直接丙烯酸酯化，或经由二异氰酸酯进行氢基甲酸酯丙烯酸酯化而获得的丙烯酸酯类和三聚氰胺丙烯酸酯，和 / 或与上述丙烯酸酯对各种甲基丙烯酸酯类等。

【0186】进而，可列举出使甲基酯老龄溶性型环氧树脂等多元醇环氧树脂与丙烯酸反应而获得的环氧丙烯酸酯树脂，该环氧丙烯酸酯树脂的羟基进一步与季戊四醇三丙烯酸酯等羟基丙烯酸酯和异佛尔酮二异氰酸酯等二异氰酸酯的半氨基甲酸酯化合物反应而获得的环氧氨基甲酸酯丙烯酸酯化合物等。这种环氧丙烯酸酯系树脂可以提高光固化性而不会使指触干燥性降低。

【0187】相对于 100 质量份上述含羧基树脂，这些分子中具有多个乙烯性不饱和基团的化合物的配混比优选为 5~100 质量份。配混量低于 5 质量份时，光固化性降低，难以通过活性能量射线照射后的碱显影来形成图案。另一方面，超过 100 质量份时，对碱水溶液的溶解性降低，涂膜变脆。更优选为 1~70 质量份。

【0188】为了提高其涂膜的物理强度等，本实施方式的光固化性热固性树脂组合物可以根据需要配混填充剂。作为这样的填充剂，可以使用公知的无机或有机填充剂，特别优选为硫酸钡、球状二氧化硅以及滑石、诺伊堡硅藻土（Neuburg Siliceous earth）。进而，为了得到白色的外观，阻燃性，可以使用氧化钛等金属氧化物，氢氧化铝等金属氢氧化物作为填充剂。

【0189】为了改善指触干燥性、改善处理性等，本实施方式的光固化性热固性树脂组合物还可以使用粘结剂聚合物。例如，可以使用聚酯系聚合物、聚氨酯系聚合物、聚酯氨基甲酸酯系聚合物、聚酰胺系聚合物、聚酰氨基系聚合物、丙烯酸系聚合物、纤维素系聚合物、聚乳酸系聚合物、苯氧基系聚合物等。这些粘结剂聚合物可以单独使用或者可作为两种以上的混合物使用。
[0190] 进而，为了赋予柔软性、改善固化物的脆性等，本实施方式的光固化性热固化性树脂组合物还可以使用其他弹性体。例如，可以使用聚氨酯弹性体、聚氨酯系弹性体、聚氨酯甲酸酯系弹性体、聚酰胺系弹性体、聚氨酯丙烯酸系弹性体、丙烯酸系弹性体。另外，还可以通过使用本末端羧酸改性的丙烯酸树脂对具有各种骨架的环氧树脂的部分或全部进行改性而得到的树脂等。

[0191] 进而，还可使用含环氧基的聚丁二烯系弹性体、含丙烯酰基的聚丁二烯系弹性体、含羟基的聚丁二烯系弹性体等。这些弹性体可以单独使用或作为两种以上的混合物使用。

[0192] 进而，为了上述羧基树脂的合成、组合物的调制，或者为了调整粘度以便涂布到基板、载体薄膜上，本实施方式的光固化性热固化性树脂组合物可以使用有机溶剂。

[0193] 作为这种有机溶剂，可列举出醇类、芳香族烃类、二醇醚类、二醇醚乙酸酯类、酯类、醇类、脂肪族烃、石油系溶剂等。更具体而言，为甲乙酮、环己酮等酮类；甲苯、二甲苯、四甲苯等芳香族烃类；溶纤剂、甲基溶纤剂、丁基溶纤剂、卡必醇、卡必醇、卡必醇、丙二醇单甲醚、二丙二醇单甲醚、丙二醇二乙醚、乙二醇单甲醚等二醇醚类；醋酸乙酯、醋酸丁酯、二丙二醇甲醚乙酸酯、丙二醇甲醚乙酸酯、丙二醇乙醚乙酸酯等酯类；乙醇、丙酮、乙二醇、丙二醇等醇类；苯、二苯胺等脂肪族烃；石油醚、石油脑、氢化石油脑、溶剂石脑油等石油系溶剂等。这种有机溶剂可以单独使用或作为两种以上的混合物使用。

[0194] 通常，大多数高分子材料一旦开始氧化，就会不断连锁地发生氧化劣化，导致高分子原料的性能降低，因此，在本实施方式的光固化性热固化性树脂组合物中，为了防止氧化，可以添加使产生的自由基失效的自由基捕获剂和/或产生的过氧化物分解为无害物质且不会产生新的自由基的过氧化物分解剂等抗氧化剂。

[0195] 作为起着自由基捕获剂作用的抗氧化剂的具体的化合物，可列举出氢化氢，4-叔丁基酯二醇、2-叔丁基酯二醇、氢氟单甲醚、2,6-二叔丁基-对甲酚、2,2-亚甲基-双(4-甲基-6-叔丁基苯乙酸)、1,1,3-三(2-甲基-4-羟基-6-叔丁基苯乙酸)、丁烷、1,3-五-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苯基)、苯、1,3,5-三(3’，5’-二叔丁基-4-羟基苯基)、2,4,6-(1H,3H,5H)三酮等酚系、对甲氧基苯酚、苯醚等醚系化合物、双(2,2,6,6-四甲基-4-哌啶基)-癸二酸酯、氯噻嗪等胺系化合物等。

[0196] 自由基捕获剂可以是市售品，例如可列举出ADK STABAO-30、ADK STAB AO-330、ADK STAB AO-20、ADK STABLA-77、ADK STAB LA-57、ADK STAB LA-67、ADK STABLA-68、ADK STABLA-87（以上为旭电化公司制造，商品名）、IRGANOX 1010、IRGANOX 1035、IRGANOX 1076、IRGANOX1135、TINUVIN 111FDL、TINUVIN 123、TINUVIN 144、TINUVIN 152、TINUVIN 292、TINUVIN 5100（以上为Ciba JapanK.K. 制造，商品名）等。

[0197] 作为起着过氧化物分解剂作用的抗氧化剂的具体的化合物，可列举出亚磷酸三苯酯等磷系化合物、季戊四醇四月桂基硫代丙酸酯、二月桂基硫代二丙酸酯、二硬脂基-3,3’-硫代二丙酸酯等硫系化合物等。

[0198] 过氧化物分解剂可以是市售品，例如可列举出ADK STABTPP（旭电化公司制造，商品名）、MARK AO-412S（ADEKA ARGUS CHEMICAL CO., LTD. 制造，商品名）、Sumilizer TPS（住友化学株式会社制造，商品名）等。

[0199] 这些抗氧化剂可以单独使用一种或将两种以上组合使用。
另外，通常高分子材料由于吸收光而由此发生分解・劣化，因此，为了采取针对紫外线的稳定化对策，本实施方式的光固化性热固性树脂组合物中除了上述抗氧化剂以外，可以使用紫外线吸收剂。

作为紫外线吸收剂，可列举出二苯甲酮衍生物、苯甲酸酯衍生物、二苯甲酰胺衍生物。三嗪衍生物，苯并噻唑衍生物、肉桂酸酯衍生物、邻苯基苯甲酸酯衍生物、邻苯甲酰基甲烷衍生物等。

作为二苯甲酮衍生物的具体例子，可列举出 2-羟基-4-甲氧基二苯甲酮-4-羟基-4-正辛氧基二苯甲酮-2,2’-二羟基-4-甲氧基二苯甲酮和 2,4-二羟基二苯甲酮等。

作为苯甲酸酯衍生物的具体例子，可列举出水杨酸-2-乙基己酯。水杨酸苯酯，水杨酸对叔丁基苯酯-2,4-二叔丁基苯酯，-3,5-二叔丁基-4-羟基苯甲酸酯和十六烷基-3,5-二叔丁基-4-羟基苯甲酸酯等。

作为苯并三唑衍生物的具体例子，可列举出 2-（2’-羟基-5’-叔丁基苯基）苯并三唑，2-（2’-羟基-5’-甲基苯基）苯并三唑，2-（2’-羟基-3’-叔丁基-5’-甲基苯基）苯并三唑，2-（2’-羟基-3’，5’-二叔丁基苯基）苯并三唑，-5’-甲基苯基苯并三唑，2-（2’-羟基-3’，5’-二叔丁基苯基）苯并三唑等。

作为三嗪衍生物的具体例子，可列举出羟基苯甲酸三嗪，二乙酰基氨基苯甲酰苯甲酸三嗪，水杨酸对叔丁基苯酯，-3,5-二叔丁基-4-羟基苯甲酸酯和十六烷基-3,5-二叔丁基-4-羟基苯甲酸酯等。

作为紫外线吸收剂，可以是市售品，例如可列举出 TINUVIN PS，TINUVIN99-2，TINUVIN 109，TINUVIN384-2，TINUVIN990，TINUVIN 928，TINUVIN 1130，TINUVIN 400，TINUVIN405，TINUVIN 460，TINUVIN 479（以上为 Ciba Japan K.K. 制造，商品名）等。

这些紫外线吸收剂可以单独使用一种或者将两种以上组合使用，通过与上述抗氧化剂组合使用，可以实现所得成形物的稳定化。

为了提高感光度，在本实施方式的光固化性热固性树脂组合物中可以使用公知的 N-苯基甘氨酸类、苯氧基乙酸类、硫代苯氧基乙酸类、硫基噻唑等作为链转移剂。作为链转移剂，例如为硫基硫酸盐，硫基乙酸盐，硫基丙酸，蛋氨酸，半胱氨酸，硫代水杨酸及其衍生物等具有羰基的链转移剂，硫基乙酸，硫基丙酸，硫基丁酸，硫基乙二醇，硫基乙二醇，硫基三聚甲苯硫醇及其衍生物等具有羟基的链转移剂，-1-丁硫醇，-3-硫基丙酸丁酯，-3-硫基丙酸甲酯，-2，-2-（亚乙基氧基）二乙硫醇，乙硫醇，-4-甲基苯硫醇，十二烷基硫醇，丙硫醇，丁硫醇，戊硫醇，-1-辛硫醇，环戊硫醇，环己硫醇，硫代甘油，-4-丁硫代双苯硫醇等。

另外，可以使用多官能性硫醇系化合物，对其没有特别限定，例如可以使用己烷，-1,6-二硫醇，-苯并-1,10-二硫醇，二硫基三乙酰，二硫基二乙基硫醚等脂肪族硫醇类，亚二甲苯基二硫醇，-4,4’-二硫基二苯硫醚，-1,4-苯硫醇等芳香族硫醇类；乙二醇双（硫基乙酸酯），聚乙二醇双（硫基乙酸酯），丙二醇双（硫基乙酸酯），甘油三（硫基乙酸酯），三羟甲基乙烷三（硫基乙酸酯），三羟甲基丙烷三（硫基乙酸酯），季戊四醇四（硫基乙酸酯），二季戊四醇六（硫基乙酸酯）等多元醇的聚（硫基乙酸酯）类；乙二醇双（硫基丙酸酯），聚乙二醇双（硫基丙酸酯），丙二醇双（硫基丙酸酯），甘油三（硫基丙酸酯），三羟甲基乙烷三（硫基丙酸酯），三羟甲基丙烷三（硫基丙酸酯），季戊四醇四（硫基丙酸酯），二季戊四醇六（硫基丙酸酯）等多元醇的聚（硫基丙酸酯）类；1,4-双（硫基丁酰氧基）丁烷，1,3,5-三（硫基丁酰氧基）-1,3,5-三嗪，-2,4,6（1H，3H，5H）-三酮，季戊四醇四
(3-硫基丁酸酯)等聚(硫基丁酸酯)类。

[0211] 作为它们的市售品，例如可列举出BMPA，MPM，EHMP，NOMP，MBMP，STMP，TMMP，PEMP，DPMP和TEMPIC(以上为Sakai Chemical Industry Co.，Ltd.制造)、Karenz MT-PE1、Karenz MT-BD1和Karenz-NRI(以上为昭和电工公司制造)等。

[0212] 为了提高层间的密合性、或提高感光性树脂层与基材的密合性，在本实施方式的光固化性热固性树脂组合物中可以使用密合促进剂。具体举例来说，例如有苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨(商品名：川崎化学工业公司制造的Accel M)、3-吗啉代甲基-1-苯基-3-三唑-2-硫醇、5-氨基-3-吗啉代甲基-3-三唑-2-硫醇、5-甲基-3-三唑-2-硫醇、5-甲基-3-三唑-2-硫醇(商品名：Zisnet F)、2-丁基氨基-4,6-二硫基-3-三唑(商品名：Zisnet DB)和2-苯基氨基-4,6-二硫基-均三嗪(三协化成公司制造；商品名：Zisnet AF)等。

[0213] 为了提高层间的密合性、或提高感光性树脂层与基材的密合性，在本实施方式的光固化性热固性树脂组合物中可以使用密合促进剂。具体举例来说，例如有苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨、苯并噻吨(商品名：川崎化学工业公司制造的Accel M)、3-吗啉代甲基-1-苯基-3-三唑-2-硫醇、5-氨基-3-吗啉代甲基-3-三唑-2-硫醇、5-甲基-3-三唑-2-硫醇、5-甲基-3-三唑-2-硫醇、5-甲基-3-三唑-2-硫醇(商品名：Zisnet F)、2-丁基氨基-4,6-二硫基-3-三唑(商品名：Zisnet DB)和2-苯基氨基-4,6-二硫基-均三嗪(三协化成公司制造；商品名：Zisnet AF)等。

[0214] 本实施方式的光固化性热固性树脂组合物根据需要还可以添加微粉二氧化硅、有机膨润土、蒙脱石、水滑石等触变剂。从作为触变剂的经时稳定性来看，优选有机膨润土、水滑石。特别是水滑石具有优异的电特性。另外，可以配混热阻聚剂，有机硅系、氟系、高分子系等消泡剂及/或流平剂，味嗅系、嗅嗅系、三唑系等硅烷偶联剂，防锈剂以及双酚系、三唑硫醇系等钢铜抑制剂等公知的添加剂类。

[0215] 热阻聚剂可以用于防止本实施方式的光固化性热固性树脂组合物中所含的聚合性化合物的热聚合或经时聚合。作为热阻聚剂，例如可列举出4-甲基氧苯酚、氢醌、烷基或芳基取代的氢醌、叔丁基邻苯二酚、连苯三酚、2-羟基二苯甲酚、4-甲氧基-2-羟基二苯甲酚、氯化亚铜、苯甲酚、氢醌、苯甲酚、3-乙醇、2-二叔丁基-4-甲酚、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)、吡啶、硝基苯、二硝基苯、苦味酸(picro acid)、4-甲苯胺、亚氨基蓝、铜与有机化合物的反应物、水杨酸甲酯、以及氢氧化亚胺基化合物、亚硝基化合物与Al的螯合物等。

[0216] 以上说明的本实施方式的光固化性热固性树脂组合物例 如可以用有机溶剂调节至适于涂布方法的粘度，通过浸涂法、流涂法、辊涂法、棒涂法、丝网印刷法、帘涂法等方
法涂布到基材上，在约 60~100°C 的温度下使组合物中含有的有机溶剂挥发干燥（暂时干燥），从而形成不粘涂膜。然后，采用接触式（或非接触式）使活性能量射线通过形成有图案的光掩模进行选择性曝光，或者通过激光直接曝光机进行直接图案曝光，通过碱水溶液（例如 0.3~3% 碳酸钠水溶液）将未曝光部分显影，从而形成抗蚀图案。

[0217] 进而，为含有热固性成分的组合物的情况下，例如可以使用加热至约 140~180°C 的温度将其热固化，使得含羧基树脂的羧基与分子中具有多个环状（硫）醚基的热固化性成分反应，从而形成耐热性、耐化学药品性、耐吸湿性、密合性、电特性等各种特性优异的固化涂膜。其中，即使在不含热固化性成分的情况下，通过热处理，也可以对曝光时以未反应的状态残留的光固化性成分的乙烯性不饱和键进行热自由基聚合，提高涂膜特性，因此，根据目的・用途，也可以进行热处理（热固化）。

[0218] 作为基材，除了预先形成有电路的印刷电路板、柔性印刷电路板以外，还可使用利用了纸・酚醛树脂・纸・环氧树脂・玻璃布・环氧树脂・玻璃・聚酰亚胺・玻璃布・无纺布・环氧树脂・玻璃布・纸・环氧树脂・合成纤维・环氧树脂・氯树脂・聚乙烯・PPO・氯酸酯等复合材料制成的所有等级（FR-4 等）的覆铜层叠板，聚酰亚胺薄膜，PET 薄膜，玻璃基板，陶瓷基板，晶圆板等。

[0219] 涂布本实施方式的光固化性热固化性树脂组合物之后进行的挥发干燥可以使用热风循环式干燥炉、IR 炉、热板、对流加热炉箱等（使用具有利用蒸气的空气加热方式的热源的设备使干燥机内的热风对流接触的方法以及由喷嘴向送到支撑体上的方式）来进行。

[0220] 如下所述地涂布本实施方式的光固化性热固化性树脂组合物，挥发干燥后，对所得的涂膜进行曝光（活性能量射线照射），涂膜的曝光部（活性能量射线照射的部分）固化。

[0221] 作为能够在活性能量射线照射中的使用的曝光机，可以使用直接描绘装置（例如通过来自计算机的 CAD 数据利用直接激光描绘图像的激光直接成像装置），搭载有金属卤化物灯的曝光机，搭载有（超）高压汞灯的曝光机，搭载有（超）高压汞灯的直接描绘装置。作为活性能量射线，只要使用最大波长在 350~410nm 范围内的激光，则气体激光、固体激光均可。另外，该曝光量根据膜厚而不同，通常为 5~50mJ/cm²，优选为 5~30mJ/cm²。作为上述直接描绘装置，例如可以使用 Orbotech Ltd. 制造、PENTAX CORPORATION 制造等的装置，只要是可以振荡产生最大波长在 350~410nm 激光的装置，则可以使用任何装置。

[0222] 作为显影方法，可以基于浸渍法、淋洗法、喷雾法、刷涂法等的方法，作为显影液，可以使用氢氧化钾、氢氧化钠、碳酸钠、碳酸钾、磷酸钠、硫酸钠、氯、胺类等碱水溶液。

[0223] 除了以液态在基材上直接涂布的方法以外，本实施方式的光固化性热固化性树脂组合物还能以具有阻焊层的干膜的形态使用，该阻焊层是将阻焊剂预先在聚对苯二甲酸乙二醇酯等薄膜上涂布并干燥而形成的。以下示出了使用本实施方式的光固化性热固化性树脂组合物为干膜的情况。

[0224] 干膜具有将载体薄膜、阻焊层和根据需要使用的可剥离的覆盖薄膜依次层叠而形成的结果。阻焊层是将碱显影性光固化性热固化性树脂组合物在载体薄膜或覆盖薄膜上涂布并干燥而获得的层。可以以如下方式得到干膜：在载体薄膜上形成阻焊层之后在其上层叠覆盖薄膜，或者在覆盖薄膜上形成阻焊层，将该层叠在载体薄膜上层叠。
作为载体薄膜，可使用厚度为 2～150 μm 的聚酯薄膜等热塑性薄膜。

阻焊层是通过刮涂涂布机、辊涂涂布机、点涂涂布机、薄膜涂布机等将本实施方式的光固化性热固化性树脂组合物以 10～150 μm 的厚度在载体薄膜或覆盖薄膜上涂布并干燥而形成的。

作为覆盖薄膜，可以使用聚乙烯薄膜、聚丙烯薄膜等，但覆盖薄膜与阻焊层的粘接力比载体薄膜与阻焊层的粘接力小。

为了使用干燥在印刷电路板上制作保护膜（永久保护膜），剥离覆盖薄膜，将阻焊层与形成有电路的基材重叠，使用层压机等进行贴合，在形成有电路的基材上形成阻焊层。

可以与上述同样地对形成的阻焊层进行曝光、显影、加热固化，从而形成固化涂膜。载体薄膜可以在曝光前或曝光之后的任意阶段剥离。

[实施例]

以下示出实施例和比较例对第一实施方式的光固化性热固化性组合物进行更具体的说明，但本发明不受下述实施例的限定。需要说明的是，以下所述的“份”和“％”在无特别说明的情况下均为质量基准。

＜感光性树脂（A-1）的合成例＞

在 1L 高压釜中加入 401.4g 联苯芳烃基树脂（氢基当量 239g/eq、平均 3.7 核体）、4.01g 氟氧化钾、401.4g 甲苯，边升温至 130℃边搅拌溶解。接着，缓慢滴加 109.3g 环氧丙烷，在 125～130℃、0.15～0.40MPa 下反应 10 小时。然后，冷却至室温，在反应溶液中添加 5.26g 85％磷酸水和氢氧化钾。获得氢基当量 303g/eq、树脂成分 56.1％的环氧丙烷加成物溶液。

将 992.2g 所得的环氧丙烷加成物溶液 0.92g 的 4-甲氧基苯醚、804.6g 甲苯、143.7g 甲基丙烯酸、36.8g 甲磺酸加入到 2L 玻璃烧瓶中，在 100～110℃的温度下进行 8 小时酯化反应。通过反应生成的水以与甲苯的共沸混合物的形式馏出，馏出了 30.0g 的水。然后，冷却至室温，用 157.6g 的 15％氢氧化钾溶液来中和所得的甲基丙烯酸酯树脂溶液，用 5％盐水清洗 1 次，用纯水清洗 3 次。溶液中的树脂成分 33.2％。

＜感光性树脂（A-2）的合成例＞

在 1L 高压釜中加入 420.0g 联苯・亚苯基共缩合树脂（氢基当量 219g/eq、平均 4.2 核体）、4.20g 氟氧化钾、420.0g 甲苯，边升温至 130℃边搅拌溶解。接着，缓慢滴加 124.8g 环氧丙烷，在 125～130℃、0.15～0.40MPa 下反应 10 小时。然后，冷却至室温，在反应溶液中添加 5.10g 85％磷酸水和氢氧化钾。获得氢基当量 282g/eq、树脂成分 55.3％的环氧丙烷加成物溶液。

将 925.0g 所得的环氧丙烷加成物溶液 0.95g 的 4-甲氧基苯醚、826.6g 甲苯、156.2g 甲基丙烯酸、38.2g 甲磺酸加入到 2L 玻璃烧瓶中，在 100～110℃的温度下进行 8 小时酯化反应。通过反应生成的水以与甲苯的共沸混合物的形式馏出，馏出了 32.7g 的水。然后，冷却至室温，用 163.6g 的 15％氢氧化钾溶液来中和所得的甲基丙烯酸酯树脂溶液，用 5％盐水清洗 1 次，用纯水清洗 3 次。溶液中的树脂成分 33.5％。
说明书

[0238] 边馏去精制的甲基丙烯酸酯树脂溶液 1750.0g 中的甲苯，边用 251.3g 二乙二醇单乙醚乙酸酯进行置换，添加 0.25g 的 4-甲氧基苯酚。所得的感光性树脂溶液的固体成分为 70%，通式 (1) 所示的 n+m=3.2。将其设为树脂溶液 A-2。

[0239] ＜感光性树脂 (A-3) 的合成例＞

[0240] 在 1L 高压釜中加入 400.3g 由甲醚、氢气、4,4-双(氯甲基) 联苯的共缩合反应所获得的联苯芳烷基树脂(单基当量 197g/eq、平均核体数 3.1)、4.01g 氢氧化钾、402.3g 甲苯，边升温至 130°C 边搅拌溶解。接着，缓慢滴加 132.1g 环氧丙烷，在 125~130°C、0.15~0.4MPa 下反应 10 小时。然后，冷却至室温，在反应溶液中添加 5.26g 85% 磷酸水溶液和氢氧化钾。获得单基当量 261g/eq、树脂成分 56.5% 的环氧丙烷加成物溶液。

[0241] 将 800.0g 所得的环氧丙烷加成物溶液、0.52g 的 4-甲氧基苯酚、773.9g 甲苯、152.1g 甲基丙烯酸、22.4g 甲磺酸加入到 2L 玻璃烧瓶中，在 100~110°C 的温度下进行 6 小时酯化反应。通过反应生成的水以与甲苯的共沸混合物的形式馏出，馏出了 31.8g 的水。然后，冷却至室温，用 87.2g 的 15% 氢氧化钾溶液来中和所得的甲基丙烯酸酯树脂溶液，用 5% 盐水清洗 1 次，用纯水清洗 3 次。所得的精制甲基丙烯酸酯树脂溶液的树脂成分为 35.5%。

[0242] 边馏去精制的甲基丙烯酸酯树脂溶液 1500.0g 中的甲苯，边用 133.1g 二乙二醇单乙醚乙酸酯进行置换，添加 0.20g 的 4-甲氧基苯酚。所得的感光性树脂溶液的固体成分为 80%，通式 (1) 所示的 n+m=2.1。将其设为树脂溶液 A-3。

[0243] ＜感光性树脂 (A-4) 的合成例＞

[0244] 在 1L 高压釜中加入 400.0g 由甲醚、1,4-二氯甲苯所得的甲基芳烷基树脂(单基当量 188g/eq、平均核体数 4.6)、4.00g 氢氧化钾、399.9g 甲苯，边升温至 130°C 边搅拌溶解。接着，缓慢滴加 138.4g 环氧丙烷，在 125~130°C、0.15~0.4MPa 下反应 10 小时。然后，冷却至室温，在反应溶液中添加 5.24g 的 85% 磷酸水溶液和氢氧化钾。获得单基当量 252g/eq、树脂成分 58.6% 的环氧丙烷加成物溶液。

[0245] 将 780.0g 所得的环氧丙烷加成物溶液，0.51g 的 4-甲氧基苯酚、772.6g 甲苯、154.4g 甲基丙烯酸、22.2g 甲磺酸加入到 2L 玻璃烧瓶中，在 100~110°C 的温度下进行 6 小时酯化反应。通过反应生成的水以与甲苯的共沸混合物的形式馏出，馏出了 32.3g 的水。然后，冷却至室温，用 86.4g 的 15% 氢氧化钾溶液来中和所得的甲基丙烯酸酯树脂溶液。进而，用 5% 盐水清洗 1 次，用纯水清洗 3 次，来精制甲基丙烯酸酯树脂溶液。溶液中的树脂成分为 36.0%。

[0246] 边馏去精制的甲基丙烯酸酯树脂溶液 1450.0g 中的甲苯，边用 130.5g 二乙二醇单乙醚乙酸酯进行置换，添加 0.20g 的 4-甲氧基苯酚。所得的感光性树脂溶液的固体成分为 80%，通式 (1) 所示的 n+m=3.6。将其设为树脂溶液 A-4。

[0247] ＜含羧基感光性树脂 (B-1) 的合成例＞

[0248] 在 1L 高压釜中加入 313.2g 由邻甲苯酚和 4,4-双(氯甲基) 联苯的缩合反应得到的联苯芳烷基树脂(单基当量 232g/eq、平均核体数 3.1)、3.13g 氢氧化钾、344.1g 甲苯，边升温至 130°C 边搅拌溶解。接着，缓慢滴加 87.8g 环氧丙烷，在 125~130°C、0.15~0.4MPa 下反应 10 小时。然后，冷却至室温，在反应溶液中添加 4.11g 的 85% 磷酸水溶液和氢氧化钾。获得单基当量 296g/eq、树脂成分 54.8% 的环氧丙烷加成物溶液。

[0249] 将 718.0g 所得的环氧丙烷加成物溶液、0.36g 的 4-甲氧基苯酚、459.6g 甲苯、
28.8g 丙烯酸、12.1g 甲磺酸加入到 2L 玻璃分液漏斗中，在 100~110℃的温度下进行 6 小时酯化反应。通过反应生成的水与甲苯的共沸混合物的形式馏出，馏出了 7.2g 的水。然 后，冷却至室温，用 51.8g 的 15% 硫酸水溶液中和。进而，用 5% 盐水清洗 1 次，用纯水清洗 3 次，来精制丙烯酸树脂溶液。溶液中的树脂成分是 36.1%。

【0250】边氢去精制的丙烯酸酯树脂溶液 103.4g 中的甲苯，边用 196.9g 二乙二醇单乙醚乙酸酯进行置换，添加 133.5g 四氢邻苯二甲酸酐 0.23g 的 4- 甲氧基苯酚 2.26g 三苯基膦，在 90~100℃的温度下反应 6 小时。所得的含羟基感光性树脂溶液的固体成分是 70%，固体成分酸值为 93mgKOH/g。通式 (H) 所示的 n+m=2.1。将其设为树脂溶液 B-1。

【0251】＜含羧基树脂 (R-1) 的合成例＞

【0252】在设有温度计、氮气导入装置及环丙烷导入装置的高压釜中，加入 119.4g 酚醛清漆型甲醇醛树脂 (昭和高分子公司制造，商品名“Shonol C R6951”，OH 当量：119.4g/1.19g 氢氧化钾和 119.4g 甲苯，边搅拌边对体系内进行氮气置换，加热升温。接着，缓缓滴加 62.8g 丙环氧烷，在 125~132℃，0.4~2.8kg/cm² 下反应 16 小时。然后，冷却至室温，将该反应液添加混合 0.6g 8% 磷酸钠中和氢氧化钾，获得不挥发分成分是 62.1%，羟基值为 182.2g/eq 的酚醛清漆型甲醇醛树脂的环氧丙烷反应溶液。这是每 1 当量酚羟基平均加成 1.08 摩尔环丙烷的物质。

【0253】在设有搅拌机、温度计和空气吹入管的反应器中添加 293.0g 所得酚醛清漆型甲醇醛树脂的环氧丙烷反应溶液 43.2g 丙环氧烷、11.53g 甲磺酸、0.18g 甲基氯化物 252.9g 甲苯，以 10ml/ 分钟的速度吹入空气，边搅拌，边在 110℃下反应 12 小时。通过反应生成的水与甲苯的共沸混合物的形式馏出，馏出了 12.6g 的水。然后，冷却至室温，在该反应液中添加混合 1.56g 8% 磷酸钠中和氢氧化钾，获得不挥发分成分是 62.1%，羟基值为 182.2g/eq 的酚醛清漆型甲醇醛树脂的环氧丙烷反应溶液。这是每 1 当量酚羟基平均加成 1.08 摩尔环丙烷的物质。

【0254】接着，在设有搅拌器、温度计和空气吹入管的反应器中加入 332.5g 所得酚醛清漆型丙烯酸酯树脂溶液 1.22g 三苯基膦，以 10ml/ 分钟的速度吹入空气，边搅拌，边缓慢添加 60.8g 四氢邻苯二甲酸酐，在 95~101℃下反应 6 小时。获得固体物质的酸值为 88mg KOH/g，不挥发成分 71% 的含羧基感光性树脂。将其设为树脂溶液 R-1。

【0255】＜含羧基树脂 (R-2) 的合成例＞

【0256】在 600g 二乙二醇单乙醚乙酸酯中添加 1070g（缩水甘油素（芳香环总量）5.0 摩尔）邻甲酚酚醛清漆型环氧树脂 (DIC 公司制造，EPICLON N-695，软化点 95℃，环氧当量 214，平均官能团数 7.6) 360g (5.0 摩尔) 丙烯酸和 1.5g 氢醌、加热搅拌至 100℃，使其均匀溶解。接着，加入 4.3g 三苯基膦加热至 110℃反应 2 小时后，升温至 120℃再反应 12 小时。在得到的反应溶液中加入 415g 芳香族烷 (SOLYFESSO 150)、456.0g (2.0 摩尔) 四氢邻苯二甲酸酐，在 110℃下反应 4 小时，冷却后获得固体成分酸值为 89mg KOH/g，固体成分 65% 的树脂溶液。以下将其称为树脂溶液 R-2。

【0257】使用上述合成例的树脂溶液，以表 1 所示的各种成分、比例（质量份）进行配混，用搅拌机预混合以后，用 3 组式研磨机进行混炼，制备阻焊剂用光固化性热固化性树脂组合物。此处，通过 ERICHSEN 公司制造的刮板细度仪（grindmeter）的粒度测定来对所得的树脂组合物的分散度进行评价，结果为 15μm 以下。

【0258】[ 表 1 ]
<table>
<thead>
<tr>
<th>树脂溶液</th>
<th>实施例</th>
<th>比较例</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>A-2</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>A-3</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>A-4</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>B-1</td>
<td>143</td>
<td>143</td>
</tr>
<tr>
<td>R-1</td>
<td>141</td>
<td>141</td>
</tr>
<tr>
<td>R-2</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>热固化性成分</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>*1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>*2</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>光聚合引发剂*3</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>三聚氰胺</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>有机硅系消泡剂</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>吝喹啉</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>AcceLM*4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>IRGANOX1010*5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>硫酸钡*6</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>球状二氧化硅*7</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>DHT-4A*8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>着色剂*9</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>着色剂*10</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>有机溶剂*11</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>DPHA*12</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>[备注]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*1: 联苯酚醛清漆型环氧树脂(NC-3000HCA75: 日本化药株式会社制造)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*2: 双酚型环氧树脂(YSLV-80XY: 东都化成株式会社制造)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*3: 1-9-乙基-6-(2-甲基苯甲酰基)-9H-咔唑-3-基-1-(9-乙酰基肟)乙酮(IGACURE OXE 02:Ciba Japan K.K. 制造)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*4: 2- 羟基苯并噻唑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*5: 抗氧化剂(Ciba Japan K.K. 制造)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*6: B-30 (Sakai Chemical Industry Co., Ltd. 制造)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*7: S0-E3 (ADMETECHS CO., LTD. 制造)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*8: 水滑石(协和化学工业公司制造)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
说明书

[0269] *9: C.I. 颜料蓝 15:3
[0270] *10: C.I. 颜料黄 147
[0271] *11: 二乙二醇单乙醚乙酸酯
[0272] *12: 二季戊四醇六丙烯酸酯
[0273] [实施例 1~6、比较例 1、2]
[0274] 利用以下所示的评价方法对表 1 所示的实施例以及比较例的组合物进行性能评价和特性评价。评价结果示于表 2。
[0275] 性能评价:
[0276] ＜最低曝光量＞
[0277] 将面积 18 μm 的电路图案基板进行铜表面粗糙化处理（Mec Corporation 制造的
Mec etch Bond CZ-8100）之后, 进行水洗、干燥, 然后, 通过丝网印刷法在表面涂布表 1 中所示
的实施例和比较例的组合物, 在 80℃的热风循环式干燥炉中干燥 60 分钟, 得到约 20 μm 的
干燥涂膜。然后, 使用搭载高压汞灯的曝光装置, 通过阶段式曝光板（Kodak No.2）进行曝
光, 将显影 (30℃, 0.2MPa, 1% 碳酸钠水溶液) 90 秒时残留的阶段式曝光板的图案为 7 段时
的曝光量作为最低曝光量。
[0278] ＜最大显影寿命＞
[0279] 通过丝网印刷将表 1 中所示的实施例和比较例的组合物整体涂布在形成有图案
的铜箔基板上, 得到干燥膜厚约 20 μm, 在 80℃下干燥, 从 20 分钟起到 80 分钟为止每隔
5 分钟取出基板, 自然冷却至室温。在喷雾为 0.2MPa 的条件下, 用 30℃的 1% 碳酸钠水溶液
对该基板进行 90 秒显影, 将没有残留残余的 0.25 倍干燥时间作为最大显影寿命。
[0280] 特性评价:
[0281] 通过丝网印刷将表 1 中所示的实施例和比较例的组合物整体涂布在形成有图案
的铜箔基板上, 得到干燥膜厚约 20 μm, 在 80℃下干燥 30 分钟, 自然冷却至室温。使用搭载
高压汞灯的曝光装置, 以最佳曝光量对基板进行阻焊剂图案曝光, 在喷雾压力 0.2MPa 的
条件下, 用 30℃的 1% 碳酸钠水溶液进行 90 秒显影, 获得抗蚀图案。通过 UV 输送带式炉, 在
累计曝光量 1000mJ/cm² 的条件下照射紫外线之后, 在 150℃下加热 60 分钟进行固化。如下
所述评价所得印刷基板（印版基板）的特性。
[0282] ＜耐酸性＞
[0283] 将印版基板在 10 体积%H₂SO₄ 水溶液中室温下浸渍 30 分钟, 目视确认渗入、涂膜
的溶出, 进而利用胶带剥离确认剥离。
[0284] ○: 没有发现变化
[0285] △: 仅仅很小的变化
[0286] ×: 涂膜有膨胀或溶胀脱落
[0287] ＜耐碱性＞
[0288] 将印版基板在 10 体积%NaOH 水溶液中室温下浸渍 30 分钟, 目视确认渗入、涂膜
的溶出, 进而利用胶带剥离确认剥离。
[0289] ○: 没有发现变化
[0290] △: 仅仅很小的变化
[0291] ×: 涂膜有膨胀或溶胀脱落
[0292] 《耐焊接热性能》
[0293] 将涂布有松香系预焊剂的评价基板在预先设定为 260℃的焊槽中,用改性醇洗涤预焊剂之后,目视评价抗蚀层的膨胀・剥离。判定标准如下所示。
[0294] ○：即使复数 3 次以上 10 秒浸没,也没有发现剥离
[0295] △：重复 3 次以上 10 秒浸没时,有少许剥离
[0296] ×：10 秒浸没在 3 次以内,抗蚀层即有膨胀、剥离
[0297] 《耐化学镀金性》
[0298] 对于评价基板,使用市售品的化学镀镍浴和化学镀金浴,在镍 5 μm 金 0.05 μm 的条件下对开口 80 μm 的锡球 (ball pad) 进行镀覆处理。对所镀覆的评价基板,通过胶带剥离来评价抗蚀剂层有无剥离、镀覆有无渗入之后,通过胶带剥离来评价抗蚀剂层有无剥离。判定基准如下所示。
[0299] ○：镀覆后未发现渗入,胶带剥离后无剥离
[0300] △：镀覆后确认有泛白,胶带剥离后无剥离
[0301] ×：镀覆后确认有剥离
[0302] 《PCT 耐性》
[0303] 使用 PCT 装置 (ESPEC Corp. 制造的 HAST SYSTEMTPC-412MD), 在 121℃、饱和、0.2MPa 的条件下,对实施了与耐化学镀金性的评价相同的化学镀金的评价基板进行各种时间的处理,根据涂膜状态来评价 PCT 耐性。判定基准如下所示。
[0304] ○：试验经过 300 小时后无膨胀・剥离・变色・溶出
[0305] △：试验经过 168 小时时,无膨胀・剥离・变色・溶出
[0306] ×：试验经过 168 小时时,发现有膨胀・剥离・变色・溶出
[0307] 《耐冷热冲击性》
[0308] 制作具有形成了空心□图案、空心○图案的阻焊固化涂膜的评价基板。在冷热冲击试验器 (Etac 公司制造) 中,以 -55℃ /30 分钟、150℃ /30 分钟为 1 个周期,对所得评价基板进行 1000 个周期的耐性试验。试验后,通过目视观察处理后的固化膜,根据下述标准判断裂纹的发生状况。
[0309] ○：裂纹发生率为 30%以下
[0310] △：裂纹发生率为 30~50%
[0311] ×：裂纹发生率为 50%以上
[0312] 《HAST 特性》
[0313] 在形成有梳状电极 (线 / 间距 =30 微米 /30 微米) 的 BT 基板上形成阻焊固化涂膜,制成评价基板。将该评价基板放入 130℃、湿度 85% 的气氛下的高温高湿槽中,施加 12V 电压,进行各种时间的槽内 HAST 试验。按照下述判断基准评价经过各种时间时的槽内绝缘电阻值。
[0314] ○：经过 300 小时为 10Ω 以上
[0315] △：经过 168 小时为 10Ω 以上
[0316] ×：经过 168 小时为 10Ω 以下
[0317] [ 表 2]
[0318]
[0319] ＜干膜评价＞

[0320] [实施例7~12]

[0321] 用甲乙酮将表1所示的配混比例制备的实施例1~6的各组合物稀释，在PET薄膜上涂布，在80℃下干燥30分钟，形成厚度20μm的感光性树脂组合物层。进而，在其上贴合覆盖薄膜来制作干膜，分别作为实施例7~12。

[0322] 从如上所述获得的干膜上剥离覆盖薄膜，将薄膜热压接在形成有图案的铜箔基板上，接着，在与用于上述涂膜特性评价的基板同样的条件下曝光。曝光之后，剥离载体薄膜，在喷雾压力0.2MPa的条件下，用30℃的1%碳酸钠水溶液显影90秒，获得抗蚀剂图案。通过UV输送带式炉，在累计曝光量1000mJ/cm²的条件下对该基板照射紫外线之后，3150℃下加热60分钟，进行固化。利用上述的评价方法，对所得的具有固化膜的试验基板进行性能评价以及特性评价。评价结果示于表3。

[0323] [表3]

[0324]
从表2、表3中所示的结果可以看出，本发明的光固化性热固化性树脂组合物能与半导体封装用阻焊剂所必需的PCT耐热性、耐冷热冲击性、HAST特性，可获得可靠性非常高的阻焊固化涂料，作为光固化性热固化性树脂组合物是有用的。

接着，对第二实施方式的光固化性热固化性树脂组合物进行详细说明。需要说明的是，第二实施方式的在光固化性热固化性树脂组合物中使用的光聚合引发剂、任意成分以及图案形成方法与上述第一实施方式的光固化性热固化性树脂组合物相同，因此，主要对与第一实施方式的光固化性热固化性树脂组合物不同的成分进行说明。

第二实施方式的光固化性热固化性树脂组合物的特征在于，其含有：具有通式(4)、(7)所示结构的含烷基感光性树脂和光聚合引发剂。

\[
\begin{align*}
\text{OR}^1 & \quad \text{OR}^1 \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{R}^2 & \quad \text{R}^2 \\
\text{CR}_1 & \quad \text{CR}_1 \\
p & \quad m
\end{align*}
\]

(式(4)中，R^1 表示下述式(5)的基团；R^2 表示甲基或OR^1 基；n+m=1.5~4.0，n=0~4.0，m=0~4.0，l=0~3，n+m=100~0~100.)

\[
\begin{align*}
\text{CH}_2 & \quad \text{CH}_2 \\
k & \quad \text{R}^4
\end{align*}
\]

(式(5)中，R^3 表示氢或甲基；R^4 表示下述式(6)或(7)的基团或氢；k=0.3~10.0。)

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{C} & \quad \text{C} \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{R}^5 & \quad \text{R}^5
\end{align*}
\]

(式(6)中，R^5 表示氢。)
（式（7）中的X表示酸酯残基。）

（式（7）中的X表示酸酯残基。）

具有通式（4）～（7）所示结构的含羧基感光性树脂与第一实施方式的具有通式（1）～（3）所示结构的感光性树脂同样地通过使酚醛树脂与环氧烷或环碳酸酯发生反应加成而链增长，由此挠性，伸长率优异。另外，在通过环氧烷或环碳酸酯的加成反应而生成的末端羟基上，进行含不饱和基团的单羧酸的加成以及多元酸酯的加成，不饱和基羧基不在同一侧链上存在，并且，分别位于侧链的末端，因此，反应性优异。进而，由于存在远离主链的末端羧基，因此具有优异的碱显影性。

另外，上述含羧基感光性树脂实质上不包含亲水性的醇性羟基，因此耐吸附性优异。通常，已知的是，羟基的存在还具有基于氢键的密合性的提高等优异的特征，但会显著降低耐湿性。所以，通过实质上不包含羟基，可提高耐湿性。而且，通过提高耐湿性，从而可提高PCT耐性。

另外，考虑上述含羧基感光性树脂的前体的酚骨架的情况下，与通常的苯酚型酚醛清漆树脂或甲酚型酚醛清漆树脂相比，可举出出羟基当量大作为其特征。即，从实施方式的含羧基感光性树脂的前体所衍生出的固化物与一般的酚醛清漆树脂相比具有良好的挠性。随之而来，与一般的酚醛清漆树脂类似，从本实施方式的含羧基感光性树脂的前体衍生出的组合物可提高所得的固化物的耐冷热冲击性和PCT耐性。

因此，第二实施方式的光固化性热固化性树脂组合物与第一实施方式的光固化性热固化性树脂组合物同样地操作性优异，且通过其涂层的选择性曝光，显影以及最终固化，可得到，密合性，耐化学药品性，耐化学硬度性，耐冷热冲击性，PCT耐性，电绝缘性等优异的固化覆膜。

具有通式（4）～（7）所示结构的含羧基感光性树脂可通过使利用与上述 [1]、[2]同样的方法而得到的感光性树脂与多元酸酯发生反应而获得。

因此，具有通式（4）～（7）所示结构的含羧基感光性树脂中使用的酚醛树脂、环氧烷、环碳酸酯化合物以及含不饱和基团的单羧酸与第一实施方式的具有通式（1）～（3）所示结构的感光性树脂是相同的。

作为多元酸酯，可列举出例如甲基四氢邻苯二甲酸酯、四氢邻苯二甲酸酯、六氢邻苯二甲酸酯、甲基四氢邻苯二甲酸酯、纳迪克酸酯、3,6-内亚甲基四氢邻苯二甲酸酯、甲基内亚甲基四氢邻苯二甲酸酯、四溴邻苯二甲酸酯等脂环式二元酸酯；琥珀酸酯，马来酸酯，衣康酸酯，辛烯基琥珀酸酯，苯甲酸酯链，十二烷基酯链，邻苯二甲酸酯，偏苯三酸酯等脂肪族或芳香族二元酸酯，或联苯四羧酸酯，二苯基醚四羧酸酯，丁烷四羧酸二酯，环戊烷四羧酸二酯，均苯四酸酯，二苯甲醚四羧酸二酯等脂肪族或芳香族四元酸酯，它们当中可以使用一种或两种以上。

作为具有通式（4）～（7）所示结构的含羧基感光性树脂中使用的环氧烷或环碳酸酯化合物的加成量，每 1 当量酚性羟基优选为 0.3～10 莫尔的范围。加成量小于上述范围时，与后述的含不饱和基团的单羧酸、多元酸酯的反应难以发生，感光性以及对稀碱水溶液的
溶解性降低。另一方面，加成量超过上述范围时，通过生成的醚键，耐水性降低，电绝缘性、
耐热性降低。更优选为 0.8～5 摩尔的范围，进一步优选为 1.0～3 摩尔的范围。
[0344] 具有通式 (4)～(7) 所示结构的含羧基感光性树脂可以与上述感光性树脂同样地
以醚醛树脂作为起始原料而获得。由于几乎不含氯离子杂质的酚醛树脂能够容易地获得，
因此可以抑制所得的含羧基感光性树脂中的氯离子杂质浓度。
[0345] 这样的含羧基感光性树脂的氯离子杂质含量优选为 100ppm 以下。更优选为 50ppm
以下，进一步优选为 30ppm 以下。
[0346] 另外，通过这样的方法，可得到实质上不含羟基的含羧基感光性树脂。这样，通过
抑制含羧基感光性树脂中的氯离子杂质，实质上不含羟基，可表现出优异的绝缘可靠性、
PCT 耐性。
[0347] 具有通式 (4)～(7) 所示结构的含羧基感光性树脂使优异的薄膜形成性能、薄膜物
性得以表现，因此某种程度上被高分子量化。具有通式 (4)～(7) 所示结构的含羧基感光性
树脂优选通式 (4) 所示的 n+m 为 1.5～4.0 的范围。n+m 为 1.5 以下时，无法得到具有被精确
地控制的结构的含羧基感光性树脂。另一方面，为 4.0 以上时，有时基于显影的溶解会变
得困难，有产生显影残渣的担心。具有通式 (4)～(7) 所示结构的含羧基感光性树脂的最优
情况是 n 为 2.5～4.0 左右。
[0348] 本实施方式的具有通式 (4)～(7) 所示结构的含羧基感光性树脂由于在主链・聚
合物的侧链上具有多个的游离的羧基，因此可以通过稀酸液溶剂来显影。另外，其酸值优
选为 50～200mgKOH/g 的范围。酸值小于 50mgKOH/g 时，感光性变得困难，另一方面，超过
200mgKOH/g 时，由于基于显影液的曝光部的溶解会加快，因此会超出品所地变慢，或根据
情况，曝光部与未曝光部会无区别地被显影液溶解剥离，正常的抗蚀剂图案的描绘变得困
难。更优选为 50～150mgKOH/g。
[0349] 另外，具有通式 (4)～(7) 所示结构的含羧基感光性树脂的重均分子量根据树脂
骨架而有所差异，通常优选为 1000～20000 的范围。重均分子量小于 1000 时，有时不粘
性变差、曝光后的涂膜的耐湿性差而显影时发生膜厚损失、图像分辨率下降。另一方面，重均
分子量超过 20000 时，显影性有时会显著变差，贮藏稳定性有时变差。更优选为 1000～10000。
[0350] 这样的含羧基感光性树脂的配混量在全部组合物中优选为 20～60 质量 %。小于上
述范围时，涂膜强度有时会降低。另一方面，大于上述范围时，粘性变高或涂布性等降低。更
优选为 30～50 质量 %。
[0351] 另外，为了调整显影性、粘性等诸多特性的平衡，第二实施方式的光固化性热固化
性树脂组合物中除了具有通式 (4)～(7) 所示结构的含羧基感光性树脂以外，还可以组合使
用如上所述的公知的含羧基树脂。
[0352] [实施例]
[0353] 以下示出实施例和比较例来对第二实施方式的光固化性热固化性组合物进行更
具体的说明，但本发明不受下述实施例的限定是不言而喻的。需要说明的是，以下的“份”和
“%”在无特别说明的情况下均为质量基准。
[0354] 本实施例中使用的含羧基感光性树脂 B-1、含羧基树脂 R-1 以及 R-2 与第一实施方
式的实施例是相同的。
[0355] 〈含羧基感光性树脂（B-2）的合成例〉

[0356] 在1L高压釜中加入370.0g由邻甲酚4, 4-双(氢甲基)苯的共缩合反应所的联苯-亚苯基共缩合树脂（羟基当量215g/eq, 平均3.7核体）、3.70g氢氧化钾、370.0g甲苯，边升温至130℃边搅拌溶解。接着，缓慢滴加111.9g环氧丙烷，在125～130℃、0.15～0.40MPa下反应10小时。然后，冷却至室温，在反应溶液中添加4.85g的85%磷酸来中和氢氧化钾。获得羟基当量278g/eq, 树脂成分56.9%的环氧丙烷加成物溶液。

[0357] 将800.0g所得的环氧丙烷加成物溶液、0.42g的4-甲氧基苯酚、563.9g甲苯、46.4g丙烯酸、14.1g甲磺酸加入到2L玻璃烧瓶中，在100～110℃的温度下进行6小时酯化反应。通过反应生成的水与甲苯的共沸混合物的形式馏出，馏出了11.6g的水。然后，冷却至室温，用60.4g的15%氢氧化钾溶液进行中和。进而，用5%盐水清洗1次，用纯水清洗3次，来精制丙烯酸酯树脂溶液。溶液中的树脂成分为37.1%。

[0358] 边馏去精制的丙烯酸酯树脂溶液1270.0g中的甲苯，边用263.5g二乙二醇单乙酰
乙酸酯进行置换，添加143.6g四氢邻苯二甲酸酐、0.44g的4-甲氧基苯酚、2.20g三苯基
膦，在90～100℃的温度下反应6小时。所得的含羧基感光性树脂溶液的固体成分为70%，固体成分酸值为80mgKOH/g。通式（4）所示的n+m=2.7。将其设为树脂溶液B-2。

[0359] 〈含羧基感光性树脂（B-3）的合成例〉

[0360] 在1L高压釜中加入400.3g由甲酚、氢醌、4, 4-双(氢甲基)苯的共缩合反应所的联苯芳烷基树脂（羟基当量197g/eq, 平均核体数3.1）、4.01g氢氧化钾、402.3g甲苯，边升温至130℃边搅拌溶解。接着，缓慢滴加132.1g环氧丙烷，在125～130℃、0.15～0.40MPa下反应10小时。然后，冷却至室温，在反应溶液中添加5.26g的85%磷酸来中和氢氧化钾。获得羟基当量为261g/eq, 树脂成分为56.5%的环氧丙烷加成物溶液。

[0361] 将909.7g所得的环氧丙烷加成物溶液、0.49g的4-甲氧基苯酚、664.3g甲苯、
56.8g丙烯酸、14.7g甲磺酸加入到2L玻璃烧瓶中，在100～110℃的温度下进行6小时酯化反应。通过反应生成的水与甲苯的共沸混合物的形式馏出，馏出了14.2g的水。然后，冷却至室温，用57.2g的15%氢氧化钾溶液来中和所得的丙烯酸酯树脂溶液，用5%盐水清洗1次，用纯水清洗3次，来精制丙烯酸酯树脂溶液。溶液中的树脂成分为33.8%。

[0362] 边馏去精制的丙烯酸酯树脂溶液1527.5g中的甲苯，边用292.4g二乙二醇单乙酰
乙酸酯进行置换，添加166.6g四氢邻苯二甲酸酐、0.29g的4-甲氧基苯酚、1.95g三苯基
膦，在90～100℃的温度下反应6小时。所得的含羧基感光性树脂溶液的固体成分为70%，固体成分酸值为90mgKOH/g。通式（4）所示的n+m=2.1。将其设为树脂溶液B-3。

[0363] 〈含羧基感光性树脂（B-4）的合成例〉

[0364] 将920.0g在上述感光性树脂（A-4）中所得的环氧丙烷加成物溶液、0.51g的4-甲氧基苯酚、704.9g甲苯、71.0g丙烯酸、15.3g甲磺酸加入到2L玻璃烧瓶中，在100～110℃的温度下进行6小时酯化反应。通过反应生成的水与甲苯的共沸混合物的形式馏出，馏出了17.7g的水。然后，冷却至室温，用59.6g的15%氢氧化钾溶液来中和所得的丙烯酸酯树脂溶液，用5%盐水清洗1次，用纯水清洗3次，精制丙烯酸酯树脂溶液。溶液中的树脂成分为36.2%。

[0365] 边馏去精制的丙烯酸酯树脂溶液1550.0g中的甲苯，边用309.9g二乙二醇单乙酰
乙酸酯进行置换，添加162.0g四氢邻苯二甲酸酐、0.31g的4-甲氧基苯酚、2.07g三苯基
磷，在90℃～100℃的温度下反应6小时。所得的含羧基感光性树脂溶液的固体成分为70%，固体成分酸值为82mgKOH/g。通式(4)所示的n+m=3.6。将其设为树脂溶液B-4。

【0066】
＜含羧基感光性树脂(B-5)的合成例＞

【0067】
在1L高压釜中加入400.0g由甲酚和1,4-二氯甲苯所得的甲酚芳烷基树脂(羟基当量180g/eq,平均核体数3.3)、4.00g氢氧化钾、402.1g甲苯，边升温至130℃边搅拌溶解。接着，缓慢滴加144.6g环氧丙烷，在125℃～130℃、0.15～0.40MPa下反应10小时。然后，冷却至室温，在反应溶液中加入5.24g的85%磷酸来中和氢氧化钾。获得羟基当量为243g/eq,树脂成分为57.5%的环氧丙烷加成物溶液。

【0068】
将920.0g所得的环氧丙烷加成物溶液、0.52g的4-甲氧基苯酚、357.2g甲苯、78.5g丙烯酸、15.6g甲磺酸加入到2L玻璃烧瓶中，在100℃～110℃的温度下进行6小时酯化反应。通过反应生成的水以与甲苯的共沸混合物的形式馏出，馏出了19.6g的水。然后，冷却至室温，用60.7g的15%氢氧化钾溶液中和所得的丙烯酸酯树脂溶液，用5%盐水清洗1次，用纯水清洗3次，精制丙烯酸酯树脂溶液。溶液中的树脂成分为37.0%。

【0069】
边馏去精制的丙烯酸酯树脂溶液1550.0g中的甲苯，边用335.0g二乙二醇单乙醚乙酸酯进行置换，添加161.6g四氢邻苯二甲酸酐、0.32g的4-甲氧基苯酚、2.10g三苯基膦，在90℃～100℃的温度下反应6小时。所得的含羧基感光性树脂溶液为固体成分为70%，固体成分酸值为80mgKOH/g。通式(4)所示的n+m=2.3。将其设为树脂溶液B-5。

【0070】
＜含羧基感光性树脂(B-6)的合成例＞

【0071】
在1L高压釜中加入400.0g由甲酚和1,4-二氯甲苯所得的甲酚芳烷基树脂(羟基当量190g/eq,平均核体数5.4)、4.00g氢氧化钾、400.0g甲苯，边升温至130℃边搅拌溶解。接着，缓慢滴加137.0g环氧丙烷，在125℃～130℃、0.15～0.40MPa下反应10小时。然后，冷却至室温，在反应溶液中加入5.24g的85%磷酸来中和氢氧化钾。获得羟基当量为254g/eq,树脂成分为57.5%的环氧丙烷加成物溶液。

【0072】
将900.0g所得的环氧丙烷加成物溶液、0.50g的4-甲氧基苯酚、694.2g甲苯、69.2g丙烯酸、15.0g甲磺酸加入到2L玻璃烧瓶中，在100℃～110℃的温度下进行6小时酯化反应。通过反应生成的水以与甲苯的共沸混合物的形式馏出，馏出了17.3g的水。然后，冷却至室温，用58.4g的15%氢氧化钾溶液来中和所得的丙烯酸酯树脂溶液，用5%盐水清洗1次，用纯水清洗3次，精制丙烯酸酯树脂溶液。溶液中的树脂成分为36.5%。

【0073】
边馏去精制的丙烯酸酯树脂溶液1500.0g中的甲苯，边用301.7g二乙二醇单乙醚乙酸酯进行置换，添加156.4g四氢邻苯二甲酸酐、0.30g的4-甲氧基苯酚、2.01g三苯基膦，在90℃～100℃的温度下反应6小时。所得的含羧基感光性树脂溶液的固体成分为70%，固体成分酸值为81mgKOH/g。通式(4)所示的n+m=4.4。将其设为树脂溶液B-6。

【0074】
[实施例13-20、比较例3-6]

【0075】
使用上述合成例的树脂溶液，以表4所示的各种成分、比例(质量份)进行配混，用搅拌机预混合以后，用3辊式捏合机进行混炼，制备阻焊剂用感光性树脂组合物。此处，通过基于ERICH SEN公司制造的刮板细度仪的粒度测定来对所得的感光性树脂组合物的分散度进行评价，结果为15μm以下。

【0076】
需要说明的是，在表4中，比较例4,6的组合物与表1中比较例1,2分别为相同的组合物。
<table>
<thead>
<tr>
<th></th>
<th>实施例</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>比较例</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>B-1</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>热固性成分</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>*1</td>
<td>20</td>
</tr>
<tr>
<td>*2</td>
<td>30</td>
</tr>
<tr>
<td>光聚合引发剂</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>*3</td>
<td>1.7</td>
</tr>
<tr>
<td>三聚氰胺</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>有机硅系消泡剂</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>吸湿性</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>*4</td>
<td>0.1</td>
</tr>
<tr>
<td>Accele</td>
<td></td>
</tr>
<tr>
<td>IRGANOX1010</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>硫酸铵</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>球状二氧化硅</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DHT-4A</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>着色剂</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>*9</td>
<td>0.3</td>
</tr>
<tr>
<td>*10</td>
<td>0.8</td>
</tr>
<tr>
<td>有机溶剂</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DPFA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

【备注】
*1~12：与表1[备注]相同。
对表4所示的实施例和比较例的组合物进行性能评价以及特性评价。评价结果示于表5。需要说明的是，对于粘性以外的评价方法与第一实施方式的实施例相同，因此省略说明。
性能评价：
＜粘性＞
通过丝网印刷将各光固化性树脂组合物整面涂布在形成有图案的铜箔基板上，用80℃的热风循环式干燥炉干燥30分钟，自然冷却至室温。将PET制的负片与该基板接触，通过ORC公司制造的（HMW-GW20）在1分钟减压条件下压接，然后，评价剥离负片时的薄膜的附着状态。
△：剥离薄膜时，有少许阻力，在涂膜上确认有少许残留痕迹
○：剥离薄膜时，有少许阻力，在涂膜上带有明显的残留痕迹
×：剥离薄膜时，有较大阻力，在涂膜上带有明显的残留痕迹

| 表 5 |
|---|---|
| 实施例 | 比较例 |
| 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 3 | 4 | 5 | 6 |
| 最佳曝光量 (mJ/cm²) | 250 | 250 | 250 | 220 | 220 | 250 | 250 | 250 | 220 | 180 | 200 | 180 |
| 粘性 | ○ | ○ | ○ | ○ | △ | ○ | ○ | ○ | ○ | × | △ | △ |
| 最大显影寿命 (分钟) | 45 | 50 | 50 | 50 | 60 | 45 | 55 | 55 | 35 | 有显影残渣 | 60 | 50 | 60 |
| 耐酸性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
| 耐碱性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
| 耐焊接热性能 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
| 耐化学镀金性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | × | ○ | ○ | △ |
| PCT 耐性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | △ | △ | △ | × |
| 耐冷热冲击性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | × | △ | × |
| HAST 特性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | △ | △ | △ | × |

[0390] [ 实施例 21~28]  
[0391] ＜干膜评价＞  
[0392] 用甲乙酮将按表 4 所示的配混比例制备的实施例 13~20 的各组合物稀释，在 PET 薄膜上涂布，在 80°C 下干燥 30 分钟，形成厚度 20 μm 的感光性树脂组合物层。进而，在其上贴合覆盖薄膜来制作干膜，分别作为实施例 21~28。  
[0393] 从如上所述获得的干膜上剥离覆盖薄膜，将薄膜压压接在形成有图案的铜箔基板上，接着，在与用于上述涂层性评价的基板同样的条件下曝光。曝光之后，剥离载体薄膜，在喷雾压力 0.2MPa 的条件下，用 30°C 的 1% 碳酸钠水溶液显影 90 秒，获得抗蚀剂图案。通过 UV 输送带式炉，在累计曝光量 1000mJ/cm² 的条件下对该基板照射紫外线之后，在 150°C 下加热 60 分钟，进行固化。利用上述的评价方法，对所得的具有固化覆膜的试验基板进行性能评价以及特性评价。评价结果示于表 6。  
[0394] [ 表 6]  
[0395]
从表5、表6中所示的结果可以看出，第二实施方式的光固化性热固化性树脂组合物与第一实施方式的光固化性热固化性树脂组合物同样地兼具半导体封装用阻焊剂所必需的PCT耐性、耐冷热冲击性、HAST特性，可获得可靠性非常高的阻焊固化涂膜，确认其作为光固化性热固化性树脂组合物是有用的。