1. **Planned Oy**, Asentajankatu 6, 00880 Helsinki, SUOMI - FINLAND, (FI)

2. **Keksijä - Uppfinnare**

3. **Hyväriinen, Pentti**, Korupolkku 3 A, 00950 Helsinki, SUOMI - FINLAND, (FI)

4. **Asiamies - Ombud**

5. **Planned Oy/Juha Tawast**, Asentajankatu 6, 00880 Helsinki

6. **Järjestely ja menetelmä digitaalisessa mammografiikuvauksessa**

 Arrangemang och förfarande vid digital mammografifotografering

7. **Videopublikation - Anförda publikationer**

8. **Tävistelmä - Sammandrag**

JÄRJESTELY JA MENETELMÄ DIGITAALISESSA MAMMOGRAFIAKUVAUKESSA

Keksimön kohteena on patenttivaatimuksen 1 johdanto-osassa esitetty mammografialaitejärjestely ja patenttivaatimuksen 10 johdanto-osassa esitetty menetelmä digitaalisen mammografiakuvantamisen yhteydessä.

Tyypillisessä mammografiakuvasessa rinta puristetaan röntgenlaitteessa kahden paininlevyn, tai esimerkiksi liikkumattomaksi järjestetyn kuvantamispöydän ja sen yläpuolelle järjestetyn liikutettavissa olevan paininlevyn väliin. Litteäksi puristetusta rinnasta otetaan tyypillisesti ainakin kaksi röntgenkuvaa, toinen päältä ja toinen viistoasennosta (oblique projection). Tarvittaessa otetaan vielä kolmas kuva suoraan sivulta. Mammografiakuvantamisessa etsitään rinnasta eri-
laisia poikkeamia, kuten kalkkeumia, jotka ovat pieniä kal-
siumkerääntymiä rinnan pehmytkudoksessa. Kalkkeumaa ei yleensä
voi havaita tunnustelemalla, mutta se näkyy mammografiassa.
Suuret kalkkeumat eivät yleensä liity syöpään, mutta pienien
kalkkeumien ryhmittymät, eli ns. mikrokalkit, ovat merkki rin-
nan solujen liika-aktiivisuudesta, joka voi olla yhteydessä
rintasyöpään. Muita etsittäviä rakenteita ovat mm. kystat ja
fibroadenoomat, jotka eivät kuitenkaan yleensä liity syöpään.

10 Filmin asemasta mammografiassakin on alettu käyttää enenevässä
määrin digitaalikuvaustekniikkaa. Rintojen kokeroisto johtuen
on mammografiassa totuttu filmialkakaudella käyttämään tyyppil-
lisesti kahta eri standardikokoista filmikasettia. Kun erityis-
esti suuret digitaalisensorit ovat kuitenkin erittäin kalliis-
ea, eikä sensorien toistuvaa vaihtaminen aina toisen kokoisen
sensoriin ole välttämättä aivan niin yksinkertaisesti järjes-
tettävissä kuin filmikasettiin vaihtaminen, on alalla ollut
pyrkimystä käyttää mammografiailaitteessa vain yhdenkokoista
sensoria. Jotta samalla laitteella voitaisiin kuvata myös suu-
ria rintoja, on käytettävä joko pyyhkäisykuvaustekniikkaa tai
suurta, ns. täyskenttäsensoria, jonka koko vastaa filmipuolele-
ta tunnettua 300x240 mm kokoa.

Suuren sensorin käyttö tuo kuitenkin kalliin hintansa lisäksi
mukanaan myös erilaisia muita ongelmia. Yksi problemaattinen
tilanne on se, kun pitäisi ottaa pienistä rinnoista ns. viis-
tokuvia. Viistokuvauksessa sensorin sekä sensorin koko-
staavan kokoisen painimen reunat asettuvat kuvattavana olevan
henkilön kainaloon. Tällöin pienen rinnan oikea asettelu pai-
nien vuliin muodostuu hankalaksi, kun siihen on vaikea pääs-
tä käsiksi oikeastaan mitään kautta. Lisäksi, jos käytetään
sensorin kokoista sädekeilaa, tulee pienestä rinnasta otettuun
digitaalikuvaan mukaan runsaasti myös suoraa säteilyä saaneita
alueita, joita alan määräyksien mukaan ei kuitenkaan voida
kuvasta myöhemminkään poistaa. Näin kuvatiedostoista tulee
varsin suuria, kun ne varsinaisena kuvainformation lisäksi
käsittävät runsaasti myös kuvaiksen tavoitteen kannalta täysin
turhaa informaatiota. Toisaalta sadekeilan rajaaminen täyskenttäsensoria kapeammaksi ei myöskään ole oikein toimiva vaihtoehto, sillä kun viistokuvausasemassa sensorin ja painimen reunat ovat edellä kuvatun mukaisesti asemoituneet kuvattavaan olevan henkilön kainaloon, ollaan helposti tilanteessa jossa anatomisista syistä johtuen rinta ei tässä tilanteessa enää olekaan ainakaan kokonaisuudessaan asemoitavissa alueelle, jonka sensoria kapeammaksi rajattu sadekeila kattaisi.

10 Täyskenttäsensorin viistokuvausongelmien helpotamiseksi on kehitetty ratkaisuja, joissa erityisesti pienen rinnan kysyessä olessa kuvantamislaitteessa käytetään nimenomaan pienemmälle rintakoolle suunniteltua paininta, siis paininta joka on olennaisesti kapeampi kuin laitteessa käytetty täyskenttäsensori, ja toisaalta vastaavan kokosiseksi rajattua sadekeilaa. Kun tällainen painin järjestetään liikuteltavaksi sivusuunnassa, ja vastaavasti sadekeilan koko ja paikka säädettäväksi, voidaan painin asemoida viistokuvausmoodissa täyskenttäsensorille epäkeskisesti, siis esimerkiksi sensorin nurkkaan, ja kollimoida röntgensädekeila vastaavasti. Tällainen järjestely, jonka käyttöönotto edellyttää merkittäviä muutoksia mammografialaitteen rakenteiseen ja toisaalta käytännössä esimerkiksi toistuvaa painimien vaihtamista ja siirtelyä, on esitetty mm. WO-julkaisussa 03/037046.

20 Esillä olevan keksinnön tavoite on kohottaa tekniikan tasoja ja tarjota uudenlainen mammografiaröntgenlaitujärjestely ja mene-telmä helpottamaan erityisesti pienten rintojen asemointia viistokuvasta varten silloin, kun käytetään suurta ns. täyskenttäsensoria.

Keksinnölle on tunnusomaista se, mitä on esitetty oheisten itsenenäisten patenttivaatimusten tunnusmerkkiosassa. Joitakin muita keksinnön edullisia suoritusmuotoja on esitetty muissa pa-

30 tenttivaatimuksissa.

35
Keksinnön mukaisen ratkaisun etuna on, että kuvausjärjestelyn virittämiseen sopivaksi pienten rintojen viistokuvauksesta varten ei tarvita painimen liikuttamisen ja/tai painimien vaihdon mukanaa tuomia ylimääräisiä työvaiheita mutta silti voidaan tuottaa kuvia, joissa ei ole sellaista määrää täysin turhaan tallennuskapasiteettia vievää ja kuvin siirtoa hidastavaa informaatiota, jota pienten rintojen kuvantaminen täyskenttäisen sensorilla olennaisesti sensorin kokoa vastaavalla sädekeilalla tuottaa. Toisaalta keksinnön ansiosta esimerkiksi mammografialaitteen kompleksisuutta ei tarvitse lisätä ainakaan niiltä osin, mitä painimen järjestäminen liikuttavaksi sivusuunnassa edellyttäisi.

Seuraavassa keksintöä selostetaan yksityiskohtaisemmin ja myös viittaamalla oheisiin piirustuksiin, joista kuviosta...

kuvio 1 esittää yleisluontoisesti yhtä tyypillistä mammografiaröntgenlaitetta,

kuvio 2 esittää joitakin mammografiaröntgenlaitteita tyypillisä rakenteita sivulta katsottuna,

kuvio 3 esittää mammografiakuvantamisjärjestelyä normalissä vertikaalisessa orientaatiossa toteutettavassa kuvantamisessa,

kuvio 4 esittää keksinnön mukaista viistokuvantamisjärjestelyä,

kuvio 5 esittää kuvioiden 3 ja 4 mukaisia kuvannettavan kudoksen asemointeja kohtisuoraan painimen yläpuolelta tarkasteltuna, ja

kuvio 6 esittää yhtä erityistä keksinnössä käytettäväksi soveltuva paininta.

Kuviossa 1 esitetyt mammografiaröntgenlaitte 1 koostuu runkososasta 11 ja siihen liittyvästä varsiosasta 12, jota usein kutsutaan C-varreksi. Tyypillisesti C-varren 12 vastakkaisiin

Kuvio 2 esittää yhtä tyypillistä mammografiaröntgenlaitetta sivulta katsottuna. Kuviossa 2 on esitetty laitteen runko-osan C-vari 12, säteilylähde 13 ja alahyllyrakenne 14, jonka päälle kuvannettava rinta puristetaan liikkumattomaksi C-varren 12 vertikaalisuunnassa liikutettavaksi järjestetyn yläpainimen 16 avulla. Lisäksi kuviossa on esitetty alahyllyrakenteen 14 sisään järjestetty kuvantamissensori 15 ja C-vartta pyörittävä toimilaite (moottori) 19. Laitteeseen kuulu lisäksi tyypillisesti säteilylähteen 13 välittömän läheisyyteen järjestetty kollimaattori sädekeilan rajaamiseksi, jota kolli- maattoria ei kuivion selvyyden vuoksi ole kuviossa 2 kuitenkaan esitetty. Yksi esimerkinomainen kollimaattorin 20 suoritusmuoto on esitetty kuvioiden 3 ja 4 yhteydessä.
Kuvio 3 esittää sädekeilan kollimointia olennaisesti kuvannettavan kohteen kokoseksi ja suuntaamiseksi kohteeeseen normaalissä C-varren vertikaalisessa orientaatiomassa toteutettavassa kuvantamisessa. Kuviossa 3 kuvannettava kohde on puristettu olennaisesti sensorin 15 levyisen yläpainimen 16 avulla liikkumattomaksi ja säteilynlähteen 13 fokuksesta 42 saatava säteily on rajattu olennaisesti kohteen kokoseksi kollimaattorirakenneella 20.

Kuviossa 3 on esitetty yksi sädekeilan aseman muuttamisen mahdollistava järjestely, mutta kun alan ammattimiehelle ovat selvä monet muutkin sädekeilan aseman muuttamisen mahdollistavat järjestelyt sekä myös monet muut sädekeilan koon ja/tai muodon muuttamisen mahdollistavat ratkaisut, ei niitä lähdetä tässä yhteydessä sen tarkemmin esittelemään.

Kuviossa 4 on esitetty, miten kuvannettava kudos asemoidaan ja sädekeila kollimoidaan keksinnön mukaisessa viistokuvantamis-järjestelyssä epäkeskisesti. Kuvio 4 tarkasteltessa on myös helppo visioida, miten viistokuvauksessa alahyllyn 14 ja painimen 16 venä reuna asemoituva kuvannettavan henkilön kuviossa ei-esitetyn kainalon alueelle, ja edelleen miten tallöin erityisesti pienempiä rintojen kyseessä ollessa käy helposti niin, että jos sädekeila kollimoitaisiin täyskenttäsensorin 15 keskelle siten kun kuviossa 3 on esitetty, jäisi ainakin osa kuvaantuvasi halutusta kudoksesta helposti kuvaantuva alueen ulkopuolelle.
Kuvio 5 esittää kuvioiden 3 ja 4 mukaisia kuvannettavan kohteen asemia kohtisuoraan yläpainimen 16 yläpuolelta katsottuna, ts. ylhäältä päin tarkasteltuna sitä, miten kuvannettava kudos tällöin asemoitu alahyllyrakenteen 14 päälle. Näitä kuvioita tarkasteltaessa siis nähdään, miten kollimaattorijärjestely 20 suuntaa sädekeilan otettaessa kuvia C-varren 12 vertikaaliorientaatiossa siten, että sädekeilan keskiakseli asettuu olennaisesti sensorin 15 ja yläpainimen 16 keskelle, kun taas viistokuvauksessa sädekeilan keskiakseli ei asetu sensorin 15 eikä painimen 16 keskelle vaan epäkeskisesti, edullisesti siten että sädekeila suuntautuu olennaisesti sensorin 15 nurkkaan.

Kun keksinnön mukaisen järjestelyn yksi tarkoitus on mahdollistaa täyskenttäsensorin omaavan mammografialaitteen käyttäminen sekä pienten että suurten rintojen kuvantamiseen, ja siis erityisesti myös viisto-orientaatiossa, voidaan laitteessa käytettävät kollimointivälineet 20 järjestää käsittämään esimerkiksi säädettävissä olevan kollimaattorijärjestelyn sädekeilan leveyden säätämiseksi ainakin kahteen ennalta määrätyyn vakiolevyteen. Kollimointivälineet 20 voivat käsittää esimerkiksi vaihdetta vissa olevan kollimaattorilevyjärjestelyn 24 ja/tai ainakin kaksi erisuuruista ja/tai muotoista aukkoa ja/tai rakoa omaavan kollimaattorilevyjärjestelyn 24.

Keksinnön mukaiseen kuvantamissjärjestelyyn on edullisesti järjestetty välineet tunnistamaan C-varren 12 orientaation olevan ennalta määrätyn viistokuvausaseman mukainen ja välineet signaalin lähetämisestä tästä tunnistamisesta laitteen ohjausjärjestelmälle. Järjestelyyn on myös edullisesti järjestetty välineet, kuten ohjauspaneeliin 18 järjestetty toimintoneppäin, informaation välittämiseksi ohjausjärjestelmään siitä, että tarkoitus olisi nyt kuvata pientä rintaa. Vasteena näille tiedoille ohjausjärjestelmä voi sitten olla järjestetty ohjamaan laitteen kollimaattorijärjestelyä 20 automaattisesti siten, että sädekeila rajautuu täyskenttäsensorin 15 ja vastaavasti olennaisesti täyskenttäsensorin 15 levyisen paininlevyn 16 pinta-alue pienemmäksi ja suuntautuu esimerkiksi ennalta
määrittyyn kohtaan lähelle sensorin 15 reunaa - erityisesti sensorin 15 etureunan siihen nurkkaan, joka on kyseisessä C-varren 12 viistokuvausorientaatiossa kääntynyt ylös.

5 Ohjausjärjestelmä voi käsitteää myös välineet sääkeilan kolli-moiseksi pienen rinnan kuvausta varten muullakin tavoin kuin ennalta määrityn mukaisesti joko ohjauspaneelilta 18 tai muulta käyttöliittymältä annettavien ohjauskomentojen mukaisesti. Ohjausjärjestelmään voi liittyä välineet, kuten ohjauspaneeliin 18 järjestetyt dedikoidut näppäimet ja/tai tietyt näppäilysekvenssit ja/tai yhdistelmät, joiden avulla käyttäjä voi valita, kumpaan sensorin 15 nurkkaan vaiko sen keskelle sääkeila kollimoidaan. Järjestely voi käsitteää myös välineet suunnata sääkeila muuallekin kuin nimenomaan em. ennalta mää-

rättyihin kolmeen kohtaan ja toisaalta sääkeilan koon ja/tai muodon säättämiseksi muussakin kuin leveyssuunnassa. Sääkeilian säättö voi olla järjestetty käsitettämään useampia tietynlaista sääkeiloja ja se voi olla järjestetty myös portaattomaksi.

10 Erityisesti keksinnön mukaiset kollimointivälineet on järjes-

tetty mahdollistamaan täyskenttäkuvantamissensorin 15 ja olen-

naisesti sen levyisen yläpaininlevyn 16 pinta-alaa pienemmiksi rajatun sääkeilan rajaamiskeä täyskenttäkuvantamissensorin 15 leveyttä kapeamaksi ja mahdollistamaan sääkeilan suunta-

20 minen yhtälästä sensorin keskelle toisaalta sen ainakin toiseen niistä nurkista, joiden toinen sivu asemoituu potilasta kuvattavaaksi asemointeessa rintakehää vasten.

Yhdessä keksinnön edullisessa suoritusmuodossa mammogra-

fialaitaeseen kuulu ohjausjärjestelmä ja siihen toiminnalli-

sesti liittyvää ohjauspaneeli 18, joiden välyksellä erityis-

sesti pieniä rintoja kuvattaisena laitteelle voidaan toimittaa

30 ohjaussignaali toimenpiteiden kombinaation suorittamiseksi,

johon kuuluu C-varsiosaa 12 pyörittävän toimilaitteen 19 käyt-

ämäinen siten, että varsiosa 12 asetettu ennalta määrittyyn

35 viistokuvausmisasemaan sekä kollimaattorirakenteen 20 ohja-

minen siten, että se rajaa sääkeilan täyskenttäkuvantamissen-
sorin 15 ja laitteessa keksinnön mukaisesti käytettävän olennaisesti saman levylisen painimen 16 pinta-alaa pienemmälle alueelle ja suuntaa sädekeilan sellaiseen ennalta määrita tyyyn kohtaan sensoria 15 ja vastaavasti paininta 16, jossa sädekeil lan keskiakseli ei asetu niiden keskilinjalle. Olennaisesti myös mammografialaitteessa käytettävä automaattivalotusjärjestelmä saatetaan adaptoitumaan vastaanottamaan ja/tai lukemaan signaalia siltä täyskentäkuvantamissensorin pinta-alaa pienemmältä alueelta, jolle sädekeila on kuvauksen suorittamista varten suunnattu. Kyseinen toimenpiteiden kombinaatio voidaan edullisesti järjestää toteutettavaksi vasteena esimerkiksi laitteen ohjauspaneelilta 18 annettavalle yhdelle tai useam malle ohjaussignaalille. Kyseinen ohjaussignaali voi myös per rustua esimerkiksi sen tunnistamiseen, että varsiossa 12 on ajettu tai sitä ollaan ajamassa ennalta määrättyyn viistoku vausorientaatioon.

Keksinnön yhdessä suoritusmuodossa mammografialaitteeseen kuu luu sellainen oheisissa kuvioidussa tarkemmin ei-esitetty liit tinrakenne 41 paininlevyä 16 varten, joka on järjestetty m ahdollistamaan ainakin kahden erilaisen paininlevyn 16 liittä misen järjestelyyn sekä toiminnalliseen yhteyteen mainitun liitinrakenteen 41 kanssa järjestetyt välineet tunnistamaan ainakin yhden ennalta määrätyn tyypisen paininlevyn 16 liittä mi nen mainittuun liitinrakenteeseen 41. Edellä kuvattu toimenpi teiden kombinaatio voidaan tallöin järjestää tapahtuvaksi va steena mainitun ennalta määrätyn typpisen paininlevyn 41 tunnistamiselle, joko suoraan tai yhdessä esimerkiksi sen tunnistamisen kanssa, että C-varsi 12 on ajettuna tai sitä ollaan ajamassa ennalta määrättyyn viistokuvausorientaatioon.

Kuviossa 6 on esitetty yksi mahdollinen keksinnön mukaisesti tunnistettavaksi järjestetty painin 16, joka käsittää ainakin kaksi paksuudeltaan erisuuruista aluetta, joista paksuin alue on järjestetty olennaisesti painimen 16 sen päädyyn alueelle, joka asemoitu kohti kuvattavana olevan henkilön rintakehää. Tällaista paininta 16 voidaan edullisesti käyttää nimenomaan
kuvattaessa pieniä rintoja täyskenttäsensorilla 15. Tällaisessa painimessa 16 olevan ohuemman alueen ansiosta kudoksen asemoitu paininlevyen 16, 17 (puristustasojen) väliin helpottuu, kun kudosta päästään käsrittelemään ainakin kyseisen painimen 16 ohuemman alueen kautta.

Keksinnön mukaisessa järjestelyssä käytetään edullisesti automaattivalotusjärjestelmää, joka erillisen tai erillisten automaattivalotusanturien asemesta perustuu itse kuvantamissensorin luettavaan informaatioon. Automaattivalotustoiminnon adaptoinimen kuvautuvaksi järjestetyn alueen mukaiseksi perustuu keksinnön mukaisesti nimenomaan sellaisen sensorioso- alueen valitsemiseen automaattivalotustoimintoon, jolle sädekeila on keksinnön mukaisesti suunnattu.

Keksinnön mukainen järjestely voi käsitä myös toiminnon, jossa laitteen ohjausjärjestelmä valitsee kuvantamisessa käytettävän sääteilylähteen 13 fokuksen 42 koon automaattisesti sen perusteella, että se tunnistaa olevansa asemoitu ottamaan joku tietynlainen kuva.

Keksinnön mukaisessa menetelmässä digitaalisen mammografiakuvantamisen yhteydessä käytetään siis säteilylähteen ja ns. täyskenttäsensorin käsitävän C-varren omaavaa mammografialaitea, jossa menetelmässä kuvannettava kohde asemoidaan kuvausta varten mainitun täyskenttäsensorin ja olennaisesti sen levyisen paininlevyn väliselle alueelle, säteilylähteen tuottama säteily rajataan täyskenttäsensorin ja olennaisesti sen levyisen painimen pinta-alaa pienemmäksi sädekeilaksi ja suunnataan kohti sensoria, jossa ainakin yhtä kuvantamisparametriä kontrolloidaan automaattivalotustoiminnon avulla, jossa C-vari ajetaan viistokuvausasemaan, joka voi olla jokin ennalta määritable kulma-asema, sädekeila rajataan mainitun täyskenttä- kuvantamissensorin ja vastaavasti mainitun painimen pinta-alaa pienemmälle alueelle ja suunnataan sellaiselle ennalta määritable alueelle mainittuja sensoria ja paininta, jossa sädekeilan keskiakseli ei asetu niiden keskikohtaan. Edelleen lait-
teen automaattivalotusjärjestelmä adaptoidaan vastaanottamaan ja/tai lukemaan signaalia mainitulta täyskenttäkuvantamissensorin pinta-alaa pienemmältä alueelta, jolle sadekeilla on suunnattu. Ainakin osa näistä toimintoneuvoista voidaan toteuttaa antamalla mammografialaitteeseen järjestetyllä ohjauspaneelillä tai vastaavalta käyttöliittymältä yksi tai useampi ohjaus-signaali mammografialaitteen ohjausjärjestelmälle.

Edelleen voidaan järjestää mammografialaitteen ohjausjärjestelmä tunnistamaan varsiosan 12 ajaminen ennalla määrettyyn kulma-asemaan, ja vasteena tälle tunnistamiselle rajaamaan sadekeila mainitun täyskenttäkuvantamissensorin 15 ja olennaisesti sen levyisen painimen 16 pinta-alaa pienemmälle alueelle ja suuntaamaan se sellaiselle ennalta määrytylle alueelle sensoriä ja vastaavasti paininta 16, jossa sadekeilan keskiakseli ei asetu sensorin 15 eikä vastaavasti painimen 16 keskelle. Edullisesti sadekeila suunnataan siten, että se osuu olennaisesti sensorin sallaiseen nurkkaan, jonka toinen sivu asemoituu potilasta kuvattavaksi asemoitaessa rintakehää vasten.

Myös mammografialaitteen automaattivalotusjärjestelmä järjestetään vastaanottamaan ja/tai lukemaan signaalia siltä mainitulta täyskenttäkuvantamissensorin pinta-alaa pienemmältä alueelta, jolle sadekeila on suunnattu.

Edelleen keksinnön mukaisesti voidaan toimia siten, että mammografialaitteen järjestään paininlevy 16, joka kasittää alueen paininlevyn 16 rintakehää vasten asemoituvassa etuosassa, joka alue on paksumpi kuin ainakin yksi alue kyseisen etuosan takana ja/tai vieressä, mammografialaitteen varsiosa 12 ajetaan viistokuvausorientaatioon ja kuvannettava kudos asemoitaa mammografialaitteeseen puristamalla se mainitun painimen 16 paksumman alueen alle siten, että ainakin yli puolet kuvannettavasta kudoksesta asemoituu mainitussa viistokuvausasennossa sijaitsevan täyskenttäsensorin 15 keskikohtaa korkeammalle kääntyneen puoliskon alueelle. Kuvannettavana olevan kudoksen valotus toteutetaan sitten rajaamalla sadekeila mammografialaitteeseen järjestetyllä kollimaattorijärjestemässä.
lyllä 20 alueelle, jonne kuvanettava kudos on asemoitu. Valotus toteutetaan käyttäen apuna valotusautomaattiikkasignaalia, joka on järjestetty saatavaksi tai luettavaksi siltä sensorin keskikohdasta poikkeutetulta täyskenttäsensorin alueelta, jonne kuvannettava kudos on asemoitu.

Alan ammattimiehelle on selvää, ettei keksintö rajoitu edellä esitettyihin esimerkkeihin vaan se voi vaihdella jäljempänä esitetävien patenttivaatimusten puitteissa, jolloin esimerkiksi mammografialaitteen rakenne voi poiketa edellä yleisessä muodossa esitetystä.
PATENTTIVAATIMUKSET

1. Mammografialaitelaitecer, johon kuuluu toimilaitteella (19) pyörrittävissä oleva varsiosa (12), jonka yhteyteen on järjestetty röntgensäteilylähdde (13), kollimointivälineet (20) säteilylähteen (13) tuottaman säteilyn rajaamiseksi sädkeiki- laksi ja sädkeilan suuntaamiseksi kuvattavaan kohteesee, ns. täyskenttäkuvantamissensori (15), mainittujen säteilylähteen (13) ja täyskenttäkuvantamissensorin (15) välillä jääväle alueelle järjestetty olennaisesti mainitun täyskenttäkuvantamissensorin (15) levyinen yläpaineslevy (16), automaattivalotus- järjestelmä sekä ohjausjärjestelmä ja siihen toiminnallisesti liittyvä ohjauspaneeli (18) tai muu käyttöliittymä, tunnettu siitä, että järjestelyyn kuuluu välineet toteuttaa vasteena yhdelle tai useammalle ohjaussignaalille toimenpiteiden kombinaatio, johon kuuluu mainitun varsiosaa (12) pyörrittävän toimilaitteen (19) käyttäminen siten, että varsiosa (12) asettuu viistokuvauasemaaan, mainittujen kollimointivälineiden (20) asemointi siten, että ne rajaavat sädkeilan mainittujen täyskenttäkuvantamissensorin (15) ja olennaisesti sen levyisen yläpaineslevyn (16) pinta-alaa pienemmäksi ja suuntaavat sädkeilan siten, että sädkeilan keskiakseli ei asetu mainittujen sensorin (15) ja vastaavasti painelevyn (16) keskikohtaan, ja mainitun automaattivalotusjärjestelmän adaptoidimen vastaanotetamaan ja/tai lukemaan signaalia kyseistä täyskenttäkuvantamissensorin (15) pinta-alaa pienemmältä alueelta, jolle sädkeila on suunnattu.

2. Patenttivaatimuksen 1 mukainen mammografialaitelaitecer, tunnettu siitä, että se on järjestetty toteuttamaan mainitut toimenpiteiden kombinaatio vasteena mainitulta ohjauspaneelilta (18) tai vastaavalta käyttöliittymältä annettavalle ohjaussignaalille.

3. Patenttivaatimuksen 1 mukainen mammografialaitelaitecer, tunnettu siitä, että mainittuja ohjaussignaleita on yksi ja kyseinen signaali perustuu sen tunnistamiseen, että mainit-
tu varsiosa (12) on ajettu tai sitä ollaan ajamassa ennalta määrättyyn viistokuvausorientaatioon.

4. Jonkin patenttivaatimuksista 1-3 mukainen mammografiataloja-
järjestely, tunnettu siitä, että järjestelyyn kuuluu lii-
tinrakenne (41) yläpaininlevyä (16) varten, joka liitinrakenne
(41) on järjestetty mahdollistamaan ainakin kahden erilaisen
yläpaininlevyn (16) liittämisen järjestelyyn sekä toiminnallisi-
seen yhteyteen mainitun liitinrakenteen (41) kanssa järjeste-
tyt välineet tunnistamaan ainakin yhden ennalta määrätyn tyyppisen yläpaininlevyn (16) liittäminen mainittuun liitinraken-
tesseen (41), ja että järjestely on järjestetty toteuttamaan
mainittu toimenpiteiden kombinaatio vasteena ohjaussignaalil-
le, josta ainakin osan muodostaa mainitun ennalta määrätyn
tyyppisen yläpaininlevyn (16) liittäminen järjestelyyn tunnis-
taminen.

5. Patenttivaatimuksen 4 mukainen mammografiatalojärjestely,
tunnettu siitä, että mainittu tunnistettavaksi järjestetty
yläpaininlevy (16) käsittää ainakin kaksi paksuudeltaan
erisuuruista aluetta, joista paksuin alue on järjestetty pai-
nimen (16) olennaisesti sen päädyyn alueelle, joka järjestelyyn
liitetynä asemoituu kohti kuvattavan henkilön rintakehää.

6. Jonkin patenttivaatimuksista 1-5 mukainen mammografiatalo-
järjestely, tunnettu siitä, että mainittu automaattilotu-
sjärjestelmä perustuu mainitulta täyskenttäkuvantamissenso-
rilta (15) luettavaan informaatioon ja mainittu automaattiloti-
ustoinnion adaptoiminen käsittää sen sensorialueen valit-
semisen automaattilotustoinnion, jolle sädekeila on suunn-
nattu.

7. Jonkin patenttivaatimuksista 1-6 mukainen mammografiatalo-
järjestely, tunnettu siitä, että mainitut kollimointiväli-
neet (20) käsittävät säädetävissä olevan kollimaattorijärjes-
telyn sädekeilan leveyden säätämiseksi ainakin kahteen ennalta
määrättyyn vakioleveyteen.
8. Jonkin patenttivaatimuksista 1-7 mukainen mammografialaitajuärjestely, tunnettua siitä, että mainitut kollimointivälineet (20) käsittevät vaihdettavissa olevan kollimaattorilevyjärjestelyn (24) ja/tai ainakin kaksi erisuuruisa ja/tai muotoista aukkoa ja/tai rakoa omaavan kollimaattorilevyjärjestelyn (24).

9. Jonkin patenttivaatimuksista 1-8 mukainen mammografialaitajuärjestely, tunnettua siitä, että mainitut kollimointivälineet on järjestetty mahdollistamaan sädekeilan rajaaminen mainittujen täyskenttäkuvantamissensorin (15) ja olennaisesti sen levyisen yläpaininlevyn (16) pinta-alaa pienemmäksi siten, että sädekeila rajautuu täyskenttäkuvantamissensorin (15) levyvyyttä kapeammaksi, sekä mahdollistamaan sädekeilan suuntaamisen yhtäältä mainitun sensorin (15) keskelle toisalta ainakin toiseen sensorin (15) niistä nurkista, joiden toinen sivu asemittuu potilasta kuvattavaksi asemoitaessa rintakehää vasten.

10. Menetelmä digitaalisen mammografikuvantamisen yhteydessä, jossa kuvantamiseen käytetään säteilylähteen ja ns. täyskenttäsensorin käyttävän varsiosan omaavaa mammografialaitetta, jossa menetelmässä kuvannettava kohde asemoidaan kuvausta var-ten mainitun täyskenttäsensorin ja olennaisesti mainitun täyskenttäsensorin levyisen paininlevyn väliselle alueelle, säteilylähteen tuottama sädekeila rajataan sädekeilaksi ja suunnatanaan kohti sensoria ja jossa ainakin yhtä kuvantamisparametriä kontrolloidaan automaattivalotustoiminnon avulla, tunnettua siitä, että menetelmä käsittelee seuraavien toimenpiteiden kombinaation: ajetaan mainittu varsiossa viistokuvausasemaa; rajataan sädekeila mainittujen täyskenttäkuvantamissensorin ja olennaisesti sen levyisen paininlevyn pinta-alaa pienemmälle alueelle ja suunnataan sädekeila sellaiselle alueelle sensoria ja olennaisesti sen levyistä paininlevyä, jossa sädekeilan keskiakseli ei asetu niiden keskikohtaan; adaptoidaan mainittu automaattivalotusjärjestelmä vastaanottamaan ja/tai lukemaan.
signaaliala mainitulta täyskenttäkuvantamissensorin pinta-alaa pienemmältä alueelta, jolle sädekeila on suunnattu.

11. Patenttivaatimuksen 10 mukainen menetelmä, tunnettu siitä, että ainakin osa mainitusta toimenpiteistä toteutetaan antamalla mammografialaitteeseen järjestetyltä ohjauspaineelilta (18) tai vastaavalta käyttöliittymältä ohjaussignaali mammografialaitteen ohjausjärjestelmälle.

13. Patenttivaatimuksen 10 mukainen menetelmä, tunnettu siitä, että se käsittelee seuraavat toimenpiteet: järjestää mammografialaitteeseen paininlevy, joka käsittelee alueen sen rintakehää vasten asemoituvassa etuosassa joka on paksumpi kuin ainakin osa kyseisen etuosan takana ja/tai vieressä oleva alue tai alueet; ajetaan mammografialaitteen varsiosi viistokuvausentoon; asemoidaan kuvannettava kudos mammografialaitteeseen puristamalla se mainitun painimen paksumman alueen alle siten, että ainakin yli puolto kuvannettavasta kudoksesta asemoituu mainitussa viistokuvausennossa sijaitsevan täyskenttäsensorin keskikohtaan korkeammalle kääntyneen puolen alueelle.

15. Jonkin patenttivaatimuksista 10-14 mukainen menetelmä, tunnettu siitä, että sädekeila suunnataan mainitun seno- rin sellaiseen nurkkaan, jonka toinen sivu asemoituu potilasta kuvattavaksi asemoitaessa rintakehää vasten.

PATENTKRAV

1. Ett mammografiapparatsarrangemang, som innefattar en med en aktuator (19) vridbar armdel (12), i anslutning till vilken har arrangerats en röntgenstrålningskälla (13), kollimeringsmedel (20) för avgränsning av den av strålningskällan (13) producerade strålning till en strålkäglan samt för riktning av strålkäglan mot det avbildade objektet, en s.k. helfältsavbildningssensor (15), en övre kompressionsplatta (16), väsentligt av helfältavbildningssensorns (15) bredd, som arrangerats i området mellan de nämnda strålningskällan (13) och helfältsavbildningssensorn (15), ett automatiskt exponeringssystem, samt ett styrsystem och en till den funktionellt ansluten styrpanel (18) eller annat användargränssnitt, kännetecknat av att arrangemanalet innefattar medlen för att som respons till en eller flere styrsignaler utföra en kombination av åtgärder, som innefattar användningen av den nämnda aktuatern (19) som roterar armdelen (12) på så sätt att armdelen (12) placerar sig i snedprojektionsläge, placering av de nämnda kollimeringsmedlen (20) på så sätt att de begränsar strålkäglan till en storlek mindre än ytan av de nämnda helfältavbildningssensorn (15) och av den övre kompressionsplattan (16) av väsentligt samma bredd och riktar strålkägln så att strålkäglans mittaxel inte ställer sig på de nämnda sensorns (15), och respektivt kompressionsplattans (16) mitt, och adaptering av det nämnda automatiska exponeringssystemet att motta och/eller läsa signalen från ett område mindre än helfältavbildningssensorns (15) yta, mot vilken strålkägln är riktad.

2. Ett mammografiapparatsarrangemang enligt patentkrav 1, kännetecknat av att det är arrangerat att utföra den nämnda åtgärds kombinationen som en respons till styrsignaler som ges från den nämnda styrpanelen (18) eller ett motsvarande användargränssnitt.

3. Ett mammografiapparatsarrangemang enligt patentkrav 1, kännetecknat av att det finns en av nämnda
styrsignalen och den ifrågavarande signalen baserar sig på igen-kännandet av att den nämnda armdelen (12) har drivits eller håller på att drivas till en på förhand definierad snedprojektions-orientation.

4. Ett mammografiapparatsarrangemang enligt något av patentkraven 1 - 3, k an n e t e c k n a t a v att arrangemanget innefattar en anslutningsstruktur (41) för den övre kompressionsplattan (16), som anslutningsstrukturen (41) har arrangerats att möjliggöra åtminstone två olika övre kompressionsplattors (16) anslutning till arrangemanget, samt i en funktionell förbindelse med den nämnda anslutningsstrukturen (41) arrangerade medlen för identifiering av anslutning av åtminstone en på förhand definerad typ av övre kompressionsplatta (16) till den nämnda anslutningsstrukturen (41), och av att arrangemanget är arrangerat att utföra den nämnda åtgärdskombinationen som en respons till styrsignalen, av vilken åtminstone en del utgörs av identifiering av den nämnda på förhand definierade typen av övre kompressionsplattans (16) anslutning till arrangemanget.

5. Ett mammografiapparatsarrangemang enligt patentkrav 4, k an n e t e c k n a t a v att den nämnda för identifiering arrangerade övre kompressionsplattan (16) innefattar åtminstone två områden av olika tjocklek, av vilka det tjockaste området är arrangerat på kompressionsplattan (16) väsentligt på området av den ända, som anslutet till arrangemanget positioneras mot den avbildade personens bröstkorg.

6. Ett mammografiapparatsarrangemang enligt något av patent-kraven 1 - 5, k an n e t e c k n a t a v att det nämnda automatiska exponeringssystemet baserar sig på information som utlästs ifrån den nämnda helfältsavbildningssensorn (15) och adaptering av den nämnda automatiska belysningsfunktionen omfattar valet för det automatiska exponeringsfunktionen av det sensorområde, mot vilken strålkåglan är riktad.
7. Ett mammografiapparatsarrangemang enligt något av patent-kraven 1 - 6, kännetecknat av att de nämnda kollimeringsmedlen (20) innefattar ett justerbart kollimatorarrangemang för justering av strålkläglans bredd till åtminstone två på förhand definierade standardbredder.

9. Ett mammografiapparatsarrangemang enligt något av patent-kraven 1 - 8, kännetecknat av att de nämnda kollimeringsmedlen (20) är arrangerade att möjliggöra strålkläglans avgränsning så att den är mindre än ytan av de nämnda helfältsavbildningssensorn (15) och den övre kompressionsplattan av väsentligt samma bredd (16) på så sätt att strålkläglen begränsas till att vara småare än helfältsavbildningssensorns (15) bredd, samt att möjliggöra riktandet av strålkläglen å ena sidan i den nämnda sensorns (15) mitt å andra sidan åtminstone i det ena av sensorns (15) de hörn, vilkas andra sida positionerar sig mot bröstkorgen då man stationerar patienten för bildtagning.

10. En metod i samband med digital mammografiavbildning, där man för bildtagning använder en mammografiapparat som besitter en armdel omfattande en strålningskälla och en s.k. helfältsensor, i vilken metoden objektet som skall avbildas positioneras för avbildning i ett område mellan den nämnda helfältsensorn och en kompressionsplatta väsentligt lika bred som den nämnda helfältsensorn, man avgränsar den av strålningskällan producerade strålning till en strålklägla och riktar den mot sensorn, och där man kontrollerar åtminstone en av avbildningsparametrarna med hjälp av en automatisk exponeringsfunktion, kännetecknande av att metoden innefattar en kombination av följande åtgärder: man drivar den nämnda armdelen i snedprojektionsläge;
begränsar strålkäglan till ett område mindre än ytan av de nämnda helfältsavbildningssensorn och av kompressionsplattan av väsentligt den samma bredd, och riktar strålkäglan så att strålkäglans mittaxel inte ställer sig på sensorns och väsentligt en lika bred kompressionsplattas mitt; adapterar det nämnda automatiska exponeringssystemet att motta och/eller läsa signalen från det nämnda området mindre än helfältsavbildningssensorns yta, mot vilken strålkäglan är riktad.

11. En metod enligt patentkrav 10, kännetecknad av att man utför åtminstone en del av de nämnda åtgärderna genom att ge en styrsignal till mammografiapparaten styrsystem från en i mammografiapparaten arrangerad styrpanel (18) eller motsvarande användargränssnitt.

12. En metod enligt patentkrav 11, kännetecknad av att man arrangerar ett styrsystem för mammografiapparaten att känna igen armdelens styrning till ett på förhand definierat vilkelläge, och som respons till denna igenkänning avgränsar strålkäglan till ett område mindre än de nämnda helfältsensorn och en kompressionsplatta av väsentligt lika bred som den nämnda helfältsensorn, och riktas strålkäglan på ett sådant område av sensorn, var strålkäglans mittaxel inte placerar sig mitt i sensorn samt kompressionsplattan som arrangerats vara väsentligt lika bred som sensorn.

13. En metod enligt patentkrav 10, kännetecknad av att den innefattar följande åtgärder: man arrangerar i mammografiapparaten en kompressionsplatta, som innefattar området i mammografiapparaten framdel som positioneras mot bröstkorgen och som är tjockare än åtminstone en del av det område eller områden som befinner sig bakom och/eller bredvid ifrågavarande framdel; man styr mammografiapparaten armdel i snedprojektionsläge; man positionerar vävnaden som skall avbildas i mammografiapparaten genom att pressa den under den nämnda kompressionsplattans tjockare område på så sätt att åtminstone över hälften av vävnaden som skall avbildas positioneras på det område som
vänts högre uppåt än det i snedprojektionsläge varande helfälts-
sensorns mittpunkt.

14. En metod enligt något av patentkraven 10 - 13, kännede-
tec knad av att strålkäglan avgränsas att vara smalare än
den nämnda sensorn.

15. En metod enligt något av patentkraven 10 - 14, kännede-
tec knad av att strålkäglan riktas mot den nämnda
sensorns någon sådan knuthörn, vars andra sida positioneras mot
bröstkorgen då man positionerar patienten för avbildning.

16. En metod enligt något av patentkraven 10 - 15, kännede-
tec knad av att strålkäglan riktas mot den sida av den
nämnda sensorns mitt, som i den nämnda armdelens snedprojektions-
orientation är vänd högre uppåt.
Fig. 2