发明名称
纤维素和二氧化硅复合有色纤维制造方法及制造的复合有色纤维

摘要
本发明涉及一种纤维素和二氧化硅复合有色纤维及其制造方法，为采用纤维素黄原酸酯、二氧化硅、氢氧化钠和水制备纺丝粘胶液，并在粘胶熟成中加入色浆与之混合制成原液着色粘胶，采用湿纺法纺丝成型制得。该复合有色纤维具有永久性防火阻燃功能，同时该纤维色牢度高，色谱广，染色均匀，工艺简单成本低廉，该产品可直接用于色纺，为下游客户省去染色整理工序减少了环境污染和能源的浪费。
1. 纤维素和二氧化硅复合有色纤维制造方法，其特征在于其包括生产步骤：
 a) 取六聚磷酸钠或三聚磷酸钠加溶热溶解在 20～110g/l 的稀酸液中，之后按纤维生产着色要求，按六聚磷酸钠或三聚磷酸钠占色浆重量的 2～4%比例将二者混合均匀，混合时间 2～3 小时后即制得着色剂；
 b) 采用纤维素制备纤维素黄原酸酯，取纤维素黄原酸酯、二氧化硅、氢氧化钠和水混合均匀制得共混粘胶液体；
 c) 将共混粘胶液体熟成，并在粘胶熟成中加入制好的着色剂，混合均匀制得重量百分含量分别为 α-纤维素 5.0%～8.2%，二氧化硅 20%～60%（对 α-纤维素），氢氧化钠 9.0%～11.0%，着色剂（按固形物计算）3.0%～5.5%（对 α-纤维素），余量为水份的共混纺丝原液；
 d) 将共混纺丝原液经湿法纺丝成型，并经牵伸、精练、烘干等工序制得到成品纤维素和二氧化硅复合有色纤维。

2. 如权利要求 1 所述的纤维素和二氧化硅复合有色纤维制造方法，其特征在于：纺丝凝固浴由 60～140g/lH₂SO₄, 10～60g/lZnSO₄, 260～350g/lNa₂SO₄ 组成，温度为 35～58℃。

3. 如权利要求 1 所述的纤维素和二氧化硅复合有色纤维制造方法，其特征在于：纺丝凝固浴由 60～140g/lH₂SO₄, 10～60g/lAl₂(SO₄)₃, 260～350g/lNa₂SO₄ 组成，温度为 35～58℃。

4. 如权利要求 1、2 或 3 所述的纤维素和二氧化硅复合有色纤维制造方法，其特征在于：采用喷头欠伸、盘间欠伸、三浴欠伸、四浴欠伸，并且喷头欠伸 0～60%，盘间欠伸 28～60%，三浴欠伸 5～15%，四浴欠伸 3～12%。

5. 如权利要求 1、2 或 3 所述的纤维素和二氧化硅复合有色纤维制造方法，其特征在于：精炼时采用 Ca(OH)₂ 或亚硫酸钠精炼脱硫。

6. 如权利要求 1 所述的纤维素和二氧化硅复合有色纤维制造方法，其特征在于：精炼时不进行漂白工序。

7. 采用如权利要求 1 所述纤维素和二氧化硅复合有色纤维制造方法制造
的纤维素和二氧化硅复合有色纤维，其特征在于该复合有色纤维包括纤维素、二氧化硅和着色剂，其重量含量依次为纤维素 46%～86%，二氧化硅 10%～50%，着色剂（固形物）2%～5%，该纤维的极限氧指数 LOI 27～34%，色牢度 ≥5 级，干强度 1.8～2.6cN/dtex，干伸度 12%～35%。
纤维素和二氧化硅复合有色纤维制造方法及制造的复合有色纤维

技术领域

本发明涉及一种纤维生产技术，尤其是涉及一种采用纤维素和二氧化硅生产复合有色纤维的制造方法。

背景技术

纤维素粘胶纤维是采用纤维素经一系列的化学处理后制得。由于其具有良好的吸湿、透气性能，广泛地运用到了服装、家居用品、医疗卫生等领域，并且人们对其进行改性或添加功能助剂来生产功能纤维。如采用添加硅系物质后制备的阻燃纤维。而当前人们对阻燃纤维的上色处理则多通过通过常规染整工艺来生产有色纤维，这种生产方法，不仅生产成本高，并且在染色过程中会因纤维的质量、工艺等原因引起色泽不均，色牢度差等问题，增加了能源消耗、人力和成本，产生废水污染环境。并且在阻燃纤维的染整过程中，由于染整药剂的作用，纤维内的阻燃有效成分随染整处理过程逐渐发生流失，使纤维阻燃效果逐渐降低，影响了纤维的阻燃效果。

发明内容

本发明提供了一种纤维素和二氧化硅复合有色纤维制造方法，该方法工艺简单，生产的复合纤维色泽均匀，色牢度好，生产过程中阻燃有效成分流失量低。

本发明还提供了该纤维素和二氧化硅复合有色纤维制造方法制造的复合有色纤维，该复合有色纤维色泽均匀，色牢度好，阻燃效果优良。

本发明纤维素和二氧化硅复合有色纤维制造方法，生产步骤包括：

步骤一，取六聚磷酸钠或三聚磷酸钠加热溶解在 20～110g/l 的稀碱液中，之后按纤维生产着色要求，按六聚磷酸钠或三聚磷酸钠占色浆重量的 2～4%比例将二者混合均匀，混合时间 2～3 小时后即制得着色剂；

步骤二，采用纤维素来制备纤维素黄原酸酯，即可采用常规纤维生产中的制
备方法，采用纤维素浆粕，如木浆粕、棉浆粕或麻浆粕等纤维素浆粕，可以采用一种，也可以采用多种混合后使用，经碱溃、压榨、粉碎、黄化等步骤来制备纤维素黄原酸酯，这对于本领域内的技术人员来说，是熟知的技术。然后采用纤维素黄原酸酯、二氧化硅、氢氧化钠和水混合均匀制得共混粘胶液体；

步骤三，将步骤二制得的共混粘胶液体经溶解、过滤、脱泡等工序逐步熟制后制得共混纺丝原液，并在熟制中加入色浆混合制得共混纺丝原液，可以在溶解过程中加入，也可以在过滤过程中加入，使制得的纺丝原液内质量含量比例分别为：α-纤维素5.0%～8.2%，二氧化硅20%～60%（对α-纤维素），氢氧化钠9.0%～11.0%，着色剂（按固体物计算）3.0%～5.5%（对α-纤维素），其余为水份。

步骤四，将制得的共混纺丝原液经湿法纺丝后二氧化硅和纤维素黄酸酯凝固再生为二氧化硅和纤维素组成的复合纤维，再经欠伸、精练、烘干等工序制成的成品复合有色纤维。

纺丝时的纺丝凝固浴可以由60～140g/LH₂SO₄, 10～60g/LZnSO₄, 260～350g/LNa₂SO₄组成，浴温为35～58℃；也可以纺丝凝固浴由60～140g/LH₂SO₄, 10～60g/LAl₂(SO₄)₃, 260～350g/LNa₂SO₄组成，浴温为35～58℃。

而进行的欠伸由采用喷头欠伸、盘间欠伸、三浴欠伸、四浴欠伸，并且喷头欠伸0～60%，盘间欠伸28～60%，三浴欠伸5～15%，四浴欠伸3～12%。

对于复合有色纤维的后处理则可以采取去掉漂白工序后的纤维素纤维的常规后处理工序，将纤维采用Ca(OH)₂或亚硫酸钠精炼脱硫后烘干即可。

本发明的有色纤维素和二氧化硅复合纤维包括纤维素、二氧化硅和着色剂以及水分组成，其中纤维素含量（重量比）46%～86%，二氧化硅10%～50%，着色剂（固体物）2%～5%。该纤维的极限氧指数LOI为27～34%，色牢度≥5级，干强度为1.8～2.6cN/dtex，干伸度为12%～35%。

在本发明中，所全用的各种设备和各种用料均为当前纤维素纤维正常生产中所用的，并可从市场购得。
本发明所述的纤维素和二氧化硅复合有色纤维制造方法采用原液着色法，将着色剂直接加入混合到纤维纺丝原液的制备过程中加入，并纺丝得到的纤维素和二氧化硅复合有色纤维，工艺简单，易操作，染色均匀，成本低廉。而采用该方法的纤维素和二氧化硅复合有色纤维色泽均匀，色谱广，色牢度好，可直接用于色纺，为下游客户省去染色整理工序减少了环境污染和能源的浪费，避免了后续生产过程中阻燃有效成分流失量的问题，阻燃效果优良。

具体实施方式

实施例1

首先取六聚磷酸钠或三聚磷酸钠加热溶解在20g/l的稀碱液中，之后按纤维生产着色要求，按六聚磷酸钠占色浆重量2%的比例将二者混合均匀，混合时间2小时后即制得着色剂；

其次用纤维素棉浆粕采用常规短纤维生产方法制备纤维素黄原酸酯，采用纤维素黄原酸酯、二氧化硅、氢氧化钠和水混合均匀制得共混粘胶液体；将制得的共混粘胶液体经溶解、过滤、脱泡逐步熟成，并在溶解中加入着色剂混合制得共混纺丝原液，使制得的纺丝原液内重量含量比分别为：α-纤维素5.0%，二氧化硅40%（对α-纤维素），氢氧化钠10.5%，着色剂（按固形物计算）3.4%（对α-纤维素），以及水份。

并将共混纺丝原液经湿法纺丝进入凝固浴中成型，其凝固浴由125g/1H₃PO₄, 11g/1ZnSO₄, 335g/1Na₂SO₄组成，温度为58°C。纤维进入凝固浴后经喷头欠伸\盘间欠伸\三浴欠伸\四浴欠伸，其喷头欠伸56%，盘间欠伸32%，三浴欠伸5%，四浴欠伸8%，然后经过Ca(OH)₂精炼脱硫处理，在精炼过程中去掉常规的漂白工序，再经过烘干后即得到成品纤维素和二氧化硅复合有色纤维。

制得的有色纤维素和二氧化硅复合纤维内纤维素、二氧化硅和着色剂重量含量比为纤维素63.8%，二氧化硅25.5%，着色剂（固形物）2.1%。该纤维的极限氧指数LOI为31%，色牢度≥5级，干强度为2.2cN/dtex，干伸度为16%。

实施例2
首先取六聚磷酸钠或三聚磷酸钠加热溶解在 110g/l 的稀碱液中，之后按纤维生产着色要求，按三聚磷酸钠占色浆重量的 4% 的比例将二者混合均匀，混合时间为 3 小时后即制得着色剂；

其次用纤维素木浆粕采用常规短纤维素生产方法制备纤维素黄原酸酯，采用纤维素黄原酸酯、二氧化硅、氢氧化钠和水混合均匀制得共混粘胶液体；将制得的共混粘胶液体经溶解、过滤、脱泡逐步熟成，并在粘胶脱泡前加入着色剂混合制得共混纺丝原液，使纺丝原液内重量含量比分别为：α-纤维素 8.0%，二氧化硅 60%（对 α-纤维素），氢氧化钠 10.2%，着色剂（按固形物计算）5.5%（对 α-纤维素），以及水份。

并将共混纺丝原液经湿法纺丝进入凝固浴中成型，其凝固浴由 105g/1H\textsubscript{2}SO\textsubscript{4}, 26g/1Na\textsubscript{2}SO\textsubscript{4}, 335g/1Na\textsubscript{2}S\textsubscript{4} 组成，温度为 48℃。纤维进入凝固浴后经喷头欠伸、盘间欠伸、三浴欠伸、四浴欠伸，其喷头欠伸 26%，盘间欠伸 36%，三浴欠伸 6%，四浴欠伸 9%。然后经过亚硫酸钠精炼脱硫处理，在精炼过程中去掉常规的漂白工序，再经过烘干后即得到成品纤维素和二氧化硅复合有光纤维。

制得的有色纤维素和二氧化硅复合纤维内纤维素、二氧化硅和着色剂重量含量比为纤维素 56.0%，二氧化硅 33.5%，着色剂（固形物）3.9%。该纤维的极限氧指数 LOI 为 32%，色牢度 ≥5 级，干强度为 2.0cN/dtex，干伸度为 30%。

实施例 3

首先取六聚磷酸钠或三聚磷酸钠加热溶解在 40g/l 的稀碱液中，之后按纤维生产着色要求，按三聚磷酸钠占色浆重量 2.5% 的比例将二者混合均匀，混合时间为 2 小时后即制得着色剂；

其次用纤维素木浆粕采用常规短纤维素生产方法制备纤维素黄原酸酯，采用纤维素黄原酸酯、二氧化硅、氢氧化钠和水混合均匀制得共混粘胶液体；将制得的共混粘胶液体经溶解、过滤、脱泡逐步熟成，并在粘胶脱泡前加入着色剂混合制得共混纺丝原液，使纺丝原液内重量含量比分别为：α-纤维素 7.5%，二氧化硅 20%（对 α-纤维素），氢氧化钠 10.5%，着色剂（按固形物计算）3.0%
（对 α-纤维素），以及水份。

并且将共混纺丝原液经湿法纺丝进入凝固浴中成型，其凝固浴由 80g/1H₂SO₄, 18g/l Al₂(SO₄)₃, 340g/1Na₂SO₄ 组成，温度为 50℃。纤维进入凝固浴后经喷头欠伸→盘间欠伸→三浴欠伸→四浴欠伸，其喷头欠伸 30%, 盘间欠伸 33%, 三浴欠伸 8%, 四浴欠伸 10%。然后经过亚硫酸钠精炼脱硫处理，在精炼过程中去掉常规的漂白工序，再经过烘干后即得到成品的纤维素和二氧化硅复合有色纤维。

制得的有色纤维素和二氧化硅复合纤维内纤维素、二氧化硅和着色剂重量含量比为纤维素 73.5%, 二氧化硅 14.5%, 着色剂（固形物）2.2%。该纤维的极限氧指数 LOI 为 30%，色牢度≥5 级，干强度为 2.3cN/dtex, 干伸度为 29%。