PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/48203
HO04K 1/00 Al

(43) International Publication Date: 18 December 1997 (18.12.97)

(21) International Application Number: PCT/US97/10359 | (81) Designated States: AL, AM, AT, AT (Utility model), AU

(Petty patent), AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU,

(22) International Filing Date: 12 June 1997 (12.06.97) CZ, CZ (Utility model), DE, DE (Utility model), DK, DK

(Utility model), EE, EE (Utility model), ES, FI, FI (Utility
model), GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR,
(30) Priority Data: KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,

08/662,679 13 June 1996 (13.06.96) us MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SK (Utility model), TJ, T™M, TR, TT, UA, UG, UZ, VN,
YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, S§Z, UG,

(71) Applicant: INTEL CORPORATION [US/US]; 2200 Mission ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
College Boulevard, Santa Clara, CA 95052 (US). TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR,

GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,

(72) Inventors: AUCSMITH, David; 6995 S.W. Laber Road, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Portland, OR 97225 (US). GRAUNKE, Gary; 12120 S.W.
Trail Place, Beaverton, OR 97008 (US).

Published
(74) Agents: TAYLOR, Edwin, H. et al.; Blakely, Sokoloff, Taylor With international search report.
& Zafman LLP, 7th floor, 12400 Wilshire Boulevard, Los Before the expiration of the time limit for amending the
Angeles, CA 90025 (US). claims and to be republished in the event of the receipt of
amendments.

(54) Title: TAMPER RESISTANT METHODS AND APPARATUS

(57) Abstract

In accordance with a first aspect of the present invention, |
a security sensitive program (100) that operates with a secret L
(101) is made tamper resistant by distributing the secret in 1671 | Subpart of Secret
space as well as in time. In accordance with a second aspect
of the present invention, a security sensitive program is made
tamper resistant by obfuscating the program. In accordance
with a third aspect of the present invention, a security sensitive
application is made tamper resistant by isolating its security 102
sensitive functions, and making the isolated security sensitive > -
functions tamper resistant by distributing the secrets of the T Subpart of Secret 100
security sensitive functions in time as well as in space, 101
and/or obfuscating the security sensitive functions. In one
embodiment where obfuscation is employed, the pseudo-
randomly selected pattern(s) of mutations is (are) unique for
each installation. In accordance with a fourth aspect of the
present invention, a security sensitive system with security .
sensitive applications is made further tamper resistant by
deploying an interlocking trust mechanism. In accordance .
with a fifth aspect of the present invention, a content industry
association, in conjunction with content manufacturers, content . —_—
reader manufacturers, and content player manufacturers of the
industry jointly implement a coordinated encryption/decryption
scheme, with the player apparatus manufactured by the content
player manufacturers employing playing software that include
tamper resistant decryption functions. 102

_1| Subpart of Secret
101

AL
AM
AT
AU
AZ
BA
BB
BE
BF

BJ

BR
BY
CA
CF
CG
CH

™
CN

cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
s
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

Prance

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MwW
MX
NE
NL
NO
NZ

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
T}
™
TR
TT
UA
UG
us
uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

1
Tamper Resistant Methods And Apparatus

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of system security. More
specifically, the present invention relates to the tamper resistant methods and

apparatus.

2. Background Information

Many applications, e.g. financial transactions, unattended authorizations
and content management, require the basic integrity of their operations to be
assumed, or at least verified. While a number of security approaches such as
encryption and decryption techniques are known in the art, unfortunately, the security
approaches can be readily compromised, because these applications and the
security approaches are implemented on systems with an open and accessible
architecture, that renders both hardware and software including the security
approaches observable and modifiable by a malevolent user or a malicious program.

Thus, a system based on open and accessible architecture is a
fundamentally insecure platform, notwithstanding the employment of security
measures. However, openness and accessibility offer a number of advantages,
contributing to these systems' successes. Therefore, what is required are techniques
that will render software execution virtually unobservable or unmodifiable on these
fundamentally insecure platforms, notwithstanding their openness and accessibility.
As will be disclosed in more detail below, the present invention of tamper resistant
methods and apparatus achieve these and other desirable results.

SUMMARY OF THE INVENTION

In accordance with a first aspect of the present invention, a security
sensitive program that operates with a secret is made tamper resistant by distributing
the secret in space as well as in time. The secret is partitioned into a number of
subparts, and the security sensitive program is unrolled into a number of subprograms

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

2
that operate with the subparts, one subpart per subprogram. The subprograms are

then executed over a period of time. In one embodiment, the subprograms are further
interleaved with unrelated tasks. In one application, the security sensitive program is
a decryption program and the secret is a private key.

In accordance with a second aspect of the present invention, a security
sensitive program is made tamper resistant by obfuscating the program. The security
sensitive program is divided into a number of subprograms, and a plaintext
appearance location schedule is selected for the subprograms. An appropriate
mutated initial state is determined for each of the subprograms, except for the
subprogram where the program's entry point is located. The mutated initial states are
determined based on one or more pseudo-randomly selected pattens of mutations
that return the program to the initial state at the end of an execution pass. During
execution, the subprograms are recovered when they are needed, one or more but
not all at a time, following the pseudo-randomly selected pattern(s) of mutations. In
one embodiment, each pseudo-randomly selected pattern of mutations is determined
using a predetermined partnership function in conjunction with an ordered set of
pseudo-random keys. In one application, the security sensitive program is a
decryption program that operates with a secret private key. The decryption program
may or may not have been made tamper resistant by distributing the secret private key
in time as well as in space.

in accordance with a third aspect of the present invention, a security
sensitive application is made tamper resistant by isolating its security sensitive
functions, and making the isolated security sensitive functions tamper resistant by
distributing the secrets of the security sensitive functions in time as well as in space,
and/or obfuscating the security sensitive functions. In one embodiment where
obfuscation is employed, the pseudo-randomly selected pattern(s) of mutations is
(are) unique for each installation. In one application, the application is a content
management application having a decryption function.

In accordance with a fourth aspect of the present invention, a security
sensitive system with security sensitive applications is made further tamper resistant
by providing a system integrity verification program having tamper resistant integrity
verification kemels, that jointly deploy an interlocking trust mechanism with the tamper
resistant security sensitive functions of the security sensitive applications. In one

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

3

application, the system is a content manipulation system, and the application is a
content management application.

In accordance with a fifth aspect of the present invention, a content
industry association, in conjunction with content manufacturers, content reader
manufacturers, and content player manufacturers of the industry jointly implement a
coordinated encryption/decryption scheme, with the player apparatus manufactured
by the content player manufacturers employing playing software that include tamper
resistant decryption functions.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will be described by way of embodiments, but not
limitations, illustrated in the accompanying drawings in which like references denote
similar elements, and in which:

Figure 1 is a block diagram illustrating a first aspect of the present
invention for making a security sensitive program tamper resistant by distributing the
program's secret(s) in time and in space;

Figure 2 is a block diagram illustrating one embodiment of the first
aspect of the present invention including a subprogram generator for generating the
subprograms that operate with corresponding subparts of the distributed secret(s);

Figure 3 is a flow diagram illustrating one embodiment of the
operational flow of the subprogram generator of Figure 2;

Figure 4 is a block diagram illustrating a second aspect of the present
invention for making a security sensitive program tamper resistant by obfuscating the
various subparts of the security sensitive program;

Figure 5 is a block diagram illustrating one embodiment of a subpart of
the obfuscated program;

Figure 6 is a block diagram illustrating one embodiment of the second
aspect of the present invention including an obfuscation processor for generating the
obfuscated program;

Figure 7 is a graphical diagram illustrating distribution of key period for
the second aspect of the present invention;

Figures 8a - 8b are flow diagrams illustrating one embodiment of the
operational flow of the obfuscation processor of Figure 6;

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

4
Figure 9 is a flow diagram illustrating one embodiment of the

operational logic of an obfuscated subprogram of the obfuscated program;

Figures 10 - 14 are diagrams illustrating a sample application of the
second aspect of the present invention;

Figure 15 is a block diagram illustrating a third aspect of the present
invention for making a security sensitive application tamper resistant;

Figure 16 is a block diagram illustrating a fourth aspect of the present
invention for making a security sensitive system tamper resistant;

Figure 17 is a block diagram illustrating a fifth aspect of the present
invention for making security sensitive industry tamper resistant; and

Figures 18 - 19 are block diagrams illustrating an example computer
system and an embedded controller suitable for programming with the various
aspects of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, various aspects of the present invention will
be described. However, it will be apparent to those skilled in the art that the present
invention may be practiced with only some or all aspects of the present invention. For
purposes of explanation, specific numbers, materials and configurations are set forth in
order to provide a thorough understanding of the present invention. However, it will
also be apparent to one skilled in the art that the present invention may be practiced
without the specific details. In other instances, well known features are omitted or
simplified in order not to obscure the present invention.

Parts of the description will be presented in terms of operations performed
by a computer system, using terms such as data, flags, bits, values, characters, strings,
numbers and the like, consistent with the manner commonly employed by those skilled
in the art to convey the substance of their work to others skilled in the art. As well
understood by those skilled in the art, these quantities take the form of electrical,
magnetic, or optical signals capable of being stored, transferred, combined, and
otherwise manipulated through mechanical and electrical components of the computer
system; and the term computer system include general purpose as well as special
purpose data processing machines, systems, and the like, that are standalone, adjunct
or embedded.

10

15

20

25

30

35

WO
97/48203 PCT/US97/10359

5

Various operations will be described as multiple discrete steps in tumn in a
manner that is most helpful in understanding the present invention, however, the order
of description should not be construed as to imply that these operations are necessarily
order dependent, in particular, the order of presentation.

Referring now to Figure 1, a block diagram illustrating a first aspect of
the present invention is shown. In accordance with this first aspect of the present
invention, security sensitive program 100 is made tamper resistant by distributing its
secret in space as well as in time. The secret (not shown in totality) is “partitioned"
into subparts 101, and program 100 is unrolled into a number of subprograms 102
that operate with subparts 101; for the illustrated embodiment, one subpart 101 per
subprogram 102. Subprograms 102 are then executed over a period of time. As a
result, the complete secret cannot be observed or modified in any single point in
space nor in any single point in time.

For example, consider the artificially simple "security sensitive" program
for computing the result of X multiply by S, where S is the secret. Assuming S equals
to 8, S can be divided into 4 subparts, with each subpart equals 2, and the "security
sensitive" program can be unrolled into 4 subprograms with each program computing
A = A + (X muttiply by 2). Thus, the complete secret 8 can never be observed or
modified in any point in space nor time.

As a further example, consider the “security sensitive" program for
computing the result of (X to the power of S) modulo Y, where S again is the secret.
If S equals 16, S can be divided into 8 subparts, with each subpart equals 2, and the
*security sensitive" program can be unrolled into 8 subprograms with each program
computing A = (A multiply by ((X to the power of 2) modulo Y)) modulo Y. Thus, the
complete secret 16 can never be observed or modified in any point in space nor time.

As will be appreciated by those skilled in the art, the function (X to the
power of S) modulo Y is the basis function employed in many asymmetric key
(private/public key) schemes for encryption and decryption. Thus, by practicing this
first aspect of the present invention, an encryption/decryption function can be made
tamper resistant.

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

6

In one embodiment, the subprograms are further interleaved with
unrelated tasks to further obscure the true nature of the tasks being performed by the
unrolled subprograms. The tasks may even have no purpose to them.

Figure 2 illustrates one embodiment of the first aspect of the present
invention including a subprogram generator for generating the subprograms. For the
illustrated embodiment, subprogram generator 104 is provided with the secret as
input. Furthermore, subprogram generator 104 is provided with access to library 105
having entry, basis and prologue subprograms 106, 108, and 109 for used in
generating subprograms 102 of a particular security sensitive program in view of the
secret provided. In other words, entry and basis subprograms 106 and 108
employed are different for different security sensitive programs. For the above
illustrated examples, in the first case, entry and basis subprograms 106 and 108 will
initialize and compute A = A + (X multiply by a subpart of S), whereas in the second
case, entry and basis subprograms 106 and 108 will initialize and compute A = (A
multiply by ((X to the power of a subpart of S) modulo Y)) modulo Y. Prologue
subprogram 109 is used to perform post processing, e.g. outputting the computed
results as decrypted content.

For the illustrated embodiment, entry subprogram 106 is used in
particular to initialize an appropriate runtime table 110 for looking up basis values by
basis subprogram 108, and basis subprogram 108 is used to perform the basis
computation using runtime table 110. For the modulo function example discussed
above, runtime table 110 is used to return basis values for (X to the power of a
subpart of secret) modulo Y for various subpart values, and basis subprogram 108 is
used to perform the basis computation of A = (A multiply by (basis value of a subpart

of secret)) modulo Y, where A equals the accumulated intermediate results. A's initial
value is 1.

For example, entry subprogram 106 may initialize a runtime table 110
of size three for storing the basis values of bv1, bv2 and bv3, where bv1, bv2 and bv3
equal (X to the power of 1) modulo Y, (X to the power of 2) moduio Y, and (X to the
power of 3) modulo Y respectively. For the modulo function (X to the power 5) modulo
Y, subprogram generator 104 may partition the secret 5 into two subparts with
subpart values 3 and 2, and generate two basis programs 108 computing A=(A"
Lkup(3)) modulo Y and A = (A * Lkup(2)) modulo Y respectively.

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

7

Figure 3 illustrates one embodiment of the operational flow of
subprogram generator 104 of Figure 2. For the illustrated embodiment, upon
invocation, subprogram generator 104 first generates an instance of entry
subprogram 106 for initializing at least an appropriate runtime lookup table 110
(Lkup) for returning the basis values of a modulo function for various subparts of a
secret, and an accumulation variable (A) to an appropriate initial state, step 112.
Subprogram generator 104 then partitions the secret into subparts, step 114. In one
embodiment, the partition is performed to require the least number of basis programs,
within the constraint of the basis values stored in runtime table 110.

Next, subprogram generator 104 sets a subpart of the secret as the
lookup index (LIDX), steps 116. Then, subprogram generator 104 generates the
current basis subprogram to compute A = [A multiply by Lkup (LIDX)] modulo Y, step
118. Subprogram generator 104 repeats steps 116 - 118 for all subparts, until a
basis program has been generated for each subpart of the secret, step 120. Finally,
subprogram generator 104 generates an instance of prologue subprogram 109 for
performing post processing, as described eatlier, step 122.

Figure 4 illustrates a second aspect of the present invention. In
accordance with this second aspect of the present invention, security sensitive
program 203 is made tamper resistant by obfuscating the program. Security sensitive
program 203 is divided and processed into a number of obfuscated subprograms
204. A plaintext (i.e. unmutated) appearance location schedule (i.e. where in
memory) is selected for obfuscated subprograms 204. For the illustrated
embodiment, the plaintext appearance location schedule is formulated in terms of the
memory cells 202 of two memory segments, memory segment 201a and memory
segment 201b. Initially, except for the obfuscated subprogram 204 where the
program's entry point is located, all other obfuscated subprograms 204 are stored in
mutated states. Obfuscated subprograms 204 are recovered or made to appear in
plaintext form at the desired memory cells 202, one or more at a time, when they are
needed for execution, and mutated again, once executions are completed. As will be
described in more detail below, the initial mutated states, and the process of recovery
are determined or performed, in accordance with one or more pseudo-randomly
selected pattern of mutations. The pseudo-randomly selected pattern(s) of mutations
is (are) determined using a predetermined mutation partnership function in

10

15

20

25

30

35

WO 97/4
8203 PCT/US97/10359

8
conjunction with one or more ordered sets of pseudo-random keys. As a result,

obfuscated subprograms 204 cyclically mutate back to their respective initial states
after each execution pass. Actually, obfuscated subprograms 204 implementing the
same loop also cyclically mutate back to the loop entry states after each pass through
the loop.

For the illustrated embodiment, each obfuscated subprogram 204 and
each cell 202 are of the same size, and first memory segment 201a is located in high
memory, whereas second memory segment 201b is located in low memory.
Furthermore, there are even number of obfuscated subprograms 204, employing
dummy subprogram if necessary.

Figure 5 illustrated one embodiment of subprogram 204. In
accordance with the present invention, for the illustrated embodiment, in addition to
original subprogram 102, obfuscated subprogram 204 is provided with mutation
partner identification function 206, mutation function 207, partner key 208 and jump
block 209. Original subprogram 102 performs a portion of the functions performed
by program 200. Original subprogram 102 may be an entry/basis/prologue
subprogram 106/108/109 in accordance with the first aspect of the present
invention. Mutation partner identification function 206 is used to identify the partner
memory cells 202 for all memory cell 202 at each mutation round. In one
embodiment, the partner identification function 206 is the function: Partner Cell ID =
Cell ID XOR Pseudo-Random Key. For a pseudo-random key, mutation partner
identification function 206 will identify a memory cell 202 in the second memory
segment 201b as the partner memory cell for of a memory cell 202 in the first
memory segment 201a, and vice versa. Only ordered sets of pseudo-random keys
that will provide the required periods for the program and its loops will be employed.
The length of a period is a function of the pseudo-random keys' set size (also referred
to as key length). Mutation function 207 is used to mutate the content of the various
memory cells 202. In one embodiment, mutation function 207 XORs the content of
each memory cell 202 in first memory segment 201a into the partner memory cell
202 in second memory segment 201b in an odd mutation round, and XORS the
content of each memory cell 202 in second memory segment 201b into the partner
memory cell 202 in first memory segment 201a in an even mutation round. Partner
key 208 is the pseudo-random key to be used by mutation partner identification
function 206 to identify mutation partners of the various memory cells 202 for a

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

9
mutation round. Jump biock 209 transfers execution control to the next obfuscated

subprogram 204, which at the time of transfer, has been recovered into plaintext
through the pseudo-random pattern of mutations.

In one embodiment, an obfuscated subprogram 204 may also include
other functions being performed for other purposes or simply unrelated functions
being performed to further obscure the subpart functions being performed.

Figure 6 illustrates one embodiment of the second aspect of the
present invention including an obfuscation processor for processing and transforming
subprograms into obfuscated subprograms. For the illustrated embodiment,
obfuscation processor 214 is provided with program 200 as inputs. Furthermore,
obfuscation processor 214 is provided with access to pseudo-random keys' key
length lookup table 212, mutation partner identification function 206, and mutation
function 207. For the illustrated embodiment, obfuscation processor 214 also uses
two working matrices 213 during generation of obfuscated program 203.

Key length lookup table 212 provides obfuscation processor 214 with
key lengths that provide the required periods by the program and its loops. Key
iengths that will provide the required periods is a function of the mutation technique
and the partnership function. Figure 7 illustrates various key lengths that will provide
various periods for the first and second memory segment mutation technique and the
partnership function described above.

Referring back to Figure 6, mutation partner identification function 206
identifies a mutation partner memory cell 202 for each memory cell 202. In one
embodiment, mutation partner identification function 206 identifies mutation partner
memory cells in accordance with the "XOR" mutation partner identification function
described earlier. Mutation function 207 mutates all memory cells 202. In one
embodiment, mutation function 207 mutates memory cells 202 in accordance with
the two memory segments, odd and even round technique described earlier.

For the illustrated embodiment, working matrices 213 include two
matrices M1 and M2. Working matrix M1 stores the Boolean functions of the current
state of the various memory cells 202 in terms of the initial values of memory cells
202. Working matrix M2 stores the Boolean functions for recovering the plaintext of

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

10

the various obfuscated subprograms 204 in terms of the initial values of memory celis
202.

Referring now to Figures 8a - 8b, two block diagrams illustrating one
embodiment of obfuscation processor 214 are shown. For the illustrated
embodiment, as shown in Fig. 8a in response to a program input (in object form),
obfuscation processor 214 analyzes the program, step 216. In particular,
obfuscation processor 214 analyzes branch flow of the program, identifying loops
within the program, using conventional compiler optimization techniques known in the
art. For the purpose of this application, any execution control transfer, such as a call
and subsequent return, is also considered a "loop"”.

Next, obfuscation processor 214 may perform an optional step of
peephole randomization, step 218. During this step, a peephole randomization pass
over the program and replaces code patterns with random equivalent patterns chosen
from an optional dictionary of such pattemns. Whether it is performed depends on
whether the machine architecture of the instructions provide alternate ways of
accomplishing the same task.

Then, obfuscation processor 214 restructures and partitions the
program 200 into a number of equal size subprograms 204 organized by their loop
levels, padding the subprograms 204 if necessary, based on the analysis results,
step 220. Except for very simple program with a single execution path, virtually all
programs 200 will require some amount of restructuring. Restructuring includes e.g.
removing as well as adding branches, and replicating instructions in different loop
levels. Restructuring is also performed using conventional compiler optimization
techniques.

Finally, obfuscation processor 214 determines the subprograms'’
plaintext appearance location schedule, and the initial state values for the various
memory cells 202, step 221.

Fig. 8b illustrates step 221 in further detail. As shown, obfuscation
processor 214 first initializes first working matrix M1, step 222. Then, obfuscation
processor 214 selects a memory cell for the program's entry subprogram to appear in
plaintext, step 223. In one embodiment, the memory cell 202 is arbitrarily selected

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

11
(within the proper memory segment 201a or 201b). Once selected, obfuscation

processor 214 updates the second working matrix M2, step 224.

Next, obfuscation processor 214 selects an appropriate key length
based on the procedure’s period requirement, accessing key length table 21 2, step
296. Obfuscation processor 214 then generates an ordered set of pseudo-random
keys based on the selected key length, step 228. For example, if key length equals 5
is selected among the key lengths that will provide a required period of 30,
obfuscation processor 214 may randomly select 17, 18, 20, 24 and 16 as the ordered
pseudo-random keys.

Next, obfuscation processor 214 determines the partner memory cells
202 for all memory cells 202 using the predetermined mutation partner identification
function 206 and the next key in the selected set of ordered pseudo-random keys,
step 230. Upon making the determination, obfuscation processor 214 simulates a
mutation, and updates M1 to reflect the results of the mutation, step 232.

Once mutated, obfuscation processor 214 selects a memory cell for the
next subprogram 204 to appear in plaintext, step 234. Having done so, obfuscation
processor 214 updates M2, and incrementally invert M2 using the Guassian Method,
step 235. In one embodiment, instead of incremental inversion, obfuscation
processor 214 may just verify M2 remains invertable instead. If M2 is not invertable,
obfuscation processor 214 cancels the memory cell selection, and restores M2 to its
prior state, step 237. Obfuscation processor 214 repeats steps 234 - 236 to select
another memory cell 202. Eventually, obfuscation processor 214 becomes
successful.

Once succeeded, obfuscation processor 214 determines if there was a
loop level change, step 238. If there was a loop level change, obfuscation processor
214 further determines if the loop level change is down level or up level change, i.e.
the subprogram is an entry subprogram of a new loop level or a return point of a
higher loop level, step 239. If the loop level change is "down’, obfuscation processor
214 selects another appropriate key length based on the new loop's period
requirement, accessing key length table 212, step 241. Obfuscation processor 214
then generates a new ordered set of pseudo-random keys based on the newly
selected key length, step 242. The newly generated ordered set of pseudo-random

10

15

20

25

30

35

WO 97/48203
PCT/US97/10359

12
keys becomes the “top" set of pseudo-random keys. On the other hand, if the loop

level change id "up", obfuscation processor 214 restores an immediately "lower" set
of pseudo random keys to be the "top" set of pseudo-random keys, step 240.

Upon properly organizing the "top" set of pseudo-random keys or upon
determining there's no loop level change, obfuscation processor 214 again
determines the partner memory cells 202 for all memory cells 202 using the
predetermined mutation partner identification function 206 and the next key in the
"top" set of ordered pseudo-random keys, step 243. Upon making the determination,
obfuscation processor 214 simulates a mutation, and updates M1 to reflect the results
of the mutation, step 244.

Once mutated, obfuscation processor 214 determines if there are more
subprograms 204 to process, step 245. |f there are more subprograms 204 to
process, obfuscation processor 214 returns to step 234 and proceeds as described
earlier. Otherwise, obfuscation processor 214 inserts the mutation parnner
identification function 206, the partner key to be used to identify mutation partner
memory cells, the mutation function, the jump block, and the address of the next
subprogram 204 into each of the obfuscated subprograms 204, step 246. Finally,
obfuscation processor 214 computes the initial values of the various obfuscated
subprograms 204, and outputs them, steps 247 - 248.

Figure 9 illustrates one embodiment of the operational flow of an
obfuscated subprogram 204. For the illustrated embodiment, obfuscated subprogram
204 first executes the functions of the original subprogram, step 250. For
embodiments including additional and/or unrelated functions, they may be executed
also. Then obfuscated subprogram 204 executes mutation partner identification
function 206 to identify the mutation memory cell partners for all memory cells 202
using the stored partner key, step 252. Having identified the mutation partners,
obfuscated subprogram 204 executes mutation function 207 to mutate the mem 7y
cells based on the identified partnership.

Next, depending on whether obfuscated subprogram 204 is the last
subprogram in an execution pass, obfuscated subprogram 204 either jumps to the
next obfuscated subprogram (which should be in plaintext) or returns to the "caller".

10

15

20

25

30

35

WO 97/4
97/48203 PCT/US97/10359

13
Note that if obfuscated subprogram 204 retumns to the "caller”, all other obfuscated

subprograms 204 are in their respective initial states.

Figures 10 - 14 illustrate a sample application of this second aspect of
the present invention. Figure 10 illustrates a sample security sensitive program 200
having six subprograms SPGMO - SPGM5 implementing a simple single level logic,
for ease of explanation, with contrived plaintext values of "000", "001", "010", "011",
100" and "111". Thus, the required period is 6. For ease of explanation, a keylength
of one will be used, and the pseudo-random key selected is 3. Furthermore, the
mutation partnership identification function is simply Partner Cell ID = Cell ID + 3, i.e.
cell 0 always pairs with cell 3, cell 1 pairs with cell 4, and cell 2 pairs with cell 5.

Figure 10 further illustrates at invocation (mutation 0), memory cells (cO
- ¢5) contains initial values (ivO - iv5), as reflected by M1. Assuming, cell cO is chosen
for SPGMO, M2 is updated to reflect that the Boolean function for recovering the
plaintext of SPGMO is simply iv0. Figure 10 further illustrates the values stored in
memory cells (cO - c5) after the first mutation. Note that for the illustrated mutation
technique, only the content of the memory cells (c3 - ¢5) have changed. M1 is
updated to reflect the current state. Assuming, cell c3 is chosen for SPGM1, M2 is
updated to reflect that the Boolean function for recovering the plaintext of SPGM1 is
simply iv0O XOR iv3. Note that for convenience of manipulation, the columns of M2
have been swapped.

Figure 11 illustrates the values stored in memory cells (cO - c5) after
the second, third and fourth mutations. As shown, the content of half of the memory
cells (c0 - c5) changed alternatingly after each mutation. In each case, M1 is updated
to reflect the current state. Assuming, cells c1, ¢4 and c2 are chosen for SPGM2,
SPGM3 and SPGM4 respectively after the second, third and fourth mutations
respectively, in each case M2 is updated to reflect that the Boolean functions for
recovering the plaintexts of SPGM2, SPGM3 and SPGM4, i.e. iv4, ivl, and iv2 XOR
iv5.

Figure 12 illustrates the values stored in memory cells (cO - c5) after
the fifth mutation. As shown, the content of memory cells (c3 - c5) changed as in
previous odd rounds of mutation. M1 is updated to reflect the current state.

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

14
Assuming, cell c5 is chosen for SPGMS, M2 is updated to reflect that the Boolean

function for recovering the plaintext of SPGMS5 is iv5.

Figure 13 illustrates how the initial values iv0 - iv5 are calculated from
the inverse of M2, since M2 x ivs = SPGMs, ivs = M2-1 x SPGMs. Note thata "1"in
M2-1 denotes the corresponding SPGM is selected, whereas a "0" in M2-1 denotes
the corresponding SPGM is not selected, for computing the initial values (iv0 - iv5).

Figure 14 illustrates the content of the memory cells of the above
example during execution. Note that at any point in time, at most only two of the
subprograms are observable in their plaintext forms. Note that the pairing of mutation
partners is fixed only because of the single pseudo-random key and the simple
mutation partner function employed, for ease of explanation. Note also that with
another mutation, the content of the memory cells are back to their initial states. In
other words, after each execution pass, the subprograms are in their initial states,
ready for another invocation.

As will be appreciated by those skilled in the art, the above example is
unrealistically simple for the purpose of explanation. The plaintext of a subprogram
contains many more "0" and “1" bits, making it virtually impossible to distinguish
memory cell storing an obfuscated subprogram in a mutated state from a memory cell
storing an obfuscated subprogram in plaintext form. Thus, it is virtually impossible to
infer the plaintext appearance location schedule from observing the mutations during
execution.

Figure 15 illustrates a third aspect of the present invention. In
accordance with this aspect of the present invention, security sensitive application
300 may be made tamper resistant by isolating its security sensitive functions 302
and making them tamper proof by incorporating the first and/or second aspects of the
present invention described above.

In employing the above described second aspect of the present
invention, different sets of pseudo-random keys will produce a different pattern of
mutations, even with the same mutation partner identification function. Thus, copies of
the security sensitive application installed on different systems may be made unique
by employing a different pattern of mutations through different sets of pseudo-random

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

15
keys. Thus, the security sensitive applications installed in different systems are further

resistant from class attack, even if the obfuscation scheme is understood from
observation on one system.

Figure 16 illustrates a fourth aspect of the present invention. In
accordance with this aspect of the present invention, a security sensitive system 400
may be made tamper resistant by making its security sensitive applications 400a and
400b tamper resistant in accordance with the first, second and/or third aspects of the
present invention described above. Furthermore, security of system 400 may be
further strengthened by providing system integrity verification program (SIVP) 404
having a number of integrity verification kernels (IVKs). Forthe illustrated
embodiment, a first and a second level VK 406a and 406b. First level IVK 406a
has a published external interface for other tamper resistant security sensitive
functions (SSFs) 402a - 402b of the security sensitive applications 400a - 400b to
call. Both IVKs are made tamper resistant in accordance with the first and the second
aspects of the present invention described earlier. Together, the tamper resistant
SSFs 402a - 402b and IVKs 406a - 406b implement an interlocking trust
mechanism.

in accordance with the interlocking trust mechanism, for the illustrated
embodiment, tamper resistant SSF1 and SSF2 402a - 402b are responsible for the
integrity of security sensitive applications 400a - 400b respectively. IVK1 and IVK2
406a - 406b are responsible for the integrity of SIVP 404. Upon verifying the
integrity of security sensitive application 400a or 400b it is responsible for,
SSF1/SSF2 402a - 402b will call IVK1 406a. In response, IVK1 406a will verify
the integrity of SIVP 404. Upon successfully doing so, IVK1 406a calls IVK2 406b,
which in response, will also verify the integrity of SIVP 404.

Thus, in order to tamper with security sensitive application 400a, SSF1
402a, IVK1 406a and IVK2 406b must be tamper with at the same time. However,
because IVK1 and IVK2 406a - 406b are also used by SSF2 and any other SSFs
on the system, all other SSFs must be tamper with at the same time.

Figure 17 illustrates a fifth aspect of the present invention. In
accordance with this aspect of the present invention, content industry association
500, content manufacturers 502, content reader manufacturers 510 and content

10

15

20

25

30

35

WO 97/48203
PCT/US97/10359

16

player manufacturer 506 may jointly implement a coordinated encryption/decryption
scheme, with content players 508 manufactured by content player manufacturers
506 employing playing software that include content decryption function made
tamper resistant in accordance with the above described various aspects of the
present invention.

Content industry association 500 owns and holds secret private
encryption key Kciapri. Content industry association 500 encrypts content
manufacturer’s secret content encryption key Kc and content player manufacturer’s
public encryption Kppub for the respective manufacturers 502 and 506 using Kciapri,
i.e. Kciapri[Kc] and Kciapri[Kppub].

Content manufacturer 502 encrypts its content product Kc[ctnt] and
includes with the content product Kciapri[Kc]. Content reader manufacturer 510
includes with its content reader product 512 the public key of content industry
association Kciapub, whereas content player manufacturer 506 includes with its
content player product 508 content player manufacturer's secret private play key
Kppri, content industry association’s public key Kciapub, and the encrypted content
player public key Kciapri[Kppub].

During operation, content reader product 512 reads encrypted content
Kc[ctnt] and the encrypted content encryption key Kciapri[Kc]. Content reader product
512 decrypts Kc using Kciapub. Concurrently, content player product 508 recovers
its public key Kppub by decrypting Kciapril[Kppub] using content industry association’s
public key Kciapub. Content reader product 512 and content player product 508 are
also in communication with each other. Upon recovering its own public key, content
player product 508 provides it to content reader product 512. Content reader product
512 uses the provided player public key Kppub to encrypt the recovered content
encryption key Kc, generating Kppub[Kc], which is returned to content player product
508. In response, content player product 508 recovers content encrypt key Kc by
decrypting Kppub[Kc] using its own private key Kppri.

Thus, as content reader product 512 reads encrypted content Kc[ctnt],
and forwards them to content player product 508, content player product 508
decrypts them with the recovered Kc, generating the unencrypted content (ctnt). In
accordance with the above described aspects of the present invention, the decryption

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

17

functions for recovering the content player's manufacturer’s public key, and
recovering the content encryption key Kc are made tamper resistant.

As will be appreciated by those skilled in the art, in addition to being
made tamper resistant, by virtue of the interlocking trust, tampering with the content
player product’s decryption functions will require tampering of the content industry
association, content manufacturer and content reader manufacturer's
encryption/decryption functions, thus making it virtually impossible to compromise the
various encryption/decryption functions’ integrity.

As will be also appreciated by those skilled in the art, a manufacturer
may play more than one role in the above described tamper resistant industry security
scheme, e.g. manufacturing both the content reader and the content player products,
as separate or combined products.

Figure 18 illustrates a sample computer system suitable to be
programmed with security sensitive programs/applications with or without SIVP,
including industry wise security mechanism, made tamper resistant in accordance
with the first, second, third, fourth and/or fifth aspect of the present invention. Sample
computer system 600 includes CPU 602 and cache memory 604 coupled to each
other through processor bus 605. Sample computer system 600 also includes high
performance |/O bus 608 and standard 1/O bus 618. Processor bus 605 and high
performance 1/O bus 608 are bridged by host bridge 606, whereas high performance
I/O bus 608 and standard {/O bus 618 are bridged by bus bridge 610. Coupled to
high performance 1/O bus 608 are main memory 612, and video memory 614.
Coupled to video memory 614 is video display 616. Coupled to standard 1/O bus
618 are mass storage 620, and keyboard and pointing devices 622.

These elements perform their conventional functions. In particular, mass
storage 620 is used to provide permanent storage for the executable instructions of
the various tamper resistant programs/applications, whereas main memory 612 is
used to temporarily store the executable instructions tamper resistant
programs/applications during execution by CPU 602.

Figure 19 illustrates a sample embedded controller suitable to be
programmed with security sensitive programs for a security sensitive apparatus, made

10

15

WO 97/48203
PCT/US97/10359

18
tamper resistant in accordance with the first, second, third, fourth and/or fifth aspect of

the present invention. Sample embedded system 700 includes CPU 702, main
memory 704, ROM 706 and I/O controiler 708 coupled to each other through system
bus 710. These elements also perform their conventional functions. In particular,
ROM 706 may be used to provide permanent and execute-in-place storage for the
executable instructions of the various tamper resistant programs, whereas main
memory 704 may used to provide temporary storage for various working data during
execution of the executable instructions of the tamper resistant programs by CPU
702.

Thus, various tamper resistant methods and apparatus have been
described. While the methods and apparatus of the present invention have been
described in terms of the above illustrated embodiments, those skilled in the art will
recognize that the invention is not limited to the embodiments described. The present
invention can be practiced with modification and alteration within the spirit and scope
of the appended claims. The description is thus to be regarded as illustrative instead
of restrictive on the present invention.

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

19
CLAIMS

What is claimed is:

1. An apparatus comprising:

an execution unit for executing programming instructions; and

a storage medium coupled to the execution unit, having stored therein a
plurality of programming instruction blocks to be executed by the execution unit during
operation, the programming instruction blocks operating on corresponding subparts of
a secret distributed among them, and the execution being distributed over a period of

time.

2. The apparatus as set forth in claim 1, wherein the programming instruction
blocks jointly implement a decryption function, and the secret is a private key.

3. The apparatus as set forth in claim 1, wherein one or more of the programming
instruction blocks further perform one or more unrelated tasks to further obscure the
operations on the subparts of the secret.

4. A machine implemented method for executing a program that operates on a
secret in a tamper resistant manner, the method comprises the steps of:

a) executing a first unrolled subprogram of the program at a first point a time,
with the first unrolled subprogram operating on a first subpart of the secret; and

b) executing a second unrolled subprogram of the program at a second point a
time, with the second unrolled subprogram operating on a second subpart of the
secret.

5. The method as set forth in claim 3, wherein the first and second unrolled
subprograms are unrolied subprograms of a decryption function; and the secret is a
private key.

6. The method as set forth in claim 3, wherein

step (a) further includes the first unrolied subprogram performing at least a first
unrelated task; and

step (b) further includes the second unrolled subprogram performing at least a
second unrelated task;

10

15

20

25

30

35

WO 97/48
203 PCT/US97/10359

20
said at least a first and a second unrelated task are performed to further

obscure the first and second unrolled subprograms' operation on the first and second
subparts of the secret.

7. An apparatus comprising:

an execution unit for executing programming instructions; and

a storage medium having stored therein a plurality of programming instructions
to be executed by the execution unit during operation, wherein when executed, in
response to a secret being provided, the programming instructions partition the secret
into a plurality of subparts, and generate a plurality of programming instruction blocks
that operate on the subparts.

8. The apparatus as set forth in claim 7, wherein the apparatus further includes a
library having an entry programming instruction block, and a basis programming
instruction block, to be accessed by the programming instructions in generating the
programming instruction blocks.

9. The apparatus as set forth in claim 7, wherein during execution,

the entry programming instruction block initializes a table of values for use by
the basis programming blocks to operate on their corresponding subparts of the
secret; and

the basis programming blocks' operations on their corresponding subparts of
the secret, include looking up values initialized in the table using the basis
programming blocks' corresponding subparts of the secret.

10. A machine implemented method for generating a tamper resistant program to
operate on a secret, the method comprising the steps of:

a) receiving the secret;

b) partitioning the secret into a plurality of subparts; and

c) generating a plurality of subprograms to correspondingly operate on the
subparts of the secret.

11. The method as set forth in claim 10, wherein step (c) includes accessing a
library having an entry subprogram, and a basis subprogram to generate the
subprograms.

10

15

20

25

30

35

Wi
0 97/48203 PCT/US97/10359

21

12. The method as set forth in claim 11, wherein during execution,

the entry subprogram initializes a table of values for use by the basis
subprograms to operate on their corresponding subparts of the secret; and

the basis subprograms' operations on their corresponding subparts of the
secret, include looking up values initialized in the table using the basis subprograms'’
corresponding subparts of the secret.

13. An apparatus comprising:

an execution unit for executing programming instructions; and

a storage medium having stored thereon a plurality of programming instruction
blocks to be executed by the execution unit, the programming instruction blocks being
stored in a mutated form, except for at least one, which is stored in a plaintext form,
wherein the mutated programming instruction blocks are recovered into the plaintext
form during execution on an as needed basis, one or more but not all at a time.

14. The apparatus as set forth in claim 13, wherein each programming instruction
block includes a first programming instruction sub-block for performing a task, a
second programming instruction sub-block for computing mutation partners fora
plurality of memory cells, a key to be employed in said computation of mutation
partners, a third programming instruction sub-block for mutating memory cells in
accordance with the computed mutation partnering, and a fourth programming
instruction sub-block for transferring execution control to another programming
instruction block.

15. The apparatus as set forth in claim 14, wherein the first programming
instruction sub-block operates on a subpart of a secret.

16. The apparatus as set forth in claim 14, wherein the second programming
instruction sub-block computes the mutation partnering by performing a logical XOR
operation on a memory cell's identifier and the key.

17. The apparatus as set forth in claim 14, wherein the key is a member of an
ordered set of pseudo-randomly selected members, the ordered set having a set size
that will provide a required period for a pattern of memory cell mutations, with the
memory cells being partnered for mutation in accordance with the computed mutation
partnering using the key.

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

22

18. The apparatus as set forth in claim 14, wherein the memory cells are divided
into two memory cells groups, and pair-wise partnered by the second programming
instruction sub-block, with the partnered memory cells being in different group; and
the third programming instruction sub-block performs a logical XOR operation on the
contents of each pair of partnered memory cells, and alternating between the two
memory cell groups for odd and even mutation rounds, in storing the results of the
logical XOR operations

19. A machine implemented method for executing a program, the method
comprising:

a) executing a first of a plurality of subprograms generated to obfuscate the
program;

b) computing mutation partners for a plurality of memory cells storing the
plurality of subprograms, using a key, the subprograms being stored initially in the
memory cells in a mutated form, except for at least one, which is stored initially in a
plaintext form;

c) mutating the memory cells in accordance with the computed mutation
partnering to recover a second of the plurality of subprograms for execution.

20. The method as set forth in claim 19, wherein the first and second subprograms
operate on a first and a second subpart of a secret.

21. The method as set forth in claim 19, wherein step (b) comprises performing a
logical XOR operation on a memory cell's identifier and the key for each memory cell.

22 The method as set forth in claim 19, wherein the key is a member of an ordered
set of pseudo-randomly selected members, the ordered set having a set size that will
provide a required period for a pattern of memory cell mutations, with the memory
cells being partnered for mutation in accordance with the computed mutation
partnering using the key.

23. The method as set forth in claim 19, wherein step (c) comprises performing
logical XOR operations on the contents of memory cells of a first memory cell group
and the contents of memory cells of a second memory cell group, and storing the
results of the logical XOR operations into the first memory cell group if step (c) is being

10

15

20

25

30

35

Wi
0 97/48203 PCT/US97/10359

23
performed for an odd number of times, and the second memory cell group if step (c) is

being performed for an even number of times.

24 The method as set forth in claim 19, wherein the method further comprises the
steps of:

d) executing the second of the plurality of subprograms;

e) computing mutation partners for the plurality of memory cells; and

f) mutating the memory cells in accordance with the computed mutation
partnering to mutate the first of the plurality of subprograms, and recover a third of the
plurality of subprograms for execution.

25. An apparatus comprising:

an execution unit for executing programming instructions; and

a storage medium having stored therein a first plurality of programming
instructions to be executed by the execution unit, wherein when executed, in
response to a program input, the first plurality of programming instructions generate a
plurality of subprograms for the program to obfuscate the program, the subprograms
being generated in a mutated form, except for at least one, which is generated in a
plaintext form, the subprograms being further generated with logic to recover the
subprograms in plaintext form on an as needed basis, one or more but not all at a
time.

26. The apparatus as set forth in claim 25, wherein the storage medium further
having stored therein a table of keylengths to be accessed by the first plurality of
programming instructions in generating the subprograms, the keylengths denoting
sizes of ordered sets of pseudo-randomly selected members that will provide various
required mutation periods.

27. The apparatus as set forth in claim 25, wherein the storage medium further
having stored therein a second plurality of programming instructions to be
incorporated into each of the generated subprograms by the first plurality of
programming instructions for identifying mutation partners for a plurality of memory
cells storing the subprograms, for a mutation round, using a key, the key being a
member of an ordered set of pseudo-randomly selected members that will provide a
mutation period required by the generated subprograms.

10

15

20

25

30

35

WO 97
0 97/48203 PCT/US97/10359

24
28. The apparatus as set forth in claim 25, wherein the storage medium further

having stored therein a second plurality of programming instructions to be
incorporated into each of the generated subprograms by the first plurality of
programming instructions for mutating memory cells storing the generated
subprograms in accordance with computed mutation partnerings for a mutation round.

29. The apparatus as set forth in claim 25, wherein the first plurality of
programming instructions include logic for analyzing the program for branch flow.

30. The apparatus as set forth in claim 25, wherein the first plurality of
programming instructions include logic for performing peephole randomization on the

program.

31. The apparatus as set forth in claim 25, wherein the first plurality of
programming instructions include restructuring and partitioning the program into the
subprograms.

32. The apparatus as set forth in claim 25, wherein the first plurality of
programming instructions include logic for scheduling memory cells for the generated
subprograms to be recovered in the plaintext form, and determining the appropriate
initial values for the memory cells.

33. The apparatus as set forth in claim 32, wherein the first plurality of
programming instructions include logic for determining a mutation period requirement
for the program, a keylength for the required mutation period, the keylength denoting
a set's set size, the set being an ordered set of pseudo-randomly selected members
that will provide the required mutation period.

34. The apparatus as set forth in claim 32, wherein the first plurality of
programming instructions include logic for selecting a memory cell for a generated
subprogram to be recovered in the plaintext form, and determining a Boolean function
for recovering the generated subprogram in the plaintext form in terms of initial state
values of the memory cells used for storing the generated subprograms.

35. The apparatus as set forth in claim 32, wherein the first plurality of
programming instructions include logic for determining mutation partners for a

10

15

20

25

30

35

WO 97,
9748203 PCT/US97/10359

25

plurality of memory cells storing the generated subprograms, using a key of an
ordered set of pseudo-randomly selected keys, simulating memory cell mutations in
accordance with the determined mutation partnering, and determining a plurality of
Boolean functions for the memory cells, the Boolean functions expressing the post
mutation states of the memory cells in terms of the memory cells' initial values.

36. A machine implemented method for generating a plurality of subprograms for a
program to obfuscate the program, the method comprising the steps:

a) analyzing the program for branch flow;

b) restructuring and partitioning the program into a plurality of subprograms;
and

c) determining a schedule in terms of a plurality of memory cells for recovering
the subprograms in a plaintext form for execution, and initial state values for the
memory cells to store the subprograms in the memory cells in a mutated form, except
for at least, which is stored in one of the memory cells in the plaintext form.

37. The machine as set forth in claim 386, wherein step (a) further includes
performing peephole randomization on the program.

38. The method as set forth in claim 36, wherein step (c) includes determining a
mutation period requirement for the program, a keylength for the required mutation
period, the keylength denoting a set's set size, the set being an ordered set of

pseudo-randomly selected members that will provide the required mutation period.

39. The method as set forth in claim 36, wherein step (c) includes selecting a
memory cell for a generated subprogram to be recovered in the plaintext form, and
determining a Boolean function for recovering the generated subprogram in the
plaintext form in terms of initial state values of the memory cells used for storing the
generated subprograms.

40. The method as set forth in claim 36, wherein step (c) includes determining
mutation partners for a plurality of memory cells storing the generated subprograms,
using a key of an ordered set of pseudo-randomly selected keys, simulating memory
cell mutations in accordance with the determined mutation partnering, and
determining a plurality of Boolean functions for the memory cells, the Boolean

10

15

20

25

30

35

WO 97/48203 PCT/US97/10359

26

functions expressing the post mutation states of the memory cells in terms of the
memory cells' initial values.

41. The method as set forth in claim 36, wherein the method further includes step
(d) inserting a function and a key into each of the generated subprograms, the
function being used for identifying mutation partners for a plurality of memory cells
storing the subprograms, for a mutation round, using the key, the key being a member
of an ordered set of pseudo-randomly selected members that will provide a mutation
period required by the generated subprograms.

42. The method as set forth in claim 36, wherein the method further includes step
(d) inserting a function into each of the generated subprograms for mutating memory
cells storing the generated subprograms in accordance with computed mutation
partnerings for a mutation round.

43. An apparatus comprising:

an execution unit for executing programming instructions;

a storage medium having stored therein a first and a second plurality of
programming instructions to be executed by the execution unit, the first and second
plurality of programming instructions implementing an application with the first
plurality of programming instructions implementing a security sensitive function of the
application and the second plurality of programming instructions implementing a non-
security sensitive function of the application, the first plurality of programming
instructions having incorporated a first defensive technique of distributing a secret in
space and in time and/or a second defensive technique of obfuscation to render the
first plurality of programming instructions virtually unobservable and unmodifiable
during execution.

44. The apparatus as set forth in claim 43, wherein the first plurality of
programming instructions incorporated the second defensive technique of
obfuscation, including one or more unique ordered sets of pseudo-randomly selected
members for generating one or more pattems of memory cell mutations, rendering the
application unique from other copies of the application installed on other apparatus.

45. An apparatus comprising:
an execution unit for executing programming instructions;

10

15

20

25

30

35

WO 97/48203
20, PCT/US97/10359

27

a storage medium having stored therein a first, a second, a third, and a fourth,
plurality of programming instructions to be executed by the execution unit, the first and
second plurality of programming instructions implementing a first and a second
integrity verification function for a first and a second application respectively, whereas
the third and fourth programming instructions implementing a third and a fourth
integrity verification function for a system integrity verification program, all four
pluralities of programming instructions having incorporated defensive techniques
rendering them tamper resistant, the four pluralities of programming instructions jointly
implementing an interlocking trust mechanism, requiring the first and the second
pluralities of programming instructions each to cooperate with both the third and fourth
pluralities of programming instructions to complete any integrity verification on the
apparatus.

46. A machine implemented method for verifying integrity on an apparatus, the
method comprising the steps of:

a) a first and a second tamper resistant integrity verification function of a first
and a second application of the apparatus individually calling a third tamper resistant
integrity verification function of a system integrity verification program to jointly perform
integrity verification with the first and second tamper resistant integrity verification
functions respectively;

b) in response, the third tamper resistant integrity verification function calling a
fourth tamper resistant integrity verification function of the system integrity verification
program to jointly perform the requested integrity verifications;

c) the fourth tamper resistant integrity verification function providing the first and
the second tamper resistant integrity verification functions with respective results of
the requested integrity verifications.

47. An apparatus comprising:

an execution unit for executing programming instructions;

a storage medium having stored therein a first and a second plurality of
programming instructions to be executed by the execution unit, and a first secret
private key, the first and second pluralities of programming instructions implementing
a first and a second tamper resistant decryption function,

the first tamper resistant decryption function being used for recovering a
first public key asymmetric to the first secret private key, using a second public

10

15

20

25

WO 97/48203
PCT/US97/10359

28
key, the first public key having been previously encrypted using a second

secret private key asymmetric to the second public key,

the second tamper resistant decryption function being used for
recovering a content encryption key using the first secret private key, the
content encryption key having been previously encrypted using the first public
key.

48. The apparatus as set forth in claim 47, wherein the storage medium further
having stored therein a third plurality of programming instructions to be executed by
the execution unit, the third plurality of programming instructions implementing a third
decryption function for recovering content using the recovered content encryption key,
the content having been previously encrypted using the content encryption key.

49. A machine implemented method for recovering content, the method comprising
the steps of:

a) recovering a first public key using a second public key, the first and second
public keys having a first and a second asymmetric private key respectively, the first
public key having been previously encrypted by the second private key;

b) providing the recovered first public key to be used for encrypting a content
encryption key;

c) receiving the encrypted content encryption key; and

d) recovering the content encryption key using the first private key.

50. The method as set forth in claim 47, wherein the method further comprises the
steps of:

e) receiving encrypted content; and

f) recovering content using the recovered content encryption key.

WO 97/48203

1120

-1 Subpart of Secret

101

"~ Subpart of Secret

_Y

L1 Subpart of Secret

PCT/US97/10359
102
|
102
L
100
/
102
L~

Figure 1

WO 97/48203 PCT/US97/10359

2/20
104 102
/ /
/ /
Secret | SubProgram | ! sypPrograms
Generator
==
! l
105 } f
Library | |
106 | |
. Entry SubProgram | 110
| V-
108 _ —— Table
. Basis SubProgram
109

. Prologue SubProgram

Figure 2

WO 97/48203

3/20

Generate Entry SubProgram |/
Including Initialization Code for
Initializing at Least a Lookup
Table(LKUP), & an Accumulation
Variable

;

Generate SubParts of 114
Secret

:

SetLIDX = a SubPart | 116
of Secret

l

Generate a Basis SubProgram 1/1 8
to Compute A
A= (A* LKUP(LIDX)) MOD Y)

PCT/US97/10359

122
/

More
SubPart
?

Yes

7

Generate Prologue SubProgram
For Post Processing

Figure 3

End

PCT/US97/10359

WO 97/48203
4/20
Cell 0 2/04
Cell 1 OPS SubPgmo0 /5’4
201a P
First . 204
Memory 202\ 17
Segment Cell i OPS SubPgm2 —
®
]
®
204
Cell m/2 OPS SubPgm4)
Partners
203
Cell m/2 + 1
OPS SubPgm3 /@4
Cell m/2 + 2 /2/04
[]
201b .
L]
Second .202 304
Memory Cell] OPS SubPgm! 1o
Segment
®
®
L 4
Cell m o4

Figure 4

WO 97/48203 PCT/US97/10359

5/20

Ofuscated SubProgram 94
102
Original ,/V
SubProgram
206
|

Mutation Partner ,/
Identification Function

207
Mutation L—1
Function
208
<

Partner Key g

Jump @ Next SubProgram 1+

Figure §

WO 97/48203 PCT/US97/10359

6/20
200 Obfuscated P 203
N 214 uscate rogram/
N e
Program - SPgm 204
—® Ofuscation
Processor ’ SPgm 204
[]
[]

A ®
[> I
212| Key Length Working |
| Lookup Matrices
Table
(Period) [
213
206\ Partner
" Identification ———
Function
207 _
N Mutation
Function

Figure 6

PCT/US97/10359

WO 97/48203

7120

J ainbi4

yibua Aay

pouad

polad jo uonnqigsiq

0l
0¢
0€
ov
06
09

0L
08

001

sAay| jJo abejuaaiagd

pouad A8y jo uopnquisiq

WO 97/48203 PCT/US97/10359

8/20

216
Analyze Program ’
l—___l""_“|218
| Peep Hole
| Randomization |
U
220
Restructure & 1

Partition

l 221

Schedule & Initial -
Value Computation

End

Figure 8a

WO 97/48203

222
<

Initialize M1

¢ 223
Z

fo

Select Memory Cell

r Entry SubProgram

‘ 224
Jd

Update Matrices
M2

¢ 226
4

Select Key Leagth

¢ B

Generate Keys

Determine Mutation

‘ 230
£

9/20

Determine
Mutation Partner

A
J 243

Simulate Mutation
‘Update M1

More
SubPrograms

PCT/US97/10359

Partner
Insert Partner Key, J
‘ 2/32 Jump Values
Simulate Mutation i 247
e

Update M1

*

Select Memory

Compute Initial Values

Cell for Next
SubProgram 234

l

Upddate & Insert
Matrix M2)

Figure 8b

241
4
Select
Key
Length
l242
A //
Remove | »| Generate
Keys & Add
l Keys
248
//
Generate
Ofuscated End
SubPrograms
237
Z

Unselect Cell &]
Backout Updates
to M2

WO 97/48203

10/20
¢
Execute 250
SubProgram }+~
Function
l 252
dentify P
Mutation
Partners
l 254
"
Mutate /1

Last

SubProgram
?

Figure 9

PCT/US97/10359

258

Jump to Next
SubProgram

WO 97/48203 PCT/US97/10359
11/20
Program
SPGM0O =000 |9 Period=6
102 Key Length = 1
SPGM1=001 |- Key = 3 . .
Mutation Partnership Function:
SPGM2 = 010 /102' Partner Cell = Cell ID + 3
] M1
- IVO IV1 V2 IV3 1V4 IV5
spGM3 =011 | 192 — vave
- col| 10000
SPGM4 = 100 | 10 0 218'a
1 ci1| 010000 /
spaMs =101 |10 C2| 001000
c3
Mutation 0 ca 3 3 8 ; :) (())
VO o0
| C5| 0000 0 1
V1 202 - =
| 218'b
V2 202 M2 VO IVI V2 IV3IVAIVS /
= SPGMO[1 0 0 0 0 O
4
a 3)2 SPGM0 — C0
102" 218'a
V5 = M1 _ IVOIVTIV2IV3IVAIVS 7
col 100000
Mutation 1 C1 010000
002"
VO +— c2| 001000
| VA 1302' C3] 100100
' cC4l 0 10 0 1 0
V2 202
® - csL_o 0100 1
IV3Q01V0 202 . —‘2} 8'
202" IVO IV1 1V2 IV3 1V4 V5
—> vaQOwt - |2 SPGMOl:1 00000]
IV5®IV2 1 SPGM1 1100 00

SPGM1 —C3
Figure 10

WO 97/48203

PCT/US97/10359

| 12120
Mutation 2 20 M1 o Iv1 Iv2 IV3 Iv4 IV5
V3 [cCol 000100 |
202' C1 0 000 10O 218'a
— V4 - C2| 0000 0 f /
v 202 C3| 100100
© = C4| 010010
g)z, M2 IVOIVIIV2IV3IVAIVS
L V4GOIVt |292° SPGMO—1 0 0 0 0 0 2/“”’
202" SPGM1 110000
VsQOIV2 4~ SPGM2| 0 0 1 0 0 0 _|
Mutation 3 SPGM2 C
—_— 202 M1 IVO V1 IV2 IV3 IV4 IV5
V3 20 — —
— co[000100
202" C1| 0000 10 .
S V4 > cC2| 0000 0 1 21/83
v 202" C3| 100000
© < C4| 010000
0 B M205 | 001000
, VO IV1 IV2 IV3 IV4 V5 ,
L, V1 202" SPGMOT™ 1 g 0 0 0 0 P8P
0y SPGM1| 1 10000 |/
V2 > SPGM2| 0 0 1 0 0 O
SPGM3 00010O
Mutation 4 MS1PGM3 >C4
= NIV JAL INONVAIV2IV3IVAIVS
0y CO[100 0 0
> va@OIv1 2 ci1] 0100 10 218'a
~c2| 001001 /
vs@iv2 - [202° ¢3| 1000 00
@5 = cC4l 01 0000
IVO 202 ¢c5/ 00 10 0 O
/'/ E— -
202" M2 IVO IV1 IV2 IV3 IV4 IV5
V2 1222 sPGMtl 1 1 0000 |/
SPGM2| 0 0 1 0 0 O
SPGM3| 0 0 0 1 0 0
SPGM4 0000 1 1
SPGM4 — C2

Figure 11

WO 97/48203 PCT/US97/10359

13120
Mutation 5
va@no P M1 v Iv1 Iv2 V3 V4 Ivs
202" co[[100100 |
— vaQOIvVT |2 ci| 010010 218'3
., C2l 00100 1
vs@w2 - |22 c3l 000 100 /
© . c4l 0000 10
V3 202 C5| 0000 0 1
. V4 202 B
o2 M2 voviIvZIV3IVANS o
IV5 e SPGMOT— 1 0 0 0 0 0
SPGM1 11000 0 /
SPGM2| 0 0 1 0 0 O
SPGM3| 0 0 0 1 0 0
SPGM4| 0 0 0 0 1 1
SPGM5| 0 0 0 0 0 1 —

SPGM5 — (5

Figure 12

WO 97/48203

IVO
V3
V4
Al
V2
V5

IVO
V1
V2
V3
IV4
IV5

OO0 200

OO0 —-~00O0

O 20000

14/20

B VO

-~ L0090 O
<
~

(e oNeol eI RN
[oNoNeoNoE Ne
OO0 ~0O0
O 20000
—_— 0000

SPGMO
SPGM3
SPGM4(X)SPGMS5

SPGMOC)SPGM1

SPGM2
SPGM5

-

Figure 13

PCT/US97/10359

SPGMO
SPGM1
SPGM2
SPGM3
SPGM4
SPGM5

SPGMO
SPGM1
SPGM2
SPGM3
SPGM4
SPGM5

-~ OO O OO
O = OO0 -0
L, O s a0

202"
202"
—202'
702"
—202'
/202.

PCT/US97/10359

WO 97/48203

.NON/I
_||V L0 | 100
SWodS 040 < cpoas ™ L L O —
100 & 000 &
X X
PNOdS > 001 YNOCS \'\ 001
202
1 00 o 100 -
100 100
S SW pIN
o
001 001
100 —_ 202 L 00
N[
LNOdS L 00 ® iwods > 00
L0 1 L 00
P 0L O - 110
20277
100 0 —» 000
. WOdS
ZN LW

1 ainbi4

L 00
e l 0 -
.20¢
ENOdS 000
1 0}
_||V) el
ZNSdS b 00
cN
L 0L
- 010
L 00
)
L 00
, b L0
202

On

WO 97/48203 PCT/US97/10359

16/20
ot 300
Application)
302
y
Security
Sensitive
Functions
I

Figure 15

WO 97/48203

17120

400a

PCT/US97/10359

4000
y4

App1

402a
Z

e
SSF1

NI S

App2

402b
/[

SSF2

D

404
L~

NP

406a
T VK1 IVK2

406b

System Integrity Verification Program

(SIVP)

Figure 16

PCT/US97/10359
18/20

WO 97/48203

L1 @1nbig
IN1D
806
A\
d , [A%*]
lang M Jua > < 5 N
VIO d [LNOOI ¥ vIo
‘and X g A i > d and
A [v__mDn_ NI
90G| 1onpoid sahe|d Jusjuod 5 —> 1epeay Juajuo)
A 4N Jokeld uauo) and e VBT
0is 18peay Jusjuod
TSR d VIO
[LNOIoM
'
l4d e soymy Oy 12
P UOI}BID0SSY o] g X v_ NN g
008 A1ysnpuj Juajuod < vmm\ [AINLD] 2H
oy P 1ahe|d Jusuon
¢0

d4N Jul3juod

PCT/US97/10359

WO 97/48203

19/20

sng O/l ‘PIS d
819
A A 3 abpug sng O/i
< eldsig A|\ 10Wa 03PIA _} Kiowsp uiew) °beug g0
vio ¢L9 019
sng O/l ‘Had ybiH /
809
P abplig 1soH
909
| 3HOVD
pd
Y, ¥09
009
\\ DQQ
209

gl ainbig

pd

’ a21AeQ
229 Bunuiods/pieoghay

A abelo)g ssep
0¢9

PCT/US97/10359

WO 97/48203

20/20

6l ainbi4
| 18jj023u0) O/
yd
80/
sng waysAg
Wod fiows\ utey Nndd
i 1! 207
v0.

/
00.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/10359

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :HO4K 1/00
USCL :395/186

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/186, 187.01, 188.01; 380/ 4, 23, 24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, STN (WPIDS)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 4,786,790 (KRUSE et al.) 22 November 1988, see the abstract, | 10-12, 19-24, 36-
see col. 2, lines 20-56. 42
Y US 4,926,480 (CHAUM) 15 May 1990, see the abstract 1-50
Y US 5,224,160 (PAULINI et al.) 29 June 1993, see the abstract and 1-50
col. 6, lines 28-45.
Y US 5,265,164 (MATYAS et al.) 23 November 1993, see fig. 10. | 1-50

@ Further documents are listed in the continuation of Box C.

D Sece patent family annex.

. Special categories of cited documents:

*A” d t defining the g | state of tha art which is not considered
10 be of pll'tlculll’ relevance

B carlier document published on or after the international filing date

L document whtch mey lhrw doubts on priority clum(l) or which is
cited blish the ion dste of or other
special reason (as :pacnfml)

0 document referring to an oral disch . use, exhibition or other
moans

°p* documaent published prior to the intemnational filing date but later than

the priority date claimed

T later d blished after thoe ¢ { filing date or priority
date and not in conflict with the ppli but cited to understand

the principle or theory underlying the invention

X" document of particular relevance; the claimed mvention cannct be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such d s, such
being obvious to a person skilled in the art

o A document member of the same patent family

Date of the actual completion of the international search

22 AUGUST 1997

Date of mailing of the international search report

05 NOV 1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Autheri offi)
‘Al'.ggRT DECADYJ‘Y

Telephone No. (703) 308-3900

Form PCT/ISA/210 (second sheet)(July 1992)»

INTERNATIONAL SEARCH REPORT International application No.

PCT/US97/10359

C (Continuat

ion). DOCUMENTS CONSIDERED TO BE RELEVANT

Relevant to claim No.

lines 55-62, col. 10, lines 33 et seq.

Category* Citation of document, with indication, where appropriate, of the relevant passages

X US 5,347,579 (BLANDFORD) 13 September 1994, col. 5, lines 1.9, 25-35, 43-50

24-56.

Y 10-12, 19-24, 36-
42

Y US 5,535,276 (GANESAN) 09 July 1996, see the abstract, col. 2, 1-50

Form PCT/ISA/210 (continuation of second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

