发明名称

喷墨记录油墨、喷墨记录油墨组件、喷墨记录油墨介质组件、墨盒、喷墨记录方法和喷墨记录装置

摘要

喷墨记录油墨，其包括水、水溶性有机溶剂、用作着色剂(B)的颜料和选自以下结构式(1)表示的化合物的至少一种含氟化合物表面活性剂，

其中R₁表示氢原子、烷基和全氟烷基中的任意一种，R₂表示氢原子、烷基和含氟基团中的任意一种，RF表示含氟基团，m和n每个表示1或大于1的整数。
1. 喷墨记录油墨，其包括：
水，
水溶性有机溶剂，
作为着色剂（B）的颜料，和
选自以下结构式（1）表示的化合物的至少一种含氟化合物表面活性剂，

结构式（1）
其中 R_1 表示烷基和全氟烷基中的任意一种，R_2 表示烷基、烷基和含氟基团中的任意一种，RF 表示含氟基团，m 和 n 每个表示 1 或大于 1 的整数。

2. 根据权利要求 1 所述的喷墨记录油墨，进一步包括水分散性树脂（A），
其中所述水溶性有机溶剂为选自以下的至少一种：甘油、三羟甲基丙烷、乙二醇、二甘醇、三甘醇、丙二醇、一缩二丙二醇、三丙二醇、1,3-丁二醇、2,3-丁二醇、1,4-丁二醇、3-甲基-1,3-丁二醇、1,5-戊二醇、1,6-己二醇、2-甲基-2,4-己二醇、2-毗咯烷酮、N-甲基-2-毗咯烷酮、N-羟乙基-2-毗咯烷酮、四甲基脲和脲。

3. 根据权利要求 2 所述的喷墨记录油墨，其中所述水分散性树脂（A）包含选自以下的至少一种树脂乳液：阴离子自乳化醚基聚氨酯树脂乳液和丙烯酸-有机硅树脂乳液。

4. 喷墨记录油墨，其包括：
水，
水溶性有机溶剂，
水分散性树脂（A），
作为着色剂（B）的颜料，和
选自以下结构式（1）表示的化合物的至少一种含氟化合物表面活性剂，
其中所述喷墨记录油墨具有在 $25^\circ C$ 时 $20mN/m$ 至 $35mN/m$ 的表面张力和在 $25^\circ C$ 时 $5mPa\cdot s$ 或更大的粘度，
其中在所述喷墨记录油墨中存在的所述水分散性树脂（A）和着色剂（B）的总量为以质量计 5% 到以质量计 40%，并且水分散性树脂（A）与着色剂（B）的质量比 $(A)/(B)$ 在 0.5 到 4 的范围内，以及
其中所述喷墨记录油墨适用于在用于颜料油墨的喷墨记录介质上进行喷墨记录，所述用于颜料油墨的喷墨记录介质包括含有纤维素纸浆的载体和在所述载体的一个或两个表面上的一个或多个阻挡层，所述一个或多个阻挡层包含以质量计 30% 或更多的不同于水合氧化铝且折射率为 1.5 或更高的无机颜料，以及包含以质量计 10% 或更少的折射率低于 1.5 的颜料，
结构式 (1)
其中 R₁ 表示烷基和全氟烷基中的任意一种, R₂ 表示氢原子, 烷基和含氟基团中的任意一种, RF 表示含氟基团, m 和 n 每个表示 1 或大于 1 的整数。
5. 喷墨记录油墨介质组件，其包括：
喷墨记录油墨，和
用于项料油墨的喷墨记录介质，所述用于一项料油墨的喷墨记录介质包括含有纤维素浆的载体和在所述载体的一个或两个表面上的一个或多个阻挡层，所述一个或多个阻挡层包含以质量计 30% 或更多的不同于水合氧化铝且折射率为 1.5 或更高的无机颜料，以及包含以质量计 10% 或更少的折射率低于 1.5 的颜料，
其中，所述喷墨记录油墨包括：
水，
水溶性有机溶剂，
作为着色剂 (B) 的颜料，
选自以下结构式 (1) 表示的化合物的至少一种含氟化合物表面活性剂，和
水分散性树脂 (A)，并且
其中所述水溶性有机溶剂为选自以下的至少一种：甘油、三羟甲基丙烷、乙二醇、二甘醇、三甘醇、丙二醇、一缩二丙二醇、三丙二醇、1,3- 丁二醇、2,3- 丁二醇、1,4- 丁二醇、3- 甲基-1,3- 丁二醇、1,5- 戊二醇、1,6- 己二醇、2- 甲基-2,4- 己二醇、2- 吡咯烷酮、N- 甲基-2- 吡咯烷酮、N- 羟乙基-2- 吡咯烷酮、四甲基脲和脲，

结构式 (1)
其中 R₁ 表示烷基和全氟烷基中的任意一种, R₂ 表示氢原子, 烷基和含氟基团中的任意一种, RF 表示含氟基团, m 和 n 每个表示 1 或大于 1 的整数。
6. 喷墨记录油墨组件，其包括：
黑色油墨，和
彩色油墨，
其中所述黑色油墨和彩色油墨中的每一个都是喷墨记录油墨，所述喷墨记录油墨包括：
水，
水溶性有机溶剂，
作为着色剂 (B) 的颜料，和
选自以下结构式 (1) 表示的化合物的至少一种含氟化合物表面活性剂，

结构式 (1)
其中 R₁ 表示烷基和全氟烷基中的任意一种，R₂ 表示氢原子、烷基和含氟基团中的任意一种，RF 表示含氟基团，m 和 n 每个表示 1 或大于 1 的整数。

7. 根据权利要求 4 所述的喷墨记录油墨，其中所述一个或多个阻挡层具有 10 μm 或更小的厚度。

8. 墨盒，其包括：
用于容纳喷墨记录油墨的容器，所述喷墨记录油墨包括：
水，
水溶性有机溶剂，
作为着色剂 (B) 的颜料，和
选自以下结构式 (1) 表示的化合物的至少一种含氟化合物表面活性剂，

结构式 (1)
其中 R₁ 表示烷基和全氟烷基中的任意一种，R₂ 表示氢原子、烷基和含氟基团中的任意一种，RF 表示含氟基团，m 和 n 每个表示 1 或大于 1 的整数。

9. 喷墨记录方法，其包括：
使用喷墨记录油墨介质组件进行记录，
其中粘附到喷墨记录介质上的喷墨记录油墨的量为 15g/m² 或更少，
其中所述喷墨记录油墨介质组件包括：
所述喷墨记录油墨，和
用于颜料油墨的所述喷墨记录介质，所述用于颜料油墨的所述喷墨记录介质包括含有纤维素纸浆的载体和在所述载体的一个或两个表面上的一个或多个阻挡层，所述一个或多个阻挡层包含以质量计 30％或更多不同于水合氧化铝且折射率为 1.5 或更高的无机颜料，以及包含以质量计 10％或更少的折射率低于 1.5 的颜料，
其中，所述喷墨记录油墨包括：
水，
水溶性有机溶剂，
作为着色剂 (B) 的颜料，
选自以下结构式 (1) 表示的化合物的至少一种含氟化合物表面活性剂，和
水分散性树脂 (A)，并且
其中所述水溶性有机溶剂为选自以下的至少一种：甘油、三羟甲基丙烷、乙二醇、二甘醇、三甘醇、丙二醇、一缩二丙二醇、三丙二醇、1,3-丁二醇、2,3-丁二醇、1,4-丁二醇、3-甲基-1,3-丁二醇、1,5-戊二醇、1,6-己二醇、2-甲基-2,4-己二醇、2-吡咯烷酮、N-甲基-2-吡咯烷酮、N-羟乙基-2-吡咯烷酮、四甲基脲和脲。

结构式（1）

其中 R₁ 表示烷基和全氟烷基中的任意一种，R₂ 表示氢原子、烷基和含氟基团中的任意一种；R₃ 表示含氟基团；m 和 n 每个表示 1 或大于 1 的整数。

10. 根据权利要求 9 所述的喷墨记录方法，其进一步包括通过将刺激施加到所述喷墨记录油墨而喷射所述喷墨记录油墨，以在所述记录介质上形成图像。

11. 根据权利要求 10 所述的喷墨记录方法，其中所述刺激为选自热、压力、振动和光的至少一种。

12. 喷墨记录装置，其包括：

油墨喷射单元，其配置为将喷墨记录油墨喷向用于颜料油墨的喷墨记录介质并进行印刷，以使粘附在所述记录介质上的所述喷墨记录油墨的量为 15g/m² 或更少，

其中所述喷墨记录油墨、所述喷墨记录介质和墨盒被安装在所述喷墨记录装置内，

其中所述喷墨记录介质包括含有纤维素纸浆的载体和在所述载体的一个或两个表面上的一个或多个阻挡层，所述一个或多个阻挡层含有一以上质量计 30% 或更多的不同于水合氧化铝且折射率为 1.5 或更高无机颜料，以及包含以质量计 10% 或更少的折射率低于 1.5 的颜料，

其中所述墨盒容纳所述喷墨记录油墨，

其中，所述喷墨记录油墨包括：

水，

水溶性有机溶剂，

作为着色剂（B）的颜料，

选自以下结构式（1）表示的化合物的至少一种含氟化合物表面活性剂，和

水分散性树脂（A），并且

其中所述水溶性有机溶剂为选自以下的至少一种：甘油、三羟甲基丙烷、乙二醇、二甘醇、三甘醇、丙二醇、一缩二丙二醇、三丙二醇、1,3-丁二醇、2,3-丁二醇、1,4-丁二醇、3-甲基-1,3-丁二醇、1,5-戊二醇、1,6-己二醇、2-甲基-2,4-己二醇、2-吡咯烷酮、N-甲基-2-吡咯烷酮、N-羟乙基-2-吡咯烷酮、四甲基脲和脲，
权利要求书

结构式 (1)
其中 R_1 表示烷基和全氟烷基中的任意一种，R_2 表示氢原子、烷基和含氟基团中的任意一种，R' 表示含氟基团，m 和 n 每个表示 1 或大于 1 的整数。

13. 喷墨记录装置，其包括：
记录头，和
配置为使纸翻转并且因此能够进行双面印刷的单元，
其中喷墨记录油墨从所述记录头被喷射为油墨滴，以便在所述纸上记录图像，以及
其中所述喷墨记录油墨包括：
水，
水溶性有机溶剂，
作为着色剂 (B) 的颜料，和
选自以下结构式 (1) 表示的化合物的至少一种含氟化合物表面活性剂，

结构式 (1)

其中 R_1 表示烷基和全氟烷基中的任意一种，R_2 表示氢原子、烷基和含氟基团中的任意一种，R' 表示含氟基团，m 和 n 每个表示 1 或大于 1 的整数。
喷墨记录油墨、喷墨记录油墨组件、喷墨记录油墨介质组件、墨盒、喷墨记录方法和喷墨记录装置

技术领域

[0001] 本发明涉及喷墨记录油墨、喷墨记录油墨组件、喷墨记录油墨介质组件、墨盒、喷墨记录方法和喷墨记录装置，其在普通纸上在增加图样密度、提高显色和减少滞色方面是优良的，并且当本发明的喷墨记录油墨与特定的记录介质结合时，其能够记录得上通过商业印刷例如胶印产生的那些高质量图像的高质量图像。

背景技术

[0002] 已知喷墨记录是一种受记录材料类型影响不大的优良记录方法。一直在积极地研究和开发基于喷墨记录的记录装置、记录方法、记录材料等。到目前为止，喷墨记录油墨最常使用的是含有主要由水组成的水性染料的油墨。所述油墨在当今的喷墨记录中仍然最常用的，因为它们具有很多如下这类优点：可以容易得到吸附系数高和颜色纯度也高的着色材料来制备它们，所述油墨可以容易地制成多色的从而加宽颜色显示范围，可以保证油墨的长期储存稳定性，油墨的耐热稳定性，并且最明显地可以生产能够减少结垢（kogation）出现的油墨。

[0003] 然而，由于耐气候性和防水性而言染料油墨是不利的，因此近年来对含有代替水性染料的颜料的颜料油墨的研究是引人注目的，且其油墨墨已在市场上销售。遗憾的是，颜料油墨在显色能力和稳定性方面存在的问题仍然比染料油墨多；并且随着增加图像质量的技术上的提高，特别是与办公室自动化的打印机相关方面，已经要求颜料油墨在普通纸上展示出可以比得到由染料油墨所展示的那些的打印质量、色相，饱和度、光泽度、储存稳定性等。

[0004] 另外，一般而言，特别用作颜料油墨的品红色油墨和青色油墨各自包含 C. I. 颜料红 122 和 C. I. 颜料蓝 15:3，因此颜料油墨具有不同于染料油墨的色彩复制范围。此外，为了减少色相误差，常常进行调色，因此情况下色饱和度不可避免地减少，由此引起打印质量问题。

[0005] 同时，为了不依赖于调色改变色相，也改进颜料自身。例如，专利文献 1 通过使用具有特定晶体结构的酞菁颜料，提出具有与青色染料相同色相的色相的青色颜料；然而，不是所有的要求都满足，因为有关于成本等的问题。

[0006] 存在包括专利文献 2 的建议在内的很多其它建议，其公开了油墨组件，其中颜料用于黑色油墨的着色材料，而染料用于黄色、品红色和青色油墨的着色材料。然而，实际上还没有得到在普通纸上具有令人满意的打印质量的包含颜料的油墨。

[0007] 另外，作为包括黑色油墨和彩色油墨的油墨组件，专利文献 3 公开了油墨组件，其包括包含自分散碳黑作为着色材料的黑色油墨和包含着色材料的彩色油墨，其中黑色油墨的着色材料和彩色油墨的着色材料具有相反的极性。此外，专利文献 4 公开了油墨组件，其包括在其中分散着包含着色剂树脂的油墨，其中油墨具有不同的电离度。然而，至于使用这些油墨组件生产的印刷品，虽然颜色之间边界上的滞色可以被减少，但是在普通纸上的其
它印刷性质仍然是不令人满意的。

【0008】同时，作为具有稳定的喷出性质和提高的润湿性的低表面张力水性颜料油墨，例如，专利文献5提出了喷墨印刷油墨，其包含水溶性有机溶剂、着色剂、水和全氟烷基磷酸盐化合物。另外，如在专利文献6到专利文献8中描述，有一些使用含氟化合物表面活性剂的油墨组合物的建议。然而，所有这些建议存在这样的问题，在颜料用于着色剂的情况下，着色剂的分散稳定性、在记录介质上的固定和显色能力是差的。此外，一般而言，具有提高的润湿性的低表面张力水性油墨（包括专利文献5到专利文献8的油墨）存在这样缺点，在油墨中使用的含氟化合物表面活性剂使得油墨起泡严重，并且因此对喷嘴的绘图能力和喷射能力有非常严重的影响。

【0009】至于介质，常规的喷墨用纸，特别是喷墨光面介质，可以分为膨胀型介质和孔隙型介质；现在，油墨干燥速度优良的孔隙型介质是更普及的。作为这些孔隙型介质，最常使用以下介质，每种介质引入具有孔隙的吸墨层，油墨通过这些孔隙被提供到基底上，并且如果必要也引入多孔的光面层。如在专利文献9和专利文献10中所公开，如下可以得到这些孔隙型介质的每一种，将其中分散有硅石或水合氧化铝的涂布溶液以一层或多层施加到基底上，并且如果必要，包含大量胶态硅石的光面层被施加在该层（一个或多个）上。设计这种类型的纸，重点在于其与目前最常使用的染料油墨的相容性，并且这种纸已经被广泛地用作为喷墨用纸，特别是作为光面纸。该纸的使用使得非常高清晰度输出与高光泽度成为可能；另一方面，由于纸的材料非常昂贵并且制造纸的过程复杂，该纸的生产成本远比商业印刷用普通光面涂布纸的生产成本要高。因此，该纸的使用往往被限制于需要高清晰度输出例如照相输出的情况；并且实际上该纸难于在商业印刷领域中使用，在商业印刷领域中要求以低成本大量印刷，但在单张、目录、小册子等的生产中。现在，为了较高图像质量的缘故，往往要增加在印刷中使用的油墨颜色的数量，并且也往往要增加必需的吸墨层。为了增加介质的吸墨性，增加油墨接收层（涂布层）的厚度是合理的；然而，它们越厚，其材料越昂贵，这导致介质的单位价格上升。

【0010】对于形成吸墨层（接收层）的颜料，有必要使用折射率小和具有低的遮盖（concealing）性质的材料。换句话说，其能够保持层的高透明性并且其吸收大量的油（具有大的比表面积）。因此，实际上，除了使用大量昂贵的低折射率、高吸油量的颜料例如硅石或水合氧化铝之外，没有选择。其与便宜的白色颜料例如碳酸钙和高岭土相反。具体地，这是因为如果使用具有低透明度和高遮盖性质的颜料用于吸墨层，则在已经渗透入吸墨层的油墨中的着色材料被这些具有高遮盖性质的颜料掩盖，由此引起密度的减小。事实上，当包含具有高遮盖性质的颜料的纸经历利用染料油墨的喷墨印刷时，被施加的油墨量无论如何增加，密度仅源于在纸的表面层附近存在的着色材料；因此，整体来看密度是低的，并且产生具有很小对比度的图像。同时，当使用仅吸收小量油的材料时，油墨吸附是不足的，并且因此成像容易出现。

【0011】因此，现在，通过使用具有小折射率的细有机颜料，进行了实现折射率和白度之间的有利平衡的尝试，如在专利文献11中公开的，然而，细有机颗粒生产成本也太高，因此仍然难于得到与染料油墨相容的便宜的油墨接收纸。

【0012】对于所产生图像的长期储存稳定性的设计概念，由于染料分子自身对于紫外射线或臭氧不是高度地耐受，最常使用染料尽可能深地渗入介质的油墨接收层的这样的方法，
以最小化空气和紫外线的影响，并且用先前加入到介质的图像接收层的抗氧化剂或溶剂剂保护染料。因此，通过使用大量着色材料的浓度相对低的油墨，保证（确保）油墨的深渗入和维持图像储存稳定性。因而，输出图像所需的油墨量由此增加，其不仅使墨盒小型化变得困难，而且增加印刷成本。

[0013] 根据以上的观点判断，在喷墨记录中，很难提供便宜的喷墨用纸和能够高清晰输出的印刷方法。

[0014] 同时，近些年，已经注意到喷墨记录用颜料油墨。因为颜料在水中是不溶的，一般使用颜料以细粒形成并被分散在溶剂中的颜料油墨。然而，作为喷墨记录用颜料油墨，鉴于安全性等，最常使用颜料被分散在水中的颜料油墨。一般而言，与染料油墨相比，水性颜料油墨容易引起颜料颗粒絮凝或沉淀；为了使水性颜料油墨的长期储存稳定性与染料油墨相当，各种分散条件和添加剂是必要的；此外，分散稳定剂引起结垢；因此，水性颜料油墨由于与热敏头一起使用，并且也存在它们中许多包含颜色显示范围比染料窄的着色材料的这种缺点。尽管如此，水性颜料油墨由于它们的印刷质量——例如它们得到高黑密度的能力——以及由于印刷后它们的储存稳定性和防水性一直吸引越来越多的关注。使用颜料油墨的喷墨打印机被认为能够接近通过商业印刷生产的印刷品的纹理，因为包含在颜料油墨中的着色材料类似于在普通商业印刷油墨中包含的那些着色材料；然而，例如，当商业印刷用涂布纸实际上利用常规颜料油墨来印刷图像等时，颜料油墨没有与它们所应该的那样快地干燥，并且因此图像等发生洇墨，或颜料在干燥后根本没有被固定；因此，在相关领域中，喷墨打印机不仅适合于在具有高吸墨性质的介质例如普通纸和喷墨用纸上印刷。这是因为关于喷墨图像形成的设计概念不同于使用染料油墨情况下的概念；具体地，作为着色材料的颜料仅被视为具有高耐光性的染料，而根本不考虑颜料油墨的特征。

[0015] 专利文献 12 和专利文献 13 每个都公开了使用喷墨记录方法的图像记录方法，其中颜料油墨被施加在便宜的商业印刷用用纸上而不是喷墨用纸上。然而，该图像记录方法存在以下问题：油墨大量粘附到便宜的商业印刷用用纸上，其需要花费大量的时间干燥油墨；而且，在这种油墨被过量地粘附到印刷用纸表面的状况下，具有不同颜色的油墨在被吸入印刷用纸之前变得如此近邻，并且因此在不同颜色之间的洇墨容易发生。

[0016] 专利文献 14 公开这样的方法：该方法中，为了使用喷墨打印机生产彩色打样，在通过喷墨打印机进行印刷之前，具有絮凝颜料的功能的预涂布溶液被粘附到记录介质之上。然而，这个方法是有问题的，因为粘附预涂布溶液的过程使操作复杂化，并且也因为当预涂布溶液被粘附到记录介质之上时，每单位面积的记录介质所吸附的水量大，其在输送记录介质方面容易引起问题，例如纸张卷边和起皱。

[0017] [专利文献 1] 日本专利申请公开 (JP-A) 2000-17207
[0019] [专利文献 3] JP-A 10-140064
[0021] [专利文献 5] JP-A 57-90070
[0022] [专利文献 6] JP-A 04-211478
[0023] [专利文献 7] JP-A 05-263029
[0024] [专利文献 8] JP-A 06-200200
发明内容

[0031] 根据以上所提的实际情况，本发明旨在实现以下目标。

[0032] 具体地，本发明的目的是提供喷墨记录油墨、喷墨记录油墨组件、喷墨记录油墨介质组件、墨盒、喷墨记录方法和喷墨记录装置，其中具有特定结构的含氯化合物表面活性剂与在普通纸上作为着色剂的颜料的组合使得在普通纸上增加图像密度、提高显色和减少润色成为可能；本发明中显示的喷墨颜料油墨与喷墨记录介质的组合使得得到便宜、质量良好、密度、光泽度和图像可靠性优良且与商业印刷品相当的印刷品成为可能；并且就喷射稳定性、储存稳定性等而言保证优良的可靠性是可能的。

[0033] 通过以下说明的本发明可以实现以上所提的目标。

[0034] (1) 喷墨记录油墨，其包括水、水溶性有机溶剂、作为着色剂 (B) 的颜料和至少一种选自以下结构式 (1) 表示的化合物的含氯化合物表面活性剂，

[0035]

\[
\begin{array}{c}
R_1 - O \\
\left\{ \begin{array}{c}
CH_2CH_2O \\
CH_2CCH_2O \\
CH_3 \\
\end{array} \right. \\
\left(\begin{array}{c}
m \\
Rf \\
\end{array} \right) \\
\end{array}
\]

[0036] 结构式 (1)

[0037] 其中 R_1 表示氢原子、烷基和全氟烷基中的任意一种，R_2 表示氢原子、烷基和含氟基团中的任意一种，Rf 表示含氟基团，m 和 n 每个表示 1 或大于 1 的整数。

[0038] (2) 根据 (1) 所述的喷墨记录油墨，其还包括水分散性树脂 (A)，其中所述水溶性有机溶剂是选自下述的至少一种：甘油、三羟甲基丙烷、乙二醇、二甘醇、三甘醇、丙二醇、一缩二丙二醇、三丙二醇、1,3- 丁二醇、2,3- 丁二醇、1,4- 丁二醇、3- 甲基 -1,3- 丁二醇、1,5- 戊二醇、1,6- 己二醇、2- 甲基 -2,4- 己二醇、2- 吡咯烷酮、N- 甲基 -2- 吡咯烷酮、N- 乙基 -2- 吡咯烷酮、四甲基脲和脲。

[0039] (3) 根据 (2) 所述的喷墨记录油墨，其中所述水分散性树脂 (A) 包含选自以下的至少一种树脂乳液：阴离子自乳化羧基聚氨酯树脂乳液和丙烯酸 - 有机硅树脂乳液。

[0040] (4) 喷墨记录油墨，其包括水、水溶性有机溶剂、水分散性树脂 (A) 、作为着色剂 (B) 的颜料和选自以下结构式 (1) 表示的化合物的至少一种含氯化合物表面活性剂，其中所述喷墨记录油墨具有在 25℃时 20mN/m 至 35mN/m 的表面张力和在 25℃时 5mPa·s 或更大的粘度，其中存在于所述喷墨记录油墨中的所述水分散性树脂 (A) 和着色剂 (B) 的总量为以质量计 5% 到以质量计 40%，并且水分散性树脂 (A) 与着色剂 (B) 的质量比 (A) / (B)
在0.5到4的范围内，以及其中所述喷墨记录油墨适用于在用于颜料油墨的喷墨记录介质上进行喷墨记录。所述用于颜料油墨的喷墨记录介质包括含有纤维素纸浆的载体和在所述载体的一个或两个表面上的一个或多个阻挡层，所述一个或多个阻挡层包含以质量计30%或更多的不同于水合氧化铝且折射率为1.5或更高的无机颜料，以及包含以质量计10%或更少的折射率低于1.5的颜料。

式 (1)

其中 R 表示氢原子、烷基和全氟烷基中的任意一种，R' 表示氢原子、烷基和含氟基团中的任意一种，RF 表示含氟基团，m 和 n 每个表示 1 或大于 1 的整数。

(5) 喷墨记录油墨介质组件，其包括根据 (2) 至 (4) 中任一项所述的喷墨记录油墨和用于颜料油墨的喷墨记录介质。所述用于颜料油墨的喷墨记录介质包括含有纤维素纸浆的载体和在所述载体的一个或两个表面上的一个或多个阻挡层。所述一个或多个阻挡层包含以质量计30%或更多的不同于水合氧化铝且折射率为1.5或更高的无机颜料，以及包含以质量计10%或更少的折射率低于1.5的颜料。

(6) 喷墨记录油墨组件，其包括黑色油墨和彩色油墨，其中所述黑色油墨和彩色油墨中的每一个都是根据 (1) 至 (4) 中任一项所述的喷墨记录油墨。

(7) 根据 (4) 所述的喷墨记录油墨，其中所述一个或多个阻挡层具有10 μm或更小的厚度。

(8) 墨盒，其包括用于容纳根据 (1) 至 (4) 中任一项所述的喷墨记录油墨的容器。

(9) 喷墨记录方法，其包括使用根据 (5) 所述的喷墨记录油墨介质组件进行记录，其中粘附到所述记录介质上的所述喷墨记录油墨的量为15g/m²或更少。

(10) 根据 (9) 所述的喷墨记录方法，其进一步包括通过将刺激施加到所述喷墨记录油墨而喷射所述喷墨记录油墨，以在所述记录介质上形成图像。

(11) 根据 (10) 所述的喷墨记录方法，其中所述刺激为选自热、压力、振动和光的至少一种。

(12) 喷墨记录装置，其包括油墨喷射单元，所述油墨喷射单元被配置为将根据 (2) 至 (4) 中任一项所述的喷墨记录油墨喷射到用于颜料油墨的喷墨记录介质并进行印刷，以使粘附到所述记录介质上的所述喷墨记录油墨的量为15g/m²或更少，其中所述喷墨记录油墨、所述喷墨记录介质和墨盒被安装在所述喷墨记录装置内，其中所述喷墨记录介质包括含有纤维素纸浆的载体和在所述载体的一个或两个表面上的一个或多个阻挡层，所述一个或多个阻挡层包含以质量计30%或更多的不同于水合氧化铝且折射率为1.5或更高的无机颜料，以及包含以质量计10%或更少的折射率低于1.5的颜料，以及其中所述墨盒容纳所述喷墨记录油墨。

(13) 喷墨记录装置，其包括记录头和配置为使纸翻转并且因此能够进行双面印刷。
的单元，其中根据 (1) 至 (4) 中任一项所列的喷墨记录油墨从记录头被喷射为油墨滴，以便在纸上记录图像。
[0053] 本发明，可以解决相关领域的问题，并且可以提供以下；喷墨记录油墨、喷墨记录油墨组件、喷墨记录油墨介质组件、墨盒、喷墨记录方法和喷墨记录装置，其中具有特定结构的含氟化合物表面活性剂与在普通纸上作为着色剂的颜料的组合使得在普通纸上增加图像密度、提高显色和减少湿润成为可能；本发明中显示的喷墨颜料油墨与喷墨记录介质的组合使得图像均匀、质量良好、密度、光泽度和图像可靠性优良且与商业印刷品相当的印刷品成为可能，并且减少成珠 (beading) 和保证喷出稳定性、储存稳定性等方面的优良可靠性是可能的。
[0054] 附图简述
[0055] 图 1 是显示本发明墨盒的一个实例的示意图。
[0056] 图 2 是示例性显示包括箱体 (外部覆盖物) 的图 1 墨盒的示意图。
[0057] 图 3 是示例性显示当设置于墨盒装裁部分处的盖打开时本发明喷墨记录装置的说明性透视图。
[0058] 图 4 是用于解释本发明喷墨记录装置的总体结构的示意性结构图。
[0059] 图 5 是显示本发明喷墨头的一个实例的示意性放大图。
[0060] 图 6 是显示本发明喷墨头的一个实例的元件的放大图。
[0061] 图 7 是显示本发明喷墨头的一个实例的主要部分的放大截面图。
[0062] 最佳实施方案
[0063] 以下详细说明本发明的喷墨记录油墨、喷墨记录油墨组件、喷墨记录油墨介质组件、墨盒、喷墨记录方法和喷墨记录装置。
[0064] 作为执行一系列非常认真的研究以实现在普通纸上增加图像密度、提高显色和减少湿润的目标的结果，本发明人已经发现，由于本发明的喷墨记录油墨包括作为着色剂的颜料，并且具有特定结构的含氟化合物表面活性剂组合，所以喷墨记录油墨具有喷墨头喷出稳定性并且在普通纸上增加图像密度、提高显色和减少湿润方面优良。至于上述，据推断，当在本发明中使用的含氟化合物表面活性剂被包括在油墨中时，其给予油墨的耐湿性，使除了着色剂之外的油墨成分在墨滴与普通纸接触之后快速地渗入普通纸中，而使着色剂保留油滴表面上，由此带来图像密度的增加；此外，据推断，由于油墨中的耐湿性产生了使着色剂均匀地留在普通纸上的强大作用，因此实心图像部分的均匀性等得以提高，由此带来显色的提高。另外，据推断，除了着色剂之外的油墨成分均匀渗入普通纸中促进着色剂均匀固定和减少颜色之间的湿润。此外，已经发现，由于其结构，这种含氟化合物表面活性剂在气 - 液界面的均化能力 (leveling ability) 优良，在阻止油墨起泡方面非常有效，并且供应油墨到喷墨头方面优良，而且对高速印刷中的喷出稳定性有很大影响等。
[0065] 一般而言，关于含氟化合物表面活性剂，近年来中对它们安全性和对环境的影响 (例如 PFOS 或 PFOA 在人体中的积累) 一直存在关注，而这些作用被视为环境问题。然而，在本发明中使用的含氟化合物表面活性剂被美国环境保护机构 (United States Environmental Protection Agency (EPA)) 接受，认为对环境是安全的，因此就安全性而言也可以适当地使用该含氟化合物表面活性剂。选自由以上结构式 (1) 表示的化合物的至少一种含氟化合物表面活性剂在喷墨记录油墨中的用量优选为按质量计 0.01％到按质量计
10%，更优选为按质量计 0.1% 到按质量计 5%。当该量小于按质量计 0.01% 时，就图像质量而言对提高显色没有显著的作用。当该量大于按质量计 10% 时，对在油墨中作为着色剂的颜料的分散有不利影响，其降低了分散稳定性并引起油墨增稠和颗粒絮凝，并且因此对油墨的储存稳定性有不利影响。

[0066] 记录介质

[0067] 接下来，将说明记录介质。

[0068] 一般而言，设计实现高质量图像的喷墨涂布纸（喷墨介质），使得由无机颜料形成的油墨接收层（涂布层）在基底表面上或附近存在，并且图像被形成，因为油墨接收层本身吸收油墨（或油墨渗入油墨接收层）。这与喷墨记录技术基于染料油墨发展的事实密切相关。

[0069] 实质上，染料是显色物质，其被认为渗入具有亲和力的物质中并与它们结合（共价键、离子键或范德华力）而颜料不具有（或具有很小）结合力并且需要通过胶黏剂（粘合剂）结合。因此，在使用染料油墨的喷墨记录的情况下，油墨接收层材料实际上被染色。该事实已推动了技术概念，例如使用喷墨油墨使油墨接收层尽可能均匀地染色或使油墨接收层材料尽可能多地染色的观点，为了得到高密度、高质量的图像，已经开发出使喷墨油墨比较深地渗入油墨接收层的技术，使喷墨油墨和油墨接收层材料尽可能牢固结合的技术和实现吸墨性与显色能力之间有利平衡的技术。

[0070] 如上所述，生产现在的喷墨用纸的最常用的方法包括形成多孔和高度透明的吸墨层，为了实现该方法，有必要主要使用具有低折射率和大比表面积的材料，而实际上喷墨用纸不可避免地依赖于昂贵的材料如硅油或水合氧化铝和复杂的生产方法。不言而喻，生产成本是相当高的，并且喷墨用纸应用于大量印刷等是困难的。

[0071] 作为根据前述对低成本喷墨记录方法进行非常认真研究的结果，本发明人已经基于新的设计概念设计出低成本图像形成方法，通过结合高渗透性颜料油墨和具有低吸墨性的介质——与常规的介质相反——实现该方法。

[0072] 具体地，本发明人已经发现以下面的方式，用小量的油墨可以实现在足够的图像密度和干燥能力之间的有利平衡：在吸墨性（油墨渗入性质）已经被降低的记录介质上进行印刷，以尽可能大地阻止油墨中作为着色材料的颜料渗入记录介质中：使用小量的超渗透性颜料油墨，只有作为油墨组分的溶剂（水和有机溶剂）选择性地渗入载体中，并且只有油墨中的着色材料（颜料）有良好保留在介质表面上。

[0073] 通过在主要由纤维素纸浆组成的载体上——换句话说在纸基底上提供（例如施加）阻止颜料渗入的层（阻挡层），可以实现在本发明中具有降低的吸墨性的记录介质。通过该阻挡层的外观接近于印刷用纸的外观，甚至可能得到质量上类似于普通商业印刷品的印刷品。已经发现，通过限制阻挡层的孔径、直径、厚度等，可以降低油墨渗入性能（阻隔性能）到期望的水平。

[0074] 为促进油墨中的颜料和油墨溶剂的分离，阻挡层的厚度需要为小于或等于预计的厚度；具体地，阻挡层的厚度需要为 10 μm 或更小，优选为 5 μm 或更小。当厚度大于 10 μm，油墨溶剂的渗入需要长时间，成珠、淌色等容易发生，使图像质量降低，并且干燥能力的降低容易引起背面脏污等。此外，由于有必要使阻挡层变薄并且因此有必要阻止着色材料的反印（offset）（印刷在纸一面的着色材料的颜色也可以从另一面看见的现象），例如，
具有高折射率和高遮盖性质的无机颜料需要被大量地包含在阻挡层中。这与常规的喷墨介质相反；具体地，对于阻挡层而言有必要包含按质量计 30％或更多的具有 1.5 或更大折射率的无机颜料。硅石——一种具有低折射率和低遮盖性质并且常被用于常规喷墨介质的材料——可以被包含在阻挡层中；然而，如果高透明性颜料被大量地包含在阻挡层中，则反印加剧和成本增加。因此，对于硅石的量有必要为按质量计 10％或更少。因此，通过使用具有高折射率的材料作为形成阻挡层的白色颜料，即使当阻挡层变薄时，也可以减少反印，因此成本可以被进一步地降低。

此外，一些水合氧化铝可以用作具有高折射率的颜料；然而，如果吸收太多油的材料例如水合氧化铝被大量地包含在阻挡层中，油墨溶剂不容易从阻挡层移动到基底。已经吸收大量溶剂的水合氧化铝在本发明中是不可取的，因为当长时间储存时，它引起与颜料转移有关的褪色和图像褪色。

本发明中的阻挡层的必要功能是使墨水中的颜料与溶剂彼此分离，并且仅使溶剂渗入基底。为了发生这种情况，期望阻挡层具有小洞（孔）。如果阻挡层没有任何孔，油墨溶剂成分的渗入缓慢发生，由此容易引起油墨不干燥的现象。相反地，如果孔直径太大或孔的数量太多，使油墨中的颜料与溶剂彼此分离的功能降低，图像密度减小，并且印刷后在介质表面上存在的颜料随着时间迁移入介质中，引起颜色变化。因此，对孔而言直径为 1 μm 或更小是必要的，并且孔优选地占据 40％或更少的介质表面面积。

通过根据 SEM 的表面观察，可以测量孔直径和相对于介质表面的面积的孔面积。基于表面的照片，通过二值化运算孔部分的图像，可以计算孔直径和面积比。在本发明中，场发射扫描电子显微镜 JSM-7400F（由 JEOL Ltd. 生产）和 FE-SEM S-4200（由 Hitachi, Ltd. 生产）被用作 SEMs，POPIMAGING（版本 3.51）（由 Digital being kids Co., Ltd. 生产）被用于图像处理。

油墨

要求本发明必不可少的颜料油墨是高渗透性的；在 25℃，颜料油墨具有 20mN/m 到 35mN/m 的表面张力，优选为 23mN/m 到 33mN/m，更优选为 25mN/m 到 30mN/m。同样，在 25℃，颜料油墨具有 5mPa·s 或更大的粘度，优选为 5mPa·s 到 15mPa·s，更优选为 5mPa·s 到 10mPa·s。至于在本发明中使用的表面活性剂，每个具有特定结构的一种或多种含氟化合物表面活性剂被包含在油墨中。在油墨中存在的水分散性树脂 (A) 和着色剂 (B) 的总量优选为按质量计 5％到按质量计 40％，并且水分散性树脂 (A) 与着色剂 (B) 的质量比 (A)/(B) 优选在 0.5 到 4 的范围，更优选在 1 到 2.5 的范围。

以下说明本发明必不可少的油墨的成分。

本发明的记录油墨包括水、水溶性有机溶剂、作为着色剂的颜料和具有特定化学结构的含氟化合物表面活性剂，并且根据需要还包括其它成分。

对于具有特定化学结构的含氟化合物表面活性剂，使用选自由以下结构式 (1) 表示的化合物的至少一种。
[0084] 结构式 (I)

[0085] 在结构式 (I) 中，R₁ 表示氢原子、烷基和含氟烷基中的任意一种，R₂ 表示氢原子、烷基和含氟基团中的任意一种，R₃ 表示含氟基团，m 和 n 每个表示 1 或大于 1 的整数。

[0086] 在结构式 (I) 中，R₃ 表示含氟基团，特别优选地是全氟烷基。

[0087] 全氟烷基优选地具有 1 至 10 个碳原子的全氟烷基，为安全起见更优选地是具有 1 至 4 个碳原子的全氟烷基，其实例包括 -CF₃、-CF₂CF₃、-CF₂CF₂CF₃ 和 -CF₃CF₂CF₃，特别优选的是 -CF₃ 和 -CF₂CF₃。R₁ 和 R₂ 每个都可以是氢原子、烷基如甲基、乙基、丙基或丁基，或者含氟基团如 -CF₃、-CF₂CF₃、-CF₂CF₂CF₃ 或 -CF₃CF₂CF₃。为提高图像质量起见特别优选的是 -CF₃ 和 -CF₂CF₃。至于 m 和 n，期望 m 是 6 至 25 的整数而 n 是 1 到 10 的整数，并且考虑到作为着色剂的颜料的分散稳定性和油墨的储存稳定性，更期望 m 是 10 至 22 的整数而 n 是 4 到 8 的整数。

[0089] 同样，对于本发明的油墨，着色剂 (B) 与水分散性树脂 (A) 的质量比被减小，并且包含至少一种类型的具有特定结构的含氟化合物表面活性剂作为油墨中的表面活性剂，以提高油墨的润湿性和渗透性；产生在纸上着色材料的均匀性；选自阴离子自乳化醚基聚氨酯树脂乳液和丙烯酸-有机硅树脂乳液中的至少一种包含在水分散性树脂 (A) 中；因此，通过油墨和介质的组合，可以获得能够被牢固固定于本发明的便宜介质之上和比得上商业印刷品的印刷品。

[0090] 对于能够在本发明中使用的水分散性树脂 (A)，选自聚氨酯树脂乳液和丙烯酸-有机硅树脂乳液的至少一种或其组合是合适的。同时，当被用作制备油墨的原料或油墨已经被制备时，水分散性树脂 (A) 作为 O/W 乳液存在。

[0091] 当选自聚氨酯树脂乳液和丙烯酸-有机硅树脂乳液中的至少一种被使用时，在油墨中乳液/多种乳液以总计按质量计 1%到按质量计 40%存在，优选为总计按质量计 1%到按质量计 20%。

[0092] 聚氨酯树脂乳液被分类为：通过外部利用乳化剂乳化相对亲水性普通聚氨酯树脂产生的乳液；和可自乳化乳液，其中作为乳化剂的官能团通过共聚或相似的方法被引入到树脂本身。就能够在本发明中使用的分散性树脂 (A) 和颜料等的结合方面来说，阴离子自乳化聚氨酯树脂乳液在分散稳定性上总是优良的。在使用阴离子自乳化聚氨酯树脂乳液的情况下，从颜料的固定和分散稳定性方面来说，期望聚氨酯树脂是基于醚而不是聚酯或
聚碳酸酯的。由于一些未知的原因，在很多情况下，不是基于醚的聚氨酯酯对溶剂有很小的耐性，因此当油墨在高温储存时，容易引起颜料絮凝和油墨粘度增加。

【0093】醚聚氨酯树脂乳液具有300nm或更小的平均粒径，优选为100nm或更小，更优选为80nm或更小。特别是，通过减少它的平均粒径到100nm或更小，有可能提高墨水式打印机的可靠性，例如在喷墨打印机中被长时间放置不用之后的油墨喷出稳定性。

【0094】醚聚氨酯树脂乳液的玻璃化转变温度优选在-50℃到150℃的范围，更优选在-10℃到100℃的范围。由于一些未知的原因，当玻璃化转变温度高于150℃时，醚聚氨酯树脂乳液在成膜性质方面与玻璃一样硬，但是印刷的部分——当颜料的颗粒和醚聚氨酯树脂乳液与图像载体同时接触形成——具有意想不到地非常小的耐磨性；当玻璃化转变温度为150℃或更小时，就它的成膜性质而言，醚聚氨酯树脂乳液像橡胶一样软，但是印刷部分的耐磨性优良。同时，当玻璃化转变温度低于-50℃时，膜太软而且印刷部分耐磨性差。因此，已经成为发现醚聚氨酯树脂乳液的量没有区别时，就印刷品的耐磨性方面来说，对于它的玻璃化转变温度，-50℃到150℃的范围是合适的。此外，依照DSC（示差扫描量热法）或TMA（热机械分析），可以测量本发明中提到的树脂的玻璃化转变温度。

【0095】醚聚氨酯树脂乳液的最小成膜温度优选为低于或等于室温，更优选为低于或等于25℃。当醚聚氨酯树脂乳液在低于或等于室温的温度形成膜时，特别是在低于或等于25℃的温度，它是有利的，因为纸张纤维的结合自动进行，不需要对图像已经形成的图像载体加热、干燥等。

【0096】此处，“最小成膜温度（MFT）”被定义为，当通过分散醚聚氨酯树脂乳液颗粒到水中得到的水性乳液颗粒被薄薄地浇注在由铝或类似物制成的金属板上并且温度被升高时，连续透明的膜被形成时的最小温度。

【0097】接着，将描述能够在本发明中使用的丙烯酸-有机硅树脂乳液。

【0098】本发明的丙烯酸-有机硅树脂乳液是硅氧烷改性的丙烯酸树脂乳液，其可以通过在乳化剂存在情况下聚合丙烯酸单体和硅烷化合物得到。

【0099】丙烯酸单体的实例包括：丙烯酸酯单体例如丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸2-乙基己酯、丙烯酸2-羟乙酯、丙烯酸丙酯和丙烯酸N,N’-二甲氨基乙酯。甲基丙烯酸酯单体例如甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸2-羟乙酯和甲基丙烯酸N,N’-二甲氨基乙酯。酰胺丙烯酸酯例如N-羟基丙烯酰胺和甲氧基甲基丙烯酰胺；和含有羧酸的单体例如马来酸、延胡素酸、衣康酸、丙烯酸和甲基丙烯酸。

【0100】本发明的乳化剂的实例包括烷基苯磺酸及其盐、二烷基苯磺酸及其盐、烷基苯磺酸及其盐、烷基苯磺酸钠福尔马林化合物、高级脂肪酸盐、高级脂肪酸的磺酸酯、乙二胺的聚氨丙烯-聚氨乙烯缩合物、失水山梨糖醇脂肪酸酯及其盐、芳香族脂肪族磺酸酯及其盐、十二烷基苯磺酸、十二烷基硫酸盐、月桂基硫酸盐、二烷基磺基琥珀酸盐、聚氧乙烯烷基苯基醚酸盐、聚氧乙烯烷基苯基醚酸盐、烷基苯醚二磺酸盐、聚氧乙烯烷基苯基醚酸盐、聚氧乙烯烷基苯基醚酸酯、聚氧乙烯烷基苯基醚酸酯、月桂醇乙氧基化物、月桂基硫酸盐、月桂基磷酸酯、失水山梨糖醇脂肪酸酯、脂肪酸乙二醇醚胺和烷磺酸的福尔马林缩合物。此外，盐的实例包括钠盐和铵盐。

【0101】同时，作为本发明的乳化剂，也可以使用具有饱和或双键的活性乳化剂。活
性乳化剂的实例包括 ADEKAREASOAP SE、NE 和 PP（由 Asahi Denka Co., Ltd. 生产）、
LATEN L S-180（由 Kao Corporation 生产）、ELEMINOL JS-2 和 RS-30（由 Sanyo Chemical
Industries, Ltd. 生产）和 AQUALON RN-20（由 Dai-Ichi Kogyo Seiyaku Co., Ltd. 生产）。
[0102] 硅烷化合物的实例包括四甲基硅烷、甲基三甲氧基硅烷、二甲基二甲氧基硅烷、
苯基三甲氧基硅烷、二苯基二甲氧基硅烷、四乙氧基硅烷、甲基三乙氧基硅烷、二甲基二乙
氧基硅烷、苯基三乙氧基硅烷、二苯基二乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅
烷、癸基三甲氧基硅烷和三氟丙基三甲氧基硅烷。
[0103] 同时，也可以使用一般称为硅烷偶联剂的单体，其实例包括乙烯基三氯硅烷、乙烯
基三甲氧基硅烷、乙烯基三乙氧基硅烷、对-苯乙烯基三甲氧基硅烷、3-甲基丙烯酰氧丙
基甲基二甲氧基硅烷、3-甲基丙烯酰氧丙基甲基乙氧基硅烷、3-甲基丙烯酰氧丙基甲基乙
氧基硅烷、3-甲基丙烯酰氧丙基甲基乙氧基硅烷、3-丙烯酰氧丙基甲基乙氧基硅烷、N-2（氨乙
基）3-氨基丙基甲基二甲氧基硅烷、N-2（氨乙基）3-氨基丙基甲基二甲氧基硅烷、N-2（氨乙
基）3-氨基丙基甲基二甲氧基硅烷、N-2（氨乙基）3-氨基丙基甲基二甲氧基硅烷、N-2（氨乙
基）3-氨基丙基甲基二甲氧基硅烷、N-2（氨乙基）3-氨基丙基甲基二甲氧基硅烷、N-2（氨乙
基）3-氨基丙基甲基二甲氧基硅烷、N-2（氨乙基）3-氨基丙基甲基二甲氧基硅烷、N-2（氨乙
基）3-氨基丙基甲基二甲氧基硅烷的盐酸盐、3-胺丙基三乙氧基硅烷、3-胺丙基三甲氧基硅
烷、3-胺丙基三甲氧基硅烷、3-胺丙基三甲氧基硅烷、3-胺丙基三甲氧基硅烷、双（三乙氧基
甲基硅烷基丙基）四硫化物和 3-异氧酸酯丙基三乙氧基硅烷。
[0104] 在本发明中，术语“可水解的甲硅烷基”代表包含可水解基团的甲硅烷基，可水解
基团的实例包括烷氧基、巯基、卤素基团、酰胺基团、乙酰氧基、氨基和异丙氧基。
[0105] 甲硅烷基水解成为硅烷醇基团，而硅烷醇基团脱水和缩合以产生硅氧烷键。在用
于本发明油墨的硅氧烷改性丙烯酸树脂中，期望可水解的甲硅烷基作为聚合反应的结果
而水解并最终消失。如果可水解的甲硅烷基保留，其是不利的，因为已经制备的油墨的储
存稳定性降低。
[0106] 硅氧烷改性的丙烯酸树脂的细粒优选地具有 10nm 到 300nm 的平均直径，更优选为
40nm 到 200nm。当平均粒径小于 10nm 的油漆被合成时，树脂乳液的粘度增加，并且因此难
于产生能够使打印机喷出油墨的油墨粘度。当平均粒径大于 300nm 时，颗粒堵塞打印机的
喷嘴，并且因此出现喷出障碍。
[0107] 来自本发明的油墨中包含的硅氧烷改性丙烯酸树脂的硅氧烷的量优选为 100ppm
到 400ppm 范围。当硅氧烷的量小于 100ppm 时，不可能得到耐磨性或耐标记性优良的涂布
膜。当硅氧烷的量大于 400ppm 时，疏水性增加和在水性油墨中的硅氧烷稳定性减小。
[0108] 在本发明的油墨中使用的硅氧烷改性的丙烯酸树脂的最小成膜温度优选为 20°C
或更低。当最小成膜温度高于 20°C 时，不能产生油墨在印刷介质上的足够固定。换句话说，
如果印刷部分被标记物划伤或标记，例如，颜料从印刷部分分离，因此擦脏印刷介质。
[0109] 接着，以下提供说明：为何在油墨中的本发明的水分散性树脂 (A) 和着色剂 (B)
的总量是按质量计 5%到按质量计 50%，并且水分散性树脂 (A) 和着色剂 (B) 的质量比 (A) /
(B) 在 0.5 到 4 的范围。
[0109] 通过本发明中描述的油墨和介质的组合，可以获得能够被牢固地固定于本发明的
便宜介质之上和比油墨商业印刷品的印刷品；关于本发明中油墨的重要因素，本发
明中已经发现，在油墨中的水分散性树脂 (A) 和着色剂 (B) 的总固体含量以及水分散性树
脂（A）和着色剂（B）的比例是实现目的的必要因素。

具体地，在油墨中水分分散性树脂（A）和着色剂（B）的总固体含量需要是按质量计5%到按质量计40%。例如，当总固体含量小于按质量计5%时，油墨未充分地固定于在本发明使用的介质之上。当总固体含量大于按质量计40%时，油墨喷出口稳定性等方面来说，油墨粘度变得如此之高，使得对油墨的可靠性有不利影响。另外，总固体含量优选是按质量计5%到按质量计20%。取决于以下描述的着色材料的类型，也可以使用以分散方式包含树脂或用树脂涂布的颜料。在该情况下，树脂分散剂或涂布树脂以及水分分散性树脂（A）被一起加入作为树脂固体含量（A）。

至于水分分散性树脂（A）与着色剂（B）的重量比（A）/（B）为0.5到4的范围情况，例如，当质量比小于0.5时，油墨没有被充分地固定于本发明中使用的介质之上；当质量比大于4时，着色剂材料的浓度相对于树脂而言太低，以致存在图像质量降低，例如图像密度减小和图像均匀性降低。因为这个原因，考虑到在本发明中使用的介质，关于在本发明中使用的油墨的重要因素是油墨中水分分散性树脂（A）和着色剂（B）的总量是按质量计75%到按质量计40%，并且水分分散性树脂（A）与着色剂（B）的重量比（A）/（B）是在0.5到4的范围。就图像质量来说，更期望质量比是在1到2.5的范围。

接着，将描述组合发明油墨的成分和其组成。

水溶性有机溶剂的具体实例包括以下化合物。

多元醇例如乙二醇、乙二醇、丙二醇、二丙二醇、二丙二醇、四甘醇、四乙醇、聚乙二醇、聚丙二醇、1-3-丁二醇、3-甲基-1.3-丁二醇、2.3-丁二醇、1.4-丁二醇、1.5-戊二醇、1.6-己二醇、丙三醇、1,2,6-己三醇、1,2,4-丁三醇、1,2,3-丁三醇、2-甲基-2,4-戊二醇、季戊四醇（petriol）和3-甲氧基-3-甲基-1-丁二醇。

多元醇醚基醚例如乙二醇单乙醚、乙二醇单丁醚、二甘醇单甲醚、二甘醇单乙醚、二甘醇单丁醚、四甘醇单甲醚和丙二醇甲醚乙二醇。

多元醇醚基醚例如乙二醇单乙醚、乙二醇单丁醚、二甘醇单甲醚、二甘醇甲基醚、二甘醇甲基醚和二甘醇甲基醚。

含氟基环状化合物例如2-吡咯烷酮、N-甲基-2-吡咯烷酮、N-羟乙基-2-吡咯烷酮、1,3-二甲基咪唑啉酮、1-乙内酰胺和1-丁内酰胺。

酰胺例如N-甲基甲酰胺和N,N-二甲基甲酰胺。

胺例如单乙醇胺、二乙醇胺、三乙醇胺、一乙胺、二乙胺和三乙胺。

含硫化合物例如二甲亚砜、环丁砜、硫二乙醇和硫二甘醇；和

碳酸异丙烯酯和碳酸亚乙酯。

在这些有机溶剂中，特别优选的是甘油、乙二醇、乙二醇、丙二醇、丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、四甘醇、1,6-己二醇、2-甲基-2,4-戊二醇、聚乙二醇、二醇、2-甲基-2,4-丁二醇、1,2,6-己三醇、硫二甘醇、2-吡咯烷酮、N-甲基-2-吡咯烷酮、N-羟乙基-2-吡咯烷酮和1,3-二甲基-2-咪唑啉酮。这些化合物使在溶解性和预的由水分蒸发引起的涂层干燥方面得到良好效果成为可能。

本发明必不可少的颜料油墨至少包括水、颗粒形式的着色剂、着色剂的定影剂和水溶性有机溶剂，也包括湿润剂和表面活性剂，并且根据需要还包括其它成分。

根据本发明的目的，具有特定结构的含氟化合物表面活性剂被用作为表面活性
剂，着色剂（B）与水分散性树脂（A）的质量比被降低，并且选自阴离子自乳化羧酸聚酯丙烯酸树脂乳液和丙烯酸-有机硅树脂乳液的至少一种被包含在水分散性树脂中；因此，通过油墨和介质的组合，可以得到能够被牢固固定于本发明的便宜介质之上和比得上商业印刷品的印刷品。

[0126] 着色剂（B）的实例包括染料——例如水溶性染料、油溶性染料和分散染料——和颜料。在吸附和包封来说，油溶性染料和分散染料为优选的，而在得到的图像的耐光性方面来说，颜料为优选的。

[0127] 考虑到染料可以被有效地包封在细聚合物颗粒中的事实，期望每一种染料以2g/l或更大的比率溶解在有机溶剂例如酮基溶剂中，更期望每一种染料以20g/l到600g/l的比率溶解在有机溶剂例如酮基溶剂中。

[0128] 在本发明中使用的着色剂（B）将在以下说明。

[0129] 在本发明中使用的颜料的实例包括以下：作为黑色颜料的炭黑，作为彩色颜料的葸酮蓝、酞菁蓝、酞菁绿、重氮、单偶氮、苯胺酮、紫类、杂环黄、喹吖啶酮和（硫代）靛蓝颜料。酞菁蓝的典型实例包括铜酞菁蓝和其衍生物（颜料蓝15）。喹吖啶酮的典型实例包括颜料橘黄48、颜料橘黄49、颜料红122、颜料红192、颜料红202、颜料红206、颜料红207、颜料红209、颜料紫19和颜料紫42。葸酮的典型实例包括颜料红43、颜料红194（紫环酮红（perinone red）、颜料红216（浅化酞菁酮红）和颜料红226（酞菁酮红）。站系的典型实例包括颜料红123（朱红色）、颜料红149（猩红色）、颜料红179（栗色）、颜料红190（红色）、颜料紫、颜料红189（浅黄红色）和颜料红224。硫代靛蓝的典型实例包括颜料红86、颜料红87、颜料红88、颜料红181、颜料红198、颜料紫36和颜料紫38。杂环黄的典型实例包括颜料黄117和颜料黄138。着色颜料的其它合适的实例例如在“The Colour Index, third ed., The Society of Dyers and Colourists, 1982”中描述。

[0130] 对于本发明油墨中的颜料，有可能使用具有至少一个亲水基团的颜料，其直接或间接地结合到颜料表面，并因此其可以不使用分散剂而被稳定地分散。具有亲水基团——即被引入到颜料表面上——的本发明的颜料，优选地具有离子的性质，并且带阴离子电荷的颜料或阳离子电荷的颜料适合于颜料。

[0131] 阴离子亲水基团的实例包括 -COOM、-SO₃M、-PO₃H₂、-PO₃M、-SO₃NH₂和-SO₃NHCOR（在这些式中，M代表氢原子、碱金属、铵或有机铵，和R代表具有1到12个碳原子的烷基，可以有取代基的苯基或可以有取代基的萘基）。在本发明中，在这些当中，特别优选地使用-COOM和-SO₃M，其每一个被结合到颜料表面。得到带阴离子电荷颜料的方法实例包括用次氯酸钠氧化颜料的方法，利用磺化的方法和用颜料与重氮盐反应的方法；然而，应该注意的是，本发明可以使用其它方法。

[0132] 作为结合到带阳离子电荷颜料的表面的亲水基团，例如，可以使用季铵基团。理想地，具有以下季铵基团中至少一个——其被结合到颜料表面——的颜料被用作为颜料。

[0133] 至于在本发明的油墨中使用的颜料，也可以使用颜料通过分散剂被分散在水介质中的颜料分散体。分散剂的合适实例包括在制备颜料分散溶液中使用的已知分散剂；具体地，适当的实例包括以下化合物。

[0134] 聚丙烯酸、聚甲基丙烯酸、丙烯酸-丙烯腈共聚物、醋酸乙烯酯-丙烯酸酯共聚物、丙烯酸-丙烯酸烷基酯共聚物、苯乙烯-丙烯酸共聚物、苯乙烯-甲基丙烯酸共聚物、
苯乙烯-丙烯酸-丙烯酸烷基酯共聚物、苯乙烯-甲基丙烯酸-丙烯酸烷基酯共聚物、苯乙烯-α-甲基苯乙烯-丙烯酸共聚物、苯乙烯-聚乙烯苯乙烯基酯共聚物、苯乙烯-马来酸共聚物、乙烯基苯乙烯基马来酸共聚物、醋酸乙烯酯-乙烯共聚物、醋酸乙烯酯-脂肪酸乙烯基乙烯 (fatty acid vinyl ethylene) 共聚物、醋酸乙烯酯-马来酸共聚物、醋酸乙烯酯-巴豆酸共聚物和醋酸乙烯酯-丙烯酸共聚物。

[0135] 可以依照颜料的类型或油墨的配方适当选择用于分散颜料的非离子分散剂或阴离子分散剂;非离子分散剂的实例包括聚氧乙烯烷基醚例如聚氧乙烯月桂基醚、聚氧乙烯肉豆蔻基醚、聚氧乙烯鲸蜡基醚、聚氧乙烯十八烷基醚和聚氧乙烯油基醚;聚氧乙烯烷基醚例如聚氧乙烯辛基苯基醚和聚氧乙烯壬基苯基醚、聚氧乙烯α-萘基醚、聚氧乙烯β-萘基醚、聚氧乙烯单苯乙烯苯基醚、聚氧乙烯二苯乙烯苯基醚、聚氧乙烯烷基脂肪醚、聚氧乙烯单苯乙烯基醚、聚氧乙烯二苯乙烯基醚和聚氧乙烯-聚氧丙烯嵌段共聚物。同时，有可能使用通过使用聚氧乙烯取代这些分散剂的聚氧乙烯部分而产生的分散剂，以及有可能使用通过使用福尔马林或类似物质缩合含氧环化合物例如聚氧乙烯烷基苯基醚产生的分散剂。

[0136] 非离子分散剂的HLB优选为12到19.5的范围，更优选为13到19的范围。当HLB小于12时，分散剂与分散介质不相容，并且因此分散稳定性往往降低。当HLB大于19.5时，分散剂不容易吸附颜料，并且因此分散体稳定性在这种情况下也往往降低。

[0137] 特别期望非离子分散剂是选自以下结构式 (2) 代表的化合物。通过使用任一这些化合物分散颜料，颜料的平均粒径变小，并且可以使粒度分布变窄。以下给出的结构式 (2) 中的环氧乙烷部分的聚合度n优选为20到200的范围，更优选为25到60的范围。在n小于20的情况下，分散稳定性降低，颜料的平均粒径变大，图像的色饱和度往往减小。在n大于200的情况下，颜料分散体的粘度变高，当油墨已经被制备时，油墨粘度也变高，并且基于喷墨记录方法的印刷往往变得难以实现。

[0138]

![结构式 (2)]

(R)m

O(CH2CH2O)nH

[0139] 结构式 (2)

[0140] （在结构式 (2) 中，R 代表具有1到20个碳原子的烷基，m 代表0至7的整数，和n代表20至200的整数。）

[0141] 烷基的实例包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、异己基、正庚基、异庚基、正辛基、异辛基、正壬基、异壬基、正癸基、异癸基、正十一烷基、异十一烷基、正十二烷基、异十二烷基、环丙基、环丁基、环戊基、环己基、环庚基和环辛基。

[0142] 阴离子分散剂的实例包括聚氧乙烯烷基醚硫酸盐、聚氧乙烯烷基苯基醚硫酸盐、聚氨乙烯单苯乙烯基醚基醚硫酸盐、聚氧乙烯二苯乙烯基醚基醚硫酸盐、聚氧乙烯烷基醚
磷酸盐、聚氧乙烯烷基苯基醚磷酸盐、聚氧乙烯单苯乙烯基苯基醚硫酸盐、聚氧乙烯二苯乙烯基苯基醚磷酸酯、聚氧乙烯烷基苯基醚磷酸盐、聚氧乙烯烷基苯基醚磷酸酯、聚氧乙烯烷基苯基醚硫酸酯、聚氧乙烯二苯乙烯基苯基醚硫酸酯、聚氧乙烯烷基苯基醚硫酸酯。在这些当中，聚氧乙烯烷基醚、聚氧乙烯烷基苯基醚磷酸酯和硫酸酯是特别优选的。

加入的分散剂的量优选地等于颜料量的按质量计 10% 到按质量计 50%。当加入的分散剂量小于颜料量的按质量计 10% 时，颜料分散体和油墨的储存稳定性降低，或者分散花费大量的时间。当加入分散剂的量多于颜料量的按质量计 50% 时，油墨粘度变高，并且因此喷出稳定性往往降低。

此外，对于着色剂 B，也可以如下说明地适当使用树脂涂布的着色剂。

树脂涂布的着色剂用聚物乳液制成，在聚合物乳液中细聚合物颗粒包含在水中不溶或少量溶解的着色材料。在本说明书中，表述“细聚合物颗粒包含着色材料”指以下一种或两种情况：一种情况是着色材料被包封在细聚合物颗粒中，以及一种情况是着色材料被吸附在细聚合物颗粒的表面。在该情况下，不是包括在本发明油墨中的所有着色材料都需要被包封在细聚合物颗粒中或被吸附在细聚合物颗粒上，而是着色材料可以仅使得本发明的效果未被削弱的程度分散在乳液中。着色剂不受特别限制，并可以依照预期用途被适当选择，只要它在水中是不溶的或少量溶解的，并可以被聚合物吸附。在本说明书中，表述“在水中是不溶的或少量溶解的”指在 20°C 按质量计不多于 10% 的着色材料溶解在按质量计 100% 的水中，而术语“溶解”指通过视觉观察在水溶液的表面层或底层既没有着色材料的分离也没有沉降被确认。着色材料的实例包括染料——例如油性染料和分散染料——和颜料。在吸附和包封来说，油性染料和分散染料为优选的，而就得到的图像的耐光性来说，颜料为优选的。

考虑到着色剂可以被有效地包封在细聚合物颗粒中，期望本发明的着色剂以 2g/1 或更大的比率溶解在有机溶剂例如酯基溶剂中，更期望比率为 20g/1 到 600g/1。组成聚合物乳液的聚合物实例包括乙烯基聚合物、聚酯基聚合物和聚氨酯基聚合物。这些当中，特别优选的是乙烯基聚合物和聚酯基聚合物，具体地，在 J-P-A 2000-53897 和 2001-139849 中所公开的聚合物。着色剂的量在每 100 质量份的聚合物中优选为 10 质量份到 200 质量份，更优选为 25 质量份到 150 质量份。在油墨中包含着色剂的细聚合物颗粒优选地具有 0.16 μm 或更小的平均粒径。

作为固体含量，在记录油墨中包含的细聚合物颗粒的量优选为按质量计 8% 到按质量计 20%。更优选为按质量计 8% 到按质量计 12%。

作为在本发明中使用的着色剂，颜料为最有利的。同时，对于涂布树脂的着色剂，也可以使用染料。以下显示一组水溶性染料的实例。期望使用那些防水性和耐光性优良的染料。

染料的具体实例包括酸性染料和食用染料，例如 C.I. 酸性黄 17、23、42、44、79 和 142，C.I. 酸性红 19、13、14、18、26、27、35、37、42、52、82、87、89、92、97、106、111、114、115、134、186、249、254 和 289；C.I. 酸性蓝 9、29、45、92 和 249；C.I. 酸性黑 1、2、7、24、26 和 94；
C. I. 食用黄 3 和 4 ; C. I. 食用红 7、9 和 14; 和 C. I. 食用黑 1 和 2。

[0150] 染料的具体实例包括直接染料例如 C. I. 直接黄 1、12、24、26、33、44、50、86、120、132、142 和 144; C. I. 直接红 1、4、9、13、17、20、28、31、39、80、81、83、89、225 和 227; C. I. 直接橘黄 26、29、62 和 102; C. I. 直接蓝 1、2、6、15、22、25、71、76、79、85、87、90、98、163、165、199 和 202; 和 C. I. 直接黑 19、22、32、38、51、56、71、74、75、77、154、168 和 171。

[0151] 染料的具体实例包括碱性染料例如 C. I. 碱性黄 1、2、11、13、14、15、19、21、23、24、25、28、29、32、36、40、41、45、49、51、53、63、64、65、67、70、73、77、87 和 91; C. I. 碱性红 2、12、13、14、15、18、22、23、24、27、29、35、36、38、39、46、49、51、52、54、59、68、69、70、73、78、82、102、104、109 和 112; C. I. 碱性蓝 1、3、5、7、9、21、22、26、35、41、45、47、54、62、65、66、67、69、75、77、78、89、92、93、105、117、120、122、124、129、137、141、147 和 155; 和 C. I. 碱性黑 2 和 8。

[0152] 染料的具体实例包括活性染料例如 C. I. 活性黄 3、4、7、11、12 和 17; C. I. 活性黄 1、5、11、13、14、20、21、22、25、40、47、51、55、65 和 67; C. I. 活性红 1、14、17、25、26、32、37、44、46、55、60、66、74、79、96 和 97; 和 C. I. 活性蓝 1、2、7、14、15、23、32、35、38、41、63、80 和 95。

[0153] 在本发明中，表面活性剂特别是具有特定结构的含氟化合物表面活性剂的使用使提高油墨对记录纸的润湿性和渗透性成为可能。含氟化合物表面活性剂一般认为知具有高的起泡性质，并且包含那些含氟化合物表面活性剂的油墨在许多情况下容易起泡，对给墨能力和和墨喷出稳定性产生不利影响，然而，在本发明中具有特定结构的含氟化合物表面活性剂的起泡性质减小，给墨能力和油墨喷出稳定性优良，并且安全性良好，而且使以下成为可能：在本专利中使用的喷墨记录介质上产生着色材料的高显色性和均匀性，以及大？少成珠，并因此得到良好的图像。虽然关于为何可以得到其有效性的细节是不知道的，但是推断在本发明中的具有特定结构的含氟化合物表面活性剂——由于其结构——的均化能力优良，在使气-液界面处的表面张力均匀方面高度有效，因此消泡能力优良，并且均化能力具有在喷墨记录介质上以湿方式均匀分散着色材料和均匀扩大像元直径的作用，这能够大大减少成珠，因此使得提供这样的喷墨记录油墨、喷墨记录油墨组件、喷墨记录油墨介质组件、墨盒、喷墨记录方法和喷墨记录装置成为可能，其中在本发明中显示的喷墨颜料油墨和喷墨记录介质的组合使用得到便宜、质量优良、密度、光泽度和图像可靠性优良且与商业印刷品相当的印刷品成为可能，并且在喷出稳定性、储存稳定性等方面来说，保证优良的可靠性成为可能。

[0154] 除了由在本发明的结构式 (1) 中代表的含氟化合物表面活性剂之外，可以使用任何以下含氟化合物表面活性剂：全氟烷基磺酸盐、全氟烷基羧酸盐、全氟烷基磺酸酯、全氟烷基环氧乙烷加合物、全氟烷基羧酸碱、全氟烷基氧化胺化合物等。容易得到并能够在本发明中使用，作为氟基化合物商业可得的那些实例包括：SURFLON S-111、S-112、S-113、S121、S131、S132、S-141、S-145 和 S-386（由 Asahi Glass Co., Ltd. 生产）; FLUORAD FC-93, FC-95, FC-98, FC-129, FC-135, FC-170C, FC-430, FC-431 和 FC-4430（由 Sumitomo 3M Limited 生产）; MEGAFAC F-470, F-1405 和 F474（由 Dainippon Ink And Chemicals, Incorporated 生产）; ZONYL FS-300, FSN, FSN-100 和 FSO（由 E.I. duPont de Nemours and Company 生产）; 和 EFTOP EF-351, 352, 801 和 802（由 JEMCO Inc. 生产）。这些当中，ZONYL FS-300,
FSN、FSN-100 和 FSO（由 E. I. du Pont de Nemours and Company 生产）为特别优选，其可靠性和提高显示方面优良。

除了以上提到的含氯化合物表面活性剂外，能够使用的表面活性剂的实例包括界面聚氧乙烯烷基醚酸盐、二烷基磺基琥珀酸酯、聚氧乙烯烷基酯、聚氧乙烯烷基苯基醚、聚氧乙烯－聚氧丙烯嵌段共聚物、聚氧乙烯烷基酯、聚氧乙烯－聚氧丙烯嵌段共聚物的反应产物。更具体地，作为阴离子表面活性，具有碳链有 5 到 7 个碳原子的支链烷基的聚氧乙烯烷基醚酸盐和 / 或二烷基磺基琥珀酸酯的反应产物使提高油墨对普通纸的润湿性成为可能。要注意的是，在不干扰成分的分散状态的情况下，任意这些表面活性剂可以稳定地存在本发明的油墨中。加入的任何这些其它表面活性剂的量优选地在每 1 种结构式 (1) 的表面活性剂以质量计 0.0001％至以质量计 5％范围内，优选地在 0.01 至 0.5％范围内（作为活性液体含量的质量比）内。

用作本发明中渗透剂的具有 7 到 11 个碳原子的多元醇例如可以是 2- 乙基 -1, 3- 己二醇和 2, 2, 4- 三甲基 -1, 3- 戊二醇的任一个。加入的多元醇用量优选为按质量计 0.1％到按质量计 20％的范围，更优选为按质量计 0.5％到按质量计 10％的范围。当该量小于或等于下限时，油墨对纸的渗透性降低；因此，当传送时纸不能被覆盖，因为记录物可能被滚筒刮擦，或者当被翻转以进行双面印刷时，纸可能被撕裂，因为油墨可能被附着到输出带上，并且因此对高速印刷或双面印刷而言可能获得足够的可印刷性。当该量大于或等于上限时，有可能增加印刷点直径，由此可能引起字母 / 字符的线宽增加或引起图像清晰度减小。

添加剂的实例包括抗菌剂、防锈剂和 pH 调节剂。

使用 1, 2- 苯并异喹啉 -3- 碱作为抗菌剂使得提供能够保证就储存稳定性，喷射稳定等方面而言的可靠性和抗菌作用优良的油墨成为可能。特别是，当与本发明的润湿剂组合时，即使抗菌剂的量对于减少细菌或真菌产生在相关领域被认为太小时，其可以是足够有效的；因此，通过减小加入的抗菌剂的量，阻止这些现象颗粒絮凝和油墨增稠变为可能，并且油墨的这些性能可以被长时间维持。作为活性成分的量，加入的 1, 2- 苯并异喹啉 -3- 碱的量相对于油墨的总量优选为 0.01％质量份到 0.04％质量份。在该量小于 0.01 质量份时，抗菌性能有稍微地降低。在该量是 0.04 质量份或更大时，例如，颗粒的絮凝发生，或者油墨粘度与开始的油墨粘度相比增加 50％到 100％——当油墨被长时间储存时（例如，室温下 2 年，或者 50℃到 60℃的温度 1 到 3 个月）；因此，油墨的长期储存稳定性存在问题，因而不能维持最初的印刷性能。

对于 ph 调节剂，可以使用任何物质，只要它能使调节 ph 至 7 或更大，而对要制备的油墨没有不利影响。

ph 调节剂的实例包括胺例如二乙醇胺和三乙醇胺；碱金属的氢氧化物例如氢氧化锂、氢氧化钠和氢氧化钾；氨化酸锌、氨化酸锡和氨化酸镧；碱金属的碳酸盐例如碳酸锂、碳酸钠和碳酸钾；和氨化丙二醇衍生物。氨化丙二醇衍生物是水溶性有机碱性化合物，其实例包括 1- 氨基 -2- 丙二醇、1- 甲基 -2, 3- 丙二醇、1- 甲基 -2- 丙二醇、2- 甲基 -1, 3- 丙二醇和 2- 氨基 -2- 乙基 -1, 3- 丙二醇，特别优选为 2- 氨基 -2- 乙基 -1, 3- 丙二醇。

防锈剂的实例包括酸性亚硫酸盐、硫代硫酸钠、亚硫酸二乙酸铵、二乙丙基亚硝酸铵、季戊四醇四硝酸酯和二环己基亚硝酸铵。
此外，水溶性紫外线吸收剂、水溶性红外线吸收剂或类似物可以依照预期用途被加入到防锈剂中。

【喷墨记录】

在本发明中，油墨的总量需要被严格控制，以保证油墨的干燥性能以及阻止油墨中的着色材料（颜料）渗入介质中，并有效地使着色材料在介质表面附近存在；如果像在常规的喷墨记录中一样使用大量的油墨，油墨中的颜料可能与油墨溶剂一起渗入介质，因为阻挡层的颜料分离能力对于大量的油墨变得不足，或者油墨干燥能力可能存在很大问题。因为油墨的溶剂成分可能不会如它们应当的那样快地渗入介质中。已经证实，考虑到阻挡层实现它的功能，油墨的总量最多为 15g/m²，更优选为 12g/m² 或更小。通过控制渗透剂（EHD）的量和含氟化合物表面活性剂的量等，可以容易地调节油墨量。同样，通过减少喷印必需的油墨总量，有可能使墨盒的容量比常规喷墨打印机中的墨盒小，并且因此有可能使装置压缩。另外，当具有大小类似于常规墨盒的墨盒被使用时，可以减小墨盒更换的速度，并且因此较低成本的印刷变为可能。基本上，油墨的总量越小，阻挡层的颜料分离能力越大；然而，如果油墨的总量太小，存在在印刷后图像点直径变得太小的这类缺点，因此依照期望的图像，设定油墨的总量在范围内是可取的。

在本发明中，依照重量法测量油墨的总量。具体地，5cm×20cm 长方形被印刷在 TYPE 6200 的纸上（由 Ricoh Company.Ltd. 生产），其是 PPC 纸，随后在印刷后立即测量印刷纸的重量，从测量重量减去印刷前的纸重量，并且得到的值乘以 100 以作为油墨的总量。

本发明的高渗透性油墨也可以用于常规的孔隙型喷墨介质之上印刷。然而，应当注意的是，因为油墨吸收速度远比油墨被用于在本发明的记录介质之上的印刷情况要高，在墨滴与介质表面接触之后，溶剂在点以湿润方式扩散之前渗入孔隙型喷墨介质中，因此点直径变小。结果，图像密度容易减小，而在图像中颗粒比较容易变得让人注意。因此，高质量图像的生产要求比在本发明记录介质之上印刷的分辨率要高的印刷，由此导致了印刷速度的下降和油墨消耗的增加。因此，期望使用本发明的记录介质。

【记录介质】

本发明的阻挡层中包含的无机颜料的实例包括碳酸镁、滑石、高岭土、伊利水云母、粘土、碳酸钙、亚硫酸钙、硬木、碳酸镁和二氧化钛。在这些颜料中具有相对高折射率的颜料的使用使减小阻挡层的厚度成为可能。在成本方面来说，使用碳酸钙或高岭土为优选的。这些颜料可以组合使用，只要本发明的效果没有被损坏；同样，这些颜料可以与不被包括在上述实例中的其它颜料组合。高岭土为优选的，因为其色泽显现色泽优良并且使得产生接近于胶版印刷用纸纹理的纹理成为可能。高岭土的实例包括：层状高岭土、煅烧高岭土和通过表面改性生产的工程高岭土等。考虑到光泽显现色泽，期望的是按质量计全部高岭土的 50% 或更多被具有以下粒度分布的高岭土所占据；按质量计 80% 或更多的颗粒的直径为 2 μm 或以下。包含的高岭土的量优选地为 50% 质量份或更多。当该量小于 50% 质量份时，就光泽度而言，可能不能获得足够效果。

虽然包含的高岭土量的上限没有被特别限制，但是考虑到高岭土的流动性，尤其高剪切力存在时的増稠性质，就涂布适宜性而言进一步期望该量为 90% 质量份。

这些具有高折射率的颜料可以与硅石和 / 或有具有低折射率的有机颜料组合使用。有机颜料的实例包括水溶性分散体，该分散体包含苯乙烯 - 丙烯酸共聚物颗粒、苯乙
烯－丁二烯共聚物颗粒、聚苯乙烯颗粒和聚乙烯颗粒等。这些有机颜料中的每一种可以与两种或更多种组合使用。有机颜料光泽显现性质优良并且比重比无机颜料小，因而使得能够获得大容量、高光泽度且表面涂布特性极佳的涂布层。当所加入的任意有机颜料的量小于 2 质量份时，不能获得这些效果。当其量大于 5 质量份时，油墨透印故障易于发生，并且成本也上升，这在经济上是不利的。有机颜料的形式的实例包括致密型（dense type）、空心型（hollow type）和环状物型（doughnut type）；当考虑到光泽显现性质、表面涂布性质以及涂布溶液流动性之间的平衡时，期望有机颜料的平均粒径为 0.2 μm 至 3.0 μm 范围，并且进一步期望使用具有 40% 或更大的孔隙比的空心型有机颜料。

[0171] 在本发明中使用的阻止颜料渗透层（阻挡层）的粘合剂不受特别限定，只要它牢固地粘附组成阻挡层的颜料和原纸，并且它用水性树脂、乳液或不引起纸张粘连的类似物制成。

[0172] 水性粘合剂的实例包括：聚乙烯醇、淀粉例如氧化淀粉、酯化淀粉、酶改性淀粉和阳离子化淀粉；纤维素衍生物例如醋蛋白、大豆蛋白、羧基纤维素和羟乙基纤维素；和苯乙烯－丙烯酸共聚物树脂、异丁烯－马来酸酐共聚物树脂、丙烯酸乳液、醋酸乙烯酯乳液、1,1－二氯乙烯乳液、聚酯乳液、苯乙烯－丁二烯共聚物胶乳和丙烯腈－丁二烯共聚物胶乳。这些当中，在成本方面来说，使用淀粉或苯乙烯－丁二烯共聚物胶乳为优选的。苯乙烯－丁二烯共聚物胶乳包含苯乙烯和丁二烯作为单体，并且这些单体可以根据需要与其它单体共聚合，或苯乙烯－丁二烯共聚物胶乳可以是通常用于纸涂层的共聚物胶乳，其中共聚物已经被化学反应改性。其它单体的典型实例包括乙烯基单体例如丙烯酸、甲基丙烯酸（甲基）丙烯酸的烷基酯、丙烯腈、马来酸和醋酸乙烯酯。同时，苯乙烯－丁二烯共聚物胶乳可以包含交联剂例如烃基化三聚氰胺、烃基化脲、烃基化糖烃基化丙烯酰胺或异氰酸酯或者可以是具有自交联能力的共聚物，其包含 N-烃基丙烯酰胺或其它单元。这些当中的每一个可以单独使用或与两个或多个组合使用。

[0173] 加入到本发明的阻挡层中的水性粘合剂的量相对于总的涂布层固体含量优选为按质量计 50% 到按质量计 70%，更优选为按质量计 55% 到按质量计 60%。当该量小于下限时，阻挡层有粘附缺陷，并且因此存在油墨接收层的强度可能减小的问题，内部结合强度可能减小，并且颗粒的分离可能出现。

[0174] 此外，依照需要，可以加入其它成分到本发明的阻挡层，其加入的程度是使本发明的目的和效果不被损害。其它成分的实例包括在普通涂布纸的颜料中包含的助剂，例如分散剂、增稠剂、水保留剂、消泡剂和耐水性添加剂，和添加剂，例如 pH 调节剂、防腐剂、抗氧化剂和阳离子有机化合物。

[0175] 阻挡层中使用的表面活性剂不是特别限定的，并可以依照预期用途被适当选择。对于表面活性剂，可以使用阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂中的任何一种，非离子表面活性剂为特别优选的。

[0176] 非离子表面活性剂的实例包括：高级醇环氧乙烯烷加合物、烷基酚环氧乙烯烷加合物、脂肪酸环氧乙烯烷加合物、多元醇脂肪酸酯环氧乙烯烷加合物、高级脂肪酸环氧乙烯烷加合物、脂肪酸酰胺环氧乙烯烷加合物、脂肪类的环氧乙烯烷加合物、聚丙二醇环氧乙烯烷加合物、甘油的脂肪酸酯、季戊四醇的脂肪酸酯、山梨糖醇和山梨聚糖的脂肪酸酯、蔗糖的脂肪酸酯、多元醇的烷基醚和烷醇胺的脂肪酸酰胺。这些当中的每一种可以单独使用或与两种或多种组合使用。
多元醇不是特别限定的，并可根据预期用途进行适当选择。其实例包括甘油、三羟甲基丙烷、季戊四醇、山梨糖醇和蔗糖。关于环氧乙烷加合物，这类环氧乙烷加合物——其中以烯化氢例如环氧丙烷或环氧丁烷取代部分环氧乙烷至可保持其水溶性的程度——也是有效的。取代比例优选地为 50% 或更低。非离子表面活性剂的 HLB（亲水亲脂平衡（hydrophile-lipophile balance））优选地为 4 至 15，并且更优选地 7 至 13。

阳离子有机化合物不是必需需要的，并且阳离子有机化合物不是特别限定的，并可根据预期用途被适当选择。

阳离子有机化合物的实例包括二甲胺 - 表氯醇缩聚物、二甲胺 - 氨 - 表氯醇缩合物、聚（甲基丙烯酸甲基氨乙酯 - 硫酸甲酯）、二烯丙基胺盐酸盐 - 丙烯酰胺共聚物、聚（二烯丙基胺盐酸盐 - 二氧化硫）、聚烯丙基胺盐酸盐 - 聚（丙烯基胺盐酸盐 - 二烯丙基胺盐酸盐）、丙烯酰胺 - 丙烯酸共聚物、聚乙烯胺共聚物、聚烯丙基二酰胺 - 二氧化硫 - 聚（丙烯酸共聚物）、聚乙烯胺共聚物、聚乙烯胺共聚物、聚乙烯胺共聚物、聚烯丙基二酰胺 - 二氧化硫 - 聚乙烯胺共聚物、聚乙烯胺共聚物、聚乙烯胺共聚物、聚乙烯胺共聚物。这些中的每一种可以单独使用或与两种或多种组合使用。

通过以任意的比例一起混合化学纸浆、机制木浆、再生纸浆等，生产在本发明中使用的载体，并且使用例如长网造纸机（fourdrinierformer）、间隙型双网成型机头（former）或造纸机部分的后半部分是由双网组成的混合型机头，依照需要已经加入内部添加剂的施胶剂、产量提高剂、纸强度增加剂等的原材料被制成为纸。

本发明的载体中使用的纸浆可以包含：原始的化学纸浆（CP），例如通过化学处理木材或其它纤维原材料生产的纸浆，例如阔叶漂白的牛皮浆、针叶漂白的牛皮浆、阔叶末漂白的牛皮浆、针叶末漂白的牛皮浆、阔叶末漂白的亚硫酸盐浆、针叶末漂白的亚硫酸盐浆、阔叶末漂白的亚硫酸盐浆或针叶未漂白的亚硫酸盐浆；原始的机制木浆（MP），例如通过机械处理木材或其它纤维原材料生产的纸浆，例如磨木浆、化学磨木浆、化学机械浆或化学浆。

同时，也可以使用再生纸浆，再生浆的原材料的实例包括在由纸张再循环促进中心（Paper Recycling Promotion Center）发布的“废纸标准质量规格表（Used Paper Standard Quality Specification List）”中所示的物品，例如高质量白纸、带有线条和标记的白纸、乳色纸、卡片、中等质量白纸、低等质量白纸、模造纸、白色纸、绘图纸、白色铜版纸、中等质量彩色纸、低等质量彩色纸、报纸和杂志。

其具体实例包括废纸板和下列纸的废纸；涉及信息的打印机用纸，例如未涂布的计算机用纸、热敏纸和压敏纸；OA（办公自动化，officeautomation）相关用纸，例如PPC（普通纸复印机）用纸；涂布纸，例如铜版纸、涂布纸、细涂布纸和无光泽纸；和未涂布纸，例如高质量纸、高彩色质量纸、便条用纸、信纸、包装纸、彩色纸、中等质量纸、报纸、含磨木浆纸、高级包装纸（super wrapping paper）、模造纸、纯白卷纸和盛奶用纸盒。其更具体的实例包括化学浆纸和高产率含纸浆的纸（high-yield pulp-containing paper）。这些中每种可单独使用或与两种或多种组合使用。

再生浆一般通过以下四步的组合来生产。
说明书

[0185] (1) 脱纤维; 废纸利用碎浆机借助机械力和化学品处理并且因而纤维化，并且印刷油墨从纤维中分离。
[0186] (2) 去除灰尘; 废纸中所含的外源物质（塑料等）和灰尘通过筛子、清扫器等除去。
[0187] (3) 去除油墨; 利用表面活性剂已经从纤维中分离的印刷油墨通过浮选法或清洗法从该系统中去除。
[0188] (4) 漂白; 纤维的白度利用氧化或还原来提高。
[0189] 当再生浆与其它纸浆混合时，期望的是，全部纸浆中再生纸浆的混合比例为 40%或更少，以防止记录后变卷。
[0190] 对于能够在本发明的载体中使用的填料，使用碳酸钙是有效的，并且可以另外使用以下材料：通过硅酸盐示例的无机填料例如高岭土、耐火粘土、叶腊石、绢云母和滑石；有机颜料例如钛白粉、硫酸钡、硫酸钙、硫酸锌、塑料颜料和尿素树脂。
[0191] 本发明的载体中所用的内部添加的施胶剂不是特别限定的，并可以从已知的用于喷墨记录用纸的内部添加施胶剂中选择。内部添加施胶剂的合适的实例包括松香乳液施胶剂。在生产载体中使用的内部添加施胶剂的实例包括：中性造纸中所用的中性松香施胶剂；烯基琥珀酸酯（alkenyl succinic anhydrides(ASA)）；烷基乙烯酮二聚物（alkylketene dimmers(ADK)）和石油树脂施胶剂。这些当中，中性松香施胶剂和烯基琥珀酸酯是特别优选的。尽管由于其强的施胶效果可以添加少量的烷基乙烯酮二聚物，但是在喷墨记录时纸张输送而言它们可能是不利的，因为记录纸（介质）表面的摩擦系数降低并且因此该表面容易变滑。
[0192] 使用的内部添加施胶剂的量在每 100 质量份的绝对干燥纸浆中优选为 0.1 质量份到 0.7 质量份; 然而，该量不限于此。
[0193] 对于载体中的内部添加填料，例如使用常规已知作为白色颜料的颜料。白色颜料的实例包括：白色无机颜料，例如轻质碳酸钙、重质碳酸钙、高岭土、粘土、滑石、硫酸钡、硫酸钙、二氧化钛、氧化铝、氧化锌、硫酸锌、硫酸钙、钛白粉、硅酸铝、硅藻土、氧化铍、硫酸镁、合成石、氧化铝、硅、氧化锆、沸石、硫酸镁和硫酸铝；以及有机颜料，例如苯乙烯基颜料、丙烯酸颜料等；聚乙烯、微胶囊、尿素树脂和三聚氰胺树脂。这些中的每一种可单独使用或与两种或多种组合使用。
[0194] <生产阻挡层的方法>
[0195] 通过涂布在本发明的载体上提供阻挡层的方法不是特别限定的。例如，有可能利用阻挡层直接涂布载体的方法、使已经施加在另一个基材之上的阻挡层转移到原纸之上的方法或使用喷雾器等以雾的形式施加阻挡层的方法。用阻挡层直接涂布载体的方法的实例包括膜转移方法诸如错式涂布机方法、气刀式涂布机方法、门辊式涂布机方法、施胶机方法（size pressing）、对称施胶机方法（Symizer method）和棒式金属包覆施胶涂布机方法（rod metalling size press coater method），以及刮刀涂布机方法例如墨斗方法和滚动施加。
[0196] 例如通过使用热鼓风干燥炉或热滚筒可以干燥阻挡层。此外，阻挡层可以经历使用压光设备（超级压光机、软压光机、光泽压光机等）的表面精加工处理，以使其表面变平或增加其表面的强度。
如以上所述，通过涂布可以提供本发明的阻挡层；另外，作为进行非常认真的研究的结果，本发明人已经发现，通过磨光已有的印刷用涂布纸的表面，也可以生产本发明的阻挡层。推断这是可能的，因为通过磨光，涂布层的厚度被减小到本发明中显示的厚度，刮掉存在于最外观表面之上的树脂层，其使得孔隙出现，并且因此得到用作为阻挡层的层。

现有的印刷用涂布纸表示用于由胶印、凹版印刷等示例的商业印刷的涂布纸，其实例包括铜版纸（A0，A1），A2 溶布纸，A3 涂布纸，B2 涂布纸，轻涂布纸和精细涂布纸。

以下显示作为特定产品的涂布纸的实例。作为铜版纸的其实例包括 OK KINFUJI N，OK KINFUJI-R4ON，SA KINFUJI N，SATIN KINFUJI，SATIN KINFUJI-R4ON，ULTRA-SATIN KINFUJI N，ULTRA-OKKINFUJI N 和 KINFUJI SINGLE SIDE（由 Oji Paper Co。，Ltd. 生产）；NPISPECIAL ART，NPI SUPER ART，NPI SUPER DULL 和 NPI DULL ART（由 Nippon Paper Group Inc. 生产）；UTRILLO SUPER ART，UTRILLO

SUPER DULL 和 UTRILLO PREMIUM（由 Daio Paper Corporation 生产）；HIGH-GR ADE ART A，SPECIAL MITSUBISHI ART，SUPER MATART A 和 HIGH-GR ADE DULL ART A（由 Mitsubishi Paper Mills Limited 生产）；和 RAICHO SUPER ART N，RAICHO SUPER ART MN，RAICHO SPECIAL ART 和 RAICHO DULL ART N（由 Chuetsu Pulp & Paper Co。，Ltd. 生产）。

作为 A2 涂布纸的其实例包括 OK TOP COAT+（PLUS），OK TOP COAT S，OK CASABLANCA，OK CASABLANCA V，OK TR INITY，OK TR INITY NAVI，NEW AGE，NEW AGE W，OK TOP COAT MAT N，OK ROYAL COAT，OK TOP COAT DULL，Z COAT，OKKASAHIME，OK KASAO，OK KASAO SATIN，OK TOP COAT+，OK NON-WRINKLE，OK COAT V，OK COAT N GREEN 100，OKMATT COAT GREEN 100，NEW AGE GREEN 100 和 Z COAT GREEN 100（由 Oji Paper Co。，Ltd. 生产）；AURORA COAT，SHIRA OI MATT，IMPERIAL MATT，SILVER DIAMOND，RECYCLE COAT 100 和 CYCLE MATT 100（由 Nippon Paper Group Inc. 生产）；μ COAT，μ WHITE，μ MATT 和 WHITE μ MATT（由 Hoketsu Paper Mills Ltd. 生产）；RAICHO COAT N，REGINA RAICHO COAT 100，RAICHO MATT COAT N 和 REGINA RAICHO MATT 100（由 Chuetsu Pulp & Paper Co。, Ltd. 生产）；和 PEARL COAT，WHITE PEARL COAT N，NEW V MATT，WHITE NEW V MATT，PEARL COAT REW，WHITE PEARL COAT N，RENEW，V MATT，MATT STEEL 和 WHITE NEW V MATT REW（由 Mitsubishi Paper Mills Limited 生产）。

作为 A3 涂布（轻涂布）纸的其实例包括 OK COAT L，ROYAL COAT L，OK COAT LR，OK WHITE L，OK ROYAL COAT L，OK MATT COAT L GREEN 100 和 OK MATT COAT L GREEN 100（由 Oji Paper Co。，Ltd. 生产）；EASTER DX，RECYCLE COAT L100，AURORA L，RECYCLE MATT L100 和 ENERGY WHITE（由 Nippon Paper Group Inc. 生产）；UTRILLO COAT L 和 MATISSE COAT（由 Daio Paper Corporation 生产）；HIGH-ALPHA，ALPHA MATT，(N) KINMARIL 和 KINMARI HIL（由 Hoketsu Paper Mills Ltd. 生产）；N PEARL COAT，N PEARL COAT L，PEARL COAT LREW 和 SWING MATT REW（由 Mitsubishi Paper Mills Limited 生产）；和 SUPER EMINE，EMINE 和 SHATON（由 Chuetsu Pulp & Paper Co。，Ltd. 生产）。

作为 B2 涂布（中等质量）纸的其实例包括 OK MEDIUM-QUALITY COAT，(F) MCOP，OK ASTRO GLOSS，OK ASTRO DULL 和 OKASTRO MATT（由 Oji Paper Co。，Ltd. 生产）；和 KING O（由 Nippon Paper Group Inc. 生产）。

作为精细涂布纸的其实例包括 OK ROYAL LIGHT S GREEN 100，OK EVER LIGHT
COAT、OK EVER LIGHT R、OK EVER GREEN、CLEAN HIT MG、OK FINE COATING SUPER ECO G、ECO GReEN Dull、OK FINE COATING MATT ECO G100、OK STAR LIGHTCOAT、OK SOFT ROYAL、OK BRIGHT、CLEAN HIT G、YAMAYURI BRIGHT、YAMAYURI BRIGHT G、OK AQUA-LIGHT COAT、OK ROYAL LIGHT S GREEN 100、OK BRIGHT（粗糙和光滑）、SNOW MATT、SNOW MATT DX、OK KASAHIME 和 OK KASAYURI（由 OjiPaperCo., Ltd. 生产）；PYRENE DX、PEGASUS HYPER 8、AURORA S、ANDES DX、SUPER ANDES DX、SPACE DX、SEINE DX、SPECIAL GRAVURE DX、PEGASUS、SILVER PEGASUS、PEGASURE HARMONY、GREENLAND DX100、SUPER GREENLAND DX100、<SSS>ENERGY LIGHT和 EE HENRY（由 Nippon PaperGroup,Inc. 生产）；KANT EXCEL、EXCEL SUPER B、EXCEL SUPER C、KANT EXCEL BARU、UTRILLO EXCEL、HEINEEXCEL 和 DANTE EXCEL（由 Daio PaperCorporation 生产）；COSMOACE（由 Nippon Daishowa Paperboard Co., Ltd. 生产）；SEMI-UPPER L、HIGH BETA、HIGH GAMMA、SHIROMARIL、HUMMING、WHITE HUMMING、SEMI-UPPER HIL 和 SHIROMARIL HIL（由 Hokueatsu PaperMills, Ltd. 生产）；RUBY LIGHT HREW、PEARL SOFT 和 RUBYLIGHT H（由 Mitsubishi PaperMills Limited 生产）；Shaton、Ariso 和 Smash（由 Chuetsu Pulp & PaperCo., Ltd. 生产）；和 Star Cherry 和 Cherry Super（由 Marusumi PaperCo., Ltd. 生产）。

【0205】如在多个文献中所看见的，配制普通商业印刷用纸的涂布层，以在每 100 质量份的无机颜料（高岭土、碳酸钙等）中包含大约 10 质量份到 15 质量份的粘合剂（树脂、乳液、淀粉等）。此处，当颜料在涂布层中存在的方式和进一步颜料在涂布层中的浓度梯度被考虑时，以下可以被认为是可能的：(1) 在涂布层的最外层表面上透明或类似物的形成，如在油漆等的情况下经常看见的；(2) 粘合剂成分渗入原纸上，其可以使上层和下层具有不对称的密度分布。至于 (1)，已经发现与 (1) 相关的材料在相关领域的文献（关于涂布纸的光泽度等的文献）中几乎不讨论。推断，由于在涂布层中树脂与其它成分的比例比例在普通油漆或类似物中的树脂与其它成分的比例低，并且在涂布层中的树脂的量不是大到足够使树脂在表面沉积，像透明层一样的任何东西不容易形成。

【0206】在旨在与从事商业印刷用涂布纸的专家交换技术观点的会议中，发现他们中的许多有技术概念：粘合剂应该具有提供强度到这样的程度以致在印刷时可以防止层被剥离或者在切割时颗粒被防止分离；同时，当树脂量的含量增加时，涂布纸的生产可能容易变得麻烦，因此，在这种类型纸的情况下，希望加入的粘合剂尽可能的少。

【0207】至于 (2)，实际上说当在涂布溶液中的树脂渗入原纸上时，会发生以下现象：在涂布层中的树脂的比例变得较低（比在涂布溶液中的树脂比例低），或者在涂布层和原纸之间的界面形成层；然而，在层自身产生梯度的实例还没有被确认（即使在文献中）。尽管如此，在涂布层和原纸之间的界面形成富含树脂的层是可能的，在该情况下，层的下面部分具有较高的树脂浓度。

【0208】磨光涂布纸的最外层的方法的实例包括但不限于：使用砂纸或包装纸磨光的方法，使用钢丝刷磨光的方法，使用抛光辊或带状抛光带磨光的方法和使用喷砂磨光的方法。

【0209】在生产涂布纸中，通过在干燥后，在压光之前或之后立刻任意地提供磨光处理，或者在涂布之后的处理例如剖面处理（slit process）或包装处理中提供磨光处理，可以进行磨光；可选地，使用者可以在印刷之前使用磨光设备进行磨光。同时，磨光设备可以被安装在
打印机中，以在每次进行印刷之后进行抛光。

[0210] 至于磨光，纸的整个表面可以被磨光，或者可以选择性地磨光仅经历喷墨印刷的区域。

[0211] 例如，以下纸用途是可能的：以上提到的普通印刷用纸预先经受胶印或凹版印刷，然后只有要求喷墨印刷的区域被磨光，并且该区域用图像、字母/文字等印刷。

[0212] 根据这个方法，混合印刷——其常规使用既适合于喷墨印刷又适合于普通印刷用纸进行——也可以使用以上提到的普通印刷用纸进行，因此普通印刷和喷墨印刷使用相同纸成为可能。此外，该方法通过喷墨印刷能够印刷地址等，其在普通印刷中被认为难以实现。

[0213] 另外，磨光装置可以被安装在打印机的单元中，或者可以作为分离单元独立制备。

[0214] 特殊制备的涂布纸可以用本发明的介质取代，只要它满足本发明的要求。特别是，可以使用涂布层自身透气性的高的涂布纸。涂布层透气性高的涂布纸的实例包括一些电子照相用纸和凹版印刷用涂布纸。其具体的实例包括 POD GLOSS COAT（由 Oji Paper Co., Ltd. 生产）、FLGRAVURE（由 Nippon PaperGroup, Inc. 生产）和 ACE（由 Nippon PaperGroup, Inc. 生产）。这些产品包括具有大量孔隙的涂布纸，并且因此任意这些产品可以被用作包括本发明的阻挡层的介质。

[0216] 如上所述，在油墨介质组件中的记录介质可以与油墨介质组件中的油墨组合使用。记录介质和油墨的组合可以适合用于各种领域，特别是在基于喷墨记录的图像记录装置（打印机）中；例如，记录介质和油墨的组合可以特别适合用于下述的本发明的墨盒、油墨记录物、喷墨记录装置和喷墨记录方法。

[0217] [墨盒]

[0218] 本发明中的墨盒包括容纳本发明的油墨介质组件中所包括的油墨的容器，并且根据需要进一步包括适当选择的其它部件等。

[0219] 容器没有特别限制，并且其形状、结构、尺寸、材料等可根据预期用途选择适当的。其合适的实例包括具有墨囊或由铝层压膜、树脂膜等制成的类似物的容器。

[0220] 接下来，将参考图 1 和 2 解释墨盒。这里，图 1 是显示本发明墨盒的一个实例的图，并且图 2 是示例性显示图 1 包括箱体（外部覆盖物）的墨盒的图。

[0221] 关于墨盒（200），如图 1 所示，本发明的油墨从油墨入口（242）供给到墨囊（241）中，并且油墨入口（242）在排出空气后通过熔融粘合的方式闭合。当墨盒被使用时，由橡胶部件制成的喷墨出口（243）用装置主体的针刺穿，并且油墨因此被供给该装置。

[0222] 墨囊（241）是由空气不可渗透包装部件例如铝层压膜制成的。如图 2 所示，这种
墨囊（241）通常被收纳在塑料盒箱体（244）中并且可拆卸地安装在各种喷墨记录装置上。

【0223】本发明的墨盒容纳本发明的油墨介质组件中所包含的油墨并且能够可拆卸地安装在各种喷墨记录装置上。特别期望的是，墨盒可拆卸地安装在本发明的下述喷墨记录装置上。

【0224】[喷墨记录方法和喷墨记录装置]

【0225】本发明的喷墨记录装置至少包括喷墨单元，并且根据需要进一步包括适当选择的其它单元，例如刺激产生单元和控制单元。

【0226】本发明的喷墨记录方法至少包括喷墨步骤，并且根据需要进一步包括适当选择的其它步骤，例如刺激产生步骤和控制步骤。

【0227】本发明的喷墨记录方法能够通过本发明的喷墨记录装置适当地进行，并且喷墨步骤能够通过喷墨单元适当地进行。同时，其他步骤能够通过其它单元适当地进行。

【0228】喷墨步骤是通过将刺激施加到油墨上来喷射本发明的油墨介质组件中所包含的油墨，以便在本发明的油墨介质组件中所包含的记录介质上记录图像的步骤。

【0229】喷墨单元是被配置为通过将刺激施加到油墨上来喷射本发明的油墨介质组件中所包含的油墨，以便在本发明的油墨介质组件中所包含的记录介质上记录图像的单元。喷墨单元没有特别限制，并且其实例包括用于喷射油墨的喷嘴。

【0230】在本发明中，液体室、流体阻力单元、隔膜和喷射头的喷嘴部件中的至少一部分优选地是由至少含有硅氧烷或碳的材料制成。

【0231】此外，喷墨喷嘴的直径优选地为30 μm或更小，更优选地1 μm至20 μm。

【0232】另外，用于将油墨供应到喷嘴头上的子罐优选地被设置，使得该子罐通过供给管用于来自墨盒的油墨来补充。

【0233】此外，在本发明的喷墨记录方法中，粘附到记录介质之上的油墨的最大量优选在300dpi或更高的分辨率为8 g/m²到20 g/m²。

【0234】刺激例如可以通过刺激产生单元产生，并且刺激没有特别限制，并且根据预期用途进行适当地选择。其实例包括热、压力、振动和光。这些中的每一种可以单独使用或与两种或多种组合使用。在这些当中，热和压力是适合的。

【0235】刺激产生单元的实例包括加热器、加压器、压电元件、振动发生器、超声振荡器和光。其具体实例包括压电驱动器，例如压电元件；热驱动器，其使用热电转换元件例如发射电阻元件并且利用由液体溶液引起的相变、形状记忆合金驱动器，其利用由温度变化引起的金属相变；和静电驱动器，其利用静电力。

【0236】包括在油墨介质组件中的油墨的喷射方式没有特别限制并且根据刺激的类型等而变化。在刺激是“热”的情况下，例如有这样一种方法，在该方法中采用加热头或类似物，将对应于记录信号的热能赋予记录头中的油墨，通过热能在油墨中产生气泡，并且通过气泡的压力油墨作为滴墨从记录头喷嘴孔中喷出。同时，在刺激是“压力”的情况下，例如有这样一种方法，在该方法中，通过将压力施加到粘附于被称为压力室的位置的压电元件上——所述压力室位于记录头中的油墨流动路径中——使压电元件弯曲，压力室的体积减少，并且因此油墨作为滴墨从记录头喷嘴孔中喷出。

【0237】期望的是，所喷射的墨滴，举例来说，大小为1pL至40pL，喷射速度为5m/s至20m/s，驱动频率为1kHz或更大，以及分辨率为300dpi或更大。
[0238] 控制单元没有特别限制并且可以根据预期用途进行适当地选择，只要它能控制前述单元的操作。其实例包括装置诸如程序 matériel 和计算机。

[0239] 通过本发明的喷墨记录装置进行本发明的喷墨记录方法的一个方面将参考附图行说明。图 3 中的喷墨记录装置包括：装置主体（101），用于将装载在其上的纸送入装置主体（101）的进纸盘（102）；卸纸盘（103），其用于储存纸，所述纸已经被装载到装置主体（101）中，并且在纸上已经记录（形成）图象；以及墨盒装载部分（104）。由操作键、显示器和类似物组成的操作单元（105）被置于墨盒装载部分（104）的上表面上。墨盒装载部分（104）具有前盖（115），所述前盖能打开和关闭以加载和拆卸墨盒（200）。

[0240] 在图 3 和 4 中，（111）表示所述喷墨记录装置的上盖，（112）表示所述喷墨记录装置的前表面。

[0241] 在装置主体（101）中，如图 4 和 5 所示，托架（133）通过导杆（131）和支柱（132）被自由地可滑动地保持在主扫描方向上，所述导杆（131）是在左侧板与右侧板（未显示）之间横向穿过的导向部件；并且托架（133）通过主扫描电动机（未显示）移动，以在由图 5 中箭头 A 所指示的方向上扫描。带在图 5 中箭头 B 所示的方向上移动以输出纸张。

[0242] 由四个喷墨记录头组成的记录头（134）—其喷射黄色（Y）、青色（C）、品红色（M）和黑色（Bk）的墨滴—被安装在托架（133）中，使得多个喷墨出口在与主扫描方向交叉的方向上排列，并且墨滴喷射方向面朝下。

[0243] 对于构成记录头（134）的每个喷墨记录头来说，使用例如设有作为能量产生单元用以喷射油墨的任意下列驱动器的打印头是可能的：电驱动器，例如压电元件；热驱动器，其使用热电转换元件例如放热电阻元件并且利用由液体膜沸腾引起的相变；形状记忆合金驱动器，其利用由温度变化引起的金属相变；静电驱动器，其利用静电力。

[0244] 同时，托架（133）结合了每种颜色的子罐（135），用于将每种颜色的油墨供给到记录头（134）。每个子罐（135）通过油墨供给管（未显示），从装载到墨盒装载部分（104）中的本发明的墨盒（200）供给和补充在本发明的油墨介质组件中包括的油墨。

[0245] 同时，作为进纸单元——用于输送装载在进纸盘（102）的装载喷头（加压板）（141）上的纸张（142），其中设有半月形滚筒（进纸滚筒（143）），其从装载部分（141）逐张输送纸张（142）；和分离垫（144），其面向纸张滚筒（143）并且由具有大的摩擦系数的材料制成。该分离垫（144）被偏向进纸滚筒（143）一侧。

[0246] 作为位于记录头（134）下用于输送纸张（142）的输送单元—所述纸已经从该进纸单元进入，其中设有输送带（151），其通过静电吸附来输送纸张（142）；反向滚筒（counter roller）（152），用于输送纸（142），所述纸（142）通过导轨（145）从进纸单元被送入，从而纸（142）被夹在反向滚筒（152）与输送带（151）之间；输送导轨（153），用于使得在基本垂直方向上递送的纸（142）以大约 90° 改变其方向，并且因此与输送带（151）一致；末端增压滚筒（155），其以挤压部件（154）偏向输送带（151）一侧。同时，其中设有充电滚筒（156），作为用于使输送带（151）表面充电的充电单元。

[0247] 输送带（151）是环形带并且能够在带输送方向上以环形移动，其经过输送滚筒（157）与张力辊（158）之间。输送带（151）具有例如充当纸吸附表面的表层，该表层由树脂材料例如具有大约 40 μm 的厚度的乙烯－四氟乙烯共聚物 (ETFE) 形成，对其没有进行电阻控制；和表层（中心电阻层、接地层），其是由与所述表层相同的材料形成的，对其已经用碳进
行电阻控制。在输送带 (151) 的背面，导向构件 (161) 应用于通过记录头 (134) 进行印刷的区域被放置。另外，作为排出纸 (142) —— 图像或类似物已通过记录头 (134) 被记录在其上——的卸纸单元，其中设有分离爪 (171)，用于使纸 (142) 与输送带 (151) 分开：卸纸滚筒 (172) 和卸纸小滚筒 (173)，其中卸纸盘 (103) 被置于卸纸滚筒 (172) 的下面。

[0248] 双面进纸单元 (181) 以自由可拆卸的方式安装在装置主体 (101) 的后表面部分上。双面进纸单元 (181) 通过输送带 (151) 反向旋转再返回的纸 (142) 并将其翻转，然后将其重新输送回反向滚筒 (152) 和输送带 (151) 之间。另外，在双面纸单元 (181) 的上表面设有手动进纸单元 (182)。

[0249] 在此喷墨打印装置中，纸张 (142) 被一张一张地从送纸单元输送，并且通过导轨 (145) 导向在几乎垂直的方向上输送的纸 (142)，并在输送带 (151) 和反向滚筒 (152) 之间输送。此外，当纸 (142) 的一端被传送导轨 (153) 导向，并通过末端增压滚筒 (155) 将其压在输送带 (151) 上时，纸 (142) 传送方向被改变约 90°。

[0250] 此时，输送带 (151) 通过充气滚筒 (156) 充气，并且纸 (142) 被静电吸附在输送带 (151) 上，并因此被输运。在此，通过根据图像信号驱动记录头 (134)，同时移动托架 (133)，墨滴喷射在已停下的纸 (142) 上，从而进行记录一行，并且在纸 (142) 被输送预定的距离后，进行记录下一行。收到记录完成信号或表示纸 (142) 的后端已到达记录区域的信号后，记录操作结束，并且纸 (142) 被卸载至卸纸盘 (103) 上。

[0251] 一旦探测到子罐 (135) 中剩余的油墨的量太少，所需量的油墨被从墨盒 (200) 供应至所述子罐 (135) 中。

[0252] 对于该喷墨记录装置，当本发明的墨盒 (200) 中的油墨用尽时，能通过拆除墨盒 (200) 外壳，仅置换墨盒 (200) 中的墨袋。同样，即使当所述墨盒 (200) 被纵向安置并使用前装载结构时，也能稳定供应油墨。因此，即使当装置主体 (101) 被安装在其上方空间小时，例如，当装置主体 (101) 被储存在架子上，或当物体被放置于装置主体 (101) 之上时，也可能容易地置换墨盒 (200)。

[0253] 应当注意，尽管本发明的喷墨记录方法已经参考实例——其中它被应用于其中托架执行扫描的串行型 (往返型) 喷墨记录装置——进行说明，但是本发明的喷墨记录方法也可被应用于设有线型头的线型喷墨记录装置。

[0254] 同时，本发明的喷墨记录装置和喷墨记录方法可以被应用于基于喷墨记录系统的各种类型的记录，例如，它们特别适合应用于喷墨记录打印机、传真装置、复印机和打印 / 传真 / 复印一体机等等。

[0255] 下面说明本发明所应用的喷墨头。

[0256] 图 6 是显示本发明所应用的喷墨头元件的放大图，而图 7 是显示关于通道——通道方向的喷墨头主要部分的放大横截面图。

[0257] 这种喷墨头由下列组成：框架 (10)，其设有油墨供给端口 (没有显示)(其提供从图 6 中的表面向背面 (朝向纸的背面) 方向的油墨) 和充当常规液体室 (12) 的凹槽：流动通道板 (20)，其包括流体阻力部分 (21)：充当加压液体室 (22) 的凹槽和与喷嘴 (31) 连通的连通端口 (23)；形成喷嘴 (31) 的喷嘴板 (30)；隔膜 (60)，其设有隔膜突起 (61)；隔膜部分 (62) 和油墨流入端口 (63)；层压电压元件 (50)，其通过置于其中的粘合层 (70) 连接至隔膜 (60)；和基座 (40)，其上固定有层压电压元件 (50)。基座 (40) 是由钛酸钡基陶瓷制
成并且被连接至排成两行的层压压电元件 (50)。

[0258] 在层压压电元件 (50) 中，压电层 (51) 其由锆钛酸铅 (PZT) 所成并且其中每一层厚度为 10 µm 至 50 µm——和内部电极层——其由银-钯 (AgPd) 形成并且其中每一层厚度为几微米——由被交替沉积在彼此顶部上。内部电极层 (52) 在其两侧的末端处连接于外部电极 (53)。

[0259] 层压压电元件 (50) 通过半切穿割 (half-cut dicing) 形成梳齿的形状，其中驱动部件 (56) 和支撑部件 (非驱动部件) (57) 被交替布置 (图 7)。

[0260] 两个外部电极 (53) 其与一面上的内部电极 (52) 的端部在图 6 的背面或表面的方向上连接 (纸的底面) 之一的外端长度受到切割等限制，以便通过半切割进行分割，并且分割的片充当单个电极 (54)。两个外部电极 (53) 中的另一个没有通过切割进行分割但是是电连续的，充当普通电极 (55)。

[0261] FPC (80) 被焊接到驱动部件的单个电极 (54) 上。利用设于层压压电元件末端处的电极层，普通电极 (55) 以缠绕方式被连接到 FPC (80) 的接地电极 (Gnd electrode) 上。在 FPC (80) 上，驱动器 IC (未显示) 被安装，其控制将驱动电压施加到驱动部件 (56) 上。

[0262] 隔膜 (60) 配备有 ;形成于隔膜的隔膜部分 (62)；岛状凸起部分 (岛状部分) (61)，其在该隔膜部分 (62) 的中心处形成并且被连接到层压压电元件 (50) 的驱动部件 (56)；隔膜部分，其包含连接至支撑部分 (未显示) 的横梁；和开口，其充当油墨流入端口 (63)，通过组合两个由电铸生产的镀 Ni 膜而形成。隔膜部分厚度为 3 µm 以及宽度为 35 µm (对于一侧而言)。

[0263] 通过图案化包括间隙材料的粘合层 (70)，隔膜 60 的岛状隔膜突起 (61) 粘合于层压压电元件 (50) 的驱动部件 (56)，而隔膜 60 粘合于构架 10。

[0264] 关于流动通道板 (20)，下列部件利用硅晶片底通过蚀刻而形成图案；流体阻力部分 (21)；充当加压液体室 (22) 的凹槽；和充当连通端口 (23) 的通孔，其置于对应于喷嘴 (31) 的位置中。

[0265] 保持未被蚀刻的部分充当加压液体室 (22) 的隔离物 (24)。此外，该头设有蚀刻宽度小以充当流体阻力部分 (21) 的部分。

[0266] 喷嘴板 (30) 由金属材料制成的，例如通过电铸生产的镀 Ni 膜，并且很多喷嘴 (31) — 其是用于喷射油墨的微小喷射出口 — 在其中形成。这些喷嘴 (31) 中每一个的内部形状 (internal shape) （里面的形状 (innershape)）类似于角（其另外可以是基本柱形或基本锥形和梯形）的形状。同时，作为存在墨滴一侧的直径，这些喷嘴 (31) 中每一个的直径大约为 20 µm 至 35 µm。另外，每一行中喷嘴间距为 150dpi。

[0267] 喷嘴板 (30) 的油墨喷射表面（在喷嘴表面侧上）没有已经进行防水表面处理的防水层 (未显示)。高图像质量是通过提供按照油墨特性选择的防水膜，藉着稳定墨滴形状及油墨喷射特性而获得的，所述防水膜通过 PTFE-Ni 共析电镀、氟树脂的电沉积、可蒸发氟树脂（诸如氟化沥青）的蒸汽沉积涂布、应用溶剂后有机硅树脂和氟树脂的烘培等产生的。例如，关于这些之中的氟树脂，尽管多种材料被称为氟树脂，但是优良的防水性可以通过使改性的全氟聚偏二氟乙烷（产品名称：OPTOOL DSX，由 Daikin Industries, Ltd. 生产）经历蒸汽沉积以便具有 30Å 至 100Å 的厚度而获得。

[0268] 构架 (10) — 包括油墨供给端口和充当常规液体室 (12) 的凹槽 — 通过使树脂成
型产生。

【0269】关于具有这种结构的喷墨头，通过对应于记录信号将驱动波形（10V 至 50V 的脉冲电压）施加到驱动部件（56），在驱动部件（56）中产生层压方向的位移，当加压液体室（56）被加压时，有压力增加，并且因此墨滴从喷嘴板（31）中形成的喷嘴（31）喷出。

【0270】此后，一旦墨滴喷射结束，加压液体室（22）中的油墨压力降低，并且由于油墨流动的惯性以及驱动脉冲放电过程，在加压液体室（22）中产生负压，其后是油墨供给步骤。在这种场合，从油墨槽供给的油墨流进常规液体室（12），从常规液体室（12）经由油墨流入端口（63）穿过流体阻力部分（21），然后被供给到加压液体室（22）中。

【0271】流体阻力部分（21）在喷墨后有效地降低残余压力振动，相反，它应当由表面张力引起的再填充的阻力。通过适当地选择流体阻力部分，平衡残余压力降低与再填充时间以及缩短在转移到接下来的墨滴喷射操作（驱动循环）上所花费的时间变成可能。

【0272】在图 6 和 7 中，90 表示油墨排斥层。

实施例

【0273】下面说明本发明的实施例，然而，应当注意，本发明不以任何方式局限于这些实施例。

【0274】制备实施例 1（表面处理的炭黑颜料分散溶液）

【0275】向 3,000ml 2.5N 硫酸钠溶液中加入 90g 炭黑，所述炭黑具有 150m²/g 的 CTAB 比表面积和 100ml/100g 的 DBP 吸收量，然后，在 60°C 的温度下，以 300rpm 旋转速度搅拌该混合物，使其反应 10 小时，炭黑因此被氧化。过滤该反应溶液，滤出的炭黑然后用氢氧化钠溶液中和，并进行超滤。

【0276】将得到的炭黑用水洗并干燥，随后分散入纯化水中，使其量为按质量计 20%。

【0277】制备实施例 2（表面处理的黄色颜料分散溶液）

【0278】作为黄色颜料，通过在低温下等离子体处理 C. I. 颜料黄 128 和引入羧酸基团生产颜料。该颜料被分散入离子交换水中，随后使用超滤膜去矿化并且浓缩溶液，并且因此得到具有 15%的颜料浓度的黄色颜料分散溶液。

【0279】制备实施例 3（表面处理的品红颜料的制备）

【0280】使用颜料红 122 代替 C. I. 颜料黄 128，依据制备实施例 2 的步骤制备表面改性的品红颜料。如在以上提到的实施例中，得到的表面改性的着色颜料当搅拌时容易分散在水性介质中，随后用超滤膜去矿化和浓缩该溶液，并且因此得到具有 15%的颜料浓度的品红色颜料分散溶液。

【0281】制备实施例 4（表面处理的青色颜料的制备）

【0282】使用 C. I. 颜料青 15:3 代替 C. I. 颜料黄 128，依照制备实施例 2 的步骤制备表面改性的青色颜料。如在以上提到的实施例中，得到的表面改性的着色颜料当搅拌时容易分散在水性介质中，随后用超滤膜去矿化和浓缩该溶液，并且因此得到具有 15%的颜料浓度的青色颜料分散溶液。

【0283】合成实施例 1（聚合物分散溶液的制备）

【0284】装配有机械搅拌器，温度计，氨气引入管，回流冷凝器和滴液漏斗的 1L 烧瓶内的气氛被氮气充分替换，然后放入 11.2g 苯乙烯、2.8g 丙烯酸、12.0g 甲基丙烯酸月桂酯、4.0g
聚乙烯醇甲基丙烯酸酯、4.0g 苯乙烯大分子单体（产品名称 AS-6，由 Toagosei Co., Ltd. 生产）和 0.4g 烷基乙醇，并且将温度升至 65°C。接下来，将 100.8g 苯乙烯、25.2g 丙烯酸、108.0g 甲基丙烯酸月桂酯、36.0g 聚乙二醇甲基丙烯酸酯、60.0g 甲基丙烯酸羟乙酯、36.0g 苯乙烯大分子单体（产品名称 AS-6，由 Toagosei Co., Ltd. 生产）、3.6g 烷基乙醇、2.4g 丙烯酸二甲基戊酯和 18g 甲基 - 乙基酮的混合溶液在 2.5hr 内滴入该烧瓶中。在混合溶液滴加完成后，0.8g 丙烯酸二甲基戊酯和 18g 甲基 - 乙基酮的混合溶液在 0.5hr 内被滴加到该烧瓶中。成分在 65°C 下老化 1 小时，然后加入 0.8g 丙烯酸二甲基戊酯，并且所述成分进一步老化 1hr。反应完成后，向该烧瓶中加入 364g 甲基 - 乙基酮，并且因此得到 800g 浓度按质量计为 50% 的聚合物溶液。

[0285] 制备实施例 5（含有酰胺颜料的细聚合物颗粒分散体的制备）
[0286] 在合成实施例 1 中生产的 28g 聚合物溶液、26g 酰胺颜料、13.6g1mol/L 氢氧化钾溶液、20g 甲基 - 乙基酮和 30g 离子交换水充分搅拌后，这些成分采用三辊磨机进行捏合。所获得的膏状物被放入 200g 离子交换水中并且充分搅拌，然后利用蒸发器通过蒸发除去甲基 - 乙基酮和水，并且因此获得青色的细聚合物颗粒分散体。
[0287] 制备实施例 6（含有二甲基哇唑酮颜料的细聚合物颗粒分散体的制备）
[0288] 以类似于制备实施例 5 的方式获得呈红色细聚合物颗粒分散体，除了酰胺颜料变为颜料红 122 之外。
[0289] 制备实施例 7（含有单偶氮黄色颜料的细聚合物颗粒分散体的制备）
[0290] 以类似于制备实施例 5 的方式获得黄色细聚合物颗粒分散体，除了酰胺颜料变为颜料黄 74 之外。
[0291] 制备实施例 8（含有炭黑颜料的细聚合物颗粒分散体的制备）
[0292] 以类似于制备实施例 5 的方式获得黑色细聚合物颗粒分散体，除了酰胺颜料变为炭黑之外。
[0293] 制备实施例 9（酰胺颜料分散体的制备）
[0294] 通过混合 150g 的 C.I. 颜料青 15:3、110g 的作为颜料分散剂的聚氧乙烯 β - 蒽基醚——由以下示出的结构式 (2) 表示 (R;烷基, m = 4, n = 40), 2g 的 Pionin A-51-B（由 Takemoto Oil & Fat Co., Ltd. 生产）和 738g 的蒸馏水，制备混合物;随后该混合物被预分散，并且随后使用圆盘型研磨机（型号 KDL, 由 Shinmaru Enterprises Corporation 生产; 介质:0.3mm 光氧化锆）以循环方式分散 20hr，并且因此得到酰胺颜料的分散体。
[0295]

[0296] 结构式 (2)
[0297] 在结构式 (2) 中,R 表示具有 1 到 20 个碳原子的烷基基团,m 表示 0 到 7 的整数,和 n 表示 20 到 200 的整数。)
[0298] 制备实施例 10（二甲基哇唑酮颜料分散体的制备）
[0299] 以类似于制备实施例9的方式获得二甲基硅烷烃酸酚酯分散体，除了C.I. 颜料青15:3 变为C.I. 颜料红122 之外。
[0300] 制备实施例11（单偶氮黄色颜料分散体的制备）
[0301] 以类似于制备实施例9的方式获得单偶氮黄色颜料分散体，除了C.I. 颜料青15:3 变为C.I. 颜料黄74 之外。
[0302] 以下示出了能够被包含在本发明中使用的水分散性树脂(A) 成分当中的丙烯酸-有机硅树脂乳液的合成实施例。
[0303] 合成实施例2（不含有活性甲硅烷基的硅氧烷改性的丙烯酸树脂微粒的合成1）
[0304] 装备有机械搅拌器、温度计、氮气引入管、回流冷凝器和滴液漏斗的烧瓶内的气不被氮气充分替换，随后放入10g的AQUALONRN-20（由Dai-Ichi Kogyo Seiyaku Co., Ltd. 生产）、1g的过硫酸钾和286g的纯化水，并且温度升到65℃。接着，包含150g的甲基丙烯酸甲酯、100g的丙烯酸2-乙基己酯、20g的丙烯酸、20g的乙烯基三乙氧基硅烷、10g的AQUALON RN-20、4g的过硫酸钾和398.3g的纯化水的混合溶液在2.5hr 内滴入该烧瓶中。加热该成分并在80℃老化3小时，然后冷却，使用氢氧化钾将pH调节到7至8。最后，蒸发在反应过程中形成的乙醇。使用MICROTRACK UPA 测量的树脂粒径是130nm。最小成膜温度（MFT）是0℃。
[0305] 合成实施例3（不含有活性甲硅烷基的硅氧烷改性的丙烯酸树脂微粒的合成2）
[0306] 装备有机械搅拌器、温度计、氮气引入管、回流冷凝器和滴液漏斗的烧瓶内的气不被氮气充分替换，随后放入10g的AQUALONRN-20（由Dai-Ichi Kogyo Seiyaku Co., Ltd. 生产）、1g的过硫酸钾和286g的纯化水，并且温度升到65℃。接着，包含150g的甲基丙烯酸甲酯、100g的丙烯酸2-乙基己酯、20g的丙烯酸、40g的乙烯基三甲氧基硅烷、10g的AQUALON RN-20、4g的过硫酸钾和398.3g的纯化水的混合溶液在3hr 内滴入该烧瓶中。加热该成分并在80℃老化3小时，然后冷却，使用氢氧化钾将pH调节到7至8。最后，蒸发在反应过程中形成的乙醇。使用MICROTRACK UPA 测量的树脂粒径是148nm。最小成膜温度（MFT）是0℃。
[0307] 合成实施例4（含有活性甲硅烷基的硅氧烷改性的丙烯酸树脂微粒的合成）
[0308] 依照JP-A 06-157861 中描述的实施例，合成含有活性甲硅烷基的硅氧烷改性的丙烯酸树脂微粒。
[0309] 装备有机械搅拌器、温度计、氮气引入管、回流冷凝器和滴液漏斗的烧瓶内的气不被氮气充分替换，随后放入100g的纯化水、3g的十二烷基硫磺酸钠和1g的聚乙二醇壬基苯基醚，同时加入1g的过硫酸铵和0.2g的亚硫酸氢钠，并且温度升到60℃。接着，30g的丙烯酸丁酯、40g的甲基丙烯酸甲酯、19g的甲基丙烯酸丁酯、10g的乙烯基硅烷三氯甲基和1g的3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷在3hr 内滴入烧瓶中。在这种情况下，当其pH使用氨水溶液调节到7时，聚合反应的溶液聚合。使用MICROTRACK UPA 测量的树脂粒径是160nm。
[0310] 以下说明本发明的实施例和比较实施例，然而，应该注意，本发明不局限于这些实施例和比较实施例。也应该注意，在实施例中提到的成分的量是基于质量。
[0311] 依照以下配方的油墨组合物被制备，并且它们每一个混合入氢氧化锂的10%水溶液，以使它们pH值变为9。在此之后，使用平均孔径为0.8μm的膜滤器过滤溶液，并因此得
到油墨组合物。

0312 以下通过油墨制造实施例更具体地说明本发明。然而，应注意，本发明不限于上述油墨制造实施例。也应注意，以下提到的成分量（%）是基于质量。

0313 （油墨制造实施例 1）黑色油墨

0314 在制造实施例 1 中生产的炭黑 8.5%（为固体含量）

0315 1,3-丁二醇 15%

0316 甘油 15%

0317 2-吡咯烷酮 2%

0318 由以下显示的结构式（1）代表的化合物（R₁:CH₃, R₂:H, R₇:C₆F₅, m :16, n :6）1%

0319 2-乙基-1,3-己二醇 2%

0320 通过加入离子交换水制成总量 100%。

0321

R₁-O
\[\begin{array}{c}
\text{CH₂CH₂O} \\
\text{CH₃CCH₂O} \\
\text{CH₂}\text{CH₃}
\end{array} \]

0322 结构式（1）

0323 （在结构式（1）中，R₁表示烷基、烷基和全氟烷基中的任意一种，R₂表示氢原子、烷基和含氟基团中的任意一种，R₇表示含氟基团，m 和 n 每个表示 1 或大于 1 的整数。）

0324 （油墨制造实施例 2）黄色油墨

0325 在制造实施例 2 中生产的黄色颜料分散溶液 5.5%（为固体含量）

0326 1,3-丁二醇 20%

0327 甘油 20%

0328 2-吡咯烷酮 1%

0329 由以下显示的结构式（1）代表的化合物（R₁:CH₃, R₂:H, R₇:C₆F₅, m :16, n :6）1%

0330 2,2,4-三甲基-1,3-戊二醇 2%

0331 通过加入离子交换水制成总量 100%。

0332 （油墨制造实施例 3）棕红色油墨

0333 在制造实施例 3 中生产的棕红色颜料分散溶液 7.5%（为固体含量）

0334 三甘醇异丁基醚 2%

0335 甘油 20%

0336 由以下显示的结构式（1）代表的化合物（R₁:CH₃, R₂:H, R₇:C₆F₅, m :16, n :6）1%

0337 2-乙基-1,3-己二醇 2%

0338 通过加入离子交换水制成总量 100%。

0339 （油墨制造实施例 4）青色油墨

38
在制备实施例 4 中生产的青色颜料分散溶液 5.5%（为固体含量）
3- 甲基 -1,3- 丁二醇 15%
甘油 20%

由以上显示的结构式 (1) 代表的化合物 \(R_1: \text{CH}_3, R_2: \text{H}, R_3: \text{CF}_3, m: 16, n: 6 \)

2- 乙基 -1,3- 丁二醇 2%
通过加入离子交换水制成总量 100%。

（油墨制造实施例 5）青色油墨 2
在制备实施例 5 中生产的青色颜料分散溶液 5%（为固体含量）
1,6- 己二醇 20%
甘油 15%

由以上显示的结构式 (1) 代表的化合物 \(R_1: \text{CF}_3, R_2: \text{H}, R_3: \text{CF}_3, m: 20, n: 4 \)

S-386（由 Asahi Glass Co., Ltd. 生产） 0.3%
2- 乙基 -1,3- 丁二醇 2%
通过加入离子交换水制成总量 100%。

（油墨制造实施例 6）品红色油墨 2
在制备实施例 6 中生产的品红色颜料分散溶液 7.5%（为固体含量）
一缩二丙二醇 15%
甘油 20%

由以上显示的结构式 (1) 代表的化合物 \(R_1: \text{CF}_3, R_2: \text{H}, R_3: \text{CF}_3, m: 20, n: 4 \)

FSN-100（由 E.I. du Pont de Nemours and Company 生产）
2- 乙基 -1,3- 丁二醇 2%
通过加入离子交换水制成总量 100%。

（油墨制造实施例 7）黄色油墨 2
在制备实施例 7 中生产的黄色颜料分散溶液 5%（为固体含量）
2- 甲基 -2,4- 戊二醇 10%
甘油 20%

由以上显示的结构式 (1) 代表的化合物 \(R_1: \text{CF}_3, R_2: \text{H}, R_3: \text{CF}_3, m: 20, n: 4 \)

2,2,4- 三甲基 -1,3- 戊二醇 1%
通过加入离子交换水制成总量 100%。

（油墨制造实施例 8）黑色油墨 2
在制备实施例 8 中生产的黑色颜料分散溶液 8%（为固体含量）
1,6- 己二醇 20%
甘油 12%

由以上显示的结构式 (1) 代表的化合物 \(R_1: \text{CF}_3, R_2: \text{H}, R_3: \text{CF}_3, m: 20, n: 4 \)
1.5%

[0375] 2-乙基-1,3-己二醇 2.5%

[0376] 通过加入离子交换水制成总量100%。

[0377]（比较制造实施例1）比较颜料黑色油墨1

[0378] 以类似干油墨制造实施例1的方式获得黑色油墨，除了用ECTD-3NEX（阴离子表面活性剂，由Nikk0 Chemicals Co., Ltd.生产）代替由以上显示的结构式（1）代表的化合物（R₁=CH₃，R₂=H，R⁻=CF₃，m=16，n=6）。

[0379]（比较制造实施例2）比较颜料黄色油墨1

[0380] 以类似干油墨制造实施例2的方式获得黄色油墨，除了用ECTD-6NEX（阴离子表面活性剂，由Nikk0 Chemicals Co., Ltd. 生产）代替由以上显示的结构式（1）代表的化合物（R₁=CH₃，R₂=H，R⁻=CF₃，m=16，n=6）。

[0381]（比较制造实施例3）比较颜料品红色油墨1

[0382] 以类似干油墨制造实施例3的方式获得品红色油墨，除了用DISPANOL TOC（非离子表面活性剂，由Nippon Oil & Fats Co., Ltd. 生产）代替由以上显示的结构式（1）代表的化合物（R₁=CH₃，R₂=H，R⁻=CF₃，m=16，n=6）。

[0383]（比较制造实施例4）比较颜料青色油墨1

[0384] 以类似干油墨制造实施例4的方式获得青色油墨，除了用DISPANOL TOC（非离子表面活性剂，由Nippon Oil & Fats Co., Ltd. 生产）代替由以上显示的结构式（1）代表的化合物（R₁=CH₃，R₂=H，R⁻=CF₃，m=16，n=6）。

[0385] 以下说明油墨组合物，如本发明的油墨制造实施例和比较制造实施例的油墨在表1中显示。

[0386] 每种油墨的表面张力和粘度在表1中显示。

[0387] 使用由Kyowa Interface Science Co., Ltd.制造的CBVP-Z测量每种油墨的表面张力。使用由TOKI SANGYO CO., LTD.制造的R-型粘度计RC-500测量每种油墨的粘度。

[0388] 表1

<table>
<thead>
<tr>
<th>油墨制造实施例</th>
<th>油墨</th>
<th>表面张力（mN/m）</th>
<th>粘度（mPa•s）</th>
</tr>
</thead>
<tbody>
<tr>
<td>油墨制造实施例1</td>
<td>黑色油墨1</td>
<td>26.3</td>
<td>8.21</td>
</tr>
<tr>
<td>油墨制造实施例2</td>
<td>黄色油墨1</td>
<td>26.6</td>
<td>8.46</td>
</tr>
<tr>
<td>油墨制造实施例3</td>
<td>品红色油墨1</td>
<td>25.9</td>
<td>8.09</td>
</tr>
<tr>
<td>油墨制造实施例4</td>
<td>青色油墨1</td>
<td>25.5</td>
<td>7.21</td>
</tr>
<tr>
<td>油墨制造实施例5</td>
<td>青色油墨2</td>
<td>22.9</td>
<td>8.07</td>
</tr>
<tr>
<td>油墨制造实施例6</td>
<td>品红色油墨2</td>
<td>22.2</td>
<td>8.38</td>
</tr>
</tbody>
</table>
表 2

<table>
<thead>
<tr>
<th>油墨组件</th>
<th>黑色油墨</th>
<th>青色油墨</th>
<th>品红色油墨</th>
<th>黄色油墨</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>油墨组件 1</td>
<td>制造实施例 1</td>
<td>制造实施例 4</td>
<td>制造实施例 2</td>
</tr>
<tr>
<td>实施例 2</td>
<td>油墨组件 2</td>
<td>制造实施例 8</td>
<td>制造实施例 5</td>
<td>制造实施例 7</td>
</tr>
<tr>
<td>比较实施例 1</td>
<td>比较组件 1</td>
<td>比较制造实施例 1</td>
<td>比较制造实施例 4</td>
<td>比较制造实施例 3</td>
</tr>
<tr>
<td>比较实施例 2</td>
<td>比较组件 2</td>
<td>比较制造实施例 2</td>
<td>比较制造实施例 5</td>
<td>比较制造实施例 6</td>
</tr>
<tr>
<td>比较实施例 3</td>
<td>比较组件 3</td>
<td>比较制造实施例 3</td>
<td>比较制造实施例 6</td>
<td>比较制造实施例 7</td>
</tr>
<tr>
<td>比较实施例 4</td>
<td>比较组件 4</td>
<td>比较制造实施例 4</td>
<td>比较制造实施例 7</td>
<td>比较制造实施例 8</td>
</tr>
</tbody>
</table>

[0390] 接着，实施例 1 和 2 以及比较实施例 1 的油墨组件在表 2 中显示。

[0391] 表 2

[0392] (用于打印的打印机)

[0393] 使用在本发明的图 3 和 4 中详细说明的打印机，在以下的普通纸的纸张上进行打印。

[0394] (用于打印的纸)

[0395] 作为用于印刷测试的纸，使用 MY PAPER (由 NBS Ricoh Co., Ltd. 生产)。

[0396] 对于打印图案，使用 100％填充的本发明的黑色、黄色、品红色和青色的油墨进行打印。

[0397] 对于打印条件，记录密度是 300dpi，使用一次印刷 (one passprinting)。

[0398] 在打印的图像已经干燥后，全盘地检查图像在每两种结合在一起的颜色之间的边界上的混色，通过视觉观察和反射式颜色分光光度比色测定密计 (由 X-Rite, Inc. 生产) 检查图像混色和图像密度，并且根据以下评估标准判断图像。

[0400] (1) 图像清晰度 (毛须和颜色混色)

[0401] 评估标准

[0402] A : 所有纸张显示出清楚的印刷，没有混色

[0403] B : 在一些纸张上 (再生纸) 看到毛须形式的混色

[0404] C : 在所有纸张上看到毛须形式的混色

[0405] D : 混色出现到这样的程度以致字母 / 文字的轮廓不清楚 (2) 图像密度

[0406] 使用 X-RITE 932 测量印刷后的每种颜色的实心图像部分的光密度。评估结果在
表 3 中显示。

<table>
<thead>
<tr>
<th>实施例 1</th>
<th>毛须</th>
<th>颜色调色</th>
<th>图像密度</th>
</tr>
</thead>
<tbody>
<tr>
<td>制造实施例 1</td>
<td>A</td>
<td>A</td>
<td>1.34</td>
</tr>
<tr>
<td>制造实施例 2</td>
<td>A</td>
<td>A</td>
<td>0.86</td>
</tr>
<tr>
<td>制造实施例 3</td>
<td>A</td>
<td>A</td>
<td>0.98</td>
</tr>
<tr>
<td>制造实施例 4</td>
<td>A</td>
<td>A</td>
<td>1.05</td>
</tr>
<tr>
<td>制造实施例 5</td>
<td>A</td>
<td>A</td>
<td>1.13</td>
</tr>
<tr>
<td>制造实施例 6</td>
<td>A</td>
<td>A</td>
<td>1.07</td>
</tr>
<tr>
<td>制造实施例 7</td>
<td>A</td>
<td>A</td>
<td>0.87</td>
</tr>
<tr>
<td>制造实施例 8</td>
<td>A</td>
<td>A</td>
<td>1.37</td>
</tr>
<tr>
<td>比较实施例 1</td>
<td>C</td>
<td>C</td>
<td>1.17</td>
</tr>
<tr>
<td>比较实施例 2</td>
<td>C</td>
<td>C</td>
<td>0.65</td>
</tr>
<tr>
<td>比较实施例 3</td>
<td>B</td>
<td>B</td>
<td>0.78</td>
</tr>
<tr>
<td>比较实施例 4</td>
<td>B</td>
<td>B</td>
<td>0.91</td>
</tr>
</tbody>
</table>

（油墨制造实施例 9）黑色油墨 3

在制备实施例 1 中生产的炭黑 8%（为固体含量）

合成实施例 2 的丙烯酸 - 有机硅树脂乳液 4%（为固体含量）

3- 甲基 -1,3- 丁二醇 8%

甘油 10%

2- 氨基烷醇 2%

由以上显示的结构式（1）代表的化合物（R₄：CH₃，R₂：H，Rₓ：C₆F₁₃，m：16，n：6）

0.5%

2, 2, 4- 三甲基 -1, 3- 戊二醇 1.5%

通过加入离子交换水制成总量 100%。

（油墨制造实施例 10）黄色油墨 3

在制备实施例 2 中生产的黄色颜料分散溶液 5%（为固体含量）

合成实施例 1 的丙烯酸 - 有机硅树脂乳液 10%（为固体含量）

1, 3- 丁二醇 10%

甘油 10%

2- 氨基烷醇 1%

由以上显示的结构式（1）代表的化合物（R₄：CH₃，R₂：H，Rₓ：C₆F₁₃，m：16，n：6）

1%

2, 2, 4- 三甲基 -1, 3- 戊二醇 2%

通过加入离子交换水制成总量 100%。

（油墨制造实施例 11）品红色油墨 3

在制备实施例 3 中生产的品红色颜料分散溶液
[0433] 合成实施例 3 的丙烯酸 - 有机硅树脂乳液
[0434] 6%（为固体含量）
[0435] 合成实施例 3 的丙烯酸 - 有机硅树脂乳液
[0436] 15%（为固体含量）
[0437] 甘油
[0438] 三甘醇异丁基醚
[0439] 2% 2%
[0440] 甘油
[0441] 15% 15%
[0442] 由以上显示的结构式 (1) 代表的化合物 (R₁ :CH₃, R₂ :H, R₃ :C₆F₅, m :16, n :6)
[0443] 1%
[0444] 2- 乙基 -1,3- 己二醇
[0445] 通过加入离子交换水制成总量 100%。
[0446] 2%
[0447] 在制备实施例 4 中生产的青色颜料分散溶液 4%（为固体含量）
[0448] 合成实施例 4 的丙烯酸 - 有机硅树脂乳液
[0449] 15%（为固体含量）
[0450] 3- 甲基 -1,3- 丁二醇
[0451] 甘油
[0452] 10% 10%
[0453] 由以上显示的结构式 (1) 代表的化合物 (R₁ :CH₃, R₂ :H, R₃ :C₆F₅, m :16, n :6)
[0454] 0.5%
[0455] 2- 乙基 -1,3- 己二醇
[0456] 通过加入离子交换水制成总量 100%。
[0457] 2%
[0458] （油墨制造实施例 13）青色油墨 4
[0459] 在制备实施例 5 中生产的青色颜料分散溶液
[0460] 3.5%（为固体含量）
[0461] 合成实施例 1 的丙烯酸 - 有机硅树脂乳液
[0462] 10%（为固体含量）
[0463] 1,6- 己二醇
[0464] 20%
[0465] 甘油
[0466] 8%
[0467] 由以上显示的结构式 (1) 代表的化合物 (R₁ :CH₃, R₂ :H, R₃ :C₆F₅, m :20, n :10)
[0468] 1.5%
[0469] FS-300（由 E.I. du Pont de Nemours and Company 生产）
[0470] 0.3%
[0471] 2- 乙基 -1,3- 己二醇
[0472] 通过加入离子交换水制成总量 100%。
[0473] 2%
[0474] （油墨制造实施例 14）品红色油墨 4
[0475] 在制备实施例 6 中生产的品红色颜料分散溶液
[0476] 5%（为固体含量）
[0477] 合成实施例 1 的丙烯酸 - 有机硅树脂乳液
[0478] 10%（为固体含量）
[0479] 一缩二丙二醇
[0480] 15%
[0481] 甘油
[0482] 15%
[0469] 由以上显示的结构式 (1) 代表的化合物 (R₁ :CH₃, R₂ :H, Rf :C₃F₅, m :20, n :10)
1.5%

[0470] 2- 乙基-1,3- 己二醇
2%

[0471] 通过加入离子交换水制成总量 100%。

[0472] （油墨制造实施例 15）黄色油墨 4

[0473] 在制备实施例 7 中生产的黄色颜料分散溶液

[0474] 4%（为固体含量）

[0475] 合成实施例 3 的丙烯酸 - 有机硅树脂乳液

[0476] 15%（为固体含量）

[0477] 2- 甲基-2,4- 戊二醇
10%

[0478] 甘油
10%

[0479] 由以上显示的结构式 (1) 代表的化合物 (R₁ :CH₃, R₂ :H, Rf :C₃F₅, m :20, n :10)
1.5%

[0480] 2,2,4- 三甲基-1,3- 戊二醇
1%

[0481] 通过加入离子交换水制成总量 100%。

[0482] （油墨制造实施例 16）黑色油墨 4

[0483] 在制备实施例 8 中生产的黑色颜料分散溶液

[0484] 8%（为固体含量）

[0485] 合成实施例 2 的丙烯酸 - 有机硅树脂乳液

[0486] 12%（为固体含量）

[0487] 1,6- 己二醇
20%

[0488] 甘油
8%

[0489] 由以上显示的结构式 (1) 代表的化合物 (R₁ :CH₃, R₂ :H, Rf :C₃F₅, m :20, n :10)
1.5%

[0490] 2- 乙基-1,3- 己二醇
2.5%

[0491] 通过加入离子交换水制成总量 100%。

[0492] （油墨制造实施例 17）青色油墨 5

[0493] 在制备实施例 9 中生产的青色颜料分散溶液

[0494] 4%（为固体含量）

[0495] W-5025（聚氨酯树脂乳液，由 Mitsui Takeda Chemicals, Inc. 生产）

[0496] 14%（为固体含量）

[0497] 1,3- 丁二醇
20%

[0498] 甘油
8%

[0499] 由以上显示的结构式 (1) 代表的化合物 (R₁ :CH₃, R₂ :H, Rf :C₃F₅, m :16, n :6)
1.5%

[0500] 2- 乙基-1,3- 己二醇
2%

[0501] 通过加入离子交换水制成总量 100%。

[0502] （油墨制造实施例 18）品红色油墨 5

[0503] 在制备实施例 10 中生产的品红色颜料分散溶液
[0504] 7%（为固体含量）
[0505] W-5661（聚氨酯树脂乳液，由Mitsui Takeda Chemicals, Inc.生产）
[0506] 10%（为固体含量）
[0507] 1,5-戊二醇 15%
[0508] 甘油 15%
[0509] 由以上显示的结构式（1）代表的化合物（R₁:CH₂, R₂:H, R₆:C₆F₅, m:16, n:6）1.5%
[0510] 2-乙基-1,3-己二醇 2%
[0511] 通过加入离子交换水制成总计100%。
[0512] 19）黄色油墨5
[0513] （油墨制造实施例 11 中生产的黄色颜料分散溶液
[0514] 6%（为固体含量）
[0515] 合成实施例3的丙烯酸-有机硅树脂乳液
[0516] 15%（为固体含量）
[0517] 2-甲基-2,4-戊二醇 10%
[0518] 甘油 10%
[0519] 由以上显示的结构式（1）代表的化合物（R₁:CH₂, R₂:H, R₆:C₆F₅, m:16, n:6）1.5%
[0520] 2,2,4-三甲基-1,3-戊二醇 3%
[0521] 通过加入离子交换水制成总计100%。
[0522] （油墨制造实施例 20）黑色油墨5
[0523] 在制备实施例1中生产的黑色颜料分散溶液
[0524] 7%（为固体含量）
[0525] 合成实施例2的丙烯酸-有机硅树脂乳液
[0526] 14%（为固体含量）
[0527] 1,6-己二醇 10%
[0528] 甘油 10%
[0529] 由以上显示的结构式（1）代表的化合物（R₁:CH₂, R₂:H, R₆:C₆F₅, m:16, n:6）1.5%
[0530] 2-乙基-1,3-己二醇 2.5%
[0531] 通过加入离子交换水制成总计100%。
[0532] - 比较颜料油墨的制备 -
[0533] （比较制造实施例 5 至 8）
[0534] （比较制造实施例 5）比较颜料青色油墨2
[0535] 以类似于油墨制造实施例17的方式得到青色油墨，除了不使用W-5025。
[0536] （比较制造实施例 6）比较颜料品红色油墨2
[0537] 以类似于油墨制造实施例18的方式得到品红色油墨，除了不使用W-5661。
[0538] （比较制造实施例 7）比较颜料黄色油墨2
[0539] 以类似于油墨制造实施例15的方式得到黄色油墨，除了不使用合成实施例3的丙
烯酸 - 有机硅树脂乳液。

[0540] (比较制造实施例 8) 比较颜料黑色油墨 2
[0541] 以类似于油墨制造实施例 16 的方式得到黑色油墨，除了不使用合成油墨 2 的丙烯酸 - 有机硅树脂乳液。
[0542] - 染料油墨的制备 -
[0543] (比较制造实施例 9 至 12)
[0544] 将以下成分混合在一起并且充分地搅拌以溶解，然后在压力下使用具有 0.45 μm 孔径大小的 FLUOROPORE FILTER (产品名称，由 Sumitomo Electric Industries, Ltd 制造) 过滤混合物，并且因此制备染料油墨组件。
[0545] 染料油墨组合物：
[0546] （ 染料 ）
[0547] 比较制造实施例 9，黄色；C. I. 直接黄 86
[0548] 比较制造实施例 10，青色；C. I. 直接蓝 199
[0549] 比较制造实施例 11，品红色；C. I. 酸红 285
[0550] 比较制造实施例 12，黑色；C. I. 直接黑 154
[0551] （ 油墨配方 ）
[0552] 上述染料的每一种 4%
[0553] 甘油 10%
[0554] 二甘醇 5%
[0555] 四甲基脲 5%
[0556] F-470 (由 Dainippon Ink And Chemicals, Incorporated 生产) 1%
[0557]
[0558] 通过加入离子交换水制成总计 100%。
[0559] 以下说明油墨组合物，如本发明的油墨制造实施例和比较制造实施例的油墨在表 4 中显示。
[0560] 每种油墨的表面张力和粘度以及每种分散性树脂 (A) 与每种着色剂 (B) 的质量比 (A) / (B) 在表 4 中显示。
[0561] 使用由 Kyowa Interface Science Co., Ltd 制造的 CBVP-Z 测量每种油墨的表面张力。使用由 TOKI SANGYO CO., LTD 生产的 R- 型粘度计 RC-500 测量每种油墨的粘度。
[0562] 表 4
<table>
<thead>
<tr>
<th>油墨制造实施例</th>
<th>油墨</th>
<th>表面张力 (mN/m)</th>
<th>粘度 (mPa·s)</th>
<th>(A)/(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>油墨制造实施例 9</td>
<td>黑色油墨 3</td>
<td>28.2</td>
<td>7.10</td>
<td>0.5</td>
</tr>
<tr>
<td>油墨制造实施例 10</td>
<td>黄色油墨 3</td>
<td>26.8</td>
<td>8.31</td>
<td>2.0</td>
</tr>
<tr>
<td>油墨制造实施例 11</td>
<td>品红色油墨 3</td>
<td>26.4</td>
<td>8.82</td>
<td>2.5</td>
</tr>
<tr>
<td>油墨制造实施例 12</td>
<td>青色油墨 3</td>
<td>27.5</td>
<td>8.50</td>
<td>3.75</td>
</tr>
<tr>
<td>油墨制造实施例 13</td>
<td>青色油墨 4</td>
<td>25.0</td>
<td>8.36</td>
<td>2.86</td>
</tr>
<tr>
<td>油墨制造实施例 14</td>
<td>品红色油墨 4</td>
<td>26.9</td>
<td>9.07</td>
<td>2.0</td>
</tr>
<tr>
<td>油墨制造实施例 15</td>
<td>黄色油墨 4</td>
<td>26.9</td>
<td>8.63</td>
<td>3.75</td>
</tr>
<tr>
<td>油墨制造实施例 16</td>
<td>黑色油墨 4</td>
<td>28.1</td>
<td>9.05</td>
<td>1.5</td>
</tr>
<tr>
<td>油墨制造实施例 17</td>
<td>青色油墨 5</td>
<td>26.8</td>
<td>7.91</td>
<td>3.5</td>
</tr>
<tr>
<td>油墨制造实施例 18</td>
<td>品红色油墨 5</td>
<td>28.0</td>
<td>8.98</td>
<td>1.73</td>
</tr>
<tr>
<td>油墨制造实施例 19</td>
<td>黄色油墨 5</td>
<td>26.4</td>
<td>9.05</td>
<td>2.5</td>
</tr>
<tr>
<td>油墨制造实施例 20</td>
<td>黑色油墨 5</td>
<td>27.7</td>
<td>7.72</td>
<td>2.0</td>
</tr>
<tr>
<td>比较制造实施例 5</td>
<td>比较颜料青色油墨 2</td>
<td>26.3</td>
<td>5.22</td>
<td>0</td>
</tr>
<tr>
<td>比较制造实施例 6</td>
<td>比较颜料品红色油墨 2</td>
<td>27.2</td>
<td>6.61</td>
<td>0</td>
</tr>
<tr>
<td>比较制造实施例 7</td>
<td>比较颜料黄色油墨 2</td>
<td>24.8</td>
<td>5.85</td>
<td>0</td>
</tr>
<tr>
<td>比较制造实施例 8</td>
<td>比较染料黑色油墨 2</td>
<td>27.3</td>
<td>6.91</td>
<td>0</td>
</tr>
<tr>
<td>比较制造实施例 9</td>
<td>比较染料黄色油墨</td>
<td>23.4</td>
<td>3.19</td>
<td>0</td>
</tr>
<tr>
<td>比较制造实施例 10</td>
<td>比较染料青色油墨</td>
<td>23.4</td>
<td>3.26</td>
<td>0</td>
</tr>
<tr>
<td>比较制造实施例 11</td>
<td>比较染料品红色油墨</td>
<td>23.7</td>
<td>3.42</td>
<td>0</td>
</tr>
<tr>
<td>比较制造实施例 12</td>
<td>比较染料黑色油墨</td>
<td>23.2</td>
<td>3.28</td>
<td>0</td>
</tr>
</tbody>
</table>

接着，实施例 3 到 9 和比较实施例 2 到 3 的油墨组件在表 5 中显示。

表 5
说明 书

<table>
<thead>
<tr>
<th>油墨组件</th>
<th>黑色油墨</th>
<th>青色油墨</th>
<th>红色油墨</th>
<th>黄色油墨</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 3</td>
<td>制造实施例 9</td>
<td>制造实施例 12</td>
<td>制造实施例 11</td>
<td>制造实施例 10</td>
</tr>
<tr>
<td>实施例 4</td>
<td>制造实施例 16</td>
<td>制造实施例 13</td>
<td>制造实施例 14</td>
<td>制造实施例 15</td>
</tr>
<tr>
<td>实施例 5</td>
<td>制造实施例 9</td>
<td>制造实施例 17</td>
<td>制造实施例 18</td>
<td>制造实施例 19</td>
</tr>
<tr>
<td>实施例 6</td>
<td>制造实施例 20</td>
<td>制造实施例 17</td>
<td>制造实施例 14</td>
<td>制造实施例 10</td>
</tr>
<tr>
<td>实施例 7</td>
<td>制造实施例 9</td>
<td>制造实施例 13</td>
<td>制造实施例 14</td>
<td>制造实施例 15</td>
</tr>
<tr>
<td>实施例 8</td>
<td>制造实施例 16</td>
<td>制造实施例 12</td>
<td>制造实施例 11</td>
<td>制造实施例 10</td>
</tr>
<tr>
<td>实施例 9</td>
<td>制造实施例 16</td>
<td>制造实施例 12</td>
<td>制造实施例 18</td>
<td>制造实施例 19</td>
</tr>
</tbody>
</table>

[0568] 接下来，将在以下说明原纸（介质）的生产。

[0569] 〈原纸的制造〉

[0570] 〔原纸制造实施例1〕- 载体1的制造 -

[0571] LBKP 71.23%

[0572] NBKP 17.81%

[0573] 轻质碳酸钙（产品名称：IP-121，由OKUTANI KOGYO CO., LTD. 生产） 8.90%

[0574] 硫酸铝 0.89%

[0575] 两性淀粉（产品名称：CATO 3210，由Nippon NSC Ltd. 生产） 0.89%
说明书

0.27%

0.01%

使用长网造纸机将包含上示成分的 0.3% 液体制成纸，纸经受机器压缩，并且因此生产具有 79g/m² 的张纸定量的载体 1。另外，在造纸步骤的施胶过程中，氧化淀粉水溶液以 1.0g/m² 的速度施加到纸面上作为每面的固体含量。

[0581]（纸实施例 1）

通过加入以下化合物和水到原纸制造实施例中生产的载体 1 中制备具有 60% 固体内容物浓度的涂布溶液：70 份作为颜料的高岭土（折射率 1.6, ULTRAWHITE 90（由 Engelhard Corporation 生产）），其中 2 μm 或更小直径的颗粒占所有颗粒的 97%；30 份的具有 1.1 μm 的平均粒径的重质碳酸钙（折射率 1.6, CALSHITE 15（由 ShiraishiKogyo Kaisha, Ltd. 生产））；8 份作为胶粘剂的苯乙烯-丁二烯共聚物乳液，其具有 -5°C 的玻璃化转变温度 (Tg)；1 份的磷酸酯化淀粉；和 0.5 份作为助剂的硬脂酸钙。

[0583]使用刮刀涂布机，施加该涂布溶液到原纸的两面，使得涂布层厚度为每面 1 μm，并用热风干燥，随后具有该涂布溶液的原纸经受超短压光处理，并且因此得到本发明的“记录纸 1”。

[0584]在作为记录介质的该记录纸 1 的纸张上以 600dpi 的图像分辨率进行印刷，使用在表 1 和 2 中显示的油墨组合物和油墨组件，使用 300dpi 点的按需喷墨实验印刷机，该印刷机具有 384 的喷嘴分辨率的喷嘴。当最大液滴大小被设定在 18pl 和间色总数量被限制在 140% 时，附着到记录纸 1 上的油墨量被控制。当实心图像和字母 / 文字被印刷在记录纸 1 的纸张上时，附着其上的油墨的总量被控制，以便每 300 点 × 300 点的面积不超过 15g/m²。评估得到的图像的质量和可靠性。结果在表 3 中显示。被评估为 D 的那些不适合作为喷墨图像。

[0585](纸实施例 2)

[0586](纸实施例 3)

[0588](纸实施例 2)

[0590](纸实施例 4)

[0591](纸实施例 5)

[0592]（纸实施例 6）
[0594] 以类似于纸实施例 1 的方式进行喷墨记录，除了电子相片用涂布纸 POD GLOSS（其包含高岭土（折射率 1.6）和碳酸钙（折射率 1.6）；由 Oji Paper Co., Ltd. 生产）被用于（作为“记录纸 6”）记录介质。

[0595]（纸实施例 7）

[0596]以类似于纸实施例 5 的方式进行喷墨记录，除了电子相片用涂布纸 POD GLOSS（其包含高岭土（折射率 1.6）和碳酸钙（折射率 1.6）；由 Oji Paper Co., Ltd. 生产）的表面用包装纸研磨20次，使得涂布层厚度每面为 5.1 μm，并且该纸（作为“记录介质 7”）被用于记录介质。

[0597]对于纸实施例 1 到 7 的介质，作为使用由 Hitachi, Ltd. 制造的 FE-SEM S-4200 二值化观察图像的结果，确认孔直径为 1 μm 或更小，孔占据 40% 或更小的介质表面面积，其基于占据图像的孔的面积测量，并且因此所有这些纸实施例满足关于在阻挡层中的孔的要求。

[0598]以下说明关于在表 5 中显示的实施例和比较实施例的评估项和评估方法。

[0599]（评估项和其测量方法）

[0600]（1）图像质量

[0601]1. 油墨透印

[0602]测量实施例和比较实施例的新实心图像部分的反面的纸张部分的图像密度，并且通过从各个图像密度中减去背景部分的密度得到的值被定义为油墨透印密度。利用这些油墨透印密度和基于视觉观察的判断，依照以下的评估标准评估图像。

[0603]【评估标准】

[0604]A：油墨透印密度是 0.1 或更小，并且产生甚至没有引起微小油墨透印的均匀印刷

[0605]B：油墨透印密度是 0.15 或更小，并且产生甚至没有引起微小油墨透印的均匀印刷

[0606]C：油墨透印密度是 0.15 或更小，但确认发生微小的油墨透印

[0607]D：确认发生严重的油墨透印

[0608]2. 成珠

[0609]视觉观察每个实施例和比较实施例的新实心图像的成珠程度，并且依照以下评估标准进行评估。

[0610]【评估标准 1】

[0611]5 : 产生没有引起成珠的均匀印刷

[0612]4 : 确认发生轻微成珠，但是其根本不明显

[0613]3 : 确认发生成珠，但是其没有损坏图像质量

[0614]2 : 清晰地确认发生成珠

[0615]1 : 确认发生严重的成珠

[0616]【评估标准 2】

[0617]A : 成珠 ≥ 依据评估标准 1 定级 4.0

[0618]B : 依据评估标准 1 定级 3.0 < 成珠 ≤ 依据评估标准 1 定级 4.0

[0619]C : 依据评估标准 1 定级 2.0 < 成珠 ≤ 依据评估标准 1 定级 3.0

[0620]D : 成珠 < 依据评估标准 1 定级 2.0
3. 图像密度的评估
使用 X-RITE 932 测量实施例和比较实施例的品红色实心图像部分的光密度，并且依照以下评估标准评估。

【评估标准】
A: 1.6 或更大的品红色图像密度
B: 1.3 或更大的品红色图像密度
C: 1.0 或更大的品红色图像密度
D: 小于 1.0 的品红色图像密度

4. 光泽度的评估
视觉观察实施例和比较实施例的图像部分的光泽度程度，并且依照以下评估标准评估

【评估标准】
A: 高光泽度被确认
B: 光泽度被确认
C: 光泽度被轻微地确认
D: 光泽度没有被确认

(2) 图像可靠性

形成每个具有 3cm×3cm 大小的正方形形状的黑色、青色、品红色、黄色、红色、绿色和蓝色图像，并用于评估。在正方形已经被印刷在纸张上之后 24 小时，使用定时记录仪（型号 CM-1），用双面胶带（#4016, t = 1.6; 由 Sumitomo 3M Limited 生产）粘贴在摩擦部件上的白棉布（JISL0803, Cotton No. 3）紧靠着每个正方形被来回地摩擦 5 次，随后使用分光光度比色测定密度计（型号 -938, 由 X-Rite, Inc. 制造）测量附着于棉布的着色材料的密度。

【评估标准】
A: 附着于棉布的着色材料的密度小于 0.05
B: 附着于棉布的着色材料的密度为 0.05 或更大，但小于 0.1
D: 附着于棉布的着色材料的密度为 0.1 或更大

评估结果在表 6 中显示。

<table>
<thead>
<tr>
<th>实施例</th>
<th>着色材料</th>
<th>纸</th>
<th>油墨透印</th>
<th>成珠</th>
<th>密度</th>
<th>光泽度</th>
<th>耐磨性</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 3</td>
<td>颜料</td>
<td>纸 1</td>
<td>A</td>
<td>4.5(A)</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>实施例 4</td>
<td>颜料</td>
<td>纸 3</td>
<td>A</td>
<td>4.5(A)</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>实施例 5</td>
<td>颜料</td>
<td>纸 5</td>
<td>A</td>
<td>4.0(B)</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>实施例 6</td>
<td>颜料</td>
<td>纸 6</td>
<td>A</td>
<td>4.0(B)</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>实施例 7</td>
<td>颜料</td>
<td>纸 7</td>
<td>A</td>
<td>4.5(A)</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>实施例 8</td>
<td>颜料</td>
<td>纸 2</td>
<td>A</td>
<td>4.0(B)</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>实施例 9</td>
<td>颜料</td>
<td>纸 2</td>
<td>A</td>
<td>4.0(B)</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>比较实施例 2</td>
<td>染料</td>
<td>纸 6</td>
<td>C</td>
<td>2.0(C)</td>
<td>C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>比较实施例 3</td>
<td>染料</td>
<td>纸 7</td>
<td>C</td>
<td>1.0(D)</td>
<td>D</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

[0645] 备注：依照相关的评估标准，评价为 4.5 的成珠是在等级 5 和等级 4 之间的中间水平。
图 3
图 4
图6
图 7