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( 57 ) ABSTRACT 
The present invention extends to methods , systems , and 
computer program products for detecting events from fea 
tures derived from multiple signals . In one aspect , an event 
detection infrastructure determines that characteristics of 
multiple signals , when considered collectively , indicate an 
event of interest to one or more parties . In another aspect , an 
evaluation module determines that characteristics of one or 
more signals indicate a possible event of interest to one or 
more parties . A validator then determines that characteristics 
of one or more other signals validate the possible event as an 
actual event of interest to the one or more parties . Signal 
features can be used to compute probabilities of events 
occurring 
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DETECTING EVENTS FROM FEATURES 
DERIVED FROM MULTIPLE INGESTED 

SIGNALS 

CROSS - REFERENCE TO RELATED 
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“ Validating Possible Events With Additional Signals ” , filed 
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BACKGROUND 

1 . Background and Relevant Art 
[ 0002 ] Entities ( e . g . , parents , guardians , friends , relatives , 
teachers , social workers , first responders , hospitals , delivery 
services , media outlets , government entities , etc . ) may desire 
to be made aware of relevant events ( e . g . , fires , accidents , 
police presence , shootings , etc . ) as close as possible to the 
events ' occurrence . However , entities typically are not made 
aware of an event until after a person observes the event ( or 
the event aftermath ) and calls authorities . 
[ 0003 ] In general , techniques that attempt to automate 
event detection are unreliable . Some techniques have 
attempted to mine social media data to detect the planning 
of events and forecast when events might occur . However , 
events can occur without prior planning and / or may not be 
detectable using social media data . Further , these techniques 
are not capable of meaningfully processing available data 
nor are these techniques capable of differentiating false data 
( e . g . , hoax social media posts ) 
[ 0004 ] Other techniques use textual comparisons to com 
pare textual content ( e . g . , keywords ) in a data stream to 
event templates in a database . If text in a data stream 
matches keywords in an event template , the data stream is 
labeled as indicating an event . 
[ 0005 ] Additional techniques use event specific sensors to 
detect specified types of event . For example , earthquake 
detectors can be used to detect earthquakes . 

[ 0007 ] In general , signal ingestion modules ingest differ 
ent types of raw structured and unstructured signals on an 
ongoing basis . The signal ingestion modules normalize raw 
signals into normalized signals having a Time , Location , 
Context ( or " TLC ” ) format . Time can be a time of origin or 
" event time ” of a signal . Location can be anywhere across 
a geographic area , such as , a country ( e . g . , the United 
States ) , a State , a defined area , an impacted area , an area 
defined by a geo cell , an address , etc . 
0008 ] Context indicates circumstances surrounding for 

mation / origination of a raw signal in terms that facilitate 
understanding and assessment of the raw signal . The context 
of a raw signal can be derived from express as well as 
inferred signal features of the raw signal . 
[ 0009 ] Signal ingestion modules can include one or more 
single source classifiers . A single source classifier can com 
pute a single source probability for a raw signal from 
( inferred and / or express ) signal features of the raw signal . A 
single source probability can reflect a mathematical prob 
ability or approximation of a mathematical probability of an 
event ( e . g . , fire , accident , weather , police presence , etc . ) 
actually occurring . A single source classifier can be config 
ured to compute a single source probability for a single event 
type or to compute a single source probability for each of a 
plurality of different event types . 
[ 0010 ] As such , single source probabilities and corre 
sponding probability details can represent Context . Prob 
ability details can indicate ( e . g . , can include a hash field 
indicating ) a probability version and express and / or 
inferred ) signal features considered in a signal source prob 
ability calculation . 
[ 0011 ] Concurrently with signal ingestion , an event detec 
tion infrastructure considers features of different combina 
tions of normalized signals to attempt to identify events of 
interest to various parties . For example , the event detection 
infrastructure can determine that features of multiple differ 
ent signals collectively indicate an event of interest to one or 
more parties . Alternately , the event detection infrastructure 
can determine that features of one or more signals indicate 
a possible event of interest to one or more parties . The event 
detection infrastructure then determines that features of one 
or more other signals validate the possible event as an actual 
event of interest to the one or more parties . Signal features 
can include : signal type , signal source , signal content , signal 
time ( T ) , signal location ( L ) , signal context ( C ) , other 
circumstances of signal creation , etc . 
[ 0012 ] . The event detection infrastructure can group sig 
nals having sufficient temporal similarity and sufficient 
spatial similarity to one another in a signal sequence . In one 
aspect , any signal having sufficient temporal and spatial 
similarity to another signal can be added to a signal 
sequence . 
[ 0013 ] In another aspect , a single source probability for a 
signal is computed from features of the signal . The single 
source probability can reflect a mathematical probability or 
approximation of a mathematical probability of an event 
actually occurring . A signal having a signal source prob 
ability above a threshold can be indicated as an “ elevated " 
signal . Elevated signals can be used to initiate and / or can be 
added to a signal sequence . On the other hand , non - elevated 
signals may not be added to a signal sequence . 
[ 0014 ] A multi - source probability can be computed from 
features of multiple normalized signals , including normal 
ized signals in a signal sequence . Features used to compute 

BRIEF SUMMARY 
[ 0006 ] Examples extend to methods , systems , and com 
puter program products for detecting events from features 
derived from multiple signals . 
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[ 0028 ] FIG . 7 illustrates a flow chart of an example 
method for forming a signal sequence . 
10029 ] FIG . 8 illustrates a flow of an example method for 
detecting an event from a signal sequence . 
( 0030 ) FIG . 9 illustrates an example computer architecture 
that facilitates detecting events . we 

a multi - source probability can include multiple single source 
probabilities as well as other features derived from multiple 
signals . The multi - source probability can reflect a math 
ematical probability or approximation of a mathematical 
probability of an event actually occurring based on multiple 
normalized signals ( e . g . , a signal sequence ) . A multi - source 
probability can change over time as normalized signals age 
or when a new normalized signal is received ( e . g . , added to 
a signal sequence ) . 
[ 0015 ] This summary is provided to introduce a selection 
of concepts in a simplified form that are further described 
below in the Detailed Description . This Summary is not 
intended to identify key features or essential features of the 
claimed subject matter , nor is it intended to be used as an aid 
in determining the scope of the claimed subject matter . 
[ 0016 ] Additional features and advantages will be set forth 
in the description which follows , and in part will be obvious 
from the description , or may be learned by practice . The 
features and advantages may be realized and obtained by 
means of the instruments and combinations particularly 
pointed out in the appended claims . These and other features 
and advantages will become more fully apparent from the 
following description and appended claims , or may be 
learned by practice as set forth hereinafter . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0017 ] In order to describe the manner in which the 
above - recited and other advantages and features can be 
obtained , a more particular description will be rendered by 
reference to specific implementations thereof which are 
illustrated in the appended drawings . Understanding that 
these drawings depict only some implementations and are 
not therefore to be considered to be limiting of its scope , 
implementations will be described and explained with addi 
tional specificity and detail through the use of the accom 
panying drawings in which : 
[ 0018 ] FIG . 1 illustrates an example computer architecture 
that facilitates ingesting signals . 
[ 0019 ] FIG . 2 illustrates an example computer architecture 
that facilitates detecting an event from features derived from 
multiple signals . 
[ 0020 ] FIG . 3 illustrates a flow chart of an example 
method for detecting an event from features derived from 
multiple signals . 
[ 0021 ] FIG . 4 illustrates an example computer architecture 
that facilitates detecting an event from features derived from 
multiple signals . 
[ 0022 ] FIG . 5 illustrates a flow chart of an example 
method for detecting an event from features derived from 
multiple signals 
[ 0023 ] FIG . 6A illustrates an example computer architec 
ture that facilitates forming a signal sequence . 
[ 0024 ] FIG . 6B illustrates an example computer architec 
ture that facilitates detecting an event from features of a 
signal sequence . 
10025 ) FIG . 6C illustrates an example computer architec 
ture that facilitates detecting an event from features of a 
signal sequence . 
[ 0026 ] FIG . 6D illustrates an example computer architec 
ture that facilitates detecting an event from a multisource 
probability . 
100271 . FIG . 6E illustrates an example computer architec 
ture that facilitates detecting an event from a multisource 
probability . 

DETAILED DESCRIPTION 
10031 ] Examples extend to methods , systems , and com 
puter program products for detecting events from features 
derived from multiple signals . 
[ 0032 ] Aspects of the invention normalize raw signals into 
a common format that includes Time , Location , and Context 
( or “ TLC ” ) format . Per signal type , signal ingestion modules 
identify and / or infer a time , a location , and a context 
associated with a signal . Different ingestion modules can be 
utilized / tailored to identify time , location , and context for 
different signal types . Time ( T ) can be a time of origin or 
" event time ” of a signal . Location ( L ) can be anywhere 
across a geographic area , such as , a country ( e . g . , the United 
States ) , a State , a defined area , an impacted area , an area 
defined by a geo cell , an address , etc . 
0033 ] Context ( C ) indicates circumstances surrounding 
formation / origination of a raw signal in terms that facilitate 
understanding and assessment of the raw signal . The context 
of a raw signal can be derived from express as well as 
inferred signal features of the raw signal . 
[ 0034 ] Signal ingestion modules can include one or more 
single source classifiers . A single source classifier can com 
pute a single source probability for a raw signal from 
features of the raw signal . A single source probability can 
reflect a mathematical probability or approximation of a 
mathematical probability ( e . g . , a percentage between 
0 % - 100 % ) of an event actually occurring . A single source 
classifier can be configured to compute a single source 
probability for a single event type or to compute a single 
source probability for each of a plurality of different event 
types . A single source classifier can compute a single source 
probability using artificial intelligence , machine learning , 
neural networks , logic , heuristics , etc . 
[ 0035 ] As such , single source probabilities and corre 
sponding probability details can represent Context . Prob 
ability details can indicate ( e . g . , can include a hash field 
indicating ) a probability version and express and / or 
inferred ) signal features considered in a signal source prob 
ability calculation . 
[ 0036 ] Concurrently with signal ingestion , the event 
detection infrastructure considers features of different com 
binations of normalized signals to attempt to identify events 
of interest to various parties . Features can be derived from 
an individual signal and / or from a group of signals . 
[ 0037 ] For example , the event detection infrastructure can 
derive first features of a first normalized signal and can 
derive second features of a second normalized signal . Indi 
vidual signal features can include : signal type , signal source , 
signal content , signal time ( T ) , signal location ( L ) , signal 
context ( C ) , other circumstances of signal creation , etc . The 
event detection infrastructure can detect an event of interest 
to one or more parties from the first features and the second 
features collectively . 
0038 ] Alternately , the event detection infrastructure can 
derive first features of each normalized signal included in a 
first one or more normalized individual signals . The event 
detection infrastructure can detect a possible event of inter 



US 2019 / 0251138 A1 Aug . 15 , 2019 

est to one or more parties from the first features . The event 
detection infrastructure can derive second features of each 
normalized signal included in a second one or more indi 
vidual signals . The event detection infrastructure can vali 
date the possible event of interest as an actual event of 
interest to the one or more parties from the second features . 
[ 0039 ] More specifically , the event detection infrastruc 
ture can use single source probabilities to detect and / or 
validate events . For example , the event detection infrastruc 
ture can detect an event of interest to one or more parties 
based on a single source probability of a first signal and a 
single source probability of second signal collectively . Alter 
nately , the event detection infrastructure can detect a pos 
sible event of interest to one or more parties based on single 
source probabilities of a first one or more signals . The event 
detection infrastructure can validate the possible event as an 
actual event of interest to one or more parties based on single 
source probabilities of a second one or more signals . 
[ 0040 ] The event detection infrastructure can group nor 
malized signals having sufficient temporal similarity and / or 
sufficient spatial similarity to one another in a signal 
sequence . Temporal similarity of normalized signals can be 
determined by comparing Time ( T ) of the normalized sig 
nals . In one aspect , temporal similarity of a normalized 
signal and another normalized signal is sufficient when the 
Time ( T ) of the normalized signal is within a specified time 
of the Time ( T ) of the other normalized signal . A specified 
time can be virtually any time value , such as , for example , 
ten seconds , 30 seconds , one minute , two minutes , five 
minutes , ten minutes , 30 minutes , one hour , two hours , four 
hours , etc . A specified time can vary by detection type . For 
example , some event types ( e . g . , a fire ) inherently last longer 
than other types of events ( e . g . , a shooting ) . Specified times 
can be tailored per detection type . 
[ 0041 ] Spatial similarity of normalized signals can be 
determined by comparing Location ( L ) of the normalized 
signals . In one aspect , spatial similarity of a normalized 
signal and another normalized signal is sufficient when the 
Location ( L ) of the normalized signal is within a specified 
distance of the Location ( L ) of the other normalized signal . 
A specified distance can be virtually any distance value , such 
as , for example , a linear distance or radius ( a number of feet , 
meters , miles , kilometers , etc . ) , within a specified number of 
geo cells of specified precision , etc . 
[ 0042 ] In one aspect , any normalized signal having suffi 
cient temporal and spatial similarity to another normalized 
signal can be added to a signal sequence . 
[ 0043 ] In another aspect , a single source probability for a 
signal is computed from features of the signal . The single 
source probability can reflect a mathematical probability or 
approximation of a mathematical probability of an event 
actually occurring . A normalized signal having a signal 
source probability above a threshold ( e . g . , greater than 4 % ) 
is indicated as an “ elevated ” signal . Elevated signals can be 
used to initiate and / or can be added to a signal sequence . On 
the other hand , non - elevated signals may not be added to a 
signal sequence . 
[ 0044 ] In one aspect , a first threshold is considered for 
signal sequence initiation and a second threshold is consid 
ered for adding additional signals to an existing signal 
sequence . A normalized signal having a single source prob 
ability above the first threshold can be used to initiate a 
signal sequence . After a signal sequence is initiated , any 

normalized signal having a single source probability above 
the second threshold can be added to the signal sequence . 
[ 0045 ] The first threshold can be greater than the second 
threshold . For example , the first threshold can be 4 % or 5 % 
and the second threshold can be 2 % or 3 % . Thus , signals that 
are not necessarily reliable enough to initiate a signal 
sequence for an event can be considered for validating a 
possible event . 
[ 0046 ] The event detection infrastructure can derive fea 
tures of a signal grouping , such as , a signal sequence . 
Features of a signal sequence can include features of signals 
in the signal sequence , including single source probabilities . 
Features of a signal sequence can also include percentages , 
histograms , counts , durations , etc . derived from features of 
the signals included in the signal sequence . The event 
detection infrastructure can detect an event of interest to one 
or more parties from signal sequence features . 
[ 0047 ] The event detection infrastructure can include one 
or more multi - source classifiers . A multi - source classifier 
can compute a multi - source probability for a signal sequence 
from features of the signal sequence . The multi - source 
probability can reflect a mathematical probability or 
approximation of a mathematical probability of an event 
( e . g . , fire , accident , weather , police presence , etc . ) actually 
occurring based on multiple normalized signals ( e . g . , the 
signal sequence ) . The multi - source probability can be 
assigned as an additional signal sequence feature . A multi 
source classifier can be configured to compute a multi 
source probability for a single event type or to compute a 
multi - source probability for each of a plurality of different 
event types . A multi - source classifier can compute a multi 
source probability using artificial intelligence , machine 
learning , neural networks , etc . 
[ 0048 ] A multi - source probability can change over time as 
a signal sequence ages or when a new signal is added to a 
signal sequence . For example , a multi - source probability for 
a signal sequence can decay over time . A multi - source 
probability for a signal sequence can also be recomputed 
when a new normalized signal is added to the signal 
sequence . 
[ 0049 ] Multi - source probability decay can start after a 
specified period of time ( e . g . , 3 minutes ) and decay can 
occur in accordance with a defined decay equation . In one 
aspect , a decay equation defines exponential decay of multi 
source probabilities . Different decay rates can be used for 
different classes . Decay can be similar to radioactive decay , 
with different tau ( i . e . , mean lifetime ) values used to calcu 
late the " half life ” of multi - source probability for different 
event types . 
[ 0050 ] Implementations can comprise or utilize a special 
purpose or general - purpose computer including computer 
hardware , such as , for example , one or more computer 
and / or hardware processors ( including any of Central Pro 
cessing Units ( CPUs ) , and / or Graphical Processing Units 
( GPUs ) , general - purpose GPUs ( GPGPUs ) , Field Program 
mable Gate Arrays ( FPGAs ) , application specific integrated 
circuits ( ASICs ) , Tensor Processing Units ( TPUs ) ) and 
system memory , as discussed in greater detail below . Imple 
mentations also include physical and other computer - read 
able media for carrying or storing computer - executable 
instructions and / or data structures . Such computer - readable 
media can be any available media that can be accessed by a 
general purpose or special purpose computer system . Com 
puter - readable media that store computer - executable 
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instructions are computer storage media ( devices ) . Com 
puter - readable media that carry computer - executable 
instructions are transmission media . Thus , by way of 
example , and not limitation , implementations can comprise 
at least two distinctly different kinds of computer - readable 
media : computer storage media ( devices ) and transmission 
media . 
[ 0051 ) Computer storage media ( devices ) includes RAM , 
ROM , EEPROM , CD - ROM , Solid State Drives ( “ SSDs ” ) 
( e . g . , RAM - based or Flash - based ) , Shingled Magnetic 
Recording ( “ SMR ” ) devices , Flash memory , phase - change 
memory ( “ PCM ” ) , other types of memory , other optical disk 
storage , magnetic disk storage or other magnetic storage 
devices , or any other medium which can be used to store 
desired program code means in the form of computer 
executable instructions or data structures and which can be 
accessed by a general purpose or special purpose computer . 
[ 0052 ] In one aspect , one or more processors are config 
ured to execute instructions ( e . g . , computer - readable 
instructions , computer - executable instructions , etc . ) to per 
form any of a plurality of described operations . The one or 
more processors can access information from system 
memory and / or store information in system memory . The 
one or more processors can ( e . g . , automatically ) transform 
information between different formats , such as , for example , 
between any of : raw signals , normalized signals , signal 
features , single source probabilities , possible events , events , 
signal sequences , signal sequence features , multisource 
probabilities , etc . 
10053 ] System memory can be coupled to the one or more 
processors and can store instructions ( e . g . , computer - read 
able instructions , computer - executable instructions , etc . ) 
executed by the one or more processors . The system 
memory can also be configured to store any of a plurality of 
other types of data generated and / or transformed by the 
described components , such as , for example , raw signals , 
normalized signals , signal features , single source probabili 
ties , possible events , events , signal sequences , signal 
sequence features , multisource probabilities , etc . 
[ 0054 ] A " network ” is defined as one or more data links 
that enable the transport of electronic data between com 
puter systems and / or modules and / or other electronic 
devices . When information is transferred or provided over a 
network or another communications connection ( either 
hardwired , wireless , or a combination of hardwired or 
wireless ) to a computer , the computer properly views the 
connection as a transmission medium . Transmissions media 
can include a network and / or data links which can be used 
to carry desired program code means in the form of com 
puter - executable instructions or data structures and which 
can be accessed by a general purpose or special purpose 
computer . Combinations of the above should also be 
included within the scope of computer - readable media . 
[ 0055 ] Further , upon reaching various computer system 
components , program code means in the form of computer 
executable instructions or data structures can be transferred 
automatically from transmission media to computer storage 
media ( devices ) ( or vice versa ) . For example , computer 
executable instructions or data structures received over a 
network or data link can be buffered in RAM within a 
network interface module ( e . g . , a “ NIC ” ) , and then eventu - 
ally transferred to computer system RAM and / or to less 
volatile computer storage media ( devices ) at a computer 
system . Thus , it should be understood that computer storage 

media ( devices ) can be included in computer system com 
ponents that also ( or even primarily ) utilize transmission 
media . 
[ 0056 ] Computer - executable instructions comprise , for 
example , instructions and data which , in response to execu 
tion at a processor , cause a general purpose computer , 
special purpose computer , or special purpose processing 
device to perform a certain function or group of functions . 
The computer executable instructions may be , for example , 
binaries , intermediate format instructions such as assembly 
language , or even source code . Although the subject matter 
has been described in language specific to structural features 
and / or methodological acts , it is to be understood that the 
subject matter defined in the appended claims is not neces 
sarily limited to the described features or acts described 
above . Rather , the described features and acts are disclosed 
as example forms of implementing the claims . 
[ 0057 ] Those skilled in the art will appreciate that the 
described aspects may be practiced in network computing 
environments with many types of computer system configu 
rations , including , personal computers , desktop computers , 
laptop computers , message processors , hand - held devices , 
wearable devices , multicore processor systems , multi - pro 
cessor systems , microprocessor - based or programmable 
consumer electronics , network PCs , minicomputers , main 
frame computers , mobile telephones , PDAs , tablets , routers , 
switches , and the like . The described aspects may also be 
practiced in distributed system environments where local 
and remote computer systems , which are linked ( either by 
hardwired data links , wireless data links , or by a combina 
tion of hardwired and wireless data links ) through a network , 
both perform tasks . In a distributed system environment , 
program modules may be located in both local and remote 
memory storage devices . 
[ 0058 ] Further , where appropriate , functions described 
herein can be performed in one or more of : hardware , 
software , firmware , digital components , or analog compo 
nents . For example , one or more Field Programmable Gate 
Arrays ( FPGAs ) and / or one or more application specific 
integrated circuits ( ASICs ) and / or one or more Tensor 
Processing Units ( TPUS ) can be programmed to carry out 
one or more of the systems and procedures described herein . 
Hardware , software , firmware , digital components , or ana 
log components can be specifically tailor - designed for a 
higher speed detection or artificial intelligence that can 
enable signal processing . In another example , computer 
code is configured for execution in one or more processors , 
and may include hardware logic / electrical circuitry con 
trolled by the computer code . These example devices are 
provided herein purposes of illustration , and are not 
intended to be limiting . Embodiments of the present disclo 
sure may be implemented in further types of devices . 
[ 0059 ] The described aspects can also be implemented in 
cloud computing environments . In this description and the 
following claims , “ cloud computing ” is defined as a model 
for enabling on - demand network access to a shared pool of 
configurable computing resources . For example , cloud com 
puting can be employed in the marketplace to offer ubiqui 
tous and convenient on - demand access to the shared pool of 
configurable computing resources ( e . g . , compute resources , 
networking resources , and storage resources ) . The shared 
pool of configurable computing resources can be provi 
sioned via virtualization and released with low effort or 
service provider interaction , and then scaled accordingly . 
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[ 0060 ] A cloud computing model can be composed of 
various characteristics such as , for example , on - demand 
self - service , broad network access , resource pooling , rapid 
elasticity , measured service , and so forth . A cloud computing 
model can also expose various service models , such as , for 
example , Software as a Service ( “ SaaS ” ) , Platform as a 
Service ( “ PaaS ” ) , and Infrastructure as a Service ( “ IaaS ” ) . A 
cloud computing model can also be deployed using different 
deployment models such as private cloud , community cloud , 
public cloud , hybrid cloud , and so forth . In this description 
and in the following claims , a “ cloud computing environ 
ment ” is an environment in which cloud computing is 
employed . 
[ 0061 ] In this description and the following claims , a " geo 
cell ” is defined as a piece of “ cell ” in a grid in any form . In 
one aspect , geo cells are arranged in a hierarchical structure . 
Cells of different geometries can be used . 
[ 0062 ] A " geohash ” is an example of a “ geo cell ” . 
[ 0063 ] In this description and the following claims , " geo 
hash ” is defined as a geocoding system which encodes a 
geographic location into a short string of letters and digits . 
Geohash is a hierarchical spatial data structure which sub 
divides space into buckets of grid shape ( e . g . , a square ) . 
Geohashes offer properties like arbitrary precision and the 
possibility of gradually removing characters from the end of 
the code to reduce its size ( and gradually lose precision ) . As 
a consequence of the gradual precision degradation , nearby 
places will often ( but not always ) present similar prefixes . 
The longer a shared prefix is , the closer the two places are . 
geo cells can be used as a unique identifier and to represent 
point data ( e . g . , in databases ) . 
[ 0064 ] In one aspect , a " geohash ” is used to refer to a 
string encoding of an area or point on the Earth . The area or 
point on the Earth may be represented ( among other possible 
coordinate systems ) as a latitude / longitude or Easting 
Northing — the choice of which is dependent on the coordi 
nate system chosen to represent an area or point on the Earth . 
geo cell can refer to an encoding of this area or point , where 
the geo cell may be a binary string comprised of 0 s and 1 
s corresponding to the area or point , or a string comprised of 
Os , 1 s , and a ternary character ( such as X ) — which is used 
to refer to a don ' t care character ( 0 or 1 ) . A geo cell can also 
be represented as a string encoding of the area or point , for 
example , one possible encoding is base - 32 , where every 5 
binary characters are encoded as an ASCII character . 
[ 0065 ] Depending on latitude , the size of an area defined 
at a specified geo cell precision can vary . In one aspect , the 
areas defined at various geo cell precisions are approxi 
mately : 

[ 0066 ] Other geo cell geometries , such as , hexagonal 
tiling , triangular tiling , etc . are also possible . For example , 
the H3 geospatial indexing system is a multi - precision 
hexagonal tiling of a sphere ( such as the Earth ) indexed with 
hierarchical linear indexes . 
[ 0067 ] In another aspect , geo cells are a hierarchical 
decomposition of a sphere ( such as the Earth ) into repre 
sentations of regions or points based a Hilbert curve ( e . g . , 
the S2 hierarchy or other hierarchies ) . Regions / points of the 
sphere can be projected into a cube and each face of the cube 
includes a quad - tree where the sphere point is projected into . 
After that , transformations can be applied and the space 
discretized . The geo cells are then enumerated on a Hilbert 
Curve ( a space - filling curve that converts multiple dimen 
sions into one dimension and preserves the locality ) . 
[ 0068 ] Due to the hierarchical nature of geo cells , any 
signal , event , entity , etc . , associated with a geo cell of a 
specified precision is by default associated with any less 
precise geo cells that contain the geo cell . For example , if a 
signal is associated with a geo cell of precision 9 , the signal 
is by default also associated with corresponding geo cells of 
precisions 1 , 2 , 3 , 4 , 5 , 6 , 7 , and 8 . Similar mechanisms are 
applicable to other tiling and geo cell arrangements . For 
example , S2 has a cell level hierarchy ranging from level 
zero ( 85 , 011 , 012 km ? ) to level 30 ( between 0 . 48 cm² to 0 . 96 
cm ? ) . 
[ 0069 ] Signal Ingestion and Normalization 
[ 0070 ] Signal ingestion modules ingest a variety of raw 
structured and / or unstructured signals on an on going basis 
and in essentially real - time . Raw signals can include social 
posts , live broadcasts , traffic camera feeds , other camera 
feeds ( e . g . , from other public cameras or from CCTV 
cameras ) , listening device feeds , 911 calls , weather data , 
planned events , IoT device data , crowd sourced traffic and 
road information , satellite data , air quality sensor data , smart 
city sensor data , public radio communication ( e . g . , among 
first responders and / or dispatchers , between air traffic con 
trollers and pilots ) , etc . The content of raw signals can 
include images , video , audio , text , etc . Generally , the signal 
ingestion modules normalize raw signals into normalized 
signals , for example , having a Time , Location , Context ( or 
“ TLC ” ) format . 
[ 0071 ] Different types of ingested signals ( e . g . , social 
media signals , web signals , and streaming signals ) can be 
used to identify events . Different types of signals can include 
different data types and different data formats . Data types 
can include audio , video , image , and text . Different formats 
can include text in XML , text in JavaScript Object Notation 
( JSON ) , text in RSS feed , plain text , video stream in 
Dynamic Adaptive Streaming over HTTP ( DASH ) , video 
stream in HTTP Live Streaming ( HLS ) , video stream in 
Real - Time Messaging Protocol ( RTMP ) , etc . 
[ 0072 ] Time ( T ) can be a time of origin or “ event time ” of 
a signal . In one aspect , a raw signal includes a time stamp 
and the time stamp is used to calculate Time ( T ) . Location 
( L ) can be anywhere across a geographic area , such as , a 
country ( e . g . , the United States ) , a State , a defined area , an 
impacted area , an area defined by a geo cell , an address , etc . 
[ 0073 ] Context indicates circumstances surrounding for 
mation / origination of a raw signal in terms that facilitate 
understanding and assessment of the raw signal . The context 
of a raw signal can be derived from express as well as 
inferred signal features of the raw signal . 
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[ 0074 ] Signal ingestion modules can include one or more 
single source classifiers . A single source classifier can com 
pute a single source probability for a raw signal from 
features of the raw signal . A single source probability can 
reflect a mathematical probability or approximation of a 
mathematical probability ( e . g . , a percentage between 
0 % - 100 % ) of an event ( e . g . , fire , accident , weather , police 
presence , shooting , etc . ) actually occurring . A single source 
classifier can be configured to compute a single source 
probability for a single event type or to compute a single 
source probability for each of a plurality of different event 
types . A single source classifier can compute a single source 
probability using artificial intelligence , machine learning , 
neural networks , logic , heuristics , etc . 
[ 0075 ] As such , single source probabilities and corre 
sponding probability details can represent Context ( C ) . 
Probability details can indicate ( e . g . , can include a hash field 
indicating ) a probability version and express and / or 
inferred ) signal features considered in a signal source prob 
ability calculation . 
0076 ] Per signal type and signal content , different nor 

malization modules can be used to extract , derive , infer , etc . 
time , location , and context from / for a raw signal . For 
example , one set of normalization modules can be config 
ured to extract / derive / infer time , location and context from / 
for social signals . Another set of normalization modules can 
be configured to extract / derive / infer time , location and con 
text from / for Web signals . A further set of normalization 
modules can be configured to extract / derive / infer time , 
location and context from / for streaming signals . 
[ 0077 ] Normalization modules for extracting / deriving / in 
ferring time , location , and context can include text process 
ing modules , NLP modules , image processing modules , 
video processing modules , etc . The modules can be used to 
extract / derive / infer data representative of time , location , and 
context for a signal . Time , Location , and Context for a signal 
can be extracted / derived / inferred from metadata and / or con 
tent of the signal . For example , NLP modules can analyze 
metadata and content of a sound clip to identify a time , 
location , and keywords ( e . g . , fire , shooter , etc . ) . An acoustic 
listener can also interpret the meaning of sounds in a sound 
clip ( e . g . , a gunshot , vehicle collision , etc . ) and convert to 
relevant context . Live acoustic listeners can determine the 
distance and direction of a sound . Similarly , image process 
ing modules can analyze metadata and pixels in an image to 
identify a time , location and keywords ( e . g . , fire , shooter , 
etc . ) . Image processing modules can also interpret the mean 
ing of parts of an image ( e . g . , a person holding a gun , flames , 
a store logo , etc . ) and convert to relevant context . Other 
modules can perform similar operations for other types of 
content including text and video . 
[ 0078 ] . Per signal type , each set of normalization modules 
can differ but may include at least some similar modules or 
may share some common modules . For example , similar ( or 
the same ) image analysis modules can be used to extract 
named entities from social signal images and public camera 
feeds . Likewise , similar ( or the same ) NLP modules can be 
used to extract named entities from social signal text and 
web text . 
[ 0079 ] In some aspects , an ingested signal includes 
expressly defined Time , Location , and Context upon inges 
tion . In other aspects , an ingested signal lacks an expressly 
defined Location and / or an expressly defined Context upon 
ingestion . In these other aspects , Location and / or Context 

can be inferred from features of an ingested signal and / or 
through reference to other data sources . 
[ 0080 ] In further aspects , Time may not be included , or an 
included time may not be given with high precision and is 
inferred . For example , a user may post an image to a social 
network which had been taken some indeterminate time 
earlier . 
[ 0081 ] Normalization modules can use named entity rec 
ognition and reference to a geo cell database to infer 
location . Named entities can be recognized in text , images , 
video , audio , or sensor data . The recognized named entities 
can be compared to named entities in geo cell entries . 
Matches indicate possible signal origination in a geographic 
area defined by a geo cell . 
[ 0082 ] As such , a normalized signal can include a Time , a 
Location , a Context ( e . g . , single source probabilities and 
probability details ) , a signal type , a signal source , and 
content . 
[ 0083 ] In one aspect , frequentist inference technique is 
used to determine a single source probability . A database 
maintains mappings between different combinations of sig 
nal properties and ratios of signals turning into events ( a 
probability ) for that combination of signal properties . The 
database is queried with the combination of signal proper 
ties . The database returns a ratio of signals having the signal 
properties turning into events . The ratio is assigned to the 
signal . A combination of signal properties can include : ( 1 ) 
event class ( e . g . , fire , accident , weather , etc . ) , ( 2 ) media type 
( e . g . , text , image , audio , etc . ) , ( 3 ) source ( e . g . , twitter , traffic 
camera , first responder radio traffic , etc . ) , and ( 4 ) geo type 
( e . g . , geo cell , region , or non - geo ) . 
[ 0084 ] In another aspect , a single source probability is 
calculated by single source classifiers ( e . g . , machine learn 
ing models , artificial intelligence , neural networks , etc . ) that 
consider hundreds , thousands , or even more signal features 
of a signal . Single source classifiers can be based on binary 
models and / or multi - class models . 
[ 0085 ] Output from a single source classifier can be 
adjusted to more accurately represent a probability that a 
signal is a “ true positive ” . For example , 1 , 000 signals with 
classifier output of 0 . 9 may include 80 % as true positives . 
Thus , single source probability can be adjusted to 0 . 8 to 
more accurately reflect probability of the signal being a True 
event . “ Calibration ” can be done in such a way that for any 
" calibrated score ” the score reflects the true probability of a 
true positive outcome . 
[ 0086 ] FIG . 1 depicts computer architecture 100 that 
facilitates ingesting and normalizing signals . As depicted , 
computer architecture 100 includes signal ingestion modules 
101 , social signals 171 , Web signals 172 , and streaming 
signals 173 . Signal ingestion modules 101 , social signals 
171 , Web signals 172 , and streaming signals 173 can be 
connected to ( or be part of ) a network , such as , for example , 
a system bus , a Local Area Network ( “ LAN ” ) , a Wide Area 
Network ( “ WAN ” ) , and even the Internet . Accordingly , 
signal ingestion modules 101 , social signals 171 , Web 
signals 172 , and streaming signals 173 as well as any other 
connected computer systems and their components can 
create and exchange message related data ( e . g . , Internet 
Protocol ( " IP " ) datagrams and other higher layer protocols 
that utilize IP datagrams , such as , Transmission Control 
Protocol ( “ TCP ” ) , Hypertext Transfer Protocol ( " HTTP ” ) , 
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Simple Mail Transfer Protocol ( “ SMTP " ) , Simple Object 
Access Protocol ( SOAP ) , etc . or using other non - datagram 
protocols ) over the network . 
[ 0087 ] Signal ingestion module ( s ) 101 can ingest raw 
signals 121 , including social signals 171 , web signals 172 , 
and streaming signals 173 ( e . g . , social posts , traffic camera 
feeds , other camera feeds , listening device feeds , 911 calls , 
weather data , planned events , IoT device data , crowd 
sourced traffic and road information , satellite data , air qual 
ity sensor data , smart city sensor data , public radio commu 
nication , etc . ) on going basis and in essentially real - time . 
Signal ingestion module ( s ) 101 include social content inges 
tion modules 174 , web content ingestion modules 176 , 
stream content ingestion modules 177 , and signal formatter 
180 . Signal formatter 180 further includes social signal 
processing module 181 , web signal processing module 182 , 
and stream signal processing modules 183 . 
[ 0088 ] For each type of signal , a corresponding ingestion 
module and signal processing module can interoperate to 
normalize the signal into a Time , Location , Context ( TLC ) 
format . For example , social content ingestion modules 174 
and social signal processing module 181 can interoperate to 
normalize social signals 171 into the TLC format . Similarly , 
web content ingestion modules 176 and web signal process 
ing module 182 can interoperate to normalize web signals 
172 into the TLC format . Likewise , stream content ingestion 
modules 177 and stream signal processing modules 183 can 
interoperate to normalize streaming signals 173 into the 
TLC format . 
[ 0089 ] In one aspect , signal content exceeding specified 
size requirements ( e . g . , audio or video ) is cached upon 
ingestion . Signal ingestion modules 101 include a URL or 
other identifier to the cached content within the context for 
the signal . 
[ 0090 ] Signal formatter 180 can include one or more 
single signal classifiers classifying ingested signals . The one 
or more single signal classifiers can assign one or more 
signal source probabilities ( e . g . , between 0 % - 100 % ) to each 
ingested signal . Each single source probability is a prob 
ability of the ingested signal being a particular category of 
event ( e . g . , fire , weather , medical , accident , police presence , 
etc . ) . Ingested signals with a sufficient single source prob 
ability ( e . g . , > = to 4 % ) are considered " elevated ” signals . 
[ 0091 ] In one aspect , signal formatter 180 includes mod 
ules for determining a single source probability as a ratio of 
signals turning into events based on the following signal 
properties : ( 1 ) event class ( e . g . , fire , accident , weather , etc . ) , 
( 2 ) media type ( e . g . , text , image , audio , etc . ) , ( 3 ) source 
( e . g . , twitter , traffic camera , first responder radio traffic , 
etc . ) , and ( 4 ) geo type ( e . g . , geo cell , region , or non - geo ) . 
Probabilities can be stored in a lookup table for different 
combinations of the signal properties . Features of a signal 
can be derived and used to query the lookup table . For 
example , the lookup table can be queried with terms ( “ acci 
dent " , " image ” , “ twitter ” , “ region ” ) . The corresponding 
ratio ( probability ) can be returned from the table . 
[ 0092 ] In another aspect , signal formatter 180 includes a 
plurality of single source classifiers ( e . g . , artificial intelli 
gence , machine learning modules , neural networks , etc . ) . 
Each single source classifier can consider hundreds , thou 
sands , or even more signal features of a signal . Signal 
features of a signal can be derived and submitted to a signal 
source classifier . The single source classifier can return a 

probability that a signal indicates a type of event . Single 
source classifiers can be binary classifiers or multi - source 
classifiers . 
10093 ) Raw classifier output can be adjusted to more 
accurately represent a probability that a signal is a “ true 
positive ” . For example , 1 , 000 signals whose raw classifier 
output is 0 . 9 may include 80 % as true positives . Thus , 
probability can be adjusted to 0 . 8 to reflect true probability 
of the signal being a true positive . " Calibration " can be done 
in such a way that for any “ calibrated score " this score 
reflects the true probability of a true positive outcome . 
[ 0094 ] Signal ingestion modules 101 can include one or 
more single source probabilities and corresponding prob 
ability details in the context of a normalized signal . Prob 
ability details can indicate a probability version and features 
used to calculate the probability . In one aspect , a probability 
version and signal feature are contained in a hash field . 
[ 0095 ] Thus in general , any of the received raw signals can 
be normalized into normalized signals including Time , 
Location , Context , signal source , signal type , and content . 
Signal ingestion modules 101 can send normalized signals 
122 to event detection infrastructure 103 . For example , 
signal ingestion modules 101 can send normalized signal 
122A , including time 123A , location 124A , context 126A , 
content 127A , type 128A , and source 129 A to event detec 
tion infrastructure 103 . Similarly , signal ingestion modules 
101 can send normalized signal 122B , including time 123B , 
location 124B , context 126B , content 127B , type 128B , and 
source 129B to event detection infrastructure 103 . Signal 
ingestion modules 101 can also send normalized signal 
122C ( depicted in FIG . 6 ) , including time 123C , location 
124C , context 126C , content 127C , type 128C , and source 
129C to event detection infrastructure 103 . 
[ 0096 ] Multi - Signal Detection 
[ 0097 ] FIG . 2 illustrates an example computer architecture 
200 that facilitates detecting an event from features derived 
from multiple signals . As depicted , computer architecture 
200 further includes event detection infrastructure 103 . 
Event infrastructure 103 can be connected to ( or be part of ) 
a network with signal ingestion modules 101 . As such , 
signal ingestion modules 101 and event detection infrastruc 
ture 103 can create and exchange message related data over 
the network 
[ 0098 ] As depicted , event detection infrastructure 103 
further includes evaluation module 206 . Evaluation module 
206 is configured to determine if features of a plurality of 
normalized signals collectively indicate an event . Evaluation 
module 206 can detect ( or not detect ) an event based on one 
or more features of one normalized signal in combination 
with one or more features of another normalized signal . 
[ 0099 ] FIG . 3 illustrates a flow chart of an example 
method 300 for detecting an event from features derived 
from multiple signals . Method 300 will be described with 
respect to the components and data in computer architecture 
200 . 
01001 Method 300 includes receiving a first signal ( 301 ) . 
For example , event detection infrastructure 103 can receive 
normalized signal 122B . Method 300 includes deriving first 
one or more features of the first signal ( 302 ) . For example , 
event detection infrastructure 103 can derive features 201 of 
normalized signal 122B . Features 201 can include and / or be 
derived from time 123B , location 124B , context 126B , 
content 127B , type 128B , and source 129B . Event detection 
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infrastructure 103 can also derive features 201 from one or 
more single source probabilities assigned to normalized 
signal 122B . 
[ 0101 ] Method 300 includes determining that the first one 
or more features do not satisfy conditions to be identified as 
an event ( 303 ) . For example , evaluation module 206 can 
determine that features 201 do not satisfy conditions to be 
identified as an event . That is , the one or more features of 
normalized signal 122B do not alone provide sufficient 
evidence of an event . In one aspect , one or more single 
source probabilities assigned to normalized signal 122B do 
not satisfy probability thresholds in thresholds 226 . 
[ 0102 ] Method 300 includes receiving a second signal 
( 304 ) . For example , event detection infrastructure 103 can 
receive normalized signal 122A . Method 300 includes deriv 
ing second one or more features of the second signal ( 305 ) . 
For example , event detection infrastructure 103 can derive 
features 202 of normalized signal 122A . Features 202 can 
include and / or be derived from time 123A , location 124A , 
context 126A , content 127A , type 128A , and source 129A . 
Event detection infrastructure 103 can also derive features 
202 from one or more single source probabilities assigned to 
normalized signal 122A . 
[ 0103 ] Method 300 includes aggregating the first one or 
more features with the second one or more features into 
aggregated features ( 306 ) . For example , evaluation module 
206 can aggregate features 201 with features 202 into 
aggregated features 203 . Evaluation module 206 can include 
an algorithm that defines and aggregates individual contri 
butions of different signal features into aggregated features . 
Aggregating features 201 and 202 can include aggregating a 
single source probability assigned to normalized signal 
122B for an event type with a signal source probability 
assigned to normalized signal 122A for the event type into 
a multisource probability for the event type . 
[ 0104 ] Method 300 includes detecting an event from the 
aggregated features ( 307 ) . For example , evaluation module 
206 can determine that aggregated features 203 satisfy 
conditions to be detected as an event . Evaluation module 
206 can detect event 224 , such as , for example , a fire , an 
accident , a shooting , a protest , etc . based on satisfaction of 
the conditions . 
10105 ] In one aspect , conditions for event identification 
can be included in thresholds 226 . Conditions can include 
threshold probabilities per event type . When a probability 
exceeds a threshold probability , evaluation module 106 can 
detect an event . A probability can be a single signal prob 
ability or a multisource ( aggregated ) probability . As such , 
evaluation module 206 can detect an event based on a 
multisource probability exceeding a probability threshold in 
thresholds 226 . 
[ 0106 ] FIG . 4 illustrates an example computer architecture 
400 that facilitates detecting an event from features derived 
from multiple signals . As depicted , event detection infra 
structure 103 further includes evaluation module 206 and 
validator 204 . Evaluation module 206 is configured to 
determine if features of a plurality of normalized signals 
indicate a possible event . Evaluation module 206 can detect 
( or not detect ) a possible event based on one or more 
features of a normalized signal . Validator 204 is configured 
to validate ( or not validate ) a possible event as an actual 
event based on one or more features of another normalized 
signal . 

[ 0107 ] FIG . 5 illustrates a flow chart of an example 
method 500 for detecting an event from features derived 
from multiple signals . Method 500 will be described with 
respect to the components and data in computer architecture 
400 . 
[ 0108 ] Method 500 includes receiving a first signal ( 501 ) . 
For example , event detection infrastructure 103 can receive 
normalized signal 122B . Method 500 includes deriving first 
one or more features of the first signal ( 502 ) . For example , 
event detection infrastructure 103 can derive features 401 of 
normalized signal 122B . Features 401 can include and / or be 
derived from time 123B , location 124B , context 126B , 
content 127B , type 128B , and source 129B . Event detection 
infrastructure 103 can also derive features 401 from one or 
more single source probabilities assigned to normalized 
signal 122B . 
[ 0109 ] Method 500 includes detecting a possible event 
from the first one or more features ( 503 ) . For example , 
evaluation module 206 can detect possible event 423 from 
features 401 . Based on features 401 , event detection infra 
structure 103 can determine that the evidence in features 401 
is not confirming of an event but is sufficient to warrant 
further investigation of an event type . In one aspect , a single 
source probability assigned to normalized signal 122B for an 
event type does not satisfy a probability threshold for full 
event detection but does satisfy a probability threshold for 
further investigation . 
[ 0110 ] Method 500 includes receiving a second signal 
( 504 ) . For example , event detection infrastructure 103 can 
receive normalized signal 122A . Method 500 includes deriv 
ing second one or more features of the second signal ( 505 ) . 
For example , event detection infrastructure 103 can derive 
features 402 of normalized signal 122A . Features 402 can 
include and / or be derived from time 123A , location 124A , 
context 126A , content 127A , type 128A , and source 129A . 
Event detection infrastructure 103 can also derive features 
402 from one or more single source probabilities assigned to 
normalized signal 122A . 
[ 0111 ] Method 500 includes validating the possible event 
as an actual event based on the second one or more features 
( 506 ) . For example , validator 204 can determine that pos 
sible event 423 in combination with features 402 provide 
sufficient evidence of an actual event . Validator 204 can 
validate possible event 423 as event 424 based on features 
402 . In one aspect , validator 204 considers a single source 
probability assigned to normalized signal 122B in view of a 
single source probability assigned to normalized signal 
122B . Validator 204 determines that the signal source prob 
abilities , when considered collectively satisfy a probability 
threshold for detecting an event . 
[ 0112 ] Forming and Detecting Events from Signal Group 
ings 
[ 0113 ] In general , a plurality of normalized ( e . g . , TLC ) 
signals can be grouped together in a signal group based on 
spatial similarity and / or temporal similarity among the plu 
rality of normalized signals and / or corresponding raw ( non 
normalized ) signals . A feature extractor can derive features 
( e . g . , percentages , counts , durations , histograms , etc . ) of the 
signal group from the plurality of normalized signals . An 
event detector can attempt to detect events from signal group 
features . 
[ 0114 ] In one aspect , a plurality of normalized ( e . g . , TLC ) 
signals are included in a signal sequence . Turning to FIG . 
6A , event detection infrastructure 103 can include sequence 
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manager 604 , feature extractor 609 , and sequence storage 
613 . Sequence manager 604 further includes time compara 
tor 606 , location comparator 607 , and deduplicator 608 . 
[ 0115 ] Time comparator 606 is configured to determine 
temporal similarity between a normalized signal and a signal 
sequence . Time comparator 606 can compare a signal time 
of a received normalized signal to a time associated with 
existing signal sequences ( e . g . , the time of the first signal in 
the signal sequence ) . Temporal similarity can be defined by 
a specified time period , such as , for example , 5 minutes , 10 
minutes , 20 minutes , 30 minutes , etc . When a normalized 
signal is received within the specified time period of a time 
associated with a signal sequence , the normalized signal can 
be considered temporally similar to signal sequence . 
[ 0116 ] Likewise , location comparator 607 is configured to 
determine spatial similarity between a normalized signal and 
a signal sequence . Location comparator 607 can compare a 
signal location of a received normalized signal to a location 
associated with existing signal sequences ( e . g . , the location 
of the first signal in the signal sequence ) . Spatial similarity 
can be defined by a geographic area , such as , for example , 
a distance radius ( e . g . , meters , miles , etc . ) , a number of geo 
cells of a specified precision , an Area of Interest ( Aol ) , etc . 
When a normalized signal is received within the geographic 
area associated with a signal sequence , the normalized signal 
can be considered spatially similar to signal sequence . 
0117 ] Deduplicator 608 is configured to determine if a 
signal is a duplicate of a previously received signal . Dedu 
plicator 608 can detect a duplicate when a normalized signal 
includes content ( e . g . , text , image , etc . ) that is essentially 
identical to previously received content ( previously received 
text , a previously received image , etc . ) . Deduplicator 608 
can also detect a duplicate when a normalized signal is a 
repost or rebroadcast of a previously received normalized 
signal . Sequence manager 604 can ignore duplicate normal 
ized signals . 
[ 0118 ] Sequence manager 604 can include a signal having 
sufficient temporal and spatial similarity to a signal sequence 
( and that is not a duplicate ) in that signal sequence . 
Sequence manager 604 can include a signal that lacks 
sufficient temporal and / or spatial similarity to any signal 
sequence ( and that is not a duplicate ) in a new signal 
sequence . A signal can be encoded into a signal sequence as 
a vector using any of a variety of algorithms including 
recurrent neural networks ( RNN ) ( Long Short Term 
Memory ( LSTM ) networks and Gated Recurrent Units 
( GRUs ) ) , convolutional neural networks , or other algo 
rithms . 
[ 0119 ] Feature extractor 609 is configured to derive fea 
tures of a signal sequence from signal data contained in the 
signal sequence . Derived features can include a percentage 
of normalized signals per geohash , a count of signals per 
time of day ( hours : minutes ) , a signal gap histogram indi 
cating a history of signal gap lengths ( e . g . , with bins for 1 
S , 5 s , 10 s , 1 m , 5 m , 10 m , 30 m ) , a count of signals per 
signal source , model output histograms indicating model 
scores , a sequent duration , count of signals per signal type , 
a number of unique users that posted social content , etc . 
However , feature extractor 609 can derive a variety of other 
features as well . Additionally , the described features can be 
of different shapes to include more or less information , such 
as , for example , gap lengths , provider signal counts , histo - 
gram bins , sequence durations , category counts , etc . 

[ 0120 ] FIG . 7 illustrates a flow chart of an example 
method 700 for forming a signal sequence . Method 700 will 
be described with respect to the components and data in 
computer architecture 600 . 
[ 0121 ] Method 700 includes receiving a normalized signal 
including time , location , context , and content ( 701 ) . For 
example , sequence manager 604 can receive normalized 
signal 622A . Method 700 includes forming a signal 
sequence including the normalized signal ( 702 ) . For 
example , time comparator 606 can compare time 623A to 
times associated with existing signal sequences . Similarly , 
location comparator 607 can compare location 124A to 
locations associated with existing signal sequences . Time 
comparator 606 and / or location comparator 607 can deter 
mine that normalized signal 122A lacks sufficient temporal 
similarity and / or lacks sufficient spatial similarity respec 
tively to existing signal sequences . Deduplicator 608 can 
determine that normalized signal 122A is not a duplicate 
normalized signal . As such , sequence manager 604 can form 
signal sequence 631 , include normalized signal 122 A in 
signal sequence 631 , and store signal sequence 631 in 
sequence storage 613 . 

[ 0122 ] Method 700 includes receiving another normalized 
signal including another time , another location , another 
context , and other content ( 703 ) . For example , sequence 
manager 604 can receive normalized signal 622B . 
[ 0123 ] Method 700 includes determining that there is 
sufficient temporal similarity between the time and the other 
time ( 704 ) . For example , time comparator 606 can compare 
time 123B to time 123A . Time comparator 606 can deter 
mine that time 123B is sufficiently similar to time 123A . 
Method 700 includes determining that there is sufficient 
spatial similarity between the location and the other location 
( 705 ) . For example , location comparator 607 can compare 
location 124B to location 124A . Location comparator 607 
can determine that location 124B has sufficient similarity to 
location 124A . 
[ 0124 ] Method 700 includes including the other normal 
ized signal in the signal sequence based on the sufficient 
temporal similarity and the sufficient spatial similarity ( 706 ) . 
For example , sequence manager 604 can include normalized 
signal 124B in signal sequence 631 and update signal 
sequence 631 in sequence storage 613 . 
[ 0125 ] Subsequently , sequence manager 604 can receive 
normalized signal 122C . Time comparator 606 can compare 
time 123C to time 123A and location comparator 607 can 
compare location 124C to location 124A . If there is suffi 
cient temporal and spatial similarity between normalized 
signal 122C and normalized signal 122A , sequence manager 
604 can include normalized signal 122C in signal sequence 
631 . On the other hand , if there is insufficient temporal 
similarity and / or insufficient spatial similarity between nor 
malized signal 122C and normalized signal 122A , sequence 
manager 604 can form signal sequence 632 . Sequence 
manager 604 can include normalized signal 122C in signal 
sequence 632 and store signal sequence 631 in sequence 
storage 613 . 
[ 0126 ] Turning to FIG . 6B , event detection infrastructure 
103 further includes event detector 611 . Event detector 611 
is configured to determine if features extracted from a signal 
sequence are indicative of an event . 
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[ 0127 ] FIG . 8 illustrates a flow chart of an example 
method 800 for detecting an event . Method 800 will be 
described with respect to the components and data in com 
puter architecture 600 . 
[ 0128 ] Method 800 includes accessing a signal sequence 
( 801 ) . For example , feature extractor 609 can access signal 
sequence 631 . Method 800 includes extracting features from 
the signal sequence ( 802 ) . For example , feature extractor 
609 can extract features 633 from signal sequence 631 . 
Method 800 includes detecting an event based on the 
extracted features ( 803 ) . For example , event detector 611 
can attempt to detect an event from features 633 . In one 
aspect , event detector 611 detects event 636 from features 
633 . In another aspect , event detector 611 does not detect an 
event from features 633 . 
[ 0129 ] Turning to FIG . 6C , sequence manager 604 can 
subsequently add normalized signal 122C to signal sequence 
631 changing the signal data contained in signal sequence 
631 . Feature extractor 609 can again access signal sequence 
631 . Feature extractor 609 can derive features 634 ( which 
differ from features 633 at least due to inclusion of normal 
ized signal 122C ) from signal sequence 631 . Event detector 
611 can attempt to detect an event from features 634 . In one 
aspect , event detector 611 detects event 636 from features 
634 . In another aspect , event detector 611 does not detect an 
event from features 634 . 
( 0130 ] In a more specific aspect , event detector 611 does 
not detect an event from features 633 . Subsequently , event 
detector 611 detects event 636 from features 634 . 
[ 0131 ] An event detection can include one or more of a 
detection identifier , a sequence identifier , and an event type 
( e . g . , accident , hazard , fire , traffic , weather , etc . ) . 
[ 0132 ] A detection identifier can include a description and 
features . The description can be a hash of the signal with the 
earliest timestamp in a signal sequence . Features can include 
features of the signal sequence . Including features provides 
understanding of how a multisource detection evolves over 
time as normalized signals are added . A detection identifier 
can be shared by multiple detections derived from the same 
signal sequence . 
[ 0133 ] A sequence identifier can include a description and 
features . The description can be a hash of all the signals 
included in the signal sequence . Features can include fea 
tures of the signal sequence . Including features permits 
multisource detections to be linked to human event cura 
tions . A sequence identifier can be unique to a group of 
signals included in a signal sequence . When signals in a 
signal sequence change ( e . g . , when a new normalized signal 
is added ) , the sequence identifier is changed . 
[ 0134 ] In one aspect , event detection infrastructure 103 
also includes one or more multisource classifiers . Feature 
extractor 609 can send extracted features to the one or more 
multisource classifiers . Per event type , the one or more 
multisource classifiers compute a probability ( e . g . , using 
artificial intelligence , machine learning , neural networks , 
etc . ) that the extracted features indicate the type of event . 
Event detector 611 can detect ( or not detect ) an event from 
the computed probabilities . 
[ 0135 ] For example , turning to FIG . 6D , multi - source 
classifier 612 is configured to assign a probability that a 
signal sequence is a type of event . Multi - source classifier 
612 formulate a detection from signal sequence features . 
Multi - source classifier 612 can implement any of a variety 
of algorithms including : logistic regression , random forest 

( RF ) , support vector machines ( SVM ) , gradient boosting 
( GBDT ) , linear , regression , etc . 
[ 0136 ] For example , multi - source classifier 612 ( e . g . , 
using machine learning , artificial intelligence , neural net 
works , etc . ) can formulate detection 641 from features 633 . 
As depicted , detection 641 includes detection ID 642 , 
sequence ID 643 , category 644 , and probability 646 . Detec 
tion 641 can be forwarded to event detector 611 . Event 
detector 611 can determine that probability 646 does not 
satisfy a detection threshold for category 644 to be indicated 
as an event . Detection 641 can also be stored in sequence 
storage 613 . 
10137 ] Subsequently , turning to FIG . 6E , multi - source 
classifier 612 ( e . g . , using machine learning , artificial intel 
ligence , neural networks , etc . ) can formulate detection 651 
from features 634 . As depicted , detection 651 includes 
detection ID 642 , sequence ID 647 , category 644 , and 
probability 648 . Detection 651 can be forwarded to event 
detector 611 . Event detector 611 can determine that prob 
ability 648 does satisfy a detection threshold for category 
644 to be indicated as an event . Detection 641 can also be 
stored in sequence storage 613 . Event detector 611 can 
output event 636 . 
10138 ] As detections age and are not determined to be 
accurate ( i . e . , are not True Positives ) , the probability 
declines that signals are “ True Positive ” detections of actual 
events . As such , a multi - source probability for a signal 
sequence , up to the last available signal , can be decayed over 
time . When a new signal comes in , the signal sequence can 
be extended by the new signal . The multi - source probability 
is recalculated for the new , extended signal sequence , and 
decay begins again . 
[ 0139 ] In general , decay can also be calculated “ ahead of 
time ” when a detection is created and a probability assigned . 
By pre - calculating decay for future points in time , down 
stream systems do not have to perform calculations to 
update decayed probabilities . Further , different event classes 
can decay at different rates . For example , a fire detection can 
decay more slowly than a crash detection because these 
types of events tend to resolve at different speeds . If a new 
signal is added to update a sequence , the pre - calculated 
decay values may be discarded . A multi - source probability 
can be re - calculated for the updated sequence and new 
pre - calculated decay values can be assigned 
[ 0140 ] Multi - source probability decay can start after a 
specified period of time ( e . g . , 3 minutes ) and decay can 
occur in accordance with a defined decay equation . Thus , 
modeling multi - source probability decay can include an 
initial static phase , a decay phase , and a final static phase . In 
one aspect , decay is initially more pronounced and then 
weakens . Thus , as a newer detection begins to age ( e . g . , by 
one minute ) it is more indicative of a possible “ false 
positive ” relative to an older event that ages by an additional 
minute . 
[ 0141 ] In one aspect , a decay equation defines exponential 
decay of multi - source probabilities . Different decay rates 
can be used for different classes . Decay can be similar to 
radioactive decay , with different tau values used to calculate 
the “ half life ” of multi - source probability for a class . Tau 
values can vary by event type . 
[ 0142 ] In FIGS . 6D and 6E , decay for signal sequence 631 
can be defined in decay parameters 114 . Sequence manager 
104 can decay multisource probabilities computed for signal 
sequence 631 in accordance with decay parameters 614 . 
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[ 0143 ] The components and data depicted in FIGS . 1 - 8 
can be integrated with and / or can interoperate with one 
another to detect events . For example , evaluation module 
206 and / or validator 204 can include and / or interoperate 
with one or more of : a sequence manager , a feature extractor , 
multi - source classifiers , or an event detector . 
[ 0144 ] FIG . 9 illustrates an example computer architecture 
900 that facilitates detecting events . The components and 
data described with respect to FIGS . 1 - 8 can also be inte 
grated with and / or can interoperate with the data and com 
ponents of computer architecture 900 to detect events . 
10145 ] As depicted , computer architecture 900 includes 
geo cell database 911 and even notification 916 . Geo cell 
database 911 and even notification 916 can be connected to 
( or be part of ) a network with signal ingestion modules 101 
and event detection infrastructure 103 . As such , geo cell 
database 911 and even notification 916 can create and 
exchange message related data over the network . 
[ 0146 ] As descried , in general , on an ongoing basis , con 
currently with signal ingestion ( and also essentially in 
real - time ) , event detection infrastructure 103 detects differ 
ent categories of ( planned and unplanned ) events ( e . g . , fire , 
police response , mass shooting , traffic accident , natural 
disaster , storm , active shooter , concerts , protests , etc . ) in 
different locations ( e . g . , anywhere across a geographic area , 
such as , the United States , a State , a defined area , an 
impacted area , an area defined by a geo cell , an address , 
etc . ) , at different times from time , location , and context 
included in normalized signals . 
[ 0147 ] Event detection infrastructure 103 can also deter 
mine an event truthfulness , event severity , and an associated 
geo cell . In one aspect , context information in a normalized 
signal increases the efficiency of determining truthfulness , 
severity , and an associated geo cell . 
[ 0148 ] Generally , an event truthfulness indicates how 
likely a detected event is actually an event ( vs . a hoax , fake , 
misinterpreted , etc . ) . Truthfulness can range from less likely 
to be true to more likely to be true . In one aspect , truthful 
ness is represented as a numerical value , such as , for 
example , from 1 ( less truthful ) to 10 ( more truthful ) or as 
percentage value in a percentage range , such as , for 
example , from 0 % ( less truthful ) to 100 % ( more truthful ) . 
Other truthfulness representations are also possible . 
[ 0149 ] Generally , an event severity indicates how severe 
an event is ( e . g . , what degree of badness , what degree of 
damage , etc . is associated with the event ) . Severity can 
range from less severe ( e . g . , a single vehicle accident 
without injuries ) to more severe ( e . g . , multi vehicle accident 
with multiple injuries and a possible fatality ) . As another 
example , a shooting event can also range from less severe 
( e . g . , one victim without life threatening injuries ) to more 
severe ( e . g . , multiple injuries and multiple fatalities ) . In one 
aspect , severity is represented as a numerical value , such as , 
for example , from 1 ( less severe ) to 5 ( more severe ) . Other 
severity representations are also possible . 
[ 0150 ] In general , event detection infrastructure 103 can 
include a geo determination module including modules for 
processing different kinds of content including location , 
time , context , text , images , audio , and video into search 
terms . The geo determination module can query a geo cell 
database with search terms formulated from normalized 
signal content . The geo cell database can return any geo cells 
having matching supplemental information . For example , if 
a search term includes a street name , a subset of one or more 

geo cells including the street name in supplemental infor 
mation can be returned to the event detection infrastructure . 
0151 ] Event detection infrastructure 103 can use the 
subset of geo cells to determine a geo cell associated with an 
event location . Events associated with a geo cell can be 
stored back into an entry for the geo cell in the geo cell 
database . Thus , over time an historical progression of events 
within a geo cell can be accumulated . 
[ 0152 ] As such , event detection infrastructure 103 can 
assign an event ID , an event time , an event location , an event 
category , an event description , an event truthfulness , and an 
event severity to each detected event . Detected events can be 
sent to relevant entities , including to mobile devices , to 
computer systems , to APIs , to data storage , etc . 
10153 ] . As depicted in computer architecture 900 , event 
detection infrastructure 103 detects events from information 
contained in normalized signals 122 . Event detection infra 
structure 103 can detect an event from a single normalized 
signal 122 or from multiple normalized signals 122 . In one 
aspect , event detection infrastructure 103 detects an event 
based on information contained in one or more normalized 
signals 122 . In another aspect , event detection infrastructure 
103 detects a possible event based on information contained 
in one or more normalized signals 122 . Event detection 
infrastructure 103 then validates the potential event as an 
event based on information contained in one or more other 
normalized signals 122 . 
[ 0154 ] As depicted , event detection infrastructure 103 
includes geo determination module 904 , categorization 
module 906 , truthfulness determination module 907 , and 
severity determination module 908 . 
[ 0155 ] Geo determination module 904 can include NLP 
modules , image analysis modules , etc . for identifying loca 
tion information from a normalized signal . Geo determina 
tion module 904 can formulate ( e . g . , location , search terms 
941 by using NLP modules to process audio , using image 
analysis modules to process images , etc . Search terms can 
include street addresses , building names , landmark names , 
location names , school names , image fingerprints , etc . Event 
detection infrastructure 103 can use a URL or identifier to 
access cached content when appropriate . 
[ 0156 ] Categorization module 906 can categorize a 
detected event into one of a plurality of different categories 
( e . g . , fire , police response , mass shooting , traffic accident , 
natural disaster , storm , active shooter , concerts , protests , 
etc . ) based on the content of normalized signals used to 
detect and / or otherwise related to an event . 
[ 0157 ) Truthfulness determination module 907 can deter 
mine the truthfulness of a detected event based on one or 
more of : source , type , age , and content of normalized signals 
used to detect and / or otherwise related to the event . Some 
signal types may be inherently more reliable than other 
signal types . For example , video from a live traffic camera 
feed may be more reliable than text in a social media post . 
Some signal sources may be inherently more reliable than 
others . For example , a social media account of a government 
agency may be more reliable than a social media account of 
an individual . The reliability of a signal can decay over time . 
f0158 ] Severity determination module 908 can determine 
the severity of a detected event based on or more of : 
location , content ( e . g . , dispatch codes , keywords , etc . ) , and 
volume of normalized signals used to detect and / or other 
wise related to an event . Events at some locations may be 
inherently more severe than events at other locations . For 
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example , an event at a hospital is potentially more severe 
than the same event at an abandoned warehouse . Event 
category can also be considered when determining severity . 
For example , an event categorized as a “ Shooting " may be 
inherently more severe than an event categorized as “ Police 
Presence ” since a shooting implies that someone has been 
injured . 
[ 0159 ] Geo cell database 911 includes a plurality of geo 
cell entries . Each geo cell entry includes a geo cell defining 
an area and corresponding supplemental information about 
things included in the defined area . The corresponding 
supplemental information can include latitude / longitude , 
street names in the area defined by the geo cell , businesses 
in the area defined by the geo cell , other Areas of Interest 
( AOIs ) ( e . g . , event venues , such as , arenas , stadiums , the 
aters , concert halls , etc . ) in the area defined by the geo cell , 
image fingerprints derived from images captured in the area 
defined by the geo cell , and prior events that have occurred 
in the area defined by the geo cell . For example , geo cell 
entry 951 includes geo cell 952 , lat / lon 953 , streets 954 , 
businesses 955 , AOIS 956 , and prior events 957 . Each event 
in prior events 957 can include a location ( e . g . , a street 
address ) , a time ( event occurrence time ) , an event category , 
an event truthfulness , an event severity , and an event 
description . Similarly , geo cell entry 961 includes geo cell 
962 , lat / lon 963 , streets 964 , businesses 965 , AOIs 966 , and 
prior events 967 . Each event in prior events 967 can include 
a location ( e . g . , a street address ) , a time ( event occurrence 
time ) , an event category , an event truthfulness , an event 
severity , and an event description . 
[ 0160 ] Other geo cell entries can include the same or 
different ( more or less ) supplemental information , for 
example , depending on infrastructure density in an area . For 
example , a geo cell entry for an urban area can contain more 
diverse supplemental information than a geo cell entry for an 
agricultural area ( e . g . , in an empty field ) . 
[ 0161 ] Geo cell database 911 can store geo cell entries in 
a hierarchical arrangement based on geo cell precision . As 
such , geo cell information of more precise geo cells is 
included in the geo cell information for any less precise geo 
cells that include the more precise geo cell . 
[ 0162 ] Geo determination module 904 can query geo cell 
database 911 with search terms 941 . Geo cell database 911 
can identify any geo cells having supplemental information 
that matches search terms 941 . For example , if search terms 
141 include a street address and a business name , geo cell 
database 911 can identify geo cells having the street name 
and business name in the area defined by the geo cell . Geo 
cell database 911 can return any identified geo cells to geo 
determination module 904 in geo cell subset 942 . 
[ 0163 ] Geo determination module can use geo cell subset 
942 to determine the location of event 935 and / or a geo cell 
associated with event 935 . As depicted , event 935 includes 
event ID 932 , time 933 , location 934 , description 936 , 
category 937 , truthfulness 938 , and severity 939 . 
10164 ) Event detection infrastructure 103 can also deter 
mine that event 935 occurred in an area defined by geo cell 
962 ( e . g . , a geohash having precision of level 7 or level 9 ) . 
For example , event detection infrastructure 103 can deter 
mine that location 934 is in the area defined by geo cell 962 . 
As such , event detection infrastructure 903 can store event 
935 in events 967 ( i . e . , historical events that have occurred 
in the area defined by geo cell 962 ) . 

0165 ) Event detection infrastructure 103 can also send 
event 935 to event notification module 916 . Event notifica 
tion module 916 can notify one or more entities about event 
134 . 
[ 0166 ] The present described aspects may be implemented 
in other specific forms without departing from its spirit or 
essential characteristics . The described aspects are to be 
considered in all respects only as illustrative and not restric 
tive . The scope is , therefore , indicated by the appended 
claims rather than by the foregoing description . All changes 
which come within the meaning and range of equivalency of 
the claims are to be embraced within their scope . 
What is claimed : 
1 . A method comprising : 
receiving a first normalized signal ; 
deriving first one or more features of the first normalized 

signal ; 
determining that the first one or more features do not 

satisfy conditions to be identified as an event ; 
receiving a second normalized signal ; 
deriving second one or more features of the second signal ; 
aggregating the first one or more features with the second 

one or more features into aggregated features ; and 
detecting an event from the aggregated features . 
2 . The method of claim 1 , wherein aggregating the first 

one or more features with the second one or more features 
into aggregated features comprises : 

detecting a possible event from the first one or more 
features ; 

validating the possible event as an actual event based on 
the second one or more features . 

3 . The method of claim 1 , further comprising including 
the first normalized signal in a signal sequence ; 

determining that the second normalized signal has suffi 
cient temporal similarity to the first normalized signal ; 

determining that the second normalized signal has suffi 
cient spatial similarity to the first normalized signal ; 
and 

including the second normalized signal in a signal 
sequence that contains the first normalized signal . 

4 . The method of claim 3 , wherein aggregating the first 
one or more features with the second one or more features 
into aggregated features comprises deriving features of the 
signal sequence from the first one or more features and the 
second one or more features . 

5 . The method of claim 4 , wherein deriving features of the 
signal sequence comprises deriving one or more of : a 
percentage , a count , a histogram , or a duration . 

6 . The method of claim 1 , wherein the first normalized 
signal is one of : a social post with geographic content , a 
social post without geographic content , an image from a 
camera feed , a 911 call , weather data , IoT device data , 
satellite data , satellite imagery , a sound clip from a listening 
device , data from air quality sensors , a sound clip from radio 
communication , crowd sourced traffic information , or crowd 
sourced road information . 

7 . The method of claim 6 , wherein the second normalized 
signal is a different one of : a social post with geographic 
content , a social post without geographic content , an image 
from a traffic camera feed , a 911 call , weather data , IoT 
device data , satellite data , satellite imagery , a sound clip 
from a listening device , data from air quality sensors , a 
sound clip from radio communication , crowd sourced traffic 
information , or crowd sourced road information . 
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8 . The method of clam 1 , wherein deriving first one or 
more features of the first normalized signal comprises deriv 
ing the first one or more features from a first single source 
probability assigned to the first normalized signal ; 

wherein deriving second one or more features of the 
second normalized signal comprises deriving the first 
one or more features from a second single source 
probability assigned to the second normalized signal ; 

wherein aggregating the first one or more features with 
the second one or more features into aggregated fea 
tures comprises aggregating the first single source 
probability and the second single source probability 
into a multisource probability ; 

wherein detecting an event from the aggregated features 
comprises detecting an event from the multisource 
probability . 

9 . A method , the method comprising : 
receiving a normalized signal including time , location , 

context , and content ; 
forming a signal sequence including the normalized sig 
nal ; 

receiving another normalized signal including another 
time , another location , another context , and other con 
tent ; 

determining that there is sufficient temporal similarity 
between normalized signal and the other normalized 
signal ; 

determining that there is sufficient spatial similarity 
between the normalized and the other normalized sig 
nal ; and 

including the other normalized signal in the signal 
sequence based on the sufficient temporal similarity 
and the sufficient spatial similarity 

10 . The method of claim 9 , wherein determining that there 
is sufficient temporal similarity between the normalized 
signal and the other normalized signal comprises determin 
ing that the time and the other time are within a specified 
time of one another . 

11 . The method of claim 9 , wherein determining that there 
is sufficient spatial similarity between the normalized and 
the other normalized signal comprises determining that the 
location and the other location are within a specified dis 
tance of one another . 

12 . The method of claim 9 , wherein determining that there 
is sufficient spatial similarity between the normalized and 

the other normalized signal comprises determining that the 
location and the other location are within a specified number 
of geo cells of one another . 

13 . The method of claim 9 , further comprising determin 
ing that the other normalized signal is not a duplicate of the 
normalized signal prior to including the other normalized 
signal in the signal sequence . 

14 . The method of claim 9 , further comprising : 
deriving one or more features of the signal sequence 

based on the normalized signal and the other normal 
ized signal ; 

detecting an event from the derived one or more features . 
15 . The method of claim of claim 14 , wherein deriving 

one or more features of the signal sequence comprise 
deriving a multisource probability for the signal sequence . 

16 . The method of claim 15 , wherein deriving a multi 
source probability indicating the probability of the normal 
ized signals in the signal sequence indicate a specified type 
of event . 

17 . A method , the method comprising : 
accessing a signal sequence of normalized signals , nor 

malized signals included in the signal sequence having 
a sufficient temporal similarity to one another and 
having a sufficient spatial similarity to one another ; 

extracting features from the signal sequence ; and 
detecting an event based on the extracted features . 
18 . The method of claim 17 , further comprising prior to 

detecting the event : 
detecting that the extracted features do not indicate the 

event ; 
adding an additional normalized signal to the signal 

sequence ; 
extracting further features from the signal sequence based 
on the additional normalized signal ; and 

wherein detecting an event based on the extracted features 
comprises detecting an event based on the further 
extracted features . 

19 . The method of claim 17 , further comprising deriving 
a multisource probability from the extracted features ; and 

wherein detecting an event based on the extracted features 
comprises detecting an event based on the multisource 
probability . 

20 . The method of claim 17 , wherein extracting features 
of the signal sequence comprises deriving one or more of : a 
percentage , a count , a histogram , or a duration . 


