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The present invention extends to methods, systems, and
computer program products for detecting events from fea-
tures derived from multiple signals. In one aspect, an event
detection infrastructure determines that characteristics of
multiple signals, when considered collectively, indicate an
event of interest to one or more parties. In another aspect, an
evaluation module determines that characteristics of one or
more signals indicate a possible event of interest to one or
more parties. A validator then determines that characteristics
of'one or more other signals validate the possible event as an
actual event of interest to the one or more parties. Signal
features can be used to compute probabilities of events
occurring.
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DETECTING EVENTS FROM FEATURES
DERIVED FROM MULTIPLE INGESTED
SIGNALS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 62/628,866, entitled
“Multi Source Validation”, filed Feb. 9, 2018 which is
incorporated herein in its entirety. This application claims
the benefit of U.S. Provisional Patent Application Ser. No.
62/654,274, entitled “Detecting Events From Multiple Sig-
nals”, filed Apr. 6, 2018 which is incorporated herein in its
entirety. This application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 62/654,277 entitled,
“Validating Possible Events With Additional Signals”, filed
Apr. 6, 2018 which is incorporated herein in its entirety. This
application claims the benefit of U.S. Provisional Patent
Application Ser. No. 62/664,001, entitled, “Normalizing
Different Types Of Ingested Signals Into A Common For-
mat”, filed Apr. 27, 2018. This application claims the benefit
of U.S. Provisional Patent Application Ser. No. 62/682,176
entitled “Detecting An Event From Multiple Sources”, filed
Jun. 8, 2018 which is incorporated herein in its entirety. This
application claims the benefit of U.S. Provisional Patent
Application Ser. No. 62/682,177 entitled “Detecting An
Event From Multi-Source Event Probability”, filed Jun. 8,
2018 which is incorporated herein in its entirety.

BACKGROUND

1. Background and Relevant Art

[0002] Entities (e.g., parents, guardians, friends, relatives,
teachers, social workers, first responders, hospitals, delivery
services, media outlets, government entities, etc.) may desire
to be made aware of relevant events (e.g., fires, accidents,
police presence, shootings, etc.) as close as possible to the
events’ occurrence. However, entities typically are not made
aware of an event until after a person observes the event (or
the event aftermath) and calls authorities.

[0003] In general, techniques that attempt to automate
event detection are unreliable. Some techniques have
attempted to mine social media data to detect the planning
of events and forecast when events might occur. However,
events can occur without prior planning and/or may not be
detectable using social media data. Further, these techniques
are not capable of meaningfully processing available data
nor are these techniques capable of differentiating false data
(e.g., hoax social media posts)

[0004] Other techniques use textual comparisons to com-
pare textual content (e.g., keywords) in a data stream to
event templates in a database. If text in a data stream
matches keywords in an event template, the data stream is
labeled as indicating an event.

[0005] Additional techniques use event specific sensors to
detect specified types of event. For example, earthquake
detectors can be used to detect earthquakes.

BRIEF SUMMARY

[0006] Examples extend to methods, systems, and com-
puter program products for detecting events from features
derived from multiple signals.
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[0007] In general, signal ingestion modules ingest differ-
ent types of raw structured and unstructured signals on an
ongoing basis. The signal ingestion modules normalize raw
signals into normalized signals having a Time, Location,
Context (or “TLC”) format. Time can be a time of origin or
“event time” of a signal. Location can be anywhere across
a geographic area, such as, a country (e.g., the United
States), a State, a defined area, an impacted area, an area
defined by a geo cell, an address, etc.

[0008] Context indicates circumstances surrounding for-
mation/origination of a raw signal in terms that facilitate
understanding and assessment of the raw signal. The context
of a raw signal can be derived from express as well as
inferred signal features of the raw signal.

[0009] Signal ingestion modules can include one or more
single source classifiers. A single source classifier can com-
pute a single source probability for a raw signal from
(inferred and/or express) signal features of the raw signal. A
single source probability can reflect a mathematical prob-
ability or approximation of a mathematical probability of an
event (e.g., fire, accident, weather, police presence, etc.)
actually occurring. A single source classifier can be config-
ured to compute a single source probability for a single event
type or to compute a single source probability for each of a
plurality of different event types.

[0010] As such, single source probabilities and corre-
sponding probability details can represent Context. Prob-
ability details can indicate (e.g., can include a hash field
indicating) a probability version and (express and/or
inferred) signal features considered in a signal source prob-
ability calculation.

[0011] Concurrently with signal ingestion, an event detec-
tion infrastructure considers features of different combina-
tions of normalized signals to attempt to identify events of
interest to various parties. For example, the event detection
infrastructure can determine that features of multiple differ-
ent signals collectively indicate an event of interest to one or
more parties. Alternately, the event detection infrastructure
can determine that features of one or more signals indicate
a possible event of interest to one or more parties. The event
detection infrastructure then determines that features of one
or more other signals validate the possible event as an actual
event of interest to the one or more parties. Signal features
can include: signal type, signal source, signal content, signal
time (T), signal location (L), signal context (C), other
circumstances of signal creation, etc.

[0012] The event detection infrastructure can group sig-
nals having sufficient temporal similarity and sufficient
spatial similarity to one another in a signal sequence. In one
aspect, any signal having sufficient temporal and spatial
similarity to another signal can be added to a signal
sequence.

[0013] In another aspect, a single source probability for a
signal is computed from features of the signal. The single
source probability can reflect a mathematical probability or
approximation of a mathematical probability of an event
actually occurring. A signal having a signal source prob-
ability above a threshold can be indicated as an “elevated”
signal. Elevated signals can be used to initiate and/or can be
added to a signal sequence. On the other hand, non-elevated
signals may not be added to a signal sequence.

[0014] A multi-source probability can be computed from
features of multiple normalized signals, including normal-
ized signals in a signal sequence. Features used to compute
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a multi-source probability can include multiple single source
probabilities as well as other features derived from multiple
signals. The multi-source probability can reflect a math-
ematical probability or approximation of a mathematical
probability of an event actually occurring based on multiple
normalized signals (e.g., a signal sequence). A multi-source
probability can change over time as normalized signals age
or when a new normalized signal is received (e.g., added to
a signal sequence).

[0015] This summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.
[0016] Additional features and advantages will be set forth
in the description which follows, and in part will be obvious
from the description, or may be learned by practice. The
features and advantages may be realized and obtained by
means of the instruments and combinations particularly
pointed out in the appended claims. These and other features
and advantages will become more fully apparent from the
following description and appended claims, or may be
learned by practice as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] In order to describe the manner in which the
above-recited and other advantages and features can be
obtained, a more particular description will be rendered by
reference to specific implementations thereof which are
illustrated in the appended drawings. Understanding that
these drawings depict only some implementations and are
not therefore to be considered to be limiting of its scope,
implementations will be described and explained with addi-
tional specificity and detail through the use of the accom-
panying drawings in which:

[0018] FIG. 1illustrates an example computer architecture
that facilitates ingesting signals.

[0019] FIG. 2 illustrates an example computer architecture
that facilitates detecting an event from features derived from
multiple signals.

[0020] FIG. 3 illustrates a flow chart of an example
method for detecting an event from features derived from
multiple signals.

[0021] FIG. 4 illustrates an example computer architecture
that facilitates detecting an event from features derived from
multiple signals.

[0022] FIG. 5 illustrates a flow chart of an example
method for detecting an event from features derived from
multiple signals

[0023] FIG. 6A illustrates an example computer architec-
ture that facilitates forming a signal sequence.

[0024] FIG. 6B illustrates an example computer architec-
ture that facilitates detecting an event from features of a
signal sequence.

[0025] FIG. 6C illustrates an example computer architec-
ture that facilitates detecting an event from features of a
signal sequence.

[0026] FIG. 6D illustrates an example computer architec-
ture that facilitates detecting an event from a multisource
probability.

[0027] FIG. 6E illustrates an example computer architec-
ture that facilitates detecting an event from a multisource
probability.
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[0028] FIG. 7 illustrates a flow chart of an example
method for forming a signal sequence.

[0029] FIG. 8 illustrates a flow of an example method for
detecting an event from a signal sequence.

[0030] FIG. 9illustrates an example computer architecture
that facilitates detecting events.

DETAILED DESCRIPTION

[0031] Examples extend to methods, systems, and com-
puter program products for detecting events from features
derived from multiple signals.

[0032] Aspects of the invention normalize raw signals into
a common format that includes Time, Location, and Context
(or “TLC”) format. Per signal type, signal ingestion modules
identify and/or infer a time, a location, and a context
associated with a signal. Different ingestion modules can be
utilized/tailored to identify time, location, and context for
different signal types. Time (T) can be a time of origin or
“event time” of a signal. Location (L) can be anywhere
across a geographic area, such as, a country (e.g., the United
States), a State, a defined area, an impacted area, an area
defined by a geo cell, an address, etc.

[0033] Context (C) indicates circumstances surrounding
formation/origination of a raw signal in terms that facilitate
understanding and assessment of the raw signal. The context
of a raw signal can be derived from express as well as
inferred signal features of the raw signal.

[0034] Signal ingestion modules can include one or more
single source classifiers. A single source classifier can com-
pute a single source probability for a raw signal from
features of the raw signal. A single source probability can
reflect a mathematical probability or approximation of a
mathematical probability (e.g., a percentage between
0%-100%) of an event actually occurring. A single source
classifier can be configured to compute a single source
probability for a single event type or to compute a single
source probability for each of a plurality of different event
types. A single source classifier can compute a single source
probability using artificial intelligence, machine learning,
neural networks, logic, heuristics, etc.

[0035] As such, single source probabilities and corre-
sponding probability details can represent Context. Prob-
ability details can indicate (e.g., can include a hash field
indicating) a probability version and (express and/or
inferred) signal features considered in a signal source prob-
ability calculation.

[0036] Concurrently with signal ingestion, the event
detection infrastructure considers features of different com-
binations of normalized signals to attempt to identify events
of interest to various parties. Features can be derived from
an individual signal and/or from a group of signals.

[0037] For example, the event detection infrastructure can
derive first features of a first normalized signal and can
derive second features of a second normalized signal. Indi-
vidual signal features can include: signal type, signal source,
signal content, signal time (T), signal location (L), signal
context (C), other circumstances of signal creation, etc. The
event detection infrastructure can detect an event of interest
to one or more parties from the first features and the second
features collectively.

[0038] Alternately, the event detection infrastructure can
derive first features of each normalized signal included in a
first one or more normalized individual signals. The event
detection infrastructure can detect a possible event of inter-
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est to one or more parties from the first features. The event
detection infrastructure can derive second features of each
normalized signal included in a second one or more indi-
vidual signals. The event detection infrastructure can vali-
date the possible event of interest as an actual event of
interest to the one or more parties from the second features.

[0039] More specifically, the event detection infrastruc-
ture can use single source probabilities to detect and/or
validate events. For example, the event detection infrastruc-
ture can detect an event of interest to one or more parties
based on a single source probability of a first signal and a
single source probability of second signal collectively. Alter-
nately, the event detection infrastructure can detect a pos-
sible event of interest to one or more parties based on single
source probabilities of a first one or more signals. The event
detection infrastructure can validate the possible event as an
actual event of interest to one or more parties based on single
source probabilities of a second one or more signals.

[0040] The event detection infrastructure can group nor-
malized signals having sufficient temporal similarity and/or
sufficient spatial similarity to one another in a signal
sequence. Temporal similarity of normalized signals can be
determined by comparing Time (T) of the normalized sig-
nals. In one aspect, temporal similarity of a normalized
signal and another normalized signal is sufficient when the
Time (T) of the normalized signal is within a specified time
of the Time (T) of the other normalized signal. A specified
time can be virtually any time value, such as, for example,
ten seconds, 30 seconds, one minute, two minutes, five
minutes, ten minutes, 30 minutes, one hour, two hours, four
hours, etc. A specified time can vary by detection type. For
example, some event types (e.g., a fire) inherently last longer
than other types of events (e.g., a shooting). Specified times
can be tailored per detection type.

[0041] Spatial similarity of normalized signals can be
determined by comparing Location (L) of the normalized
signals. In one aspect, spatial similarity of a normalized
signal and another normalized signal is sufficient when the
Location (L) of the normalized signal is within a specified
distance of the Location (L) of the other normalized signal.
A specified distance can be virtually any distance value, such
as, for example, a linear distance or radius (a number of feet,
meters, miles, kilometers, etc.), within a specified number of
geo cells of specified precision, etc.

[0042] In one aspect, any normalized signal having suffi-
cient temporal and spatial similarity to another normalized
signal can be added to a signal sequence.

[0043] In another aspect, a single source probability for a
signal is computed from features of the signal. The single
source probability can reflect a mathematical probability or
approximation of a mathematical probability of an event
actually occurring. A normalized signal having a signal
source probability above a threshold (e.g., greater than 4%)
is indicated as an “elevated” signal. Elevated signals can be
used to initiate and/or can be added to a signal sequence. On
the other hand, non-elevated signals may not be added to a
signal sequence.

[0044] In one aspect, a first threshold is considered for
signal sequence initiation and a second threshold is consid-
ered for adding additional signals to an existing signal
sequence. A normalized signal having a single source prob-
ability above the first threshold can be used to initiate a
signal sequence. After a signal sequence is initiated, any
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normalized signal having a single source probability above
the second threshold can be added to the signal sequence.

[0045] The first threshold can be greater than the second
threshold. For example, the first threshold can be 4% or 5%
and the second threshold can be 2% or 3%. Thus, signals that
are not necessarily reliable enough to initiate a signal
sequence for an event can be considered for validating a
possible event.

[0046] The event detection infrastructure can derive fea-
tures of a signal grouping, such as, a signal sequence.
Features of a signal sequence can include features of signals
in the signal sequence, including single source probabilities.
Features of a signal sequence can also include percentages,
histograms, counts, durations, etc. derived from features of
the signals included in the signal sequence. The event
detection infrastructure can detect an event of interest to one
or more parties from signal sequence features.

[0047] The event detection infrastructure can include one
or more multi-source classifiers. A multi-source classifier
can compute a multi-source probability for a signal sequence
from features of the signal sequence. The multi-source
probability can reflect a mathematical probability or
approximation of a mathematical probability of an event
(e.g., fire, accident, weather, police presence, etc.) actually
occurring based on multiple normalized signals (e.g., the
signal sequence). The multi-source probability can be
assigned as an additional signal sequence feature. A multi-
source classifier can be configured to compute a multi-
source probability for a single event type or to compute a
multi-source probability for each of a plurality of different
event types. A multi-source classifier can compute a multi-
source probability using artificial intelligence, machine
learning, neural networks, etc.

[0048] A multi-source probability can change over time as
a signal sequence ages or when a new signal is added to a
signal sequence. For example, a multi-source probability for
a signal sequence can decay over time. A multi-source
probability for a signal sequence can also be recomputed
when a new normalized signal is added to the signal
sequence.

[0049] Multi-source probability decay can start after a
specified period of time (e.g., 3 minutes) and decay can
occur in accordance with a defined decay equation. In one
aspect, a decay equation defines exponential decay of multi-
source probabilities. Different decay rates can be used for
different classes. Decay can be similar to radioactive decay,
with different tau (i.e., mean lifetime) values used to calcu-
late the “half life” of multi-source probability for different
event types.

[0050] Implementations can comprise or utilize a special
purpose or general-purpose computer including computer
hardware, such as, for example, one or more computer
and/or hardware processors (including any of Central Pro-
cessing Units (CPUs), and/or Graphical Processing Units
(GPUs), general-purpose GPUs (GPGPUs), Field Program-
mable Gate Arrays (FPGAs), application specific integrated
circuits (ASICs), Tensor Processing Units (TPUs)) and
system memory, as discussed in greater detail below. Imple-
mentations also include physical and other computer-read-
able media for carrying or storing computer-executable
instructions and/or data structures. Such computer-readable
media can be any available media that can be accessed by a
general purpose or special purpose computer system. Com-
puter-readable media that store computer-executable
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instructions are computer storage media (devices). Com-
puter-readable media that carry computer-executable
instructions are transmission media. Thus, by way of
example, and not limitation, implementations can comprise
at least two distinctly different kinds of computer-readable
media: computer storage media (devices) and transmission
media.

[0051] Computer storage media (devices) includes RAM,
ROM, EEPROM, CD-ROM, Solid State Drives (“SSDs”)
(e.g., RAM-based or Flash-based), Shingled Magnetic
Recording (“SMR”) devices, Flash memory, phase-change
memory (“PCM”), other types of memory, other optical disk
storage, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store
desired program code means in the form of computer-
executable instructions or data structures and which can be
accessed by a general purpose or special purpose computer.
[0052] In one aspect, one or more processors are config-
ured to execute instructions (e.g., computer-readable
instructions, computer-executable instructions, etc.) to per-
form any of a plurality of described operations. The one or
more processors can access information from system
memory and/or store information in system memory. The
one or more processors can (e.g., automatically) transform
information between different formats, such as, for example,
between any of: raw signals, normalized signals, signal
features, single source probabilities, possible events, events,
signal sequences, signal sequence features, multisource
probabilities, etc.

[0053] System memory can be coupled to the one or more
processors and can store instructions (e.g., computer-read-
able instructions, computer-executable instructions, etc.)
executed by the one or more processors. The system
memory can also be configured to store any of a plurality of
other types of data generated and/or transformed by the
described components, such as, for example, raw signals,
normalized signals, signal features, single source probabili-
ties, possible events, events, signal sequences, signal
sequence features, multisource probabilities, etc.

[0054] A “network” is defined as one or more data links
that enable the transport of electronic data between com-
puter systems and/or modules and/or other electronic
devices. When information is transferred or provided over a
network or another communications connection (either
hardwired, wireless, or a combination of hardwired or
wireless) to a computer, the computer properly views the
connection as a transmission medium. Transmissions media
can include a network and/or data links which can be used
to carry desired program code means in the form of com-
puter-executable instructions or data structures and which
can be accessed by a general purpose or special purpose
computer. Combinations of the above should also be
included within the scope of computer-readable media.
[0055] Further, upon reaching various computer system
components, program code means in the form of computer-
executable instructions or data structures can be transferred
automatically from transmission media to computer storage
media (devices) (or vice versa). For example, computer-
executable instructions or data structures received over a
network or data link can be buffered in RAM within a
network interface module (e.g., a “NIC”), and then eventu-
ally transferred to computer system RAM and/or to less
volatile computer storage media (devices) at a computer
system. Thus, it should be understood that computer storage
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media (devices) can be included in computer system com-
ponents that also (or even primarily) utilize transmission
media.

[0056] Computer-executable instructions comprise, for
example, instructions and data which, in response to execu-
tion at a processor, cause a general purpose computer,
special purpose computer, or special purpose processing
device to perform a certain function or group of functions.
The computer executable instructions may be, for example,
binaries, intermediate format instructions such as assembly
language, or even source code. Although the subject matter
has been described in language specific to structural features
and/or methodological acts, it is to be understood that the
subject matter defined in the appended claims is not neces-
sarily limited to the described features or acts described
above. Rather, the described features and acts are disclosed
as example forms of implementing the claims.

[0057] Those skilled in the art will appreciate that the
described aspects may be practiced in network computing
environments with many types of computer system configu-
rations, including, personal computers, desktop computers,
laptop computers, message processors, hand-held devices,
wearable devices, multicore processor systems, multi-pro-
cessor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main-
frame computers, mobile telephones, PDAs, tablets, routers,
switches, and the like. The described aspects may also be
practiced in distributed system environments where local
and remote computer systems, which are linked (either by
hardwired data links, wireless data links, or by a combina-
tion of hardwired and wireless data links) through a network,
both perform tasks. In a distributed system environment,
program modules may be located in both local and remote
memory storage devices.

[0058] Further, where appropriate, functions described
herein can be performed in one or more of: hardware,
software, firmware, digital components, or analog compo-
nents. For example, one or more Field Programmable Gate
Arrays (FPGAs) and/or one or more application specific
integrated circuits (ASICs) and/or one or more Tensor
Processing Units (TPUs) can be programmed to carry out
one or more of the systems and procedures described herein.
Hardware, software, firmware, digital components, or ana-
log components can be specifically tailor-designed for a
higher speed detection or artificial intelligence that can
enable signal processing. In another example, computer
code is configured for execution in one or more processors,
and may include hardware logic/electrical circuitry con-
trolled by the computer code. These example devices are
provided herein purposes of illustration, and are not
intended to be limiting. Embodiments of the present disclo-
sure may be implemented in further types of devices.
[0059] The described aspects can also be implemented in
cloud computing environments. In this description and the
following claims, “cloud computing” is defined as a model
for enabling on-demand network access to a shared pool of
configurable computing resources. For example, cloud com-
puting can be employed in the marketplace to offer ubiqui-
tous and convenient on-demand access to the shared pool of
configurable computing resources (e.g., compute resources,
networking resources, and storage resources). The shared
pool of configurable computing resources can be provi-
sioned via virtualization and released with low effort or
service provider interaction, and then scaled accordingly.
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[0060] A cloud computing model can be composed of
various characteristics such as, for example, on-demand
self-service, broad network access, resource pooling, rapid
elasticity, measured service, and so forth. A cloud computing
model can also expose various service models, such as, for
example, Software as a Service (“SaaS”), Platform as a
Service (“PaaS”), and Infrastructure as a Service (“laaS”). A
cloud computing model can also be deployed using different
deployment models such as private cloud, community cloud,
public cloud, hybrid cloud, and so forth. In this description
and in the following claims, a “cloud computing environ-
ment” is an environment in which cloud computing is
employed.

[0061] In this description and the following claims, a “geo
cell” is defined as a piece of “cell” in a grid in any form. In
one aspect, geo cells are arranged in a hierarchical structure.
Cells of different geometries can be used.

[0062] A “geohash” is an example of a “geo cell”.
[0063] In this description and the following claims, “geo-
hash” is defined as a geocoding system which encodes a
geographic location into a short string of letters and digits.
Geohash is a hierarchical spatial data structure which sub-
divides space into buckets of grid shape (e.g., a square).
Geohashes offer properties like arbitrary precision and the
possibility of gradually removing characters from the end of
the code to reduce its size (and gradually lose precision). As
a consequence of the gradual precision degradation, nearby
places will often (but not always) present similar prefixes.
The longer a shared prefix is, the closer the two places are.
geo cells can be used as a unique identifier and to represent
point data (e.g., in databases).

[0064] In one aspect, a “geohash” is used to refer to a
string encoding of an area or point on the Earth. The area or
point on the Earth may be represented (among other possible
coordinate systems) as a latitude/longitude or Easting/
Northing—the choice of which is dependent on the coordi-
nate system chosen to represent an area or point on the Earth.
geo cell can refer to an encoding of this area or point, where
the geo cell may be a binary string comprised of O s and 1
s corresponding to the area or point, or a string comprised of
0's, 1 s, and a ternary character (such as X)—which is used
to refer to a don’t care character (0 or 1). A geo cell can also
be represented as a string encoding of the area or point, for
example, one possible encoding is base-32, where every 5
binary characters are encoded as an ASCII character.
[0065] Depending on latitude, the size of an area defined
at a specified geo cell precision can vary. In one aspect, the
areas defined at various geo cell precisions are approxi-
mately:

GeoHash Length/Precision Width x Height

5,009.4 km x 4,992.6 km
1,252.3 km x 624.1 km
156.5 km x 156 km

39.1 km x 19.5 km
4.9 km x 4.9 km
1.2 km x 609.4 m
1529 m x 152.4 m
382mx 19m
48 mx 4.8 m
10 1.2 m x 59.5 cm
11 149 cm x 14.9 cm
12 3.7cm x 1.9 cm
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[0066] Other geo cell geometries, such as, hexagonal
tiling, triangular tiling, etc. are also possible. For example,
the H3 geospatial indexing system is a multi-precision
hexagonal tiling of a sphere (such as the Earth) indexed with
hierarchical linear indexes.

[0067] In another aspect, geo cells are a hierarchical
decomposition of a sphere (such as the Earth) into repre-
sentations of regions or points based a Hilbert curve (e.g.,
the S2 hierarchy or other hierarchies). Regions/points of the
sphere can be projected into a cube and each face of the cube
includes a quad-tree where the sphere point is projected into.
After that, transformations can be applied and the space
discretized. The geo cells are then enumerated on a Hilbert
Curve (a space-filling curve that converts multiple dimen-
sions into one dimension and preserves the locality).

[0068] Due to the hierarchical nature of geo cells, any
signal, event, entity, etc., associated with a geo cell of a
specified precision is by default associated with any less
precise geo cells that contain the geo cell. For example, if a
signal is associated with a geo cell of precision 9, the signal
is by default also associated with corresponding geo cells of
precisions 1, 2, 3, 4, 5, 6, 7, and 8. Similar mechanisms are
applicable to other tiling and geo cell arrangements. For
example, S2 has a cell level hierarchy ranging from level
zero (85,011,012 km?) to level 30 (between 0.48 cm? to 0.96
cm?).

[0069]

[0070] Signal ingestion modules ingest a variety of raw
structured and/or unstructured signals on an on going basis
and in essentially real-time. Raw signals can include social
posts, live broadcasts, traffic camera feeds, other camera
feeds (e.g., from other public cameras or from CCTV
cameras), listening device feeds, 911 calls, weather data,
planned events, IoT device data, crowd sourced traffic and
road information, satellite data, air quality sensor data, smart
city sensor data, public radio communication (e.g., among
first responders and/or dispatchers, between air traffic con-
trollers and pilots), etc. The content of raw signals can
include images, video, audio, text, etc. Generally, the signal
ingestion modules normalize raw signals into normalized
signals, for example, having a Time, Location, Context (or
“TLC”) format.

[0071] Different types of ingested signals (e.g., social
media signals, web signals, and streaming signals) can be
used to identify events. Different types of signals can include
different data types and different data formats. Data types
can include audio, video, image, and text. Different formats
can include text in XML, text in JavaScript Object Notation
(JSON), text in RSS feed, plain text, video stream in
Dynamic Adaptive Streaming over HTTP (DASH), video
stream in HTTP Live Streaming (HLS), video stream in
Real-Time Messaging Protocol (RTMP), etc.

[0072] Time (T) can be a time of origin or “event time” of
a signal. In one aspect, a raw signal includes a time stamp
and the time stamp is used to calculate Time (T). Location
(L) can be anywhere across a geographic area, such as, a
country (e.g., the United States), a State, a defined area, an
impacted area, an area defined by a geo cell, an address, etc.

[0073] Context indicates circumstances surrounding for-
mation/origination of a raw signal in terms that facilitate
understanding and assessment of the raw signal. The context
of a raw signal can be derived from express as well as
inferred signal features of the raw signal.

Signal Ingestion and Normalization
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[0074] Signal ingestion modules can include one or more
single source classifiers. A single source classifier can com-
pute a single source probability for a raw signal from
features of the raw signal. A single source probability can
reflect a mathematical probability or approximation of a
mathematical probability (e.g., a percentage between
0%-100%) of an event (e.g., fire, accident, weather, police
presence, shooting, etc.) actually occurring. A single source
classifier can be configured to compute a single source
probability for a single event type or to compute a single
source probability for each of a plurality of different event
types. A single source classifier can compute a single source
probability using artificial intelligence, machine learning,
neural networks, logic, heuristics, etc.

[0075] As such, single source probabilities and corre-
sponding probability details can represent Context (C).
Probability details can indicate (e.g., can include a hash field
indicating) a probability version and (express and/or
inferred) signal features considered in a signal source prob-
ability calculation.

[0076] Per signal type and signal content, different nor-
malization modules can be used to extract, derive, infer, etc.
time, location, and context from/for a raw signal. For
example, one set of normalization modules can be config-
ured to extract/derive/infer time, location and context from/
for social signals. Another set of normalization modules can
be configured to extract/derive/infer time, location and con-
text from/for Web signals. A further set of normalization
modules can be configured to extract/derive/infer time,
location and context from/for streaming signals.

[0077] Normalization modules for extracting/deriving/in-
ferring time, location, and context can include text process-
ing modules, NLP modules, image processing modules,
video processing modules, etc. The modules can be used to
extract/derive/infer data representative of time, location, and
context for a signal. Time, Location, and Context for a signal
can be extracted/derived/inferred from metadata and/or con-
tent of the signal. For example, NLP modules can analyze
metadata and content of a sound clip to identify a time,
location, and keywords (e.g., fire, shooter, etc.). An acoustic
listener can also interpret the meaning of sounds in a sound
clip (e.g., a gunshot, vehicle collision, etc.) and convert to
relevant context. Live acoustic listeners can determine the
distance and direction of a sound. Similarly, image process-
ing modules can analyze metadata and pixels in an image to
identify a time, location and keywords (e.g., fire, shooter,
etc.). Image processing modules can also interpret the mean-
ing of parts of an image (e.g., a person holding a gun, flames,
a store logo, etc.) and convert to relevant context. Other
modules can perform similar operations for other types of
content including text and video.

[0078] Per signal type, each set of normalization modules
can differ but may include at least some similar modules or
may share some common modules. For example, similar (or
the same) image analysis modules can be used to extract
named entities from social signal images and public camera
feeds. Likewise, similar (or the same) NLP modules can be
used to extract named entities from social signal text and
web text.

[0079] In some aspects, an ingested signal includes
expressly defined Time, Location, and Context upon inges-
tion. In other aspects, an ingested signal lacks an expressly
defined Location and/or an expressly defined Context upon
ingestion. In these other aspects, Location and/or Context
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can be inferred from features of an ingested signal and/or
through reference to other data sources.

[0080] In further aspects, Time may not be included, or an
included time may not be given with high precision and is
inferred. For example, a user may post an image to a social
network which had been taken some indeterminate time
earlier.

[0081] Normalization modules can use named entity rec-
ognition and reference to a geo cell database to infer
location. Named entities can be recognized in text, images,
video, audio, or sensor data. The recognized named entities
can be compared to named entities in geo cell entries.
Matches indicate possible signal origination in a geographic
area defined by a geo cell.

[0082] As such, a normalized signal can include a Time, a
Location, a Context (e.g., single source probabilities and
probability details), a signal type, a signal source, and
content.

[0083] In one aspect, frequentist inference technique is
used to determine a single source probability. A database
maintains mappings between different combinations of sig-
nal properties and ratios of signals turning into events (a
probability) for that combination of signal properties. The
database is queried with the combination of signal proper-
ties. The database returns a ratio of signals having the signal
properties turning into events. The ratio is assigned to the
signal. A combination of signal properties can include: (1)
event class (e.g., fire, accident, weather, etc.), (2) media type
(e.g., text, image, audio, etc.), (3) source (e.g., twitter, traffic
camera, first responder radio traffic, etc.), and (4) geo type
(e.g., geo cell, region, or non-geo).

[0084] In another aspect, a single source probability is
calculated by single source classifiers (e.g., machine learn-
ing models, artificial intelligence, neural networks, etc.) that
consider hundreds, thousands, or even more signal features
of a signal. Single source classifiers can be based on binary
models and/or multi-class models.

[0085] Output from a single source classifier can be
adjusted to more accurately represent a probability that a
signal is a “true positive”. For example, 1,000 signals with
classifier output of 0.9 may include 80% as true positives.
Thus, single source probability can be adjusted to 0.8 to
more accurately reflect probability of the signal being a True
event. “Calibration” can be done in such a way that for any
“calibrated score” the score reflects the true probability of a
true positive outcome.

[0086] FIG. 1 depicts computer architecture 100 that
facilitates ingesting and normalizing signals. As depicted,
computer architecture 100 includes signal ingestion modules
101, social signals 171, Web signals 172, and streaming
signals 173. Signal ingestion modules 101, social signals
171, Web signals 172, and streaming signals 173 can be
connected to (or be part of) a network, such as, for example,
a system bus, a Local Area Network (“LAN”), a Wide Area
Network (“WAN”), and even the Internet. Accordingly,
signal ingestion modules 101, social signals 171, Web
signals 172, and streaming signals 173 as well as any other
connected computer systems and their components can
create and exchange message related data (e.g., Internet
Protocol (“IP”) datagrams and other higher layer protocols
that utilize IP datagrams, such as, Transmission Control
Protocol (“TCP”), Hypertext Transfer Protocol (“HTTP”),
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Simple Mail Transfer Protocol (“SMTP”), Simple Object
Access Protocol (SOAP), etc. or using other non-datagram
protocols) over the network.

[0087] Signal ingestion module(s) 101 can ingest raw
signals 121, including social signals 171, web signals 172,
and streaming signals 173 (e.g., social posts, traffic camera
feeds, other camera feeds, listening device feeds, 911 calls,
weather data, planned events, loT device data, crowd
sourced traffic and road information, satellite data, air qual-
ity sensor data, smart city sensor data, public radio commu-
nication, etc.) on going basis and in essentially real-time.
Signal ingestion module(s) 101 include social content inges-
tion modules 174, web content ingestion modules 176,
stream content ingestion modules 177, and signal formatter
180. Signal formatter 180 further includes social signal
processing module 181, web signal processing module 182,
and stream signal processing modules 183.

[0088] For each type of signal, a corresponding ingestion
module and signal processing module can interoperate to
normalize the signal into a Time, Location, Context (TL.C)
format. For example, social content ingestion modules 174
and social signal processing module 181 can interoperate to
normalize social signals 171 into the TLC format. Similarly,
web content ingestion modules 176 and web signal process-
ing module 182 can interoperate to normalize web signals
172 into the TL.C format. Likewise, stream content ingestion
modules 177 and stream signal processing modules 183 can
interoperate to normalize streaming signals 173 into the
TLC format.

[0089] In one aspect, signal content exceeding specified
size requirements (e.g., audio or video) is cached upon
ingestion. Signal ingestion modules 101 include a URL or
other identifier to the cached content within the context for
the signal.

[0090] Signal formatter 180 can include one or more
single signal classifiers classifying ingested signals. The one
or more single signal classifiers can assign one or more
signal source probabilities (e.g., between 0%-100%) to each
ingested signal. Each single source probability is a prob-
ability of the ingested signal being a particular category of
event (e.g., fire, weather, medical, accident, police presence,
etc.). Ingested signals with a sufficient single source prob-
ability (e.g., >=to 4%) are considered “clevated” signals.

[0091] In one aspect, signal formatter 180 includes mod-
ules for determining a single source probability as a ratio of
signals turning into events based on the following signal
properties: (1) event class (e.g., fire, accident, weather, etc.),
(2) media type (e.g., text, image, audio, etc.), (3) source
(e.g., twitter, traffic camera, first responder radio traffic,
etc.), and (4) geo type (e.g., geo cell, region, or non-geo).
Probabilities can be stored in a lookup table for different
combinations of the signal properties. Features of a signal
can be derived and used to query the lookup table. For
example, the lookup table can be queried with terms (“acci-
dent”, “image”, “twitter”, “region”). The corresponding
ratio (probability) can be returned from the table.

[0092] In another aspect, signal formatter 180 includes a
plurality of single source classifiers (e.g., artificial intelli-
gence, machine learning modules, neural networks, etc.).
Each single source classifier can consider hundreds, thou-
sands, or even more signal features of a signal. Signal
features of a signal can be derived and submitted to a signal
source classifier. The single source classifier can return a
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probability that a signal indicates a type of event. Single
source classifiers can be binary classifiers or multi-source
classifiers.

[0093] Raw classifier output can be adjusted to more
accurately represent a probability that a signal is a “true
positive”. For example, 1,000 signals whose raw classifier
output is 0.9 may include 80% as true positives. Thus,
probability can be adjusted to 0.8 to reflect true probability
of' the signal being a true positive. “Calibration” can be done
in such a way that for any “calibrated score” this score
reflects the true probability of a true positive outcome.

[0094] Signal ingestion modules 101 can include one or
more single source probabilities and corresponding prob-
ability details in the context of a normalized signal. Prob-
ability details can indicate a probability version and features
used to calculate the probability. In one aspect, a probability
version and signal feature are contained in a hash field.

[0095] Thus in general, any of the received raw signals can
be normalized into normalized signals including Time,
Location, Context, signal source, signal type, and content.
Signal ingestion modules 101 can send normalized signals
122 to event detection infrastructure 103. For example,
signal ingestion modules 101 can send normalized signal
122A, including time 123 A, location 124A, context 126 A,
content 127A, type 128A, and source 129A to event detec-
tion infrastructure 103. Similarly, signal ingestion modules
101 can send normalized signal 122B, including time 123B,
location 124B, context 126B, content 127B, type 128B, and
source 129B to event detection infrastructure 103. Signal
ingestion modules 101 can also send normalized signal
122C (depicted in FIG. 6), including time 123C, location
124C, context 126C, content 127C , type 128C, and source
129C to event detection infrastructure 103.

[0096]

[0097] FIG. 2 illustrates an example computer architecture
200 that facilitates detecting an event from features derived
from multiple signals. As depicted, computer architecture
200 further includes event detection infrastructure 103.
Event infrastructure 103 can be connected to (or be part of)
a network with signal ingestion modules 101. As such,
signal ingestion modules 101 and event detection infrastruc-
ture 103 can create and exchange message related data over
the network.

[0098] As depicted, event detection infrastructure 103
further includes evaluation module 206. Evaluation module
206 is configured to determine if features of a plurality of
normalized signals collectively indicate an event. Evaluation
module 206 can detect (or not detect) an event based on one
or more features of one normalized signal in combination
with one or more features of another normalized signal.
[0099] FIG. 3 illustrates a flow chart of an example
method 300 for detecting an event from features derived
from multiple signals. Method 300 will be described with
respect to the components and data in computer architecture
200.

[0100] Method 300 includes receiving a first signal (301).
For example, event detection infrastructure 103 can receive
normalized signal 122B. Method 300 includes deriving first
one or more features of the first signal (302). For example,
event detection infrastructure 103 can derive features 201 of
normalized signal 122B. Features 201 can include and/or be
derived from time 123B, location 124B, context 126B,
content 127B, type 128B, and source 129B. Event detection

Multi-Signal Detection
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infrastructure 103 can also derive features 201 from one or
more single source probabilities assigned to normalized
signal 122B.

[0101] Method 300 includes determining that the first one
or more features do not satisfy conditions to be identified as
an event (303). For example, evaluation module 206 can
determine that features 201 do not satisfy conditions to be
identified as an event. That is, the one or more features of
normalized signal 122B do not alone provide sufficient
evidence of an event. In one aspect, one or more single
source probabilities assigned to normalized signal 122B do
not satisfy probability thresholds in thresholds 226.

[0102] Method 300 includes receiving a second signal
(304). For example, event detection infrastructure 103 can
receive normalized signal 122A. Method 300 includes deriv-
ing second one or more features of the second signal (305).
For example, event detection infrastructure 103 can derive
features 202 of normalized signal 122A. Features 202 can
include and/or be derived from time 123 A, location 124A,
context 126 A, content 127A, type 128A, and source 129A.
Event detection infrastructure 103 can also derive features
202 from one or more single source probabilities assigned to
normalized signal 122A.

[0103] Method 300 includes aggregating the first one or
more features with the second one or more features into
aggregated features (306). For example, evaluation module
206 can aggregate features 201 with features 202 into
aggregated features 203. Evaluation module 206 can include
an algorithm that defines and aggregates individual contri-
butions of different signal features into aggregated features.
Aggregating features 201 and 202 can include aggregating a
single source probability assigned to normalized signal
122B for an event type with a signal source probability
assigned to normalized signal 122A for the event type into
a multisource probability for the event type.

[0104] Method 300 includes detecting an event from the
aggregated features (307). For example, evaluation module
206 can determine that aggregated features 203 satisfy
conditions to be detected as an event. Evaluation module
206 can detect event 224, such as, for example, a fire, an
accident, a shooting, a protest, etc. based on satisfaction of
the conditions.

[0105] In one aspect, conditions for event identification
can be included in thresholds 226. Conditions can include
threshold probabilities per event type. When a probability
exceeds a threshold probability, evaluation module 106 can
detect an event. A probability can be a single signal prob-
ability or a multisource (aggregated) probability. As such,
evaluation module 206 can detect an event based on a
multisource probability exceeding a probability threshold in
thresholds 226.

[0106] FIG. 4 illustrates an example computer architecture
400 that facilitates detecting an event from features derived
from multiple signals. As depicted, event detection infra-
structure 103 further includes evaluation module 206 and
validator 204. Evaluation module 206 is configured to
determine if features of a plurality of normalized signals
indicate a possible event. Evaluation module 206 can detect
(or not detect) a possible event based on one or more
features of a normalized signal. Validator 204 is configured
to validate (or not validate) a possible event as an actual
event based on one or more features of another normalized
signal.
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[0107] FIG. 5 illustrates a flow chart of an example
method 500 for detecting an event from features derived
from multiple signals. Method 500 will be described with
respect to the components and data in computer architecture
400.

[0108] Method 500 includes receiving a first signal (501).
For example, event detection infrastructure 103 can receive
normalized signal 122B. Method 500 includes deriving first
one or more features of the first signal (502). For example,
event detection infrastructure 103 can derive features 401 of
normalized signal 122B. Features 401 can include and/or be
derived from time 123B, location 124B, context 126B,
content 127B, type 128B, and source 129B. Event detection
infrastructure 103 can also derive features 401 from one or
more single source probabilities assigned to normalized
signal 122B.

[0109] Method 500 includes detecting a possible event
from the first one or more features (503). For example,
evaluation module 206 can detect possible event 423 from
features 401. Based on features 401, event detection infra-
structure 103 can determine that the evidence in features 401
is not confirming of an event but is sufficient to warrant
further investigation of an event type. In one aspect, a single
source probability assigned to normalized signal 122B for an
event type does not satisty a probability threshold for full
event detection but does satisfy a probability threshold for
further investigation.

[0110] Method 500 includes receiving a second signal
(504). For example, event detection infrastructure 103 can
receive normalized signal 122A. Method 500 includes deriv-
ing second one or more features of the second signal (505).
For example, event detection infrastructure 103 can derive
features 402 of normalized signal 122A. Features 402 can
include and/or be derived from time 123 A, location 124A,
context 126 A, content 127A, type 128A, and source 129A.
Event detection infrastructure 103 can also derive features
402 from one or more single source probabilities assigned to
normalized signal 122A.

[0111] Method 500 includes validating the possible event
as an actual event based on the second one or more features
(506). For example, validator 204 can determine that pos-
sible event 423 in combination with features 402 provide
sufficient evidence of an actual event. Validator 204 can
validate possible event 423 as event 424 based on features
402. In one aspect, validator 204 considers a single source
probability assigned to normalized signal 122B in view of a
single source probability assigned to normalized signal
122B. Validator 204 determines that the signal source prob-
abilities, when considered collectively satisfy a probability
threshold for detecting an event.

[0112] Forming and Detecting Events from Signal Group-
ings
[0113] In general, a plurality of normalized (e.g., TLC)

signals can be grouped together in a signal group based on
spatial similarity and/or temporal similarity among the plu-
rality of normalized signals and/or corresponding raw (non-
normalized) signals. A feature extractor can derive features
(e.g., percentages, counts, durations, histograms, etc.) of the
signal group from the plurality of normalized signals. An
event detector can attempt to detect events from signal group
features.

[0114] In one aspect, a plurality of normalized (e.g., TLC)
signals are included in a signal sequence. Turning to FIG.
6A, event detection infrastructure 103 can include sequence
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manager 604, feature extractor 609, and sequence storage
613. Sequence manager 604 further includes time compara-
tor 606, location comparator 607, and deduplicator 608.

[0115] Time comparator 606 is configured to determine
temporal similarity between a normalized signal and a signal
sequence. Time comparator 606 can compare a signal time
of a received normalized signal to a time associated with
existing signal sequences (e.g., the time of the first signal in
the signal sequence). Temporal similarity can be defined by
a specified time period, such as, for example, 5 minutes, 10
minutes, 20 minutes, 30 minutes, etc. When a normalized
signal is received within the specified time period of a time
associated with a signal sequence, the normalized signal can
be considered temporally similar to signal sequence.

[0116] Likewise, location comparator 607 is configured to
determine spatial similarity between a normalized signal and
a signal sequence. Location comparator 607 can compare a
signal location of a received normalized signal to a location
associated with existing signal sequences (e.g., the location
of the first signal in the signal sequence). Spatial similarity
can be defined by a geographic area, such as, for example,
a distance radius (e.g., meters, miles, etc.), a number of geo
cells of a specified precision, an Area of Interest (Aol), etc.
When a normalized signal is received within the geographic
area associated with a signal sequence, the normalized signal
can be considered spatially similar to signal sequence.

[0117] Deduplicator 608 is configured to determine if a
signal is a duplicate of a previously received signal. Dedu-
plicator 608 can detect a duplicate when a normalized signal
includes content (e.g., text, image, etc.) that is essentially
identical to previously received content (previously received
text, a previously received image, etc.). Deduplicator 608
can also detect a duplicate when a normalized signal is a
repost or rebroadcast of a previously received normalized
signal. Sequence manager 604 can ignore duplicate normal-
ized signals.

[0118] Sequence manager 604 can include a signal having
sufficient temporal and spatial similarity to a signal sequence
(and that is not a duplicate) in that signal sequence.
Sequence manager 604 can include a signal that lacks
sufficient temporal and/or spatial similarity to any signal
sequence (and that is not a duplicate) in a new signal
sequence. A signal can be encoded into a signal sequence as
a vector using any of a variety of algorithms including
recurrent neural networks (RNN) (Long Short Term
Memory (LSTM) networks and Gated Recurrent Units
(GRUs)), convolutional neural networks, or other algo-
rithms.

[0119] Feature extractor 609 is configured to derive fea-
tures of a signal sequence from signal data contained in the
signal sequence. Derived features can include a percentage
of normalized signals per geohash, a count of signals per
time of day (hours:minutes), a signal gap histogram indi-
cating a history of signal gap lengths (e.g., with bins for 1
$,55s,10s, 1 m, 5 m, 10 m, 30 m), a count of signals per
signal source, model output histograms indicating model
scores, a sequent duration, count of signals per signal type,
a number of unique users that posted social content, etc.
However, feature extractor 609 can derive a variety of other
features as well. Additionally, the described features can be
of different shapes to include more or less information, such
as, for example, gap lengths, provider signal counts, histo-
gram bins, sequence durations, category counts, etc.
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[0120] FIG. 7 illustrates a flow chart of an example
method 700 for forming a signal sequence. Method 700 will
be described with respect to the components and data in
computer architecture 600.

[0121] Method 700 includes receiving a normalized signal
including time, location, context, and content (701). For
example, sequence manager 604 can receive normalized
signal 622A. Method 700 includes forming a signal
sequence including the normalized signal (702). For
example, time comparator 606 can compare time 623A to
times associated with existing signal sequences. Similarly,
location comparator 607 can compare location 124A to
locations associated with existing signal sequences. Time
comparator 606 and/or location comparator 607 can deter-
mine that normalized signal 122A lacks sufficient temporal
similarity and/or lacks sufficient spatial similarity respec-
tively to existing signal sequences. Deduplicator 608 can
determine that normalized signal 122A is not a duplicate
normalized signal. As such, sequence manager 604 can form
signal sequence 631, include normalized signal 122A in
signal sequence 631, and store signal sequence 631 in
sequence storage 613.

[0122] Method 700 includes receiving another normalized
signal including another time, another location, another
context, and other content (703). For example, sequence
manager 604 can receive normalized signal 622B.

[0123] Method 700 includes determining that there is
sufficient temporal similarity between the time and the other
time (704). For example, time comparator 606 can compare
time 123B to time 123A. Time comparator 606 can deter-
mine that time 123B is sufficiently similar to time 123A.
Method 700 includes determining that there is sufficient
spatial similarity between the location and the other location
(705). For example, location comparator 607 can compare
location 124B to location 124A. Location comparator 607
can determine that location 124B has sufficient similarity to
location 124A.

[0124] Method 700 includes including the other normal-
ized signal in the signal sequence based on the sufficient
temporal similarity and the sufficient spatial similarity (706).
For example, sequence manager 604 can include normalized
signal 124B in signal sequence 631 and update signal
sequence 631 in sequence storage 613.

[0125] Subsequently, sequence manager 604 can receive
normalized signal 122C. Time comparator 606 can compare
time 123C to time 123 A and location comparator 607 can
compare location 124C to location 124A. If there is suffi-
cient temporal and spatial similarity between normalized
signal 122C and normalized signal 122A, sequence manager
604 can include normalized signal 122C in signal sequence
631. On the other hand, if there is insufficient temporal
similarity and/or insufficient spatial similarity between nor-
malized signal 122C and normalized signal 122A, sequence
manager 604 can form signal sequence 632. Sequence
manager 604 can include normalized signal 122C in signal
sequence 632 and store signal sequence 631 in sequence
storage 613.

[0126] Turning to FIG. 6B, event detection infrastructure
103 further includes event detector 611. Event detector 611
is configured to determine if features extracted from a signal
sequence are indicative of an event.
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[0127] FIG. 8 illustrates a flow chart of an example
method 800 for detecting an event. Method 800 will be
described with respect to the components and data in com-
puter architecture 600.

[0128] Method 800 includes accessing a signal sequence
(801). For example, feature extractor 609 can access signal
sequence 631. Method 800 includes extracting features from
the signal sequence (802). For example, feature extractor
609 can extract features 633 from signal sequence 631.
Method 800 includes detecting an event based on the
extracted features (803). For example, event detector 611
can attempt to detect an event from features 633. In one
aspect, event detector 611 detects event 636 from features
633. In another aspect, event detector 611 does not detect an
event from features 633.

[0129] Turning to FIG. 6C, sequence manager 604 can
subsequently add normalized signal 122C to signal sequence
631 changing the signal data contained in signal sequence
631. Feature extractor 609 can again access signal sequence
631. Feature extractor 609 can derive features 634 (which
differ from features 633 at least due to inclusion of normal-
ized signal 122C) from signal sequence 631. Event detector
611 can attempt to detect an event from features 634. In one
aspect, event detector 611 detects event 636 from features
634. In another aspect, event detector 611 does not detect an
event from features 634.

[0130] In a more specific aspect, event detector 611 does
not detect an event from features 633. Subsequently, event
detector 611 detects event 636 from features 634.

[0131] An event detection can include one or more of a
detection identifier, a sequence identifier, and an event type
(e.g., accident, hazard, fire, traffic, weather, etc.).

[0132] A detection identifier can include a description and
features. The description can be a hash of the signal with the
earliest timestamp in a signal sequence. Features can include
features of the signal sequence. Including features provides
understanding of how a multisource detection evolves over
time as normalized signals are added. A detection identifier
can be shared by multiple detections derived from the same
signal sequence.

[0133] A sequence identifier can include a description and
features. The description can be a hash of all the signals
included in the signal sequence. Features can include fea-
tures of the signal sequence. Including features permits
multisource detections to be linked to human event cura-
tions. A sequence identifier can be unique to a group of
signals included in a signal sequence. When signals in a
signal sequence change (e.g., when a new normalized signal
is added), the sequence identifier is changed.

[0134] In one aspect, event detection infrastructure 103
also includes one or more multisource classifiers. Feature
extractor 609 can send extracted features to the one or more
multisource classifiers. Per event type, the one or more
multisource classifiers compute a probability (e.g., using
artificial intelligence, machine learning, neural networks,
etc.) that the extracted features indicate the type of event.
Event detector 611 can detect (or not detect) an event from
the computed probabilities.

[0135] For example, turning to FIG. 6D, multi-source
classifier 612 is configured to assign a probability that a
signal sequence is a type of event. Multi-source classifier
612 formulate a detection from signal sequence features.
Multi-source classifier 612 can implement any of a variety
of algorithms including: logistic regression, random forest
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(RF), support vector machines (SVM), gradient boosting
(GBDT), linear, regression, etc.

[0136] For example, multi-source classifier 612 (e.g.,
using machine learning, artificial intelligence, neural net-
works, etc.) can formulate detection 641 from features 633.
As depicted, detection 641 includes detection ID 642,
sequence 1D 643, category 644, and probability 646. Detec-
tion 641 can be forwarded to event detector 611. Event
detector 611 can determine that probability 646 does not
satisfy a detection threshold for category 644 to be indicated
as an event. Detection 641 can also be stored in sequence
storage 613.

[0137] Subsequently, turning to FIG. 6E, multi-source
classifier 612 (e.g., using machine learning, artificial intel-
ligence, neural networks, etc.) can formulate detection 651
from features 634. As depicted, detection 651 includes
detection ID 642, sequence ID 647, category 644, and
probability 648. Detection 651 can be forwarded to event
detector 611. Event detector 611 can determine that prob-
ability 648 does satisfy a detection threshold for category
644 to be indicated as an event. Detection 641 can also be
stored in sequence storage 613. Event detector 611 can
output event 636.

[0138] As detections age and are not determined to be
accurate (i.e., are not True Positives), the probability
declines that signals are “True Positive” detections of actual
events. As such, a multi-source probability for a signal
sequence, up to the last available signal, can be decayed over
time. When a new signal comes in, the signal sequence can
be extended by the new signal. The multi-source probability
is recalculated for the new, extended signal sequence, and
decay begins again.

[0139] In general, decay can also be calculated “ahead of
time” when a detection is created and a probability assigned.
By pre-calculating decay for future points in time, down-
stream systems do not have to perform calculations to
update decayed probabilities. Further, different event classes
can decay at different rates. For example, a fire detection can
decay more slowly than a crash detection because these
types of events tend to resolve at different speeds. If a new
signal is added to update a sequence, the pre-calculated
decay values may be discarded. A multi-source probability
can be re-calculated for the updated sequence and new
pre-calculated decay values can be assigned.

[0140] Multi-source probability decay can start after a
specified period of time (e.g., 3 minutes) and decay can
occur in accordance with a defined decay equation. Thus,
modeling multi-source probability decay can include an
initial static phase, a decay phase, and a final static phase. In
one aspect, decay is initially more pronounced and then
weakens. Thus, as a newer detection begins to age (e.g., by
one minute) it is more indicative of a possible “false
positive” relative to an older event that ages by an additional
minute.

[0141] Inone aspect, a decay equation defines exponential
decay of multi-source probabilities. Different decay rates
can be used for different classes. Decay can be similar to
radioactive decay, with different tau values used to calculate
the “half life” of multi-source probability for a class. Tau
values can vary by event type.

[0142] InFIGS. 6D and 6FE, decay for signal sequence 631
can be defined in decay parameters 114. Sequence manager
104 can decay multisource probabilities computed for signal
sequence 631 in accordance with decay parameters 614.
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[0143] The components and data depicted in FIGS. 1-8
can be integrated with and/or can interoperate with one
another to detect events. For example, evaluation module
206 and/or validator 204 can include and/or interoperate
with one or more of: a sequence manager, a feature extractor,
multi-source classifiers, or an event detector.

[0144] FIG. 9illustrates an example computer architecture
900 that facilitates detecting events. The components and
data described with respect to FIGS. 1-8 can also be inte-
grated with and/or can interoperate with the data and com-
ponents of computer architecture 900 to detect events.
[0145] As depicted, computer architecture 900 includes
geo cell database 911 and even notification 916. Geo cell
database 911 and even notification 916 can be connected to
(or be part of) a network with signal ingestion modules 101
and event detection infrastructure 103. As such, geo cell
database 911 and even notification 916 can create and
exchange message related data over the network.

[0146] As descried, in general, on an ongoing basis, con-
currently with signal ingestion (and also essentially in
real-time), event detection infrastructure 103 detects differ-
ent categories of (planned and unplanned) events (e.g., fire,
police response, mass shooting, traffic accident, natural
disaster, storm, active shooter, concerts, protests, etc.) in
different locations (e.g., anywhere across a geographic area,
such as, the United States, a State, a defined area, an
impacted area, an area defined by a geo cell, an address,
etc.), at different times from time, location, and context
included in normalized signals.

[0147] Event detection infrastructure 103 can also deter-
mine an event truthfulness, event severity, and an associated
geo cell. In one aspect, context information in a normalized
signal increases the efficiency of determining truthfulness,
severity, and an associated geo cell.

[0148] Generally, an event truthfulness indicates how
likely a detected event is actually an event (vs. a hoax, fake,
misinterpreted, etc.). Truthfulness can range from less likely
to be true to more likely to be true. In one aspect, truthful-
ness is represented as a numerical value, such as, for
example, from 1 (less truthful) to 10 (more truthful) or as
percentage value in a percentage range, such as, for
example, from 0% (less truthful) to 100% (more truthful).
Other truthfulness representations are also possible.

[0149] Generally, an event severity indicates how severe
an event is (e.g., what degree of badness, what degree of
damage, etc. is associated with the event). Severity can
range from less severe (e.g., a single vehicle accident
without injuries) to more severe (e.g., multi vehicle accident
with multiple injuries and a possible fatality). As another
example, a shooting event can also range from less severe
(e.g., one victim without life threatening injuries) to more
severe (e.g., multiple injuries and multiple fatalities). In one
aspect, severity is represented as a numerical value, such as,
for example, from 1 (less severe) to 5 (more severe). Other
severity representations are also possible.

[0150] In general, event detection infrastructure 103 can
include a geo determination module including modules for
processing different kinds of content including location,
time, context, text, images, audio, and video into search
terms. The geo determination module can query a geo cell
database with search terms formulated from normalized
signal content. The geo cell database can return any geo cells
having matching supplemental information. For example, if
a search term includes a street name, a subset of one or more
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geo cells including the street name in supplemental infor-
mation can be returned to the event detection infrastructure.
[0151] Event detection infrastructure 103 can use the
subset of geo cells to determine a geo cell associated with an
event location. Events associated with a geo cell can be
stored back into an entry for the geo cell in the geo cell
database. Thus, over time an historical progression of events
within a geo cell can be accumulated.

[0152] As such, event detection infrastructure 103 can
assign an event ID, an event time, an event location, an event
category, an event description, an event truthfulness, and an
event severity to each detected event. Detected events can be
sent to relevant entities, including to mobile devices, to
computer systems, to APIs, to data storage, etc.

[0153] As depicted in computer architecture 900, event
detection infrastructure 103 detects events from information
contained in normalized signals 122. Event detection infra-
structure 103 can detect an event from a single normalized
signal 122 or from multiple normalized signals 122. In one
aspect, event detection infrastructure 103 detects an event
based on information contained in one or more normalized
signals 122. In another aspect, event detection infrastructure
103 detects a possible event based on information contained
in one or more normalized signals 122. Event detection
infrastructure 103 then validates the potential event as an
event based on information contained in one or more other
normalized signals 122.

[0154] As depicted, event detection infrastructure 103
includes geo determination module 904, categorization
module 906, truthfulness determination module 907, and
severity determination module 908.

[0155] Geo determination module 904 can include NLP
modules, image analysis modules, etc. for identifying loca-
tion information from a normalized signal. Geo determina-
tion module 904 can formulate (e.g., location) search terms
941 by using NLP modules to process audio, using image
analysis modules to process images, etc. Search terms can
include street addresses, building names, landmark names,
location names, school names, image fingerprints, etc. Event
detection infrastructure 103 can use a URL or identifier to
access cached content when appropriate.

[0156] Categorization module 906 can categorize a
detected event into one of a plurality of different categories
(e.g., fire, police response, mass shooting, traffic accident,
natural disaster, storm, active shooter, concerts, protests,
etc.) based on the content of normalized signals used to
detect and/or otherwise related to an event.

[0157] Truthfulness determination module 907 can deter-
mine the truthfulness of a detected event based on one or
more of: source, type, age, and content of normalized signals
used to detect and/or otherwise related to the event. Some
signal types may be inherently more reliable than other
signal types. For example, video from a live traffic camera
feed may be more reliable than text in a social media post.
Some signal sources may be inherently more reliable than
others. For example, a social media account of a government
agency may be more reliable than a social media account of
an individual. The reliability of a signal can decay over time.
[0158] Severity determination module 908 can determine
the severity of a detected event based on or more of:
location, content (e.g., dispatch codes, keywords, etc.), and
volume of normalized signals used to detect and/or other-
wise related to an event. Events at some locations may be
inherently more severe than events at other locations. For
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example, an event at a hospital is potentially more severe
than the same event at an abandoned warehouse. Event
category can also be considered when determining severity.
For example, an event categorized as a “Shooting” may be
inherently more severe than an event categorized as “Police
Presence” since a shooting implies that someone has been
injured.

[0159] Geo cell database 911 includes a plurality of geo
cell entries. Each geo cell entry includes a geo cell defining
an area and corresponding supplemental information about
things included in the defined area. The corresponding
supplemental information can include latitude/longitude,
street names in the area defined by the geo cell, businesses
in the area defined by the geo cell, other Areas of Interest
(AOIs) (e.g., event venues, such as, arenas, stadiums, the-
aters, concert halls, etc.) in the area defined by the geo cell,
image fingerprints derived from images captured in the area
defined by the geo cell, and prior events that have occurred
in the area defined by the geo cell. For example, geo cell
entry 951 includes geo cell 952, lat/lon 953, streets 954,
businesses 955, AOIs 956, and prior events 957. Each event
in prior events 957 can include a location (e.g., a street
address), a time (event occurrence time), an event category,
an event truthfulness, an event severity, and an event
description. Similarly, geo cell entry 961 includes geo cell
962, lat/lon 963, streets 964, businesses 965, AOIs 966, and
prior events 967. Each event in prior events 967 can include
a location (e.g., a street address), a time (event occurrence
time), an event category, an event truthfulness, an event
severity, and an event description.

[0160] Other geo cell entries can include the same or
different (more or less) supplemental information, for
example, depending on infrastructure density in an area. For
example, a geo cell entry for an urban area can contain more
diverse supplemental information than a geo cell entry for an
agricultural area (e.g., in an empty field).

[0161] Geo cell database 911 can store geo cell entries in
a hierarchical arrangement based on geo cell precision. As
such, geo cell information of more precise geo cells is
included in the geo cell information for any less precise geo
cells that include the more precise geo cell.

[0162] Geo determination module 904 can query geo cell
database 911 with search terms 941. Geo cell database 911
can identify any geo cells having supplemental information
that matches search terms 941. For example, if search terms
141 include a street address and a business name, geo cell
database 911 can identify geo cells having the street name
and business name in the area defined by the geo cell. Geo
cell database 911 can return any identified geo cells to geo
determination module 904 in geo cell subset 942.

[0163] Geo determination module can use geo cell subset
942 to determine the location of event 935 and/or a geo cell
associated with event 935. As depicted, event 935 includes
event 1D 932, time 933, location 934, description 936,
category 937, truthfulness 938, and severity 939.

[0164] Event detection infrastructure 103 can also deter-
mine that event 935 occurred in an area defined by geo cell
962 (e.g., a geohash having precision of level 7 or level 9).
For example, event detection infrastructure 103 can deter-
mine that location 934 is in the area defined by geo cell 962.
As such, event detection infrastructure 903 can store event
935 in events 967 (i.e., historical events that have occurred
in the area defined by geo cell 962).
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[0165] Event detection infrastructure 103 can also send
event 935 to event notification module 916. Event notifica-
tion module 916 can notify one or more entities about event
134.

[0166] The present described aspects may be implemented
in other specific forms without departing from its spirit or
essential characteristics. The described aspects are to be
considered in all respects only as illustrative and not restric-
tive. The scope is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed:

1. A method comprising:

receiving a first normalized signal;

deriving first one or more features of the first normalized

signal;

determining that the first one or more features do not

satisfy conditions to be identified as an event;
receiving a second normalized signal;

deriving second one or more features of the second signal;

aggregating the first one or more features with the second

one or more features into aggregated features; and
detecting an event from the aggregated features.

2. The method of claim 1, wherein aggregating the first
one or more features with the second one or more features
into aggregated features comprises:

detecting a possible event from the first one or more

features;

validating the possible event as an actual event based on

the second one or more features.
3. The method of claim 1, further comprising including
the first normalized signal in a signal sequence;
determining that the second normalized signal has suffi-
cient temporal similarity to the first normalized signal;

determining that the second normalized signal has suffi-
cient spatial similarity to the first normalized signal;
and

including the second normalized signal in a signal

sequence that contains the first normalized signal.

4. The method of claim 3, wherein aggregating the first
one or more features with the second one or more features
into aggregated features comprises deriving features of the
signal sequence from the first one or more features and the
second one or more features.

5. The method of claim 4, wherein deriving features of the
signal sequence comprises deriving one or more of: a
percentage, a count, a histogram, or a duration.

6. The method of claim 1, wherein the first normalized
signal is one of: a social post with geographic content, a
social post without geographic content, an image from a
camera feed, a 911 call, weather data, IoT device data,
satellite data, satellite imagery, a sound clip from a listening
device, data from air quality sensors, a sound clip from radio
communication, crowd sourced traffic information, or crowd
sourced road information.

7. The method of claim 6, wherein the second normalized
signal is a different one of: a social post with geographic
content, a social post without geographic content, an image
from a traffic camera feed, a 911 call, weather data, IoT
device data, satellite data, satellite imagery, a sound clip
from a listening device, data from air quality sensors, a
sound clip from radio communication, crowd sourced traffic
information, or crowd sourced road information.
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8. The method of clam 1, wherein deriving first one or
more features of the first normalized signal comprises deriv-
ing the first one or more features from a first single source
probability assigned to the first normalized signal;
wherein deriving second one or more features of the
second normalized signal comprises deriving the first
one or more features from a second single source
probability assigned to the second normalized signal;

wherein aggregating the first one or more features with
the second one or more features into aggregated fea-
tures comprises aggregating the first single source
probability and the second single source probability
into a multisource probability;

wherein detecting an event from the aggregated features

comprises detecting an event from the multisource
probability.

9. A method, the method comprising:

receiving a normalized signal including time, location,

context, and content;

forming a signal sequence including the normalized sig-

nal;

receiving another normalized signal including another

time, another location, another context, and other con-
tent;

determining that there is sufficient temporal similarity

between normalized signal and the other normalized
signal;

determining that there is sufficient spatial similarity

between the normalized and the other normalized sig-
nal; and

including the other normalized signal in the signal

sequence based on the sufficient temporal similarity
and the sufficient spatial similarity

10. The method of claim 9, wherein determining that there
is sufficient temporal similarity between the normalized
signal and the other normalized signal comprises determin-
ing that the time and the other time are within a specified
time of one another.

11. The method of claim 9, wherein determining that there
is sufficient spatial similarity between the normalized and
the other normalized signal comprises determining that the
location and the other location are within a specified dis-
tance of one another.

12. The method of claim 9, wherein determining that there
is sufficient spatial similarity between the normalized and
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the other normalized signal comprises determining that the
location and the other location are within a specified number
of geo cells of one another.

13. The method of claim 9, further comprising determin-
ing that the other normalized signal is not a duplicate of the
normalized signal prior to including the other normalized
signal in the signal sequence.

14. The method of claim 9, further comprising:

deriving one or more features of the signal sequence

based on the normalized signal and the other normal-
ized signal;

detecting an event from the derived one or more features.

15. The method of claim of claim 14, wherein deriving
one or more features of the signal sequence comprise
deriving a multisource probability for the signal sequence.

16. The method of claim 15, wherein deriving a multi-
source probability indicating the probability of the normal-
ized signals in the signal sequence indicate a specified type
of event.

17. A method, the method comprising:

accessing a signal sequence of normalized signals, nor-

malized signals included in the signal sequence having

a sufficient temporal similarity to one another and

having a sufficient spatial similarity to one another;
extracting features from the signal sequence; and
detecting an event based on the extracted features.

18. The method of claim 17, further comprising prior to
detecting the event:

detecting that the extracted features do not indicate the

event;

adding an additional normalized signal to the signal

sequence;

extracting further features from the signal sequence based

on the additional normalized signal; and

wherein detecting an event based on the extracted features

comprises detecting an event based on the further
extracted features.

19. The method of claim 17, further comprising deriving
a multisource probability from the extracted features; and

wherein detecting an event based on the extracted features

comprises detecting an event based on the multisource
probability.

20. The method of claim 17, wherein extracting features
of the signal sequence comprises deriving one or more of: a
percentage, a count, a histogram, or a duration.
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