
(19) United States
US 20070294.675A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0294.675 A1
Barraclough et al. (43) Pub. Date: Dec. 20, 2007

(54) METHOD AND APPARATUS FOR
HANDLING EXCEPTIONS DURING
BNDING TO NATIVE CODE

(75) Inventors: Gavin Barraclough, Manchester
(GB); Kit M. Wan, Oldham (GB);
Abdul R. Hummaida, Manchester
(GB)

Correspondence Address:
WILMERHALEABOSTON
6O STATE STREET
BOSTON, MA 02109

(73) Assignee: Transitive Limited, Manchester
(GB)

(21) Appl. No.: 11/546,012

(22) Filed: Oct. 10, 2006

(30) Foreign Application Priority Data

Jun. 20, 2006 (GB) GBO612149.5

28 17

Native
Code

18

15

7

Subject Code

Subject Operating System

Subject Processor

Subject Translator

27
Operating System

Target Processor

Publication Classification

(51) Int. Cl.
G06F 9/45 (2006.01)

(52) U.S. Cl. ... 717/137
(57) ABSTRACT

A method of handling exceptions during native binding
under program code conversion from Subject code (17)
executable by a Subject computing architecture to target
code (21) executable by a target computing architecture.
Performing native binding executes a portion of native code
(28) in place of translating a portion of the subject code (17)
into the target code (21). When an exception occurs during
the portion of native code (28), the method comprises saving
a target state (T) which represents a current point of
execution in the target computing architecture for the por
tion of native code (28), and creating a subject state (S')
which represents an emulated point of execution in the
Subject computing architecture. The exception is handled
through a subject exception handler (170, 170") with refer
ence to the Subject state (S'). Such that, upon resuming
execution from the exception using the provided subject
state (S'), the saved target state (T) is restored to resume
execution in the section of portion of native code (28). In one
embodiment, the subject state (S') links to the saved target
state (T) through a recovery unit (192).

19 21

Translated Code
(Target Code)

20

13

10

Patent Application Publication Dec. 20, 2007 Sheet 1 of 8 US 2007/0294.675 A1

7

Subject Code

Subject Operating System

Subject Processor

E-5

17 19 21

Translated Code
(Target Code)

Translator

E-27
Operating System

Target Processor

28

Native Subject
Code Code

20
18

13
15

10

Fig. 1

Patent Application Publication Dec. 20, 2007 Sheet 2 of 8 US 2007/0294.675 A1

17a

Subject Code Main
Executable

17b

17C Subject Library
Function A

Subject Library
Function B

Translator 19

Target Code
Target Library 28

2 la Function A
Native Library
Function B

Target Operating System 20

Target Processor 13

Fig. 2

Patent Application Publication Dec. 20, 2007 Sheet 3 of 8 US 2007/0294.675 A1

Subject Code Subject Exception
Main Executable Handler

Translator 19

Target Code Translated Subject
Main Executable Exception Handler

Target Operating System 20

Target Processor 13

Fig. 3

Patent Application Publication Dec. 20, 2007 Sheet 4 of 8 US 2007/0294.675 A1

Subject Exception
Handler

Fig. 4

Patent Application Publication Dec. 20, 2007 Sheet 5 of 8 US 2007/0294.675 A1

17

Caller
Subject Code

Subject
State S

Target
State T

128
Native Code Native

Library Function B Local Data

Subject
State S'

Pass to Subject
Exception Handler

Fig. 5

Patent Application Publication Dec. 20, 2007 Sheet 6 of 8 US 2007/0294.675 A1

7 19

Subject

Native Code
Library

Function B

170

Exception
Handler

Recovery
Code

Translated
Subject

Exception
Handler

171

Fig. 6

Patent Application Publication Dec. 20, 2007 Sheet 7 of 8 US 2007/0294.675 A1

Target Code

Translator Code

28

21

9

7
Recovery Code

Subject Code

Subject Program Area

Subject Dynamic Area

17

175

18

Fig. 7

Patent Application Publication Dec. 20, 2007 Sheet 8 of 8 US 2007/0294.675 A1

801

EXCEPTION OCCOURS 808
WHILE EXECUTING

NATIVE BOUND CODE RESUMEXECUTION
NATIVE BOUND CODE

SAVE 1. 807
CURRENT TARGET STATE LNK TO SAVED

(T) TARGET STATE
(T)

806 CREATE
SUBJECT STATE (S')

SPS, PCS RESUME USENG
SUBJECT STATE

(S')

HANDLE EXCEPTION
USING SUBJECT STATE

(S')

RESUME TO NATIVE
BOUND CODE2

YES

Fig. 8

US 2007/0294.675 A1

METHOD AND APPARATUS FOR
HANDLING EXCEPTIONS DURING

BNDING TO NATIVE CODE

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application claims benefit of the following
Patent Application:
U.K. Patent Application No. GB0612149.5, filed Jun. 20,
2006, which is hereby incorporated by reference in its
entirety.

FIELD OF THE INVENTION

0002 The present invention relates generally to the field
of computers and computer Software and, more particularly,
to program code conversion methods and apparatus useful,
for example, in code translators, emulators and accelerators
which convert program code.

BACKGROUND OF THE INVENTION

0003. In both embedded and non-embedded CPUs, there
are predominant Instruction Set Architectures (ISAs) for
which large bodies of software exist that could be “accel
erated for performance, or “translated to a myriad of
capable processors that could present better cost/perfor
mance benefits, provided that they could transparently
access the relevant software. One also finds dominant CPU
architectures that are locked in time to their ISA, and cannot
evolve in performance or market reach. Such CPUs would
benefit from a software-oriented processor co architecture.
0004 PCT application WO00/22521 (also published as
US2002/0100030A), which is incorporated herein by refer
ence, discloses program code conversion methods and appa
ratus to facilitate Such acceleration, translation and co
architecture capabilities as may be employed in
embodiments of the present invention.
0005 Performing program code conversion brings over
heads in the conversion process, compared with native
execution of a Subject program on a Subject processor. A
Subject program usually consists of multiple units of subject
code, including a subject executable and a number of subject
libraries, some of which may be proprietary and some of
which are provided as part of the Subject operating system.
As the Subject program runs, control flow passes between
these different units of subject code as function calls are
made to the Subject libraries. In some circumstances, native
versions of certain subject libraries may be available on the
target architecture.
0006 PCT application WO2005/008478 (also published
as US2005/0015781A), which is incorporated herein by
reference, discloses a native binding technique for inserting
calls to native functions during translation of subject code to
target code, Such that function calls in the Subject program
to Subject code functions are replaced in target code with
calls to native equivalents of the same functions. This avoids
the overhead of translating the subject versions of those
functions. In addition, the native version may be a much
more efficient implementation of the same functionality, as
the native version can better exploit architectural features of
the target architecture which may not be available on the
Subject architecture.
0007 Although the native binding technique is very
useful, the inventors have now identified in that a difficulty

Dec. 20, 2007

arises in relation to exception handling. An exception is a
condition that changes the normal control flow in a program.
An exception indicates that a condition has occurred some
where within the system that requires the attention of the
processor, and the exception usually needs to be handled
before processing can continue. Exceptions can be subdi
vided into various different types such as interrupts, faults,
traps or aborts. The terminology varies between different
architectures, and particular types or categories of excep
tions may be unique to particular architectures.
0008 Undertaking the native binding mechanism reduces
overhead in the translation process, such as the work of
maintaining an accurate subject state. However, the execu
tion of such native code also brings difficulties such as in the
reporting of a Subject state to a subject exception handler.
Further, difficulties have now been identified in relation to
resuming execution of the Subject program after the excep
tion has been handled, and particularly where it is desired to
resume execution of the native code.

SUMMARY OF THE INVENTION

0009. According to the present invention there is pro
vided an apparatus and method as set forth in the appended
claims. Preferred features of the invention will be apparent
from the dependent claims, and the description which fol
lows.
0010. The following is a summary of various aspects and
advantages realizable according to embodiments of the
invention. It is provided as an introduction to assist those
skilled in the art to more rapidly assimilate the detailed
design discussion that ensues and does not and is not
intended in any way to limit the scope of the claims that are
appended hereto.
0011. In particular, the inventors have developed meth
ods directed at program code conversion, which are particu
larly useful in connection with a run-time translator that
provides dynamic binary translation of Subject program code
into target code.
0012. In one aspect of the present invention there is
provided a method of handling exceptions during native
binding under program code conversion from Subject code
executable by a Subject computing architecture to target
code executable by a target computing architecture. Per
forming native binding executes a portion of native code,
usually in place of translating a portion of the Subject code
into the target code. When an exception occurs during
execution of the native bound code, the method comprises
saving a target State which represents a current point of
execution in the target computing architecture for the native
bound code, providing a Subject state, and handling the
exception with reference to the Subject state. Such that, upon
resuming execution from the exception using the Subject
state, the saved target state is restored to resume execution
of the native bound code.
0013. In the example embodiments, the subject state
represents a point of execution in the Subject computing
architecture, which is emulated by the target computing
platform. Particularly, the Subject state may include a stack
pointer to a subject stack data structure in the memory of the
target computing platform used to emulate a procedure stack
(or control stack) of the subject architecture. Conveniently,
the target state is saved to the Subject Stack, such that the
Subject Stack pointer links to the stored target state. Further,
in the example embodiments, execution of the native bound

US 2007/0294.675 A1

code uses the subject stack. Further still, in example embodi
ments the Subject state includes a modified program counter
which is used to redirect execution control when returning
from handling the exception. In some embodiments, a
recovery routine is performed which links from the subject
state to the saved target state.
0014. The present invention also extends to a translator
apparatus arranged to perform the embodiments of the
invention discussed herein. Also, the present invention
extends to computer-readable storage medium having
recorded thereon instructions which may be implemented by
a computer to perform any of the methods defined herein.
0015. At least some embodiments of the invention may
be constructed, partially or wholly, using dedicated hard
ware. Optionally, the target computing platform is provided
as a function-specific dedicated translator apparatus.
0016 Terms such as module or unit used herein may
include, but are not limited to, a hardware device. Such as a
Field Programmable Gate Array (FPGA) or Application
Specific Integrated Circuit (ASIC), which performs certain
tasks. Alternatively, elements of the invention may be con
figured to reside on an addressable storage medium and be
configured to execute on one or more processors. Thus,
functional elements of the invention may in Some embodi
ments include, by way of example, components, such as
Software components, object-oriented Software components,
class components and task components, processes, func
tions, attributes, procedures, Subroutines, segments of pro
gram code, drivers, firmware, microcode, circuitry, data,
databases, data structures, tables, arrays, and variables.
Further, although the preferred embodiments have been
described with reference to the components, modules and
units discussed below, Such functional elements may be
combined into fewer elements or separated into additional
elements.

BRIEF DESCRIPTION OF THE DRAWINGS

0.017. The accompanying drawings, which are incorpo
rated in and constitute a part of the specification, illustrate
presently preferred implementations and are described as
follows:
0018 FIG. 1 is a block diagram illustrative of apparatus
wherein embodiments of the invention find application;
0019 FIG. 2 is a schematic diagram illustrating a native
binding mechanism as employed in embodiments of the
invention;
0020 FIG. 3 is a schematic diagram showing compo
nents which are employed for the handling of exceptions by
example embodiments of the present invention;
0021 FIG. 4 is a schematic diagram showing execution
in a Subject computing platform when calling a subject
library function and when handling an exception during
execution of the library function;
0022 FIG. 5 is a schematic diagram showing execution
in a target computing platform when performing native
binding and when handling an exception in native bound
code, as employed in embodiments of the present invention;
0023 FIG. 6 is a schematic diagram showing a flow of
execution control when handling an exception in native
bound code, as employed in embodiments of the present
invention;
0024 FIG. 7 is a schematic diagram of a portion of the
memory of the target computing platform; and

Dec. 20, 2007

0025 FIG. 8 is a schematic flow diagram illustrating a
method of handling exceptions for native bound code as
employed by example embodiments of the present inven
tion.

DETAILED DESCRIPTION

0026. The following description is provided to enable a
person skilled in the art to make and use the invention and
sets forth the best modes contemplated by the inventors of
carrying out their invention. Various modifications, how
ever, will remain readily apparent to those skilled in the art,
since the general principles of the present invention have
been defined herein specifically to provide an improved
program code conversion method and apparatus.
0027 FIG. 1 gives an overview of a system and envi
ronment where the example embodiments of the present
invention may find application, in order to introduce the
units, components and elements that will be discussed in
more detail below. Referring to FIG. 1, a subject program 17
is intended to execute on a subject computing platform 1
having at least one subject processor 3. However, a target
computing platform 10 is instead used to execute the Subject
program 17, through a translator unit 19 which performs
program code conversion. The translator unit 19 performs
code conversion from the subject code 17 to target code 21,
Such that the target code 21 is executable on the target
computing platform 10.
0028. As will be familiar to those skilled in the art, the
subject processor 3 has a set of subject registers 5. A subject
memory 8 holds, interalia, the subject code 17 and a subject
operating system 2. Similarly, the example target computing
platform 10 in FIG. 1 comprises a target processor 13 having
a plurality of target registers 15, and a memory 18 to store
a plurality of operational components including a target
operating system 20, the subject code 17, the translator code
19, and the translated target code 21. The target computing
platform 10 is typically a microprocessor-based computer or
other suitable computer.
0029. In one embodiment, the translator code 19 is an
emulator to translate Subject code of a subject instruction set
architecture (ISA) into translated target code of another ISA,
with or without optimisations. In another embodiment, the
translator 19 functions as an accelerator for translating
Subject code into target code, each of the same ISA, by
performing program code optimisations.
0030 The translator code 19 is suitably a compiled
version of source code implementing the translator, and runs
in conjunction with the operating system 20 on the target
processor 13. It will be appreciated that the structure illus
trated in FIG. 1 is exemplary only and that, for example,
embodiments of the invention may be implemented within
or beneath the operating system 20 of the target platform.
The subject code 17, translator code 19, operating system
20, and storage mechanisms of the memory 18 may be any
of a wide variety of types, as known to those skilled in the
art.

0031. In the example apparatus according to FIG. 1,
program code conversion is performed dynamically, at run
time, to execute on the target architecture 10 while the target
code 21 is running. That is, the translator 19 runs inline with
the translated target code 21. Running the Subject program
17 through the translator 19 involves two different types of
code that execute in an interleaved manner: the translator
code 19; and the target code 21. Hence, the target code 21

US 2007/0294.675 A1

is generated by the translator code 19, throughout run-time,
based on the stored subject code 17 of the program being
translated.
0032. In one embodiment, the translator unit 19 emulates
relevant portions of the subject architecture 1 such as the
subject processor 3 and particularly the subject registers 5,
whilst actually executing the Subject program 17 as target
code 21 on the target processor 13. In the preferred embodi
ment, at least one global register store 27 is provided (also
referred to as the subject register bank 27 or abstract register
bank 27). In a multiprocessor environment, optionally more
than one abstract register bank 27 is provided according to
the architecture of the subject processor. A representation of
a subject state is provided by components of the translator 19
and the target code 21. That is, the translator 19 stores the
Subject state in a variety of explicit programming language
devices such as variables and/or objects. The translated
target code 21, by comparison, provides Subject processor
state implicitly in the target registers 15 and in memory
locations 18, which are manipulated by the target instruc
tions of the target code 21. For example, a low-level
representation of the global register store 27 is simply a
region of allocated memory. In the source code of the
translator 19, however, the global register store 27 is a data
array or an object which can be accessed and manipulated at
a higher level.
0033. The term “basic block' will be familiar to those
skilled in the art. A basic block is a section of code with
exactly one entry point and exactly one exit point, which
limits the block code to a single control path. For this reason,
basic blocks are a useful fundamental unit of control flow.
Suitably, the translator 19 divides the subject code 17 into a
plurality of basic blocks, where each basic block is a
sequential set of instructions between a first instruction at a
single entry point and a last instruction at a single exit point
(such as a jump, call or branch instruction). The translator 19
may select just one of these basic blocks (block mode) or
select a group of the basic blocks (group block mode). A
group block Suitably comprises two or more basic blocks
which are to be treated together as a single unit. Further, the
translator may form iso blocks representing the same basic
block of subject code but under different entry conditions.
0034. In the preferred embodiments, trees of Intermediate
Representation (IR) are generated based on a subject instruc
tion sequence, as part of the process of generating the target
code 21 from the original subject program 17. IR trees are
abstract representations of the expressions calculated and
operations performed by the Subject program. Later, the
target code 21 is generated based on the IR trees. Collections
of IR nodes are actually directed acyclic graphs (DAFs), but
are referred to colloquially as “trees”.
0035. As those skilled in the art may appreciate, in one
embodiment the translator 19 is implemented using an
object-oriented programming language such as C++. For
example, an IR node is implemented as a C++ object, and
references to other nodes are implemented as C++references
to the C++ objects corresponding to those other nodes. An
IR tree is therefore implemented as a collection of IR node
objects, containing various references to each other.
0.036 Further, in the embodiment under discussion, IR
generation uses a set of abstract register definitions which
correspond to specific features of the subject architecture
upon which the subject program 17 is intended to run. For
example, there is a unique abstract register definition for

Dec. 20, 2007

each physical register on the Subject architecture (i.e., the
subject registers 5 of FIG. 1). As such, abstract register
definitions in the translator may be implemented as a
C++object which contains a reference to an IR node object
(i.e., an IR tree). The aggregate of all IR trees referred to by
the set of abstract register definitions is referred to as the
working IR forest (“forest” because it contains multiple
abstract register roots, each of which refers to an IR tree).
These IR trees and other processes suitably form part of the
translator 19.

Native Binding

0037 FIG. 1 further shows native code 28 in the memory
18 of the target architecture 10. There is a distinction
between the target code 21, which results from the run-time
translation of the subject code 17, and the native code 28,
which is written or compiled directly for the target archi
tecture. Native code 28 is generated external to the translator
19, meaning that the translator 19 does not dynamically
generate the native code 28 and the translator 19 does have
an opportunity to modify or optimize the native code 28.
0038 FIG. 2 is a more detailed schematic diagram illus
trating a native binding mechanism as employed in embodi
ments of the present invention.
0039 Native binding is implemented by the translator 19
when it detects that the subject programs flow of control
enters a section of subject code 17, such as a subject library,
for which a native version of the subject code exists. Rather
than translating the subject code, the translator 19 instead
causes the equivalent native code 28 to be executed on the
target processor 13. In example embodiments, the translator
19 binds generated target code 21 to the native code 28 using
a defined interface. Such as native code or target code call
stubs, as discussed in more detail in WO2005/008478 (and
US2005/0015781A) referenced above.
0040. The subject program 17 usually includes one or
more subject executable files 17a which are translated into
target code 21a. The subject executable 17a may in turn
refer to and make use of a number of subject libraries
including proprietary libraries and/or system libraries. Two
example library functions 17b, 17c are illustrated. The
translator 19 uses native binding to replace calls to certain of
the subject library functions with calls to equivalent func
tions in native libraries provided in the native code 28. In
this example, the translator 19 has translated a first library
function A into target code 21b, whereas a second library
function B is native bound to a native library function in
native code 28. These native libraries are typically part of the
target operating system 20, but may also be provided to the
target system along with the translator 19.
0041 As an illustrative example, the translator 19 is
arranged to perform a MIPS to x86 translation. Here, the x86
target system library “libc' defines an advanced native
memcpy() (memory copy) routine that takes advantage of
SSE2 vector operations to perform extremely fast byte
copies. Using native binding, calls to a Subject memcpy
function in the MIPS subject code are bound to the native
memcpy(). This eliminates the cost of translating the Subject
(MIPS) version of the memcpy() function. In addition, the
native (x86) version of the memcpy() is adapted to the
intricacies of the native hardware, and can achieve the
function's desired effect in the most efficient way for that
hardware.

US 2007/0294.675 A1

0042 Native binding is primarily applicable to library
functions, but may also be implemented for any well-defined
section of Subject code for which a native code equivalent is
available in the target architecture. That is, in addition to
target system library calls, native binding may be used for
more arbitrary code Substitution, such as Substituting a
natively compiled version of a non-library function. Fur
thermore, native binding may be used to implement Subject
system calls on a native architecture, by replacing all calls
to Subject system functions with Substitute native functions
that either implement the same functionality as the calls to
Subject system functions or act as call stubs around target
system calls. Native binding may also be applied at arbitrary
Subject code locations, beyond function call sites, to allow
arbitrary code sequences (in either target code or native
code) and/or function calls to be inserted or substituted at
any well-defined point in the Subject program.

Exception Handling

0043 FIG. 3 is a more detailed schematic diagram of the
target computing platform 10 of FIG. 1, showing compo
nents which are employed relevant to the handling of
exceptions as performed by an example embodiment of the
present invention.
0044 An exception may be generated (“raised') by hard
ware or by Software. Hardware exceptions include signals
Such as resets, interrupts, or signals from a memory man
agement unit. As examples, exceptions may be generated by
an arithmetic logic unit or floating-point unit for numerical
errors such as divide-by-zero, for overflow or underflow, or
for instruction decoding errors such as privileged, reserved,
trap or undefined instructions. Software exceptions occur in
many different forms across various software programs and
could be applied to any kind of error checking which alters
the normal behaviour of the program. As an illustrative
example, an instruction in the Subject code causes a Software
exception to be reported if the value of one register is greater
than the value of a second register.
0045 Typically, one or more subject exception handlers
170 are provided (registered) to handle exceptions which
occur during execution of the Subject program 17. An
exception handler is special code which is called upon when
an exception occurs during the execution of a program. If the
Subject program does not provide a handler for a given
exception, then a default system exception handler may be
called. The exception handler will usually try to take cor
rective action and resume execution, or abort running of the
Subject program and return an error indication. In the context
of program code conversion, it is desirable to accurately
model, on the target system, the behaviour of the subject
exception handler(s).
0046 Exception signals are a common mechanism for
raising exceptions on many operating systems. The POSIX
standard, which is adhered to by many operating systems,
particularly Unix-like systems, specifies how this mecha
nism should behave so that exception signals are broadly
similar across many systems. The most common events that
trigger exceptions are when a process implemented by a
program tries to access an unmapped memory region or
manipulate a memory region for which it does not have the
correct permissions. Other common events that trigger
exception signals are the receipt of a signal sent from
another process, the execution by a process of an instruction

Dec. 20, 2007

that the process does not have the privilege level to execute,
or an I/O event in the hardware.
0047 FIG. 3 shows a set of subject exception handlers
170, which may include specific subject exception handlers
that are specific to a particular type of exception and one or
more default system exception handlers to be employed
where a specific exception handler is not registered. Con
veniently, the subject exception handlers 170 are made
available on the target platform as part of the Subject code
17.
0048. The translator 19 also provides a corresponding set
of translated subject exception handlers 170' in target code
21 to execute on the target processor 13, which emulate the
subject exception handlers 170. In particular embodiments,
the subject exception handlers 170 are dynamically trans
lated into executable target code versions when needed. It
will be understood that reference to a subject exception
handler 170 in the following description includes, where
appropriate, a reference to the translated target code version
of the subject exception handler.
0049 FIG. 4 is a schematic diagram showing execution
in the Subject computing platform when calling a subject
library function and when handling an exception during
execution of the library function.
0050. When an exception occurs, a current subject state

is stored to a predetermined location (e.g. to a stack) and
execution control passes to the appropriate Subject exception
handler 170. The subject exception handler 170 will often
use this stored subject state information in order to handle
the exception. Also, if the exception handler so determines,
the Subject state is used to resume execution of the Subject
program, either at the same point as where the exception
occurred, or at Some other point in the Subject program. The
Subject exception handler may, as part of handling the
exception, alter the stored Subject state. Such as by altering
a stored program counter. Hence, in the context of program
code conversion, it is desirable to accurately follow the
expected behaviour of the subject exception handler 170.
0051. As will be familiar to persons skilled in the art, in
architectures which use a stack for procedure calls, a subject
stack 81 stores information about the active subroutines or
library functions which have been called by the subject
program. Usually, the subject stack 81 is provided in the
memory 8 of the Subject platform 1, and many processors
provide special hardware to manipulate such stack data
structures in memory. The main role of the stack 81 is to
keep track of the point to which each active function should
return when it finishes executing, although the stack may
also be used for other purposes such as to pass function
parameters and results, and to store local data. Typically,
each function call puts linking information on the stack,
including a return address. This kind of Stack is also known
as an execution stack, control stack, or function stack.
Usually, one stack is associated with each running program
or with each task of a process. The exact details of the stack
depend upon many factors including, for example, the
Subject hardware, the Subject operating system, and the
instruction set architecture of the subject platform.
0052. In FIG. 4, the subject state S includes information
Such as the content of at least some of the Subject registers.
In particular, the Subject state S may include information
such as current values of a subject stack pointer (SPS) and
a subject program counter (PC S), amongst others. When
the caller subject program 17a calls a subject library func

US 2007/0294.675 A1

tion 17b, the subject state S is stored by pushing the contents
of the subject registers to the subject stack 81, and the
subject stack pointer SP S is updated to point to the top of
the subject stack 81. During execution of the called library
function 17b, local data may be stored on the subject stack
81 and a new subject state S is formed. When an exception
occurs, the new subject state S is stored on the stack 81, and
execution passes to the subject execution handler 170. After
handling the exception, the subject platform will be in a third
state S". In this example, the second stored state S is
recovered from the stack after handling the exception, and
execution resumes at the point in the Subject library function
17b where the exception occurred. Later, the first stored state
S is recovered when execution returns from the library
function 17b to the caller program 17a.
0053 FIG. 5 is a schematic diagram showing a state of
execution in the target computing platform when performing
native binding and when handling an exception in native
bound code, as employed in embodiments of the present
invention. In particular, FIG. 5 illustrates an example
embodiment of the present invention which allows a useful
subject state S' to be reported to the subject exception
handler 170, and also allows execution to resume in the
native bound code 28.

0054 For program code conversion as discussed herein,
the translator 19 provides elements on the target platform 10
which are, in general terms, functionally equivalent to those
on the subject platform 1. In this example, the translator 19
provides a representation of the subject stack 81 in the target
memory 18, and represents the Subject registers 5 using the
abstract register bank 27. Hence, the translator 19 is able to
emulate all of the structures shown in FIG. 4 when the
subject code 17a calls the subject library function 17b and
when a exception is handled in the Subject exception handler
170. However, when performing native binding, the trans
lator 19 no longer has close control over the native bound
code 28 and the translator 19 cannot maintain a subject state
S' which remains precisely equivalent to the subject state
during execution of the subject library function 17c on the
subject platform. However, the embodiments discussed
herein allow the translator 19 to provide an appropriate
equivalent of the second subject state S' to the subject
exception handler 170. Further, the embodiments discussed
herein allow execution control to return to the native bound
code 28 after the exception has been handled.
0055. In FIG. 5, the target platform 10 has a target state
T which represents information Such as a target program
counter and a target stack pointer, and the current state of the
target registers 15 in the target processor 13. Initially, the
target state T reflects the execution of target code 21
produced by the translator 19 from the caller subject pro
gram 17a. Execution of the target code 21 causes a subject
state S to be provided on the target platform, as discussed
above.
0056. The native binding technique is employed to
execute a native code library function B, and the first target
state T evolves to a second target State T' during execution
of the native bound code 28. When an exception occurs
during execution of the native bound code 28, an exception
signal is raised (i.e. by the target OS 20) and passed to the
registered exception handler. As part of handling the excep
tion, the target state T' is saved to an appropriate storage
location in the target system, in this case to the Subject stack
81. This second target state T represents a current point of

Dec. 20, 2007

execution in the target processor 13 for the native bound
code 28, at the point when the exception occurred. Also, an
exception handler unit 191 of the translator 19 creates and
stores a Subject state S', before passing execution control to
the subject exception handler 170. The subject execution
handler 170 is invoked to handle the exception with refer
ence to the created subject state S. Here, the second subject
state S' comprises at least a subject stack pointer (SPS)
pointing to the Subject stack 81 above the saved target State
T. Conveniently, the previously saved subject state S is used
as a foundation for the second subject state S', with a
modification to include the required new value of the subject
stack pointer (SPS).
0057 Execution of the subject exception handler 170
results in a third subject state S" and a third target state T"
(due to the work done on the target platform to handle the
exception). However, the subject exception handler 170 is
now able to refer to the saved subject state S in order to
resume execution in the native bound code 28 at the point
where the exception occurred. That is, the saved subject state
S' owns the saved target state T and resuming execution of
the subject code at the saved subject state S resumes
execution of the native bound code 28.

0058. It is useful to note that, in this illustrated embodi
ment, the first and third target states T and T" refer to
execution of the target code 21 produced by the translator 19
from the relevant subject code 17. In this embodiment,
execution of the target code 21 uses a target stack (not
shown) also provided in the memory of the target platform
separately from the subject stack 81. By contrast, the second
target state T' refers to execution of the native code 28 using
the subject stack 81. Hence, the second target state T' is
shown to include a stack pointer (here illustrated with an
arrow) which points to the subject stack 81, whilst the first
and third target states do not.
0059. As shown in FIG. 5, the example embodiments of
the present invention use the subject stack 81 for execution
of the native bound code 28. As discussed above, the subject
stack 81 is a designated area of the memory 18, which the
translator 19 manages on behalf of the subject code 17 as
part of the Subject code to target code translation. Using the
subject stack 81 for execution of the native code 28 prevents
the native context T being lost as a result of servicing an
exception during execution of that native bound code. In
particular, the Subject stack 81 is preserved when executing
the translated version of the subject exception handler 170.
As a further advantage, using the Subject stack 81 for native
binding execution allows environment Switches in the Sub
ject code 17 to be dealt with transparently, such as by
executing library calls similar to a "longjmp function. A
longjmp function restores a Subject stack and Subject state
previously saved by calling a setjmp. This provides a way to
execute a non-local “go to” type instruction and is typically
used to pass execution to recovery code from the Subject
exception handler 170. Therefore, by using the subject stack
81 for native binding, resources can be reclaimed transpar
ently if the subject code 17 calls a longjmp. As part of the
translation of the Subject longjmp function, the translated
code resets the subject stack pointer SP S to reclaim stack
space allocated by the native binding mechanism.
0060. In some alternate embodiments of the present
invention, execution of the native code 28 may employ a
different stack elsewhere in the memory 18 of the target
platform 10, such as a stack of the translator 19 (translator

US 2007/0294.675 A1

stack) or a separately allocated native stack (not shown),
instead of the subject stack 81.
0061 FIG. 6 shows a flow of execution control when
handling an exception in native bound code, as employed in
embodiments of the present invention.
0062. In FIG. 6, the caller subject code 17a (executing as
caller target code 21a) calls into the native bound code 28
and an appropriate Subject state S is saved on the Subject
stack 81 to allow a return into the caller target code 21a. An
exception occurs during the native bound code 28 which, as
discussed above, provides a target state T". The native
binding mechanism returns control to the translator 19 and
the target state T is saved.
0063 As discussed above, the translator 19 generates the
second subject state S'. In this aspect of the invention, the
second subject state includes, inter alia, at least a subject
program counter PC S" which is specially modified by the
translator 19. In particular, the specially modified subject
program counter value PC Spassed to the Subject exception
handler 170 does not correspond to a program address of the
subject program 17. However, the subject exception handler
170 (executing as translated subject exception handler 170")
may use this subject program counter PC S as a return
address when attempting to restart execution at the point
where the exception occurred.
0064. In a first example embodiment as shown in FIG. 6,
the translator 19 includes a recovery unit 192 which acts to
recover the target state T and resume execution in the native
bound code. In one embodiment, the recovery unit is form
by providing a reserved location 171 (see FIG. 7), such as a
memory page within the translator's address space, which
the translator 19 will treat as a portion of subject code 17.
Thus, when the translated subject exception handler 170'
attempts to pass control to the program location identified by
the specially modified subject program counter PC S', the
translator 19 is directed to the reserved location 171. In this
first embodiment, the reserved location 171 contains subject
code instructions which, when translated and executed as
target code, cause the target state T to be recovered Such that
the native bound code 28 resumes execution. Here, restoring
the target state T' Suitably includes filling the target registers
with the saved version of their previous contents, such as
popping these values from the Subject stack 81.
0065. In a second example embodiment as also illustrated
by FIG. 6, the reserved location 171 contains special case
instructions which do not fall within the instruction set of the
subject architecture. Instead, the translator 19 recognises
these special case instructions and in response executes a
recovery routine to recover the stored target state T and
allow the native code 28 to resume. Here, the recovery
routine is suitably provided as part of the translator code 19.
0066. In another example embodiment, the program
counter PC S' passed in the subject state S is a predeter
mined notional value (such as OX000000) which does not
correspond to a real location in the memory of the target
architecture. The translator 19 is configured to recognise this
special program counter and, instead of passing control to
the identified location, redirects the flow of execution to
execute the recovery routine 171 which loads the stored
target state T and allows the native code 28 to resume. This
particular embodiment relies on the translator 19 to detect
when the Subject program counter is a given predetermined
value and to take a different action.

Dec. 20, 2007

0067 Referring again to FIGS. 5 and 6, in the example
embodiments discussed herein the first subject state S is
employed in creating the second subject state S. Suitably,
the first subject state S is saved when the native code 28 is
called, and hence the first subject state S is available to
populate the second Subject state S" when an exception
occurs. That is, the old subject state S is copied forward to
become the new Subject state S', except that the program
counter PC S is modified to the special value PC S', and/or
the stack pointer is updated to the new head of the subject
stack 81. This mechanism provides the subject exception
handler 170 with a workable subject state S sufficient to
handle the exception. The subject exception handler 170
may, for example, examine the Subject program counter
PC S to determine where within the subject program the
exception occurred. The subject handler 170 may then
determine how to deal with the exception. The subject
exception handler 170 is usually written in a manner which
makes some assumptions about the program address space
of the Subject code program 17 and any dynamically allo
cated memory. However, the subject exception handler 170
usually cannot assume the memory areas where other com
ponents of the system, such as library functions, will reside.
Where the subject program counter PC S' reported to the
subject exception handler 170 lies outside the address range
allocated to the subject code 17, the subject exception
handler 170 cannot make detailed decisions based on the
supposed state of the subject platform and will therefore
handle the exception similar to the manner in which it would
have been handled on the subject platform.
0068 FIG. 7 is a schematic diagram of a portion of the
memory of the target platform. As shown in FIG. 7, the
subject program 17 is allocated a subject program area 175
in the target memory 18, alongside other components such
as the translator code 19 and the target code 21. This subject
program area 175 typically comprises a linear range of
virtual addresses, which map to one or more sets of physical
storage locations as will be familiar to persons skilled in the
art. The modified program counter PC S passed to the
subject exception handler 170 suitably lies outside this
Subject program area 175. Further, the Subject program may
have one or more dynamically allocated memory areas 176
Such as for working storage, and the modified program
counter PC S also suitably falls outside the dynamically
allocated subject areas 176.
0069 FIG. 8 is a schematic flow diagram illustrating a
method of exception handling for native bound code as
employed by example embodiments of the present inven
tion.

0070. As discussed above, an exception occurs during
execution of native bound code (step 801). A current execu
tion state is saved (step 802), reflecting execution of the
native bound code on the target platform (target state T").
Also, a subject state (S') is created (step 803) reflecting an
emulated point of execution on the Subject platform, as if the
exception had occurred whilst executing Subject code on the
subject platform. In particular, the created subject state S
includes a stack pointer SP S' to the subject stack, where the
target state T' is conveniently stored. Also, the Subject state
S' includes a specially modified program counter PC S as
discussed above. The exception is handled with reference to
the created subject state S (step 804). The subject exception
handler 170 will include instructions which determine (step
805) whether or not to resume execution at the point where

US 2007/0294.675 A1

the exception occurred (i.e. return to the previous point of
execution, which in this case lies in the native bound code).
In some circumstances, execution of the Subject program is
halted, or control passes to a different portion of the program
(step 809). However, where it is determined to resume
execution at the point where the exception occurred, execu
tion is resumed using the created subject state S (step 806)
which links to the saved target state T' (step 807) to resume
execution of the native bound code (step 808).
0071. In summary, the mechanisms and embodiments
described herein have many advantages, including that
exceptions occurring during native bound code are handled
reliably and efficiently. In the example embodiments, storing
the target state T linked by the subject state S allows
execution of bound native code 28 to be resumed after
handling an exception. Also, by modifying the Subject
program counter in the manner described above, the Subject
exception handler 170 can return control to the native code
28 by directly or indirectly performing the recovery function
171 which loads the stored target state T. Further, using the
subject stack 81 for execution of the native code 28 main
tains the Subject stack in good order and allows resources to
be released efficiently. These and other features and advan
tages will be apparent to the skilled person from the above
description and/or by practicing the described embodiments
of the present invention.
0072 Although a few example embodiments have been
shown and described, it will be appreciated by those skilled
in the art that various changes and modifications might be
made without departing from the scope of the invention, as
defined in the appended claims.
0073. Attention is directed to all papers and documents
which are filed concurrently with or previous to this speci
fication in connection with this application and which are
open to public inspection with this specification, and the
contents of all such papers and documents are incorporated
herein by reference.
0074 All of the features disclosed in this specification
(including any accompanying claims, abstract and draw
ings), and/or all of the steps of any method or process so
disclosed, may be combined in any combination, except
combinations where at least some of Such features and/or
steps are mutually exclusive.
0075 Each feature disclosed in this specification (includ
ing any accompanying claims, abstract and drawings) may
be replaced by alternative features serving the same, equiva
lent or similar purpose, unless expressly stated otherwise.
Thus, unless expressly stated otherwise, each feature dis
closed is one example only of a generic series of equivalent
or similar features.
0076. The invention is not restricted to the details of the
foregoing embodiment(s). The invention extends to any
novel one, or any novel combination, of the features dis
closed in this specification (including any accompanying
claims, abstract and drawings), or to any novel one, or any
novel combination, of the steps of any method or process so
disclosed.

1. A method of handling an exception, comprising the
steps of

(a) performing program code conversion to convert Sub
ject code executable by a subject computing architec
ture into target code executable by a target computing
architecture;

Dec. 20, 2007

(b) executing a portion of native code which is native to
the target computing architecture in Substitution for
translating a portion of the Subject code into the target
code;

(c) in response to an exception arising during execution of
the portion of native code, performing the steps of
(i) saving a target state which represents a current point

of execution in the target computing architecture
with respect to the native code portion;

(ii) generating a subject state which represents an
emulated point of execution in the Subject computing
architecture; and

(iii) handling the exception with reference to the sub
ject state; and

(d) resuming execution from the exception by using the
Subject state to restore the target state, and then using
the target state to resume execution of the native code
portion.

2. The method of claim 1, wherein the subject state
comprises a link to the target state.

3. The method of claim 1, wherein the step (d) comprises
executing a recovery routine to restore the target state.

4. The method of claim 1, wherein the subject state
includes a modified Subject program counter and the method
further comprises passing execution control to the modified
Subject program counter thereby executing a recovery rou
tine to load the target state and return execution control to
the portion of native code.

5. The method of claim 4, wherein the modified subject
program counter has a predetermined value and the method
further comprises detecting the predetermined value and
redirecting execution control to execute the recovery rou
tine.

6. The method of claim 1, wherein the subject state
includes a modified Subject program counter, and the
method further comprises providing a reserved location to
be treated as a portion of the Subject code at an address
identified by the modified subject program counter.

7. The method of claim 6, wherein the reserved location
contains subject code instructions and the method comprises
translating and executing the Subject code instructions as
target code, thereby to recover the target State and resume
execution of the portion of native code.

8. The method of claim 6, wherein the reserved location
contains special case instructions which do not fall within an
instruction set architecture of the Subject computing archi
tecture, and the method comprises detecting the special case
instructions and in response executing a recovery routine to
recover the saved target state and resume execution of the
portion of native code.

9. The method of claim 6, comprising using the modified
Subject program counter as a return address after handling
the exception, when attempting to restart execution of the
Subject code at a point where the exception occurred. Such
that execution control passes to the reserved location.

10. The method of claim 1, further comprising the steps
of:

converting a caller portion of the Subject code into target
code and forming a first Subject state including at least
a Subject program counter;

calling the portion of native code from the caller portion
of target code; and

copying and modifying the first Subject state to form the
Subject state.

US 2007/0294.675 A1

11. The method of claim 1, further comprising providing
a Subject stack data structure in a memory of in the target
computing architecture for emulating execution of the Sub
ject code on the Subject computing architecture, and execut
ing the portion of native code using the Subject stack.

12. The method of claim 1, further comprising providing
a Subject stack in the target computing architecture for
emulating execution of the Subject code on the Subject
computing architecture, and storing the Subject state on the
Subject stack prior to handling the exception whereby the
stored subject state is available from the subject stack after
handling the exception.

13. The method of claim 1, further comprising providing
a Subject stack in the target computing architecture for
emulating execution of the Subject code on the Subject
computing architecture, and saving the target state on the
Subject stack prior to handling the exception whereby the
target state is available from the Subject stack after handling
the exception.

14. The method of claim 13, wherein the step of saving
the target state comprises saving values of a set of registers
of a target processor of the target computing architecture
onto the Subject stack, and the method further comprises
restoring the target state including loading the saved values
from the Subject stack into the set of registers.

15. The method of claim 1, further comprising handling
the exception and determining to resume execution of the
Subject code at a point where the exception occurred using
the subject state, or to resume execution of the subject
program at another point in the Subject code by altering a
Subject program counter in the Subject state.

16. A method of handling an exception, comprising the
steps of

converting Subject code executable by a subject comput
ing platform into target code executable by a target
computing platform, including converting a caller por
tion of Subject code into a caller portion of target code;

executing the caller portion of target code thereby gen
erating on the target computing platform a first target
state relating to execution of the target code and emu
lating a first Subject state representing execution of the
caller portion of Subject code on the Subject computing
platform;

calling from the caller portion of target code to a portion
of native code which is native to the target computing
platform;

executing the portion of native code on the target com
puting platform thereby generating a second target state
and, where an exception occurs during execution of the
portion of native code, saving the second target state
and generating a second Subject state based on the first
Subject state wherein the second subject state comprises
a link to the second target State; and

handling the exception with reference to the second
Subject state and using the second subject state to link
to the second target state to thereby resume execution
in the portion of native 7 code.

17. The method of claim 16, further comprising the step
of executing of a recovery routine to restore the second
target state when resuming execution from the exception.

18. The method of claim 16, wherein the second subject
state comprises a modified Subject program counter and the
method further comprises passing execution control to the
modified subject program counter, loading a recovery rou

Dec. 20, 2007

tine to load the saved second target state, and thereby
returning execution control to the portion of native code.

19. The method of claim 18, wherein the modified subject
program counter has a predetermined value and the method
further comprises detecting the predetermined value and
redirecting execution control to the recovery routine.

20. The method of claim 16, wherein the second subject
state comprises a modified Subject program counter, and the
method further comprises providing a reserved location
treated as a portion of the Subject code at an address
identified by the modified subject program counter.

21. The method of claim 20, wherein the reserved location
contains subject code instructions and the method comprises
converting and executing the Subject code instructions as
target code thereby causing recovery of the saved target State
whereby the portion of native code resumes execution.

22. The method of claim 20, wherein the reserved location
contains special case instructions which do not fall within an
instruction set architecture of the Subject computing plat
form, and the method comprises detecting the special case
instructions and in response executing a recovery routine to
recover the saved second target state thereby enable execu
tion of the portion of native code to resume.

23. The method of claim 20, comprising using the modi
fied Subject program counter as a return address after han
dling the exception, when attempting to restart execution at
a point where the exception occurred, whereby execution
control passes to the reserved location.

24. The method of claim 16, wherein the first subject state
comprises at least a subject program counter, and wherein
generating the second Subject state comprises copying the
first subject state to form the subject state and modifying the
Subject program counter to a modified value.

25. The method of claim 16, further comprising providing
a Subject stack data structure in the target computing plat
form for emulating execution of the Subject code on the
Subject computing platform, and executing the portion of
native code with reference to the subject stack.

26. The method of claim 16, further comprising providing
a subject stack in the target computing platform for emu
lating execution of the Subject code on the Subject comput
ing platform, and storing at least the second Subject state on
the Subject stack prior to handling the exception, such that
the stored second subject state is available from the subject
stack after handling the exception.

27. The method of claim 16, further comprising providing
a subject stack in the target computing platform for emu
lating execution of the Subject code on the Subject comput
ing platform, and saving at least the second target state on
the Subject stack prior to handling the exception, such that
the saved second target state is available from the subject
stack after handling the exception.

28. The method of claim 27, wherein the step of saving
the second target state comprises saving values of a set of
target registers of a target processor of the target computing
platform onto the subject stack, and the method further
comprises restoring the second target state including loading
the saved values from the subject stack into the set of target
registers.

29. The method of claim 16, further comprising handling
the exception and determining to resume execution at a point
where the exception occurred using the Subject state, or to

US 2007/0294.675 A1

resume execution of the Subject program at another point in
the Subject code by altering a subject program counter in the
Subject state.

30. A target computing platform arranged to handle
exceptions during binding to native code, comprising:

a translator unit arranged to translate Subject code execut
able by a subject computing platform into target code
executable by the target computing platform, and
arranged to Substitute a portion of native code which is
native to the target computing platform instead of
translating a portion of the Subject code into the target
code;

an execution unit arranged to execute the target code and
the native code, and to raise an exception signal when
an exception occurs;

an exception handler unit arranged to detect the exception
signal raised by the execution unit during execution of
the native code, cause the saving of a target State which
represents a current point of execution in the execution
unit for the native code, provide a subject state which
represents an emulated point of execution in the Subject
computing platform, and handle the exception with
reference to the subject state; and

a recovery unit arranged to restore the saved target state
by linking from the subject state and thereby resume
execution of the native code in the execution unit using
the saved target state.

31. A translator apparatus arranged to handle exceptions
during binding to native code, comprising:

a translator unit arranged to convert Subject code execut
able by a subject computing platform into target code
executable by a target computing platform, and
arranged to cause the target computing platform to
execute a portion of native code which is native to the
target computing platform in Substitution for convert
ing a portion of the Subject code into the target code,
and further wherein the translator unit is arranged to
convert caller subject code into caller target code for
execution by the target computing platform to provide
a first target state and a first Subject state and to cause
at least the first subject state to be saved when calling
into a portion of the native code from the caller target
code;

an exception handler unit arranged to detect an exception
signal raised during execution of the native code, cause
the saving of a second target state which represents a
current point of execution in the target computing
platform for the native code, and provide a second
Subject state, wherein the second subject state com
prises a link to the second target state;

a Subject exception handler unit arranged to handle the
exception with reference to the second subject state;
and

a recovery unit arranged to cause the target computing
platform to resume execution of the native code by
linking to the second target state from the second
Subject state.

Dec. 20, 2007

32. A computer-readable medium having recorded
thereon instructions implementable by a computer to per
form a method of handling an exception, comprising the
steps of

(a) performing program code conversion to convert Sub
ject code executable by a subject computing architec
ture into target code executable by a target computing
architecture;

(b) executing a portion of native code which is native to
the target computing architecture in Substitution for
translating a portion of the Subject code into the target
code;

(c) in response to an exception arising during execution of
the portion of native code, performing the steps of
(i) saving a target state which represents a current point

of execution in the target computing architecture
with respect to the native code portion;

(ii) generating a subject state which represents an
emulated point of execution in the Subject computing
architecture; and

(iii) handling the exception with reference to the sub
ject state; and

(d) resuming execution from the exception by using the
Subject state to restore the target state, and then using
the target state to resume execution of the native code
portion.

33. A computer-readable medium having recorded
thereon instructions implementable by a computer to per
form a method of handling an exception, comprising the
steps of

converting Subject code executable by a subject comput
ing platform into target code executable by a target
computing platform, including converting a caller por
tion of Subject code into a caller portion of target code;

executing the caller portion of target code thereby gen
erating on the target computing platform a first target
state relating to execution of the target code and emu
lating a first Subject state representing execution of the
caller portion of Subject code on the Subject computing
platform;

calling from the caller portion of target code to a portion
of native code which is native to the target computing
platform;

executing the portion of native code on the target com
puting platform thereby generating a second target state
and, where an exception occurs during execution of the
portion of native code, saving the second target state
and generating a second Subject state based on the first
Subject state wherein the second Subject state comprises
a link to the second target State; and

handling the exception with reference to the second
Subject state and using the second subject state to link
to the second target state to thereby resume execution
in the portion of native code.

