

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2357540 C 2010/07/13

(11)(21) **2 357 540**

(12) **BREVET CANADIEN
CANADIAN PATENT**

(13) **C**

(22) Date de dépôt/Filing Date: 2001/09/20

(41) Mise à la disp. pub./Open to Public Insp.: 2002/03/22

(45) Date de délivrance/Issue Date: 2010/07/13

(30) Priorité/Priority: 2000/09/22 (DE100 46 960.4)

(51) Cl.Int./Int.Cl. *C12N 15/10* (2006.01),
C07H 21/00 (2006.01), *C12N 15/52* (2006.01),
C12N 9/12 (2006.01), *C12P 19/34* (2006.01),
C12Q 1/68 (2006.01)

(72) Inventeurs/Inventors:
SOBEK, HARALD, DE;
MUELLER, RAINER, DE;
SCHMIDT, MANFRED, DE;
FREY, BRUNO, DE;
SUPPMANN, BERNHARD, DE;
SCHMUCK, RAINER, DE;
...

(73) Propriétaire/Owner:

(54) Titre : METHODE DE PRODUCTION D'UN AMV-RT (TRANSCRIPTASE INVERSE DU VIRUS DE LA
MYELOBLASTOSE AVIAIRE) HETERODIMERIQUE ACTIF DANS DES CELLULES PROCARYOTES

(54) Title: METHOD FOR PRODUCING AN ACTIVE HETERODIMERIC AMV-RT IN PROKARYOTIC CELLS

(57) Abrégé/Abstract:

The heterologous expression of the reverse transcriptase from the Avian Myeloblastosis Virus (AMV-RT) in prokaryotic cells and in particular Escherichia coli (E. coli) is described in the present invention. The invention also includes certain measures to simplify the purification of the heterodimeric AMV-RT.

(72) **Inventeurs(suite)/Inventors(continued):** THALHOFER, JOHANN-PETER, DE; PALLUA, PETER, AT;
PAJATSCH, MARKUS, DE

(73) **Propriétaires(suite)/Owners(continued):** F. HOFFMANN-LA ROCHE AG, CH

(74) **Agent:** BORDEN LADNER GERVAIS LLP

Abstract

The heterologous expression of the reverse transcriptase from the *Avian Myeloblastosis Virus* (AMV-RT) in prokaryotic cells and in particular *Escherichia coli* (*E. coli*) is described in the present invention. The invention also includes certain measures to simplify the purification of the heterodimeric AMV-RT.

Method for producing an active heterodimeric AMV-RT in prokaryotic cells

The invention concerns a method for producing a recombinant active heterodimeric AMV-RT by expressing one or several DNA sequences coding for the α - and/or β -subunit(s) of the AMV-RT in prokaryotic cells under certain growth and induction conditions.

The discovery of the reverse transcriptases in the seventies disproved the "central dogma" of molecular biology on the information transfer from DNA via RNA to protein as a unidirectional process (Termin H. and Mizutani S., 1970 *Nature* 226:1211-1213; Baltimore D., 1970, *Nature* 226:1209-1211). The enzymatic characterization of these RNA-dependent DNA polymerases is the basis for current understanding on the amplification cycle of RNA viruses and thus also on the development and spread of diseases that are caused by this type of virus (cancer, AIDS etc.).

However, reverse transcriptases are also a tool for molecular biologists for the synthesis, amplification and cloning of cDNAs (RT-PCR). This technology allows a simplified and accelerated examination of gene expression in eukaryotic cells. After isolating the total mRNA from cell extracts or tissues, the mRNA is translated back into cDNA by the reverse transcriptase and amplified by the subsequent PCR step to enable cloning and characterization. Consequently it is not necessary to, on the one hand, elucidate the intron and

exon structures of the genes but, on the other hand, it is also possible to examine gene expression in the cell during various life cycles or during the development of diseases (such as cancer).

Reverse transcriptases (RT) from three different retroviruses have hitherto been closely examined: The RT from *Moloney Murine Leukemia Virus* (M-MLV). This enzyme consists of a single subunit with a molecular weight of 78 kDa (Prasad V.R., 1993 reviewed in *Reverse Transcriptase*, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 135). In addition an RT from *Human Immunodeficiency Virus* (HIV) is known. This RT is a heterodimer that is composed of two subunits p66 and p51, the p51 subunit being formed by proteolytic cleavage of p66 (Le Grice S.F.J., 1993 reviewed in *Reverse Transcriptase*, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 163). In addition RTs are known from *Avian Sarcoma-Leukosis Virus* (ASLV). The RT obtainable from *Avian Myeloblastosis Virus* (AMV) also belongs to the ASLV family. This RT is also a heterodimer that is composed of an α -chain with a molecular weight of ca. 63 kDa and a β -chain with a molecular weight of ca. 95 kDa. In this case the α -chain is also formed by proteolytic processing of the β -chain (Golomb M. and Grandgenett D., 1979, *J. Biol. Chem.* **254**: 1606-1613; Weiss R. et al., eds. 1984, *Molecular Biology of tumor viruses*, 2nd edition: RNA tumor viruses 1/text. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

Whereas the M-MLV-RT is expressed in *E. coli* as a monomer and the HIV-RT as a heterodimer, it has so far not been possible to express the AMV-RT as an active or soluble heterodimer in *E. coli* or other prokaryotes to a

satisfactory degree. Although according to WO 00/42199 certain RT variants are expressed in *E. coli* or preferably in eukaryotic insect cells, the desired RT that is obtained in this process mainly consists (ca. 90 %) of an insoluble component.

In addition it is difficult to measure a recombinant AMV-RT in crude cell extracts of *E. coli* since, on the one hand, RNA templates are degraded by intrinsic *E. coli* RNases and, on the other hand, *E. coli* strains have a DNA polymerase which also has an RT activity in addition to the DNA polymerase activity (Ricchetti, M. and Huc, H., 1993, *EMBO J.* **12** (2), 387-396). Hence this intrinsic *E. coli* RT activity considerably interferes with the determination of the activity of the recombinant AMV-RT in crude *E. coli* extracts and in fractions from the purification.

Hence the object of the present invention is to provide a recombinant active heterodimeric AMV-RT in adequate amounts.

The object is achieved by a method for producing an active heterodimeric AMV-RT in prokaryotic host cells wherein one or several DNA sequence(s) which code for the α and β subunit or chain of the AMV-RT, are cloned into expression plasmids, the expression plasmids are transformed in prokaryotic cells, the expression of the heterodimeric AMV-RT is induced and the recombinant heterodimeric AMV-RT is purified i.e. isolated from the cells. Suitable genes and DNA sequences are, among others, those which only code for one of the AMV-RT subunits. A portion or the expression product can subsequently be converted by certain measures, such as

proteolytic cleavage of the β -chain, into the other subunit. The sequences SEQ ID NO:4 and SEQ ID NO:5 have proven to be particularly suitable for the method according to the invention which generates an active heterodimeric AMV-RT composed of the subunits SEQ ID NO:6 and SEQ ID NO:7.

The structural genes and DNA sequences coding for the subunits of the AMV-RT can either be cloned on different, separate expression plasmids or on one expression plasmid, optionally in the presence of so-called helper plasmids, and expressed in a suitable host cell. Suitable expression plasmids are for example pDS, pKK177-3 or pKKT5. The plasmid pKKT5 in which the respective structural genes are inserted under the control of the T5 promoter is preferred according to the invention. Other potential promoters, which are preferably IPTG-inducible promoters, are for example the lac, lac UV5 or tac promoter. Alternative helper plasmids such as the plasmid pUBS520 and suitable selection markers such as ampicillin or kanamycin are in principle known to a person skilled in the art.

The expression plasmids and optionally other helper plasmids are transformed into a suitable prokaryotic host cell. According to the invention it is preferable to use an *E. coli* strain such as *E. coli* K12 C600, DH5 α , LE392, JM83, JM105, NM522, M15, RR1 Δ 15, UT5600, TG1, A1200 or the strains *E. coli* B, BL21, HB101. The *E. coli* strain LE392 is particularly preferred according to the invention.

The expression of the heterodimeric AMV-RT can be induced by various measures. In particular certain

growth and induction conditions have positive effects on the expression of active AMV-RT. A growth temperature in the range of 10° to 25°C combined with a low inducer concentration has proven to be advantageous according to the invention. A growth temperature of about 15°C and an inducer concentration between 0.1 and 0.5 mM, preferably of about 0.15 mM, have proven to be particularly suitable. IPTG (isopropyl- β -D-thiogalactopyranoside) or lactose are preferably used according to the invention as the inducer.

Furthermore it turned out that the soluble expression of AMV-RT in prokaryotic cells can be increased by the co-expression of helper genes. Potential helper genes are in particular the *trpT* gene which codes for the tryptophan tRNA. In addition chaperone genes are suitable for soluble expression such as the genes coding for GroEL and GroES, GrpE, ClpB, Dnak and DnaJ. The genes for one or several chaperones are then preferably located on a helper plasmid with an inducible promoter; the genes which code for the chaperones GroEL and GroES are under the control of a constitutive promoter on the expression plasmid on which the structural genes for the α and/or β chain are also located. However, it is particularly preferred according to the invention when the genes coding for GroEL and GroES are cloned on the expression plasmid which carries the genes for the α - and β -chain and the genes coding for Dnak, DnaJ, GrpE and ClpB are cloned on a helper plasmid.

In addition to methods that are generally known to a person skilled in the art, it is especially advantageous to use affinity chromatography materials such as metal ion chelating materials or cation exchangers to purify and isolate the recombinant heterodimeric AMV-RT from

the cell extract. It is particularly advantageous for the purification of the AMV-RT for the expression products, i.e. the α - as well as the β -chain to be fused with peptide sequences that are able to reversibly bind to particular column materials such as cation exchangers, metal ion chelating materials such as nickel, copper or zinc nitriloacetic acid (NTA) resins. Peptide sequences that are suitable according to the invention can have from two to about 100 amino acids or amino acid derivatives. Peptide sequences which are composed of two to ten amino acids, e.g. arginine residues or histidine residues, have proven to be particularly suitable for the invention. In addition it has also proven to be particularly advantageous to use such peptide sequences comprising eight arginine or six histidine residues. In addition commercially available peptide sequences such as Strep-tag[®] (IBA GmbH, Göttingen/Germany) or GST-tagTM (Pharmacia, Uppsala/Sweden) are also suitable for the method according to the invention.

The invention is further elucidated by the following examples:

1. Example:

Isolation of genes which code for the α - chain and β -chain

The data bank sequence (MEDLINE ID 94366722, Baluda et al., 1994) was used to design oligonucleotide primers for the isolation of the β -chain (see SEQ ID NO:1 and 2). A *Eco*RI restriction endonuclease cleavage site was incorporated at the 5' end and a *Pst*I restriction cleavage site was incorporated at the 3' end for the

- 7 -

subsequent cloning into vectors. In addition a further 3' primer was designed (see SEQ ID NO:3) which enables the isolation of the α -chain. Both chains were fished by means of PCR from a virus lysate (ATCC VR-265) by means of RT-PCR as well as from an *E. coli* clone (ATCC 31990) which carries the β -chain on a plasmid. The PCR mixtures were applied to a 1 % agarose gel, the PCR fragments of ca. 1715 bp for the α -chain and ca. 2570 bp for the β -chain were isolated from the agarose gel (QIAEXTM II, Gel Extraction Kit, Qiagen/Germany), cleaved with the restriction endonucleases mentioned above and cloned into a vector fragment of pUC19 that had also been linearized with *Eco*RI and *Pst*I and isolated. For this 1 μ l (20 ng) vector fragment and 3 μ l (100 ng) PCR fragment, 1 μ l 10 x ligase buffer (Maniatis et al., 1989 Molecular Cloning: A Laboratory Manual, second Edition, Cold Spring Harbor Laboratory Press NY (USA), vol. 27), 1 μ l T4 DNA ligase, 4 μ l sterile H₂O_{bidistilled} were pipetted, carefully mixed and incubated overnight at 16°C. The cloned genes were subsequently examined by means of restriction analysis and sequencing. The sequences are shown in SEQ ID NO:4 (α -chain) and SEQ ID NO: 5 (β -chain).

Comparison with the data bank sequence (MEDLINE ID 94366722, Baluda, M.A., and Reddy, E.P., 1994, Oncogene 9:2761-2774) yielded a homology of 98.8 % at the DNA level for the α -chain as well as for the β -chain. When the resulting amino acid sequences are compared, it becomes apparent that most substitutions at the DNA level are so-called silent mutations i.e. do not lead to amino acid substitutions. Only three base substitutions also resulted in amino acid substitutions but they are found reproducibly in each isolated PCR product. These are the substitutions Arg273Met, Arg304Gln and

Asp495Glu. The amino acid sequences of both chains are shown in SEQ ID NO:6 (α -chain) and SEQ ID NO:7 (β -chain).

2. Example:

Expression of the α -chain and β -chain without fused peptide sequences (tags)

2.1. Construction of the expression plasmids pAMV- α and pAMV- β

In order to express the AMV-RT, the genes for both chains were cloned separately into expression vectors in such a manner that the structural genes were each inserted in the correct orientation under the control of the T5 promoter. For this the respective structural gene for the α -chain and the β -chain were cut out of the plasmid pUC19 by EcoRI and PstI, the restriction mixtures were separated by agarose gel electrophoresis and the 1715 bp fragment of the α -chain and the 2570 bp fragment of the β -chain were isolated from the agarose gel. The expression plasmid pKKT5, which is formed from pKK177-3 (Kopetzki et al., 1989, *Mol. Gen. Genet.* **216**: 149-155) by replacing the tac promoter with the T5 promoter from pDS (Bujard et al., 1987, *Methods Enzymol.* **155**: 416-433), was used for the expression. The EcoRI restriction endonuclease cleavage site in the sequence of the T5 promoter was removed by two point mutations. The resulting expression plasmid was cut with EcoRI and PstI for the insertion of the genes for the AMV-RT, the restriction mixture was separated by agarose gel electrophoresis and the resulting vector fragment of ca. 2500 bp was isolated from the agarose gel. The vector fragment obtained in this manner was separately ligated

as described above with the genes for the α -chain and the β -chain described in example 1. The correct insertion of the genes was checked by restriction control and sequencing. The resulting plasmid pAMV- α and pAMV- β was firstly separately cotransformed with the helper plasmid pUBS520 for expression control in various *E. coli* strains. It is conceivable in this case that the α -chain and the β -chain could be separately expressed in order to obtain $\alpha\alpha$ - and $\beta\beta$ -homodimers. The helper plasmid pUBS520 (Brinkmann et al., 1989, *Gene* 85: 109-114) carries inter alia the *lacI^Q* gene which codes for the lac repressor and the *dnaY* gene which codes for the rare tRNA^{Arg} in *E. coli* which recognizes the codons AGA and AGG (Garcia et al., 1986, *Cell* 45: 453-459). The kanamycin resistance gene from the transposon TN903 was used as a selection marker.

2.2 Separate transformation of the expression plasmids pAMV- α and pAMV- β in *E. coli*

Competent cells of various *E. coli* strains were prepared according to the method of Hanahan (*J. Mol. Biol.* 1983, vol. 166, 557). 200 μ l of *E. coli* LE392 cells prepared in this manner were admixed with 20 ng isolated expression plasmid pAMV- α DNA or pAMV- β DNA and 40 ng helper plasmid DNA. After 30 min incubation on ice a heat shock (90 sec. at 42°C) was carried out. Subsequently the cells were transferred to 1 ml LB medium and incubated for 1 hour at 37°C in LB medium for the phenotypic expression. Aliquots of this transformation mixture were plated out on LB plates containing ampicillin and kanamycin as selection markers and incubated for 15 hours at 37°C.

2.3 Expression of the gene for the α -chain in *E. coli*

In order to express the gene which codes for the α -chain of the AMV-RT, plasmid-containing clones were inoculated in 3 ml LBampkan medium and incubated at 30°C in a shaker. At an optical density of 0.5 (measured at 550 nm, OD₅₅₀) the cells were induced with 0.5 mM IPTG and incubated for 4 h at 30°C in a shaker. Subsequently the optical density of the individual expression clones was determined, an aliquot which corresponded to an OD₅₅₀ of 5.0/ml was removed and the cells were centrifuged (10 min, 6000 rpm, 4°C). The cell pellet was resuspended in 400 μ l TE buffer (50 mM TRIS/50 mM EDTA, pH 8.0), the cells were disrupted by ultrasound and the soluble protein fraction was separated from the insoluble protein fraction by centrifugation (10 min, 14000 rpm, 4°C). Application buffer containing SDS and β -mercaptoethanol was added to all fractions and the proteins were denatured by boiling (5 min 100°C). Afterwards 10 μ l of each was analysed by means of an analytical SDS gel (10 %) (Laemmli U.K., 1970, *Nature* 227: 555-557).

Analysis of the SDS gel shows a clear overexpression of the α -chain. A strongly overexpressed additional band is seen at ca. 63 kDa which is not observed with the non-induced control clones or the induced control clones which do not contain plasmid. A small portion of the overexpressed α -chain appears in the soluble protein fraction whereas the major amount is formed as an insoluble expressed protein.

2.4 Expression of the gene of the β -chain in *E. coli*

In order to express the gene which codes for the β -chain

of the AMV-RT, 3 ml LBampkan medium was inoculated with plasmid-containing clones and incubated at 30°C in a shaker. At an OD_{550nm} of 0.5 the cells were induced with 0.5 mM IPTG and incubated for 4 h at 30°C in a shaker. Subsequently the optical density of the individual expression clones was determined, an aliquot which corresponded to an OD₅₅₀ of 5.0/ml was removed and the cells were centrifuged (10 min, 6000 rpm, 4°C). The cell pellet was resuspended in 400 µl TE buffer (50 mM TRIS/50 mM EDTA, pH 8.0), the cells were disrupted by ultrasound and the soluble protein fraction was separated from the insoluble protein fraction by centrifugation (10 min, 14000 rpm, 4°C). Application buffer containing SDS and β-mercaptoethanol was added to all fractions and the proteins were denatured by boiling (5 min 100°C). Afterwards 10 µl of each was analysed by means of an analytical SDS gel (8 %) (Laemmli U.K., 1970, *Nature* 227: 555-557).

Analysis of the SDS gel shows a clear overexpression of the β-chain. A strongly overexpressed additional band is seen at ca. 95 kDa which is not observed with the non-induced control clones or the induced control clones which do not contain plasmid. The majority of the overexpressed β-chain appears in the insoluble protein fraction, however, a slight overexpression is also seen in the soluble protein fraction.

2.5 Expression of both chains on separate plasmids in a cell

In order to express both chains in one cell, the *lacI^Q* expression cassette and the *dnaY* expression cassette must firstly be recloned from the helper plasmid pUBS520

onto the expression plasmids. The *lacIq* expression cassette was cloned onto pAMV- α and the *dnaY* expression cassette was cloned onto the expression plasmid pAMV- β . In order to ensure a stable multiplication of the expression plasmids, the ampicillin resistance gene from pAMV- α was replaced by the kanamycin resistance gene from pUBS520. The resulting expression plasmids pAMV- α *lacIq* and pAMV- β *dnaY* were subsequently cotransformed in various *E. coli* expression strains.

In order to express the genes which code for the α -chain and the β -chain of the AMV-RT, 3 ml LBampkan medium was inoculated with plasmid-containing clones and incubated at 30°C in a shaker. At an OD_{550nm} of 0.5 the cells were induced with 0.5 mM IPTG and incubated for 4 h at 30°C in a shaker. Subsequently the optical density of the individual expression clones was determined, an aliquot which corresponded to an OD₅₅₀ of 5.0/ml was removed and the cells were centrifuged (10 min, 6000 rpm, 4°C). The cell pellet was resuspended in 400 μ l TE buffer (50 mM TRIS/50 mM EDTA, pH 8.0), the cells were disrupted by ultrasound and the soluble protein fraction was separated from the insoluble protein fraction by centrifugation (10 min, 14000 rpm, 4°C). Application buffer containing SDS and β -mercaptoethanol was added to all fractions and the proteins were denatured by boiling (5 min 100°C). Afterwards 10 μ l of each was analysed by means of an analytical SDS gel (8 %) (Laemmli U.K., 1970, *Nature* 227: 555-557).

Analysis of the SDS gel surprisingly shows a clear overexpression of the α - and β -chain. Strongly overexpressed additional bands are seen at ca. 63 kDa and ca. 95 kDa which are not observed with the non-induced control clones or the induced control clones which do not

contain plasmid. The distribution of the bands in the soluble and insoluble fraction is like that of the experiments in which both chains were expressed separately. The expression output of both chains is overall somewhat less than for separate expression.

3. Example:

Expression of the α -chain and β -chain with fused tags to simplify the purification

3.1 Production of various fusion proteins

In order to efficiently purify the recombinant AMV-RT heterodimers, suitable peptide sequences, so-called tags were fused to the 5' end of both chains. Tags enable affinity chromatographies to be carried out. A series of two affinity chromatographies which are each specific for one of the two tags additionally allows the isolation of pure heterodimers (Wende W. et al., 1996, *Biol. Chem.* 377, 625-632). Appropriate primer designs were used to attach eight arginine residues to the α -chain and six histidine residues to the β -chain by means of PCR reactions. The sequences of the sense primers are shown in SEQ ID NO:8 (5' primer for the α -chain) and SEQ ID NO:9 (5' primer for the β -chain). The oligonucleotides of SEQ ID NO:2 (β -chain) and SEQ ID NO:3 (α -chain) which had already been used for gene isolation were used as antisense primers.

The PCR mixtures were applied to a 1 % agarose gel, the PCR fragments of 1739 bp for the α -chain and 2597 bp for the β -chain were isolated from the agarose gel (QIAEX II, Gel Extraction Kit, Qiagen, Germany), cleaved with the restriction endonucleases EcoRI and *Pst*I and cloned

into a vector fragment of the preferred expression plasmid that had also been linearized with *Eco*RI and *Pst*I and isolated. For this 1 μ l (20 ng) vector fragment and 3 μ l (100 ng) PCR fragment, 1 μ l 10 x ligase buffer (Maniatis et al., 1989 Molecular Cloning: A Laboratory Manual, second Edition, Cold Spring Harbor Laboratory Press NY (USA), vol. 27), 1 μ l T4 DNA ligase, 4 μ l sterile H₂O bidistilled were pipetted, carefully mixed and incubated overnight at 16°C. The cloned genes were subsequently examined by means of restriction analysis and sequencing. The resulting expression plasmids were named pAMV- α_{lacIq} -Arg and pAMV- β_{dnay} -His.

3.2 Transformation of the expression plasmids pAMV- α_{lacIq} -Arg and pAMV- β_{dnay} -His in various *E. coli* expression strains

Competent cells of various *E. coli* strains were prepared according to the method of Hanahan (*J. Mol. Biol.* 1983, vol. 166 pp. 557) (see example 2.2).

3.3 Expression of both chains with fused tags on separate plasmids in a cell

In order to express both chains with tags in a cell, various *E. coli* expression strains were cotransformed with the expression plasmids pAMV- α_{lacIq} -Arg and pAMV- β_{dnay} -His.

In order to express the genes which code for the α -chain with an Arg-tag and the β -chain with an His-tag of the AMV-RT, 3 ml LBampkan medium was inoculated with plasmid-containing clones and incubated at 30°C in a shaker. At an OD₅₅₀ of 0.5 the cells were induced with 0.5 mM IPTG and incubated for 4 h at 30°C in a shaker. Subsequently

the optical density of the individual expression clones was determined, an aliquot which corresponded to an OD₅₅₀ of 5/ml was removed and the cells were centrifuged (10 min, 6000 rpm, 4°C). The cell pellet was resuspended in 400 µl TE buffer (50 mM TRIS/50 mM EDTA, pH 8.0), the cells were disrupted by ultrasound and the soluble protein fraction was separated from the insoluble protein fraction by centrifugation (10 min, 14000 rpm, 4°C). Application buffer containing SDS and β-mercaptoethanol was added to all fractions and the proteins were denatured by boiling (5 min 100°C). Afterwards 10 µl of each was analysed by means of an 8 % analytical SDS gel (Laemmli U.K., 1970, *Nature* 227: 555-557).

Analysis of the SDS gel surprisingly shows a clear overexpression of the α- and β-chain. Strongly overexpressed additional bands are seen at ca. 63 kDa and ca. 95 kDa which are not observed with the non-induced control clones or the induced control clones which do not contain plasmid. The distribution of the bands in the soluble and insoluble fraction is like that of the experiments in which both chains were expressed separately without tags in one cell.

3.4 Expression of both chains with fused tags on a plasmid

If the genes for the α- and β-chain of the AMV-RT are distributed on two plasmids, differences in the stability of these plasmids could lead to the production of different amounts of the respective chains and thus to a lower yield of αβ-chain heterodimer. Hence with the exception of the gene for β lactamase, the entire genetic information of the two plasmids pAMV- α_{lacIq} -Arg and pAMV- β_{dnay} -His was combined on a single plasmid pAMV-

$\alpha\beta$ -1. This plasmid was constructed by inserting the *SspI-AfI*III fragment of pAMV- β_{dnAY} -His containing the sequence for the T5 promoter, the gene coding for the β -chain with an N-terminal His tag, the sequence for the *rrnB* terminator and the *dnAY* gene, into the *Sal*I cleavage site of pAMV- α_{lacIq} -Arg which contains the sequence for the T5 promoter, the gene coding for the α -chain with an N-terminal Arg-tag, the sequence for the *rrnB* terminator, the kanamycin resistance gene and the *lacIq* gene. For this purpose 1 μ g each of the expression plasmids pAMV- α_{lacIq} -Arg and pAMV- β_{dnAY} -His were cleaved with the restriction endonucleases described above according to the manufacturer's instructions, the restriction mixtures were separated in a 1 % agarose gel and the 4124 bp *SspI-AfI*III fragment of pAMV- β_{dnAY} -His and the 6024 bp fragment of pAMV- α_{lacIq} -Arg were isolated from the agarose gel (QIAEX II, Gel Extraction Kit, Qiagen/Germany). The non-compatible ends were prepared with Klenow polymerase (Roche Diagnostics GmbH) according to the manufacturer's instructions and the two fragments were ligated together as described above. The resulting new expression plasmid pAMV $\alpha\beta$ -1 was examined by means of restriction analysis.

The correct expression plasmid according to restriction analysis was transformed in the *E. coli* K-12 strain LE392 as described above and subjected to an expression control. The protein content of the cells after 4 hours growth under induced conditions was subsequently examined by means of SDS-PAGE. According to SDS-PAGE analysis the level of the expression output and the relative proportion of soluble and insoluble fractions are comparable to the expression of the genes for the α - and β -chain on separate plasmids, but the amount of expressed α - and β -chain appears to be more homogeneous.

Furthermore the Arg-tag of the α -chain was replaced by a His-tag like that of the β -chain for the purification procedure. For this purpose an intermediate construct pAMV- α_{lacIq} -His was prepared in which the EcoRI-NheI fragment from pAMV- α_{lacIq} -Arg was replaced by the EcoRI-NheI fragment from pAMV- β_{dnay} -His. Subsequently, like the construction of pAMV $\alpha\beta$ -1, the entire genetic information of the two plasmids pAMV- α_{lacIq} -His and pAMV- β_{dnay} -His with the exception of the gene for β lactamase was combined on a single plasmid pAMV $\alpha\beta$ -2. The new expression vector was named pAMV $\alpha\beta$ -2. Cells were transformed as described above with pAMV $\alpha\beta$ -2 and subjected to an expression control under standard conditions. The expression output was not increased under these conditions.

4. Example:
Expression optimization

4.1 Increase of the expression of active AMV-RT by changing the expression conditions

Particular growth and induction conditions have positive effects on the expression of active AMV-RT. Afterwards the growth temperature was lowered from 30°C to 15°C during the induction phase, the IPTG concentration was reduced from 0.5 mM to 0.15 mM to induce expression and the induction time was increased from 4 h to 26 h. The protein content of the cells after the induction phase was examined as described above by SDS polyacrylamide gel electrophoresis.

Afterwards the total expression yield of α - and β -chain was, as expected, substantially reduced in the SDS-PAGE analysis, but the content of soluble expressed α - and β -

chain was considerably increased in comparison to the expression experiments under standard growth and induction conditions. This increase in the expression of active AMV-RT was also confirmed in the subsequent purification and activity determination.

4.2 Increasing the expression of active AMV-RT by coexpression of helper genes

4.2.1. Coexpression of the gene for the tryptophan-tRNA (tRNA^{trp})

One property of the AMV-RT is to use an endogenous cell tRNA for tryptophan (tRNA^{trp}) as a primer for the polymerase reaction after infection of a eukaryotic host cell (Leis et al., 1993, in: Reverse Transcriptase, Cold Spring Harbor Monograph Series, eds.: Skala, A.M. and Goff, S.P., Cold Spring Harbor NY (USA), 33-48). However, whether the endogenous *E. coli* tRNA^{trp} can be used by the AMV-RT as a primer has not been proven. In *E. coli* the tRNA^{trp} is only coded by a single gene *trpT*, the expression of which is adapted to the normal requirements of the cell. In order to exclude a potential deficiency of tRNA^{trp} in the cell, the *trpT* gene according to SEQ ID NO:10 was isolated by means of PCR from *E. coli* LE392 (the primers used for this are shown in SEQ ID NO:11 and 12), recleaved with *PstI* for insertion into pAMV- $\alpha_{lacIq-His}$ and ligated into the vector fragment of pAMV- $\alpha_{lacIq-His}$ that was also linearized with *PstI* as described above. Clones which have integrated the *trpT* gene at the *PstI* restriction endonuclease cleavage site were checked by means of restriction analysis and sequencing. In this intermediate construct pAMV- $\alpha_{lacIq-His-trpT}$ the gene for

the α -chain and the gene for the *E. coli* tRNA^{trp} form one transcription unit, the expression of which is regulated by the IPTG-inducible T5 promoter. Subsequently, similarly to the construction of pAMV α -1 or pAMV α -2, the entire genetic information of the two plasmids pAMV- α_{lacIq} -His-*trpT* and pAMV- β_{dnay} -His with the exception of the gene for β -lactamase was combined on a single plasmid pAMV α -3. Cells were transformed as described above with pAMV α -3 and subjected to an expression control using the modified expression conditions. Afterwards the yield of active AMV-RT is significantly increased.

4.2.2. Coexpression of chaperone genes

In *E. coli* there are two main chaperone systems comprising the GroESL machinery and a 4 component system consisting of DnaK, DnaJ, GrpE and ClpB (Kedzierska, 1999). Both systems play an important role in the correct folding of newly formed proteins as well as in the renaturing of proteins that have aggregated as a result of stress (Hartl F.U., 1996, *Nature* 381, 571-580; Bukau H. and Horwich A.L., 1998, *Cell* 92, 351-366; MogK A. et al., *EMBO J.* 18, 6934-6949; Zolkiewski M., 1999, *J. Biol. Chem.* 274, 28083-28086; Goloubinoff P. et al., 1999, *Proc. Natl. Acad. Sci. USA* 96, 13732-13737).

In a first step the *groESL* operon from *E. coli* should be overexpressed in the AMV-RT production strains. For this the *EcoRI-HindIII* fragment from pOF39 (Fayet O., Louarn J.-M., Georgopoulos C., 1986, *Mol. Gen. Genet.* vol. 202, pp. 335-345 was integrated in the *SspI* cleavage site of the plasmid pAMV- β_{dnay} -His. Non-compatible ends were prepared with Klenow polymerase (Roche Diagnostics)

according to the manufacturer's instructions before ligation. The sequence of *groESL* is shown in SEQ ID NO:13. In this new construct pAMV- β_{dnay} -His-*groESL*, the *groESL* operon forms an artificial transcription unit containing the 3'-situated gene for β lactamase. The expression is then either under the control of the endogenous *bla* constitutive promoter that is now on the 5' side of the *groESL* operon and/or under the control of the σ^{32} -dependent promoter of the *groESL* operon. Subsequently the entire genetic information of the two expression plasmids pAMV- α_{lacIq} -His-*trpT* and pAMV- β_{dnay} -His-*groESL* with the exception of the gene for β -lactamase was again combined as described above on a single plasmid pAMV $\alpha\beta$ -4.

Cells were transformed with pAMV $\alpha\beta$ -4 as described above and subjected to an expression control under the modified expression conditions. The co-overproduction of GroESL results in an increase of the biomass and of the amount of active AMV-RT. Three to four-fold higher values were obtained compared to the previously best production strains after purification and activity testing.

After the co-overproduction of GroESL in the AMV-RT production strains had proven to be a positive measure, the other main chaperone system of *E. coli* was additionally co-overproduced in a second step. In addition to the supposed general advantages of this co-overproduction this could compensate for a disadvantage of the GroESL machinery i.e. its exclusion volume of circa 65 kDa (Deuerling E. et al., 1999, Nature 400, 693-696). This should be particularly important for the correct folding of the β -chain of the AMV-RT (93 kDa) provided it cannot be divided into single domains that

are formed independently of one another. The genes DnaK, DnaJ and GrpE were combined in an artificial operon corresponding to the physiological combination (Diamant S. and Goloubinoff P., 1998, Biochemistry 37, 9688-9694; Pierpaoli E.V. et al., 1998, J. Biol. Chem. 273, 6643-6649), whereas the gene for ClpB forms its own transcription unit. Both transcription units were placed under the control of IPTG-inducible T5 promoters in order to coordinate the expression with the genes for the subunits of the AMV-RT.

For technical reasons the cloning process required a number of intermediate steps on the path to the final construct pCHAP-5. Thus the pKKT5 derivatives pCHAP-1 and pCHAP-2 were firstly constructed. pCHAP-1 contains the genetic information for the *dnaKJ* operon from *E. coli* starting with the start codon for *dnaK* up to the stop codon for *dnaJ*; pCHAP-2 carries the artificial transcription unit from the coding regions of the genes for GrpE and ClpB as an insert; the corresponding DNA fragments were amplified by PCR from the genomic DNA of *E. coli* K12KE392. The sequence of the *dnaKJ* operon is shown in SEQ ID NO:14, the corresponding primers used to isolate the *dnaKJ* operon are shown in SEQ ID NO:15 and 16. The sequence of the *grpE* gene is shown in SEQ ID NO:17, the corresponding primers for the isolation of the *grpE* gene are shown in SEQ ID NO:18 and 19. The sequence of the *clpB* gene is shown in SEQ ID NO:20, the corresponding primers for the isolation of the *clpB* gene are shown in SEQ ID NO:21 and 22. In order to construct pCHAP-1 the PCR fragment containing the *dnaKJ* operon was recleaved with *SmaI* and *BamHI* and, as described above, ligated into a vector fragment of pKKT5 which had also been linearized with *SmaI* and *BamHI*. pCHAP-2 was constructed by means of a three-fold ligation with the

*Eco*RI-*Pst*I fragment of the *grpE* gene, the *Pst*I-*Hind*III fragment of the *clpB*-gene and a vector fragment of pKKT5 linearized with *Eco*RI and *Hind*III. p-CHAP-3 in which the *clpB* gene is present alone as a transcription unit, is derived from pCHAP-2 by ligating the *Pst*I-*Hind*III fragment from pCHAP-2 into the vector fragment of pKKT5 linearized with *Eco*RI and *Hind*III as described above. Before the ligation reaction the non-compatible ends of the two fragments were prepared with Klenow polymerase (Roche Diagnostics) according to the manufacturer's instructions. pCHAP-4 is a pCHAP-1 derivative whose insert was extended by the *grpE* gene from pCHAP-2 and thus the artificial transcription unit comprises the genes for DnaK, DnaJ and GrpE. As a result of the Shine Dalgarno sequence which is suboptimal in this case, the expression of *grpE* should be reduced compared to pCHAP-2 and thus be better adapted to the expression of *dnaKJ* (Diamant & Goloubinoff, 1998; Pierpaoli et al., 1998). In order to construct pCHAP-4 the *Eco*RI-*Ava*I fragment from pCHAP-2 was inserted into the *Bam*HI cleavage site of pCHAP-1 after the non-compatible ends of the two fragments had been prepared with Klenow polymerase (Roche Diagnostics) according to the manufacturer's instructions. The final construct p-CHAP-5 is a pCHAP-4 derivative which contains the insert of pCHAP-3 as additional genetic information. For this the *Bsp*LU11I-*Nde*I fragment in pCHAP-4 was replaced by the *Bsp*LU11I-*Ssp*I fragment from pCHAP-3 by restriction and ligation as already described several times. In order to ensure the compatibility of the ends, the overhanging ends generated by *Nde*I were previously filled in with Klenow polymerase (Roche Diagnostics) according to the manufacturer's instructions.

The effect of combining the expression plasmid pAMV $\alpha\beta$ -4

with the various helper plasmids pCHAP-1 to -5 on the overproduction of active AMV-RT was examined. At least under the modified standard expression conditions all helper plasmids considerably increased the previous yields of active AMV-RT and as expected the helper plasmid pCHAP-5 gave the best result. This was confirmed by SDS-PAGE as well as by subsequent purification and activity determination.

5. Example:

Analytical methods

5.1. Test for reverse transcriptase activity (test A)

During the purification, the reverse transcriptase activity in the fractions was detected by means of a non-radioactive test system. The "reverse transcriptase assay non-radioactive" (Roche Molecular Biochemicals, cat. No. 1468120) was used for this. The incubation period was shortened to 30 minutes.

5.2. Test for reverse transcriptase activity (test B)

The specific reverse transcriptase activity of the pools was determined by a radioactive test system. Reverse transcriptase activity was determined in a test volume of 100 μ l (50 mM Tris/HCl, pH 8.3 (37°C), 40 mM KCl, 6 mM MgCl₂, 0.5 mM dTTP, 0.04 OD₂₆₀ nm poly (A) x dT₁₅, 0.1 μ M [³H]-dTTP). AMV-RT (5 μ l) was added in suitable dilutions. After incubating for 10 min at 37°C, the reaction was stopped with 10 % TCA solution (500 μ l). The radioactively-labelled product that formed was washed on a nitrocellulose filter after precipitation. The incorporation rate of radioactivity was measured in

a scintillation counter and the RT activity of the sample was calculated. One enzyme unit was defined as the amount of AMV-RT which incorporated 1.0 nMol TMP into acid insoluble product in 10 min at 37°C.

5.3. Test for DNA polymerase

The activity of DNA polymerase from *E. coli* was determined by measuring the nick translation. The DNA polymerase was detected by means of a non-radioactive nick translation test. The nick translation was carried out in a test volume of 50 μ l (50 mM Tris/HCl, pH 7.5, 10 mM MgCl₂, 0.1 mM DTE, 28.875 μ M DIG-dUTP, 1.444 μ M bio-16-dUTP, 95.865 μ M dTTP, 20 μ M dATP, 20 μ M dCTP, 20 μ M dGTP, 1 μ g pBR322, 1 pg DNaseI). After adding the samples (1 μ l) the reaction mixture was incubated for 30 min at 37°C. Afterwards the reaction mixture was transferred to streptavidin-coated microtitre plates. Subsequent treatment and evaluation of the test was carried out analogously to the "reverse transcriptase assay, non-radioactive" (Roche Molecular Biochemicals, Cat. No. 1468120).

5.4 Test for contaminating activities

The test for the presence of contaminating foreign activities was carried out in a solution composed of 10 mM Tris/HCl, pH 7.5, 10 mM MgCl₂, 1 mM DTE.

Suitable samples of the individual enzyme fractions were incubated with the corresponding nucleic acids. So-called nicking activity was detected by incubation with the plasmid pBR322 (1 μ g) for 2-16 hours at 37°C. Unspecific nucleases were detected by incubation with

lambda-DNA/EcoRI, HindIII (1 μ g) for 2-16 hours at 37°C. Unspecific RNases were detected by incubation for 2-4 hours at 37°C with MSII-RNA (5 μ g).

For the test for contamination by exonucleases, the samples were incubated for 4 hours at 37°C with 4 μ g [³H]-labelled DNA and afterwards the released [³H]-labelled nucleotides were determined.

6. Examples:

Purification and functional test

6.1. AMV-RT from *E. coli* LE392 pAMV- α_{lacIq} -Arg/pAMV- β_{dnay} -His construct

6.1.1. Purification

E. coli cells which overexpress both chains of the AMV-RT (see above) were used as the starting material to purify the recombinant AMV-RT.

The AMV-RT was purified at 4°C. The purification was carried out by chromatographic methods after cell lysis and separation of the nucleic acids. The purification process yields a recombinant AMV-RT which is free of contaminating enzyme activities and in RT-PCR has the same functionality as an AMV-RT purified from native material.

Buffer:

buffer A: 50 mM Tris/HCl, pH 7.9, 0.5 M KCl, 0.02 % Triton X-100, 20 % glycerol,
buffer B: 20 mM Tris/HCl, pH 7.9, 0.25 M KCl, 0.02 %

Triton X-100, 10 % glycerol,
buffer C: 20 mM Tris/HCl, pH 7.9, 0.25 M KCl, 0.02 %
Triton X-100, 10 % glycerol, 1 M imidazole,
buffer D: 50 mM Tris/HCl, pH 8.2, 0.1 mM EDTA, 1 mM DTT,
0.02 % Triton X-100, 10 % glycerol,
buffer E: 20 mM potassium phosphate, pH 7.1, 0.1 mM
EDTA, 1 mM DTT, 0.02 % Triton X-100, 10 % glycerol,
storage buffer: 200 mM potassium phosphate, pH 7.2, 2 mM
DTT, 0.2 % Triton X-100, 50 % glycerol.

Cell lysis:

200 ml buffer A was added to ca. 50 g *E. coli* LE392 cells (pAMV- α_{lacIq} -Arg/pAMV- β_{dnay} -His) which were thawed and suspended. Two tablets of Complete (Roche Molecular Biochemicals, cat. No. 1697498) were added to the suspension. Subsequently the cells were lysed by means of ultrasound (Branson sonicator) while cooling (temperature: < 10°C). The degree of lysis of the cell suspension that was achieved was typically 40-50 %.

Precipitation of nucleic acids:

Afterwards the nucleic acids were removed by means of polymin precipitation. 5 ml of a 10 % polymin P solution was added dropwise. If the precipitation was incomplete, further dropwise addition was carried out. After incubation for 30 min at 4°C, centrifugation was carried out (30 min, 13000 rpm, 4°C).

Chromatographic purifications:

Affinity chromatography on a Ni-chelate column:

The clear centrifugation supernatant was diluted with buffer B (1+1) and absorbed to a nickel-loaded chelating sepharoseTM ff column (2.6 cm x 10 cm, Pharmacia) which

had been equilibrated with buffer B, it was then washed with ca. 500 ml buffer B, afterwards with 200 ml buffer B + 10 mM imidazole and 200 ml buffer B + 20 mM imidazole. The enzyme was eluted with a linear gradient of buffer B + 20 mM imidazole and buffer C in a total volume of 500 ml. The flow rate was 5 ml per minute, the fraction size was 20 ml per fraction. The enzyme eluted between 50 mM and 200 mM imidazole. The pool of active fractions was dialysed against buffer D.

Chromatography on heparin-sepharose:

The dialysed pool was subsequently absorbed to a heparin-sepharose ff column equilibrated with buffer D (1.6 cm x 10 cm, Pharmacia) and washed with ca. 200 ml buffer D, then with ca. 200 ml buffer D + 300 mM KCl. The enzyme was eluted with a linear gradient of buffer D + 300 mM KCl and buffer D + 1 M KCl in a total volume of 200 ml. The flow rate was 2.5 ml per min, the fraction size was 10 ml. The AMV-RT eluted at a KCl concentration of 500 mM to 700 mM.

Chromatography on S-sepharose ff:

The RT-active fractions were pooled and dialysed against buffer E. The dialysate was loaded onto a S-sepharose ff column equilibrated with buffer E (1.6 cm x 10 cm, Pharmacia). After washing with ca. 200 ml buffer E, the enzyme was eluted with a linear gradient of buffer E and buffer E + 1 M KCl in a total volume of 400 ml. The flow rate was 2.5 ml per minute, the fraction size was 10 ml.

Chromatography on hydroxylapatite:

The RT-active fractions were pooled and dialysed against buffer E. The dialysate was loaded onto a HA-ultrogel TM column equilibrated with buffer E (1.6 cm x 10 cm,

Biosepra). After washing with ca. 200 ml buffer E, the enzyme was eluted with a linear gradient of buffer E and buffer E + 0.5 M potassium phosphate in a total volume of 400 ml. The flow rate was 2.5 ml per minute, the fraction size was 10 ml.

The RT-active fractions were pooled and dialysed against storage buffer. Application buffer containing SDS and β -mercaptoethanol was added to the purified protein and the sample was denatured by boiling (5 min, 100°C). Subsequently 20 μ l aliquots were analysed by an analytical SDS gel (4-20 %) (Laemmli UK., 1970, Nature 227: 555-557). The α - and β -subunits of AMV-RT were found in equimolar ratios.

The described method yields a stable AMV-RT with an equimolar distribution of the α - and β -subunits. The enzyme obtained is functional in RT-PCR.

6.1.2. Functional test in RT-PCR

The recombinant AMV reverse transcriptase that was obtained was examined in a functional test. The functional test consisted of a reverse transcription (RT) coupled with a polymerase chain reaction (PCR). For this 5 units of the recombinant AMV reverse transcriptase was used like the enzyme mixture of the Titan TM One Tube PCR System (cat. No. 1888382, Roche Molecular Biochemicals). A 1.8 kb fragment of the human dystrophin gene was amplified. 10 ng human muscle RNA was used as a template. The primers (400 nM) were the Dys primer 2rev (5'GAG TGA ATA CAG TTT GCC CAT GGA TTG-3') and the Dys primer 8for (5'-AAG AAG TAG AGG ACT GTT ATG AAA GAG AAG-3'). The target was amplified in a RT-

PCR using the following program: 50°C for 30 min, 94°C for 2 min followed by 10 cycles (94°C for 10 sec, 58°C for 30 sec, 68°C for 1 min 10 sec) and 20 cycles (94°C for 10 sec, 58°C for 30 sec, 68°C for 1 min 10 sec; + 10 sec/cycle). Subsequently it was incubated for 7 min at 68°C. The reaction products of the RT-PCR were separated after stopping the reaction on a 1 % agarose gel (fig. 1).

Figure 1 shows the amplification product of the RT-PCR having a size of 1.8 kb which was obtained using native purified AMV-RT (lane 2) and AMV-RT that was obtained by recombinant means (lane 3). Lanes 1 and 4 show a DNA molecular weight marker VI (cat. No. 1062590, Roche Molecular Biochemicals).

6.2 AMV-RT from *E. coli* LE392 pAMV $\alpha\beta$ -4 + pCHAP-5 construct

6.2.1 Purification

E. coli LE392 pAMV $\alpha\beta$ -4 + pCHAP-5 cells which overexpress both chains of the AMV-RT (see above) were used as the starting material to purify the recombinant AMV-RT.

The AMV-RT was purified at 4°C. The purification was carried out by chromatographic methods after cell lysis and separation of the nucleic acids. The purification yields a recombinant AMV-RT which is free of contaminating enzyme activities and in RT-PCR has the same functionality as an AMV-RT purified from native material.

Buffer:

buffer A: 50 mM NaPO₄, pH 7.2, 1 M NaCl, 3 mM 2-mercaptoethanol, 10 % glycerol,
buffer B: 50 mM NaPO₄, pH 5.0, 1 M NaCl, 3 mM 2-mercaptoethanol, 10 % glycerol,
buffer C: 50 mM NaPO₄, pH 6.0, 1 M NaCl, 3 mM 2-mercaptoethanol, 10 % glycerol, 0.2 M imidazole,
buffer D: 50 mM NaPO₄, pH 7.7, 1 M NaCl, 3 mM 2-mercaptoethanol, 10 % glycerol, 0.5 M imidazole
buffer E: 50 mM NaPO₄, pH 6.0, 3 mM 2-mercaptoethanol, 10 % glycerol,
storage buffer: 200 mM potassium phosphate, pH 7.2, 2 mM DTT, 0.2 % Triton X-100, 50 % glycerol.

Cell lysis:

Ca. 50 g *E coli* LE392 pAMV- $\alpha\beta$ -4+pCHAP-5 cells were mixed with 400 ml buffer A, thawed and suspended. Two tablets of Complete (Roche Molecular Biochemicals, cat. No. 1697498) were added to the suspension. Subsequently the cells were lysed by means of ultrasound (Branson sonicator) while cooling (temperature: < 10°C). The degree of lysis of the cell suspension that was achieved was typically 40-50 %.

Precipitation of nucleic acids:

Afterwards the nucleic acids were removed by means of polymin precipitation. 5 ml of a 10 % polymin P solution was added dropwise. If the precipitation was incomplete, further dropwise addition was carried out. After incubation for 30 min at 4°C, centrifugation was carried out (30 min, 13000 rpm, 4°C).

*Chromatographic purifications:**Affinity chromatography on a Ni-chelate column:*

The clear centrifugation supernatant was absorbed to a nickel-loaded chelating sepharose ff column (2.6 cm x 10 cm, Pharmacia) which had been equilibrated with buffer A, it was then washed with ca. 500 ml buffer A, afterwards with 500 ml buffer B and 500 ml buffer C. The enzyme was eluted with buffer D in a total volume of 500 ml. The flow rate was 5 ml per minute, the fraction size was 20 ml per fraction. The pool of active fractions was dialysed against buffer E.

Chromatography on heparin-sepharose:

The dialysed pool was subsequently absorbed to a heparin-sepharose ff column (1.6 cm x 10 cm, Pharmacia) equilibrated with buffer E + 250 mM NaCl and washed with ca. 200 ml buffer E + 250 mM NaCl. The enzyme was eluted with a linear gradient of buffer E + 250 mM NaCl and buffer E + 1 M NaCl in a total volume of 200 ml. The flow rate was 2.5 ml per min, the fraction size was 10 ml. The AMV-RT eluted at an NaCl concentration of 500 mM to 700 mM.

The RT-active fractions were pooled and dialysed against storage buffer. Application buffer containing SDS and β -mercaptoethanol was added to the purified protein and the sample was denatured by boiling (5 min, 100°C). Subsequently 20 μ l aliquots were analysed by an analytical SDS gel (4-20 %) (Laemmli UK., 1970, Nature 227: 555-557). The α - and β -subunits of AMV-RT were found in equimolar ratios (fig. 2, lane 6).

Figure 2 shows an SDS gel with samples from the AMV-RT purification

lane 1: molecular weight marker
lane 2: native AMV
lane 3: cell lysis
lane 4: Ni-chelate sepharose, wash with buffer C
lane 5: Ni-chelate pool
lane 6: rec. AMV-RT final preparation

The described method yields a stable AMV-RT with an equimolar distribution of the α - and β -subunits. The enzyme obtained is functional in RT-PCR.

6.2.2. Functional test in RT-PCR

The recombinant AMV reverse transcriptase that was obtained was examined in a functional test. The functional test consists of a reverse transcription (RT), followed by a polymerase chain reaction (PCR). 10 units of the recombinant AMV reverse transcriptase was used for this. A 8 kb, 10 kb, 12 kb and a 13.5 kb fragment of the human dystrophin gene was amplified.

1 μ g human muscle RNA was used as a template. The primers (400 nM) were the Dys primer 2 for (5'-CAA TCC ATG GGC AAA CTG TAT TCA CTC-3') and Dys primer 5 rev (5'-CGT CCC GTA TCA TAA ACA TTC AGC AGC-3') for 8 kb, Dys primer 8 for (5'-AAG AAG TAG AGG ACT GTT ATG AAA GAG AA-3') and 5 rev for 10 kb, Dys primer 8 for and Dys primer 9 rev (5'-AGC AGG TAA GCC TGG ATG ACT GAC TAG AAG-3') for 12 kb and Dys primer 8 for and 10 rev (5'-AAT CAA TCA ACC AAC CGA AAT CTC ACT CTG-3') for 13.5 kb. The cDNA synthesis was carried out for 60 min at 42°C.

The cDNA synthesis was carried out according to the instructions in the product information for the AMV reverse transcriptase (cat. No. 1495062, Roche Molecular Biochemicals).

The Expand Long Template PCR System (cat. No. 1681834, Roche Molecular Biochemicals) was used for the PCR. The target was amplified using the following PCR program: 94°C for 2 min, followed by 10 cycles (94°C for 10 sec, 60°C for 30 sec, 68°C for 10 min) and 20 cycles (94°C for 10 sec, 60°C for 30 sec, 68°C for 10 min 10 + 10 sec/cycle). Subsequently it was incubated for 5 min at 68°C. After stopping the reaction, the reaction products of the RT-PCR were separated on 1 % agarose gel (fig. 3). Lanes 3 and 6 show a DNA molecular weight marker X (cat. no. 1498037, Roche Molecular Biochemicals).

Figure 3 shows an agarose gel on which the reaction products of the RT-PCR using recombinant AMV-RT were separated; lane 1: 8 kb amplification product, lane 2: 10 kb amplification product, lane 3: DNA length standard X, lane 4: 12 kb amplification product, lane 5: 13.5 kb amplification product, lane 6: DNA length standard X.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

- (A) NAME: F. Hoffmann-La Roche AG
- (B) STREET: 124 Grenzacherstrasse,
- (C) CITY: BASLE
- (D) STATE/PROVINCE: CH
- (E) COUNTRY: SWITZERLAND
- (F) POSTAL CODE/ZIP: CH-4070
- (G) TELEPHONE:
- (I) TELEFAX:

(ii) TITLE OF INVENTION: METHOD FOR PRODUCING AN ACTIVE HETERODIMERIC AMV-RT IN PROKARYOTIC CELLS

(iii) NUMBER OF SEQUENCES: 22

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Borden Ladner Gervais LLP
- (B) STREET: 60 Queen Street
- (C) CITY: Ottawa
- (D) PROVINCE: Ontario
- (E) COUNTRY: CANADA
- (F) POSTAL CODE: K1P 5Y7

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Ver. 2.1

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: 2,357,540
- (B) FILING DATE: 20-SEP-2001

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: DE 100 46 960.4
- (B) FILING DATE: 22-SEP-2000

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Fritz, Joachim
- (B) REGISTRATION NUMBER: 4173
- (C) REFERENCE/DOCKET NUMBER: PAT 49975-1

-35-

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (613) 237-5160
- (B) TELEFAX: (613) 787-3558

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 38 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

gatgactgga attcatgact gttgcgctac atctggct

38

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

gatgactgct gcagttatta tgcaaaaaga gggctcgccct

40

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 41
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

-36-

(ix) FEATURE:

- (A) NAME/KEY: Avian Myeloblastosis Virus
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

gatgactgct gcagttatta atacgcttga aaggtggctt g 41

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1716
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Avian Myeloblastosis Virus
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4

actgttgcgc tacatctggc tattccgctc aaatggaagc caaaccacac gcctgtgtgg 60
 attgaccagt ggccccttcc tgaaggtaaa cttgttagcgc taacgcaatt agtggaaaaaa 120
 gaattacagt taggacatat agaaccttca cttagttgt ggaacacacc tgtctttgtg 180
 atccggaagg cttccgggtc ttatcgctta ttgcattgact tgccgcgtgt taacgctaag 240
 cttgttcctt ttggggccgt ccaacagggg ggcgcgggttc tctccgcgt cccgcgtggc 300
 tggcccttga tggtcctaga cctcaaggat tgcttcttt ctattcctct tgccgaacaa 360
 gatcgcaag ctttgcatt tacgctcccc tctgtgaata accaggcccc cgctcgaaga 420
 ttccaatgga aggtcttgcc ccaagggatg acctgttctc ccactatctg tcagttgata 480
 gtgggtcaaa tacttgagcc cttgcgactc aagcacccat ctctgcgcattt gttgcattat 540
 atggatgatc ttttgcttagc cgccctcaagt catgatgggt tggaaagcggc aggggaggag 600
 gttatcagta cattggaaag agccgggttc accatttcgc ctgataaggt ccagagggag 660
 cccggagtac aatatcttgg gtacaagttt ggcagttacgt atgttagcacc cgtaggcctg 720
 gtagcagaac ccaggatagc caccttgtgg gatgttcaga agctgggtgg gtcacttcag 780
 tggcttcgccc cagcgctagg aatcccgctt cgactgtatgg gcccctttt tgagcaggta 840
 cgagggtcag atcctaacga ggcgagggaa tggaaatctag acatgaaaat ggcctggaga 900
 gagatcgtgc agctcagcac cactgctgcc ttggaaacgt gggaccctgc cctgcctctg 960
 gaaggagcgg tcgctagatg tgaacagggg gcaatagggg tcctggaca gggactgtcc 1020
 acacacccaa ggcctatgtt gtggttattt tccacccaaac ccaccaaggc gtttactgct 1080
 tggtagaaag tgctcaccct tttgattact aagctacgtg ctgcggcagt ggcacccattt 1140
 ggcaaggagg ttgatatacct cctgttgcct gcatgcttc gggaggaccc tccgctcccg 1200
 gaggggatcc tgtagccct tagggggtt gcaggaaaaaa tcaggatgt tgacacgcca 1260
 tctattttg acattgcgcg tccactgcattt gtttctctga aagtgggtt taccgaccac 1320
 cctgtaccgg gaccactgt ctttaccgac gcctcctcaa gcacccataa ggggggtggta 1380
 gtctggaggg agggcccaag gtgggagata aaagaaaatag ctgatgggg ggcacgtgta 1440
 caacaactgg aagcacgcgc tggccatg gcacttctgc tggccgcac aacgcccact 1500
 aatgtatgtga ctgactctgc gtttggccatg aaaatgttac tcaagatggg gcaggaggaa 1560
 gtcccgatca cagcggccgc ttttattttt gaggatgcgt taagccaaag gtcagccatg 1620
 gccgcgcgttc tccacgtgcg gagtcattct gaggtgccag gtttttac agaaggaaat 1680
 gacgtggcag atagccaaac caccttcaa gcgtat 1716

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2574
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Avian Myeloblastosis
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

actgttgcgc tacatctggc tattccgctc aaatggaagc caaaccacac gcctgtgtgg 60
 attgaccagt ggccccttcc tgaaggtaaa cttgttagcgc taacgcaatt agtggaaaaaa 120
 gaattacagt taggacatat agaaccttca cttagttgct ggaacacacc tgtctttgtg 180
 atccggaagg cttccgggtc ttatcgctt ttgcattgact tgccgcgtgt taacgctaag 240
 cttgttccctt ttggggccgt ccaacagggg ggcgcgggtc tctccgcgt cccgcgtggc 300
 tggcccctga tggtcctaga cctcaaggat tgcttcttt ctattcctct tgccgaacaa 360
 gatcgcaag ctttgcatt tacgctcccc tctgtgaata accaggcccc cgctcgaaga 420
 ttccaatgga aggtcttgcc ccaagggatg acctgttctc ccactatctg tcagttgata 480
 gtgggtcaaa tacttgagcc cttgcgactc aagcacccat ctctgcgcat gttgcattat 540
 atggatgatc ttttgcgtac cgccctcaagt catgatgggt tggaaagcggc aggggaggag 600
 gttatcagta cattggaaag agccgggttc accatttcgc ctgataaggt ccagagggag 660
 cccggagtac aatatcttgg gtacaagttt ggcagttacgt atgttagcacc ctagggctg 720
 gtagcagaac ccaggatagc caccttggat gatgttcaga agctgggtgg gtcacttcag 780
 tggcttcgccc cagcgctagg aatcccgctt cgactgtatgg gcccctttt tgagcagttt 840
 cgagggatcag atcctaacga ggcgagggaa tggaaatctag acatgaaaat ggcctggaga 900
 gagatcgtgc agctcagcac cactgctgcc ttgaaacgtat gggaccctgc cctgcctctg 960
 gaaggagcgg tcgctagatg tgaacagggg gcaatagggg tcctggaca gggactgtcc 1020
 acacacccaa ggccatgttt gtggttattt tccacccaaac ccaccaaggc gtttactgt 1080
 tggtagaaag tgctcaccct tttgattact aagctacgtg cttcggcagt gcgaaccttt 1140
 ggcaaggagg ttgatattcct cctgttgcct gcatgcttc gggaggaccc tccgctcccg 1200
 gaggggatcc tggtagccct tagggggttt gcaggaaaaaa tcaggagtag tgacacgcca 1260
 tctattttg acattgcgcg tccactgcatt gtttctctga aagtgggtt taccgaccac 1320
 cctgtaccgg gaccactgt ctttaccgac gcctcctcaa gcacccataa ggggtggta 1380
 gtctggaggg agggccaaag gtgggagata aaagaaaatag ctgatttggg gcaagtgtt 1440
 caacaactgg aagcacgcgc tggccatg gcacttctgc tggccgcac aacgcccact 1500
 aatgtatgttgc ctgactctgc gttgttgcg aaaatgttac tcaagatggg gcaggaggg 1560
 gtcccgctta cagcgccggc ttttattttt gaggatgcgt taagccaaag gtcagccatg 1620
 gcccgggttc tccacgtgcg gagtatttgc gaaatgcgtt ggttttgcac agaaggaaat 1680
 gacgtggcag atagccaaag caccttcaa gcgtatccct tgagagaggc taaagatctc 1740
 cataccgctc tccatatcg accccgcgcg ctatccaaag cgttaatat atctatgcag 1800
 caggctagg aggtgttca gacccgtcccg cattgttattt cagccctgc gttggaggcc 1860
 gggtaaacc ctagggttt gggaccctta cagatatggc agacagactt tacactagag 1920
 cctagaatgg ctccccgttc ctggctcgct gttactgtgg ataccgcctc atctgcgata 1980
 gtcgttaatc agcatggccg tgcacatcg gttgtgcac aacatcatgg gcccacggct 2040
 atcgccgttt tggaaagacc aaaggccata aaaacagata atgggtcctg cttcacgtct 2100
 aaatccacgc gagagtggct cgcgatgg gggatgcac acaccaccgg gattccgggt 2160
 aatcccagg gtcaagctat ggttagagcgg gccaaccggc tcctgaaaga taagatccgt 2220
 gtgcttgcgg agggggatgg ctttatgaaa agaatccccca ccagcaaaca gggggaaacta 2280
 ttagccaagg caatgtatgc ctttaatcac tttgagcgtg gtgaaaacac aaaaacaccg 2340

-38-

atacaaaaac actggagacc taccgttctt acagaaggac ccccggttaa aatacgaata 2400
 gagacagggg agtgggaaaa aggatggaac gtgctggtct gggacgagg ttatgcagct 2460
 gtgaaaaaca gggacactga taaggttatt tgggtaccct ctcgaaaagt taaaccggac 2520
 atcgcccaaaggatgaggt gactaagaaa gatgaggcga gcccttttt tgca 2574

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 572
- (B) TYPE: Amino Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: PRT

(ix) FEATURE:

- (A) NAME/KEY: Avian Myeloblastosis Virus
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Thr Val Ala Leu His Leu Ala Ile Pro Leu Lys Trp Lys Pro Asn His
 1 5 10 15

Thr Pro Val Trp Ile Asp Gln Trp Pro Leu Pro Glu Gly Lys Leu Val
 20 25 30

Ala Leu Thr Gln Leu Val Glu Lys Glu Leu Gln Leu Gly His Ile Glu
 35 40 45

Pro Ser Leu Ser Cys Trp Asn Thr Pro Val Phe Val Ile Arg Lys Ala
 50 55 60

Ser Gly Ser Tyr Arg Leu Leu His Asp Leu Arg Ala Val Asn Ala Lys
 65 70 75 80

Leu Val Pro Phe Gly Ala Val Gln Gln Gly Ala Pro Val Leu Ser Ala
 85 90 95

Leu Pro Arg Gly Trp Pro Leu Met Val Leu Asp Leu Lys Asp Cys Phe
 100 105 110

Phe Ser Ile Pro Leu Ala Glu Gln Asp Arg Glu Ala Phe Ala Phe Thr
 115 120 125

Leu Pro Ser Val Asn Asn Gln Ala Pro Ala Arg Arg Phe Gln Trp Lys
 130 135 140

Val Leu Pro Gln Gly Met Thr Cys Ser Pro Thr Ile Cys Gln Leu Ile
 145 150 155 160

Val Gly Gln Ile Leu Glu Pro Leu Arg Leu Lys His Pro Ser Leu Arg
 165 170 175

-39-

Met Leu His Tyr Met Asp Asp Leu Leu Leu Ala Ala Ser Ser His Asp
 180 185 190

 Gly Leu Glu Ala Ala Gly Glu Glu Val Ile Ser Thr Leu Glu Arg Ala
 195 200 205

 Gly Phe Thr Ile Ser Pro Asp Lys Val Gln Arg Glu Pro Gly Val Gln
 210 215 220

 Tyr Leu Gly Tyr Lys Leu Gly Ser Thr Tyr Val Ala Pro Val Gly Leu
 225 230 235 240

 Val Ala Glu Pro Arg Ile Ala Thr Leu Trp Asp Val Gln Lys Leu Val
 245 250 255

 Gly Ser Leu Gln Trp Leu Arg Pro Ala Leu Gly Ile Pro Pro Arg Leu
 260 265 270

 Met Gly Pro Phe Tyr Glu Gln Leu Arg Gly Ser Asp Pro Asn Glu Ala
 275 280 285

 Arg Glu Trp Asn Leu Asp Met Lys Met Ala Trp Arg Glu Ile Val Gln
 290 295 300

 Leu Ser Thr Thr Ala Ala Leu Glu Arg Trp Asp Pro Ala Leu Pro Leu
 305 310 315 320

 Glu Gly Ala Val Ala Arg Cys Glu Gln Gly Ala Ile Gly Val Leu Gly
 325 330 335

 Gln Gly Leu Ser Thr His Pro Arg Pro Cys Leu Trp Leu Phe Ser Thr
 340 345 350

 Gln Pro Thr Lys Ala Phe Thr Ala Trp Leu Glu Val Leu Thr Leu Leu
 355 360 365

 Ile Thr Lys Leu Arg Ala Ser Ala Val Arg Thr Phe Gly Lys Glu Val
 370 375 380

 Asp Ile Leu Leu Pro Ala Cys Phe Arg Glu Asp Leu Pro Leu Pro
 385 390 395 400

 Glu Gly Ile Leu Leu Ala Leu Arg Gly Phe Ala Gly Lys Ile Arg Ser
 405 410 415

 Ser Asp Thr Pro Ser Ile Phe Asp Ile Ala Arg Pro Leu His Val Ser
 420 425 430

 Leu Lys Val Arg Val Thr Asp His Pro Val Pro Gly Pro Thr Val Phe
 435 440 445

 Thr Asp Ala Ser Ser Ser Thr His Lys Gly Val Val Val Trp Arg Glu
 450 455 460

-40-

Gly Pro Arg Trp Glu Ile Lys Glu Ile Ala Asp Leu Gly Ala Ser Val
 465 470 475 480

Gln Gln Leu Glu Ala Arg Ala Val Ala Met Ala Leu Leu Leu Trp Pro
 485 490 495

Thr Thr Pro Thr Asn Val Val Thr Asp Ser Ala Phe Val Ala Lys Met
 500 505 510

Leu Leu Lys Met Gly Gln Glu Gly Val Pro Ser Thr Ala Ala Ala Phe
 515 520 525

Ile Leu Glu Asp Ala Leu Ser Gln Arg Ser Ala Met Ala Ala Val Leu
 530 535 540

His Val Arg Ser His Ser Glu Val Pro Gly Phe Phe Thr Glu Gly Asn
 545 550 555 560

Asp Val Ala Asp Ser Gln Ala Thr Phe Gln Ala Tyr
 565 570

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 858
- (B) TYPE: Amino Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: PRT

(ix) FEATURE:

- (A) NAME/KEY: Avian Myeloblastosis
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Thr Val Ala Leu His Leu Ala Ile Pro Leu Lys Trp Lys Pro Asn His
 1 5 10 15

Thr Pro Val Trp Ile Asp Gln Trp Pro Leu Pro Glu Gly Lys Leu Val
 20 25 30

Ala Leu Thr Gln Leu Val Glu Lys Glu Leu Gln Leu Gly His Ile Glu
 35 40 45

Pro Ser Leu Ser Cys Trp Asn Thr Pro Val Phe Val Ile Arg Lys Ala
 50 55 60

Ser Gly Ser Tyr Arg Leu Leu His Asp Leu Arg Ala Val Asn Ala Lys
 65 70 75 80

Leu Val Pro Phe Gly Ala Val Gln Gln Gly Ala Pro Val Leu Ser Ala
 85 90 95

-41-

Leu	Pro	Arg	Gly	Trp	Pro	Leu	Met	Val	Leu	Asp	Leu	Lys	Asp	Cys	Phe
100								105					110		
Phe	Ser	Ile	Pro	Leu	Ala	Glu	Gln	Asp	Arg	Glu	Ala	Phe	Ala	Phe	Thr
115							120					125			
Leu	Pro	Ser	Val	Asn	Asn	Gln	Ala	Pro	Ala	Arg	Arg	Phe	Gln	Trp	Lys
130						135					140				
Val	Leu	Pro	Gln	Gly	Met	Thr	Cys	Ser	Pro	Thr	Ile	Cys	Gln	Leu	Ile
145					150				155					160	
Val	Gly	Gln	Ile	Leu	Glu	Pro	Leu	Arg	Leu	Lys	His	Pro	Ser	Leu	Arg
						165			170					175	
Met	Leu	His	Tyr	Met	Asp	Asp	Leu	Leu	Leu	Ala	Ala	Ser	Ser	His	Asp
							180		185					190	
Gly	Leu	Glu	Ala	Ala	Gly	Glu	Glu	Val	Ile	Ser	Thr	Leu	Glu	Arg	Ala
							195		200					205	
Gly	Phe	Thr	Ile	Ser	Pro	Asp	Lys	Val	Gln	Arg	Glu	Pro	Gly	Val	Gln
							210		215					220	
Tyr	Leu	Gly	Tyr	Lys	Leu	Gly	Ser	Thr	Tyr	Val	Ala	Pro	Val	Gly	Leu
							225		230					235	
Val	Ala	Glu	Pro	Arg	Ile	Ala	Thr	Leu	Trp	Asp	Val	Gln	Lys	Leu	Val
							245			250				255	
Gly	Ser	Leu	Gln	Trp	Leu	Arg	Pro	Ala	Leu	Gly	Ile	Pro	Pro	Arg	Leu
							260		265					270	
Met	Gly	Pro	Phe	Tyr	Glu	Gln	Leu	Arg	Gly	Ser	Asp	Pro	Asn	Glu	Ala
							275		280					285	
Arg	Glu	Trp	Asn	Leu	Asp	Met	Lys	Met	Ala	Trp	Arg	Glu	Ile	Val	Gln
							290		295					300	
Leu	Ser	Thr	Thr	Ala	Ala	Leu	Glu	Arg	Trp	Asp	Pro	Ala	Leu	Pro	Leu
							305		310					315	
Glu	Gly	Ala	Val	Ala	Arg	Cys	Glu	Gln	Gly	Ala	Ile	Gly	Val	Leu	Gly
							325			330				335	
Gln	Gly	Leu	Ser	Thr	His	Pro	Arg	Pro	Cys	Leu	Trp	Leu	Phe	Ser	Thr
							340			345				350	
Gln	Pro	Thr	Lys	Ala	Phe	Thr	Ala	Trp	Leu	Glu	Val	Leu	Thr	Leu	Leu
							355		360					365	
Ile	Thr	Lys	Leu	Arg	Ala	Ser	Ala	Val	Arg	Thr	Phe	Gly	Lys	Glu	Val
							370		375					380	

-42-

Asp Ile Leu Leu Leu Pro Ala Cys Phe Arg Glu Asp Leu Pro Leu Pro	390	395	400
Glu Gly Ile Leu Leu Ala Leu Arg Gly Phe Ala Gly Lys Ile Arg Ser	405	410	415
Ser Asp Thr Pro Ser Ile Phe Asp Ile Ala Arg Pro Leu His Val Ser	420	425	430
Leu Lys Val Arg Val Thr Asp His Pro Val Pro Gly Pro Thr Val Phe	435	440	445
Thr Asp Ala Ser Ser Ser Thr His Lys Gly Val Val Val Trp Arg Glu	450	455	460
Gly Pro Arg Trp Glu Ile Lys Glu Ile Ala Asp Leu Gly Ala Ser Val	465	470	475
Gln Gln Leu Glu Ala Arg Ala Val Ala Met Ala Leu Leu Leu Trp Pro	485	490	495
Thr Thr Pro Thr Asn Val Val Thr Asp Ser Ala Phe Val Ala Lys Met	500	505	510
Leu Leu Lys Met Gly Gln Glu Gly Val Pro Ser Thr Ala Ala Ala Phe	515	520	525
Ile Leu Glu Asp Ala Leu Ser Gln Arg Ser Ala Met Ala Ala Val Leu	530	535	540
His Val Arg Ser His Ser Glu Val Pro Gly Phe Phe Thr Glu Gly Asn	545	550	555
Asp Val Ala Asp Ser Gln Ala Thr Phe Gln Ala Tyr Pro Leu Arg Glu	565	570	575
Ala Lys Asp Leu His Thr Ala Leu His Ile Gly Pro Arg Ala Leu Ser	580	585	590
Lys Ala Cys Asn Ile Ser Met Gln Gln Ala Arg Glu Val Val Gln Thr	595	600	605
Cys Pro His Cys Asn Ser Ala Pro Ala Leu Glu Ala Gly Val Asn Pro	610	615	620
Arg Gly Leu Gly Pro Leu Gln Ile Trp Gln Thr Asp Phe Thr Leu Glu	625	630	635
Pro Arg Met Ala Pro Arg Ser Trp Leu Ala Val Thr Val Asp Thr Ala	645	650	655
Ser Ser Ala Ile Val Val Thr Gln His Gly Arg Val Thr Ser Val Ala	660	665	670

-43-

Ala Gln His His Trp Ala Thr Ala Ile Ala Val Leu Gly Arg Pro Lys
 675 680 685

Ala Ile Lys Thr Asp Asn Gly Ser Cys Phe Thr Ser Lys Ser Thr Arg
 690 695 700

Glu Trp Leu Ala Arg Trp Gly Ile Ala His Thr Thr Gly Ile Pro Gly
 705 710 715 720

Asn Ser Gln Gly Gln Ala Met Val Glu Arg Ala Asn Arg Leu Leu Lys
 725 730 735

Asp Lys Ile Arg Val Leu Ala Glu Gly Asp Gly Phe Met Lys Arg Ile
 740 745 750

Pro Thr Ser Lys Gln Gly Glu Leu Leu Ala Lys Ala Met Tyr Ala Leu
 755 760 765

Asn His Phe Glu Arg Gly Glu Asn Thr Lys Thr Pro Ile Gln Lys His
 770 775 780

Trp Arg Pro Thr Val Leu Thr Glu Gly Pro Pro Val Lys Ile Arg Ile
 785 790 795 800

Glu Thr Gly Glu Trp Glu Lys Gly Trp Asn Val Leu Val Trp Gly Arg
 805 810 815

Gly Tyr Ala Ala Val Lys Asn Arg Asp Thr Asp Lys Val Ile Trp Val
 820 825 830

Pro Ser Arg Lys Val Lys Pro Asp Ile Ala Gln Lys Asp Glu Val Thr
 835 840 845

Lys Lys Asp Glu Ala Ser Pro Leu Phe Ala
 850 855

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 62
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

gatgacttggaaattcatgcgtcgccgtcgactgttgcgctacatctgg 60
 ct 62

-44-

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 65
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

gatgactgga attcatgaga ggcagccacc atcaccatca ccatactgtt gcgctacatc	60
tggct	65

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 425
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Escherichia Coli
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ctgtttggc ggatgagaga agatttcag cctgatacag attaaatcag aacgcagaag	60
cggctgata aaacagaatt tgccctggcg cagtagcgcg gtggtcccac ctgaccccat	120
gccgaactca gaagtgaaac gccgtagcgc cgatggtagt gtggggtctc cccatgcgag	180
agttagggAAC tgccaggcat caaataaaac gaaaggctca gtcgaaagac tgggcctttc	240
gttttatctg ttgtttgtcg gtgaacgctc tcctgagtag gacaaatccg ccgggagcgg	300
atttgaacgt tgcaagcaa cggccggag ggtggcgggc aggacgcccgg ccataaaactg	360
ccaggcatca aattaagcag aaggccatgc tgacggatgg ccttttgcg tttctacaaa	420
ctctt	425

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

-45-

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

aaaactgcag agcagtaagc cggtcataaaa a

31

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

aaaactgcag cgtgctggat gaagtgtatt a

31

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2155
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Escherichia Coli
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

atcagaattt ttttctttt tcccccttga aggggcgaag cctcatcccc atttctctgg 60
tcaccagccg gaaaccacg taagctccgg cgtcacccat aacagatacg gactttctca 120
aaggagagtt atcaatgaat attcgtccat tgcatgatcg cgtgatcg aagcgtaaag 180
aagttgaaac taaatctgct ggcggcatcg ttctgaccgg ctctgcagcg gctaaatcca 240
cccgccggcga agtgctggct gtcggcaatg gccgtatcct tggaaatggc gaagtgaagc 300
cgctggatgt gaaagttggc gacatcgta ttttcaacga tggctacggt gtgaaatctg 360
agaagatcga caatgaagaa gtgttgcata tggccgaaag cgacattctg gcaattttg 420
aagcgtaattc cgccgacgac actgaacata cgaatttaag gaataaagat aatggcagct 480
aaagacgtaa aattcggtaa cgacgctcggt gtgaaaatgc tgcgcggcgt aaacgtactg 540
gcagatgcag tggaaatggc cctcggtcca aaaggccgta acgttagttct ggataaattct 600
ttcggtgcac cgaccatcac caaagatggt gttccgttg ctcgtaaat cgaactggaa 660
gacaagttcg aaaatatggg tgcgcagatg gtgaaagaag ttgcctctaa agcaaacgac 720

gctgcaggcg acggtaccac cactgcaacc gtactggctc aggctatcat cactgaaggt 780
 ctgaaagctg ttgctgcggg catgaacccg atggacctga aacgtggtat cgacaaagcg 840
 gttaccgctg cagttgaaga actgaaagcg ctgtccgtac catgctctga ctctaaagcg 900
 attgctcagg ttggtaccat ctccgctaac tccgacgaaa ccgtaggtaa actgatcgct 960
 gaagcgatgg acaaagtccg taaagaaggc gttatcaccg ttgaagacgg taccggctcg 1020
 caggacgaac tggacgtggt tgaaggtatg cagttcgacc gtggctaccc gtctccttac 1080
 ttcatcaaca agccggaaac tggcgagta gaactggaaa gcccgttcat cctgctggct 1140
 gacaagaaaaa tctccaacat ccgcgaaatg ctgcccggttc tggaaagctgt tgccaaagca 1200
 ggcaaaccgc tgctgatcat cgctgaagat gtagaaggcg aagcgctggc aactctggtt 1260
 gttAACACCA tgcgtggcat cgtgaaagtc gctgcggta aagcaccggg cttcggcgat 1320
 cgtcgtaaag ctatgctgca ggatatcgca accctgactg gcggtacccgt gatctctgaa 1380
 gagatcggtt tggagctgga aaaagcaacc ctggaagacc tgggtcagggc taaacgtgtt 1440
 gtgatcaaca aagacaccac cactatcatc gatggcgtgg gtgaagaagc tgcaatccag 1500
 ggccgtgttg ctcagatccg tcagcagatt gaagaagcaa cttctgacta cgaccgtgaa 1560
 aaactgcagg aacgcgtagc gaaactggca ggcggcggtt cagttatcaa agtgggtgct 1620
 gctaccgaag ttgaaatgaa agagaaaaaa gcacgcgtt aagatgcct gcacgcgacc 1680
 cgtcgctcggt tagaagaagg cgtgggtgct ggtgggtgtt ttgcgtgtat cccgcgtagcg 1740
 tctaaactgg ctgacctgctg tggcagaac gaagaccaga acgtgggtat caaagttgca 1800
 ctgcgtgcaa tggaaagctcc gctgcgtcag atcgtattga actgcggcga agaaccgtct 1860
 gttttgcta acaccgtt aaggcggcgac ggcaactacg gttacaacgc agcaaccgaa 1920
 gaatacggca acatgatcgatcatgggtatc ctggatccaa ccaaagtaac tcgttctgct 1980
 ctgcagtacg cagttctgt ggctggctt atgatcacca ccgaatgcatt gttaccgac 2040
 ctggcgaaaa acgatgcagc tgacttaggc gctgctggcg gtatggcgcatgggtggc 2100
 atggcggtca tcatgttaatt gcctgcacc tcgcagaaat aaacaaaccc ccggg 2155

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3139
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Escherichia Coli
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

atggtaaaaa taattggtat cgacctgggt actaccaact cttgtgttagc gattatggat 60
 ggcaccactc ctcgcgtgct ggagaacgcc gaaggcgatc gcaccacgcc ttctatcatt 120
 gcctatacccg aggatgggtga aactcttagtt ggtcagccgg ctaaacgtca ggcagtgacg 180
 aacccgcaaa acactctgtt tgcgattaaa cgccgtattt gtcggccgtt ccaggacgaa 240
 gaagtacagc gtatgtttc catcatgccg ttcaaaatata ttgctgtga taacggcgac 300
 gcatgggtcg aagttaaagg ccagaaaaatg gcacccgccgc agatttctgc tgaagtgctg 360
 aaaaaaatga agaaaaccgc tgaagattac ctgggtgaac cggttaactga agctgttatac 420
 accgtaccgg catactttaa cgatgctcag cgtcaggcaa ccaaagacgc aggccgtatc 480
 gctggctctgg aagtaaaacg tatcatcaac gaaccgaccg cagctgcgtt ggcttacgg 540
 ctggacaaag gcactggcaa ccgtactatc gcggtttatg acctgggtgg tggtaactttc 600
 gatatttcta ttatcgaaat cgacgaagg tgcggcgaaa aaaccttcga agttctggca 660
 accaacggtg atacccaccc ggggggtgaa gacttcgaca gccgtctgtat caactatctg 720
 gttgaagaat tcaagaaaga tcagggcatt gacctgcgcgca acgatccgct ggcaatgcag 780

-47-

cgcctgaaag aagcggcaga aaaagcgaaa atcgaactgt cttccgctca gcagaccgac 840
 gttaacctgc catacatcac tgcagacgac accggccga aacacatgaa catcaaagtg 900
 actcgtgcga aactggaaag cctgggtgaa gatctggtaa accgttccat tgagccgctg 960
 aaagttgcac tgcaggacgc tggcctgtcc gtatctgata tcgacgacgt tattctcggt 1020
 ggtggtcaga ctcgtatgcc aatggttcag aagaaagttg ctgagttctt tggtaaagag 1080
 ccgcgtaaag acgttaaccc ggacgaagct gtagcaatcg gtgctgtgt tcaggggtgg 1140
 gttctgactg gtgacgtaaa agacgtactg ctgctggacg ttacccgct gtctctgggt 1200
 atcgaaacca tggcggtgt gatgacgacg ctgatcgacg aaaacaccac tatccgacc 1260
 aagcacagcc aggtgttctc taccgctgaa gacaaccagt ctgcggtaac catccatgtg 1320
 ctgcagggtg aacgtaaacg tgcggctgat aacaaatctc tgggtcagtt caacctagat 1380
 ggtatcaacc cgccaccgcg cgccatgccc cagatcgaa ttacccgta tatcgatgt 1440
 gacggtatcc tgacgttcc cgccaaagat aaaaacagcg gtaaagagca gaagatcacc 1500
 atcaaggctt cttctggctt gaacgaagat gaaatccaga aaatggtacg cgacgcagaa 1560
 gctaaccgcg aagctgaccg taagttgaa gagctggtaa agactcgaa ccagggcgac 1620
 catctgctgc acagcaccgc taagcaggtt gaagaaggcag gcgcacaaact gcccggctgac 1680
 gacaaaactg ctatcgagtc tgcgctgact gcactggaaa ctgctctgaa aggtgaagac 1740
 aaagccgcta tcgaagcgaa aatgcaggaa ctggcacagg tttccagaa actgatggaa 1800
 atcgcccagc agcaacatgc ccagcagcag actgcccggc ctgatgcttc tgcaaacaac 1860
 gcgaaagatg acgatgttgt cgacgctgaa tttgaagaag tcaaagacaa aaaataatcg 1920
 ccctataaaac gggtaattat actgacacgg gcgaaggggaa atttcctctc cgcccggtca 1980
 ttcatctagg ggcaatttaa aaaagatggc taagcaagat tattacgaga ttttaggcgt 2040
 ttccaaaaca gcggaaagagc gtgaaatcag aaaggcctac aaacgcctgg ccatgaaata 2100
 ccacccggac cgtaaccagg gtgacaaaga ggccgaggcg aaatttaaag agatcaagga 2160
 agtttatgaa gttctgaccg actcgaaaa acgtgcggca tacgatcagt atggtcatgc 2220
 tgcgtttgag caaggtggca tggcgccgg cggtttggc ggcggcgcag acttcagcga 2280
 tatttttgtt gacgtttcg gcgatattt tggcgccggc cgtggtcgtc aacgtgcggc 2340
 gcgcgggtgt gatttacgct ataaacatgaa gctcaccctc gaagaagctg tacgtggcgt 2400
 gaccaaagag atccgcattc cgactctgga agagtgtgac gtttgcacg gtagcgggtc 2460
 aaaaccaggc acacagccgc agacttgc gacctgtcat gtttctggc aggtgcagat 2520
 gcgcaggaa ttctcgctg tacagcagac ctgtccacac tgtcagggcc gcggtaacgt 2580
 gatcaaagat ccgtgcaaca aatgtcatgg tcatggcgt gttgagcgc gcaaaacgct 2640
 gtccgttaaa atcccgccag gggtggacac tggagaccgc atccgtcttgc gggcgaagg 2700
 tgaagcgggc gagcatggcg caccggcagg cgatctgtac gttcagggtc aggttaaaca 2760
 gcacccgatt ttcgagcgtg aaggcaacaa cctgtattgc gaagtcccga tcaacttcgc 2820
 tatggcgccg ctgggtggcg aaatcgaagt accgaccctt gatggtcgcg tcaaactgaa 2880
 agtgcctggc gaaacccaga ccggtaaagct attccgtatg cgccgtaaag gctcaagtc 2940
 tgcgtccggc ggcgcacagg gtgatttgc gtcggcgtt gtcgtcgaaa caccggtagg 3000
 cctgaacgaa aggcaacac agctgctgca agagctgcaa gaaagcttcg gtggcccaac 3060
 cggcgagcac aacagccgc gctcaaagag cttcttgc ggtgtgaaga agtttttga 3120
 cgacctgacc cgctaataa 3139

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 34
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

-48-

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

ccccccccggg atggtaaaa taatttgtat cgac

34

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 37
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

cgcggtatcc ttatttagcggttcgtt caaaaaaaa

37

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 594
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Escherichia Coli
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

atgagtagta aagaacagaa aacgcctgag gggcaagccc cgaaagaaat tatcatggat 60
 cagcacgaag agattgagggc agttgagcca gaagcttctg ctgagcaggt ggatccgcgc 120
 gataaaaaag ttgcgaatct cgaagctca gttggctgaag cccagacccg tgaacgtgac 180
 ggcattttgc gtgtaaaagc cgaaatggaa aacctgcgtc gtcgtactga actggatatt 240
 gaaaaagccc acaaattcgc gctggagaaa ttcatcaacg aattgctgcc ggtgatttatt 300
 agcctggatc gtgcgttggaa agtggctgat aaagctaacc cgatatgtc tgcatggtt 360
 gaaggcatttgc agctgacgct gaagtcgtatg ctggatgttgc tgcgtaaatggtt tggcggtt 420
 gtgatcgccg aaactaacgt cccactggac ccgaatgtgc atcaggccat cgcaatggtg 480
 gaatctgtatg acgttgcgttggaa agttaacgtt ctggcatatg tgcagaagggtt ttatacgtt 540
 aatggtcgtt cgttgcgttggaa actgttagcgtt aagcaaaagc ttatgtt 594

-49-

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 34
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

cgcggaaattc atgagtagta aagaacagaa aacg

34

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 37
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

aaaactgcag ttattaagct tttgcttcg ctacagt

37

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2574
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Escherichia Coli
- (B) LOCATION:

-50-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

atgcgtctgg atcgtcttac taataaattc cagcttgctc ttgccatgc ccaatcactt 60
 gcactcgggc acgacaacca atttatcgaa ccacttcatt taatgagcgc cctgctgaat 120
 caggaagggg gttcggttag tcctttatta acatccgctg gcataaatgc tggccagttg 180
 cgcacagata tcaatcaggc attaaatcg ttaaccgcagg ttgaaggtac tgggtggat 240
 gtcagccat cacaggatct ggtgcgcgtt cttaatctt gcgacaagct ggcgcaaaaa 300
 cgtgggtata actttatctc gtcagaactg ttcgttctgg cggcacttga gtctcgccgc 360
 acgctggccg acatcctgaa agcagcaggg gcgaccaccc ccaacattac tcaagcgatt 420
 gaacaaatgc gtggaggtga aagcgtgaac gatcaaggtg ctgaagacca acgtcaggct 480
 ttgaaaaaat ataccatcga ctttaccgaa cgagccgaac agggcaaact cgatccggtg 540
 attggtcgtg atgaagaaat tcgcccgtacc attcaggtgc tgcaacgtcg tactaaaaat 600
 aacccggtac tgattgggtga acccggcgac ggtaaaactg ccatcggtga aggtctggcg 660
 cagcgttata tcaacggcga agtgcggaa gggttgaaag gccgcccgggt actggcgctg 720
 gatatggcg cgctgggtggc tggggcgaaa tatcgccgtg agtttgaaga acgtttaaaa 780
 ggcgtgctta acgatcttc caaacaggaa ggcaacgtca tcctatttt cgacgaatta 840
 cataccatgg tcggcgccgg taaagccgat ggcgcaatgg acgcccggaaa catgctgaaa 900
 ccggcgctgg cgctgggtga attgcactgc gtaggtgcca cgacgcttga cgaatatcgc 960
 cagtagatttgg aaaaagatgc tgcgctggaa cgtcggttcc agaaaagtgtt tggccgag 1020
 ctttctgttg aagataccat tgcgattctg cgtggcctga aagaacgtta cgaattgcac 1080
 caccatgtgc aaattactga cccggcaatt gttgcagcgg cgacgttgc tcacgcgtac 1140
 attgctgacc gtcagctgcc ggataaaagcc atcgacctga tcgatgaagc agcatccagc 1200
 attcgatgc agattgactc aaaaccagaa gaactcgacc gactcgatcg tcgtatcatc 1260
 cagtc当地 tggaaacaaca ggcgttaatg aaagagtctg atgaagccag taaaaaacgt 1320
 ctggatatgc tcaacgaaga actgagcgtac aaagaacgtc agtactccga gttagaagaa 1380
 gagtggaaag cagagaaggc atcgcttct ggtacgcaga ccattaaagc ggaactggaa 1440
 caggcgaaaaa tcgctattga acaggctcg cgtgtggggg acctggcgac gatgtctgaa 1500
 ctgcaatacg gcaaaatccc ggaactggaa aagcaactgg aagccgcaac gcagctcgaa 1560
 ggcaaaacta tgcgtctgtt gcgtataaaa gtgaccgacg ccggaaattgc tgaagtgcgt 1620
 ggcgttggc cggggattcc ggttctcg atgatggaaa ggcgttggc gaaactgctg 1680
 cgtatggagc aagaactgca ccacgcgtt attggtcaga acgaaacgtt tgatgcgtt 1740
 tctaaccgta ttgcgttag ccgtgcgggg ctggcggttca caaatcgccc gattgggtca 1800
 ttccctgttcc tcggcccaac tgggtgggg aaaacagagc tttgttaaggc gtcggcaac 1860
 ttatgtttt atagcgacga ggcgtatggc cgtatcgata tgcgttgcgtt tatggagaaa 1920
 cactcggtgt ctgcgttgcgtt tgggtgcgcct ccggatgttgc tgcgttgcgtt agaagggtggc 1980
 tacctgaccg aagcggtgcg tgcgttgcgtt tattccgtca tcctgttgc tgaagtggaa 2040
 aaagcgcatc cggatgttgc caacattctg ttgcgttgcgtt tggatgttgc ggcgttgcgtt 2100
 gacggcaag ggagaacggc cgacttcgtt aatacggtcg tcattatgac ctctaacctc 2160
 ggttccgttgc tggatcgatggc acgcttcgtt gaaactggatt atgcgcacat gaaagagctg 2220
 gtgcgttgcgtt ggttaagccca taacttccgtt ccggatgttgc ttaaccgtt cgatgttgc 2280
 gtggtcttcc atccgttgcgtt tggatcgatggc attgcgttgcgtt tgcgttgcgtt tcgttggaaa 2340
 cgtctgtaca aacgttgcgtt agaacgttgcgtt tatggaaatcc acatttctgttgc ggcgttgcgtt 2400
 aaactgctgttgc ggcgttgcgtt ttacgttgcgtt gtcgttgcgtt cacgttgcgtt gaaacgttgc 2460
 attcagcgttgcgtt agatcgaaaaa cccgttgcgtt cagcaatgttgcgtt tgcgttgcgtt attgggttccg 2520
 ggttaaagtgttgcgtt ggttaatgttgcgtt gaccggatgttgcgtt tgcgttgcgtt gtaa 2574

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 34
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

-51-

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

aaaactgcag atgcgtctgg atcgtcttac taat

34

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 37
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: Artificial Sequence: Primer
- (B) LOCATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

cccggaaggc ttattactgg acggcgacaa tccggtc

37

CLAIMS:

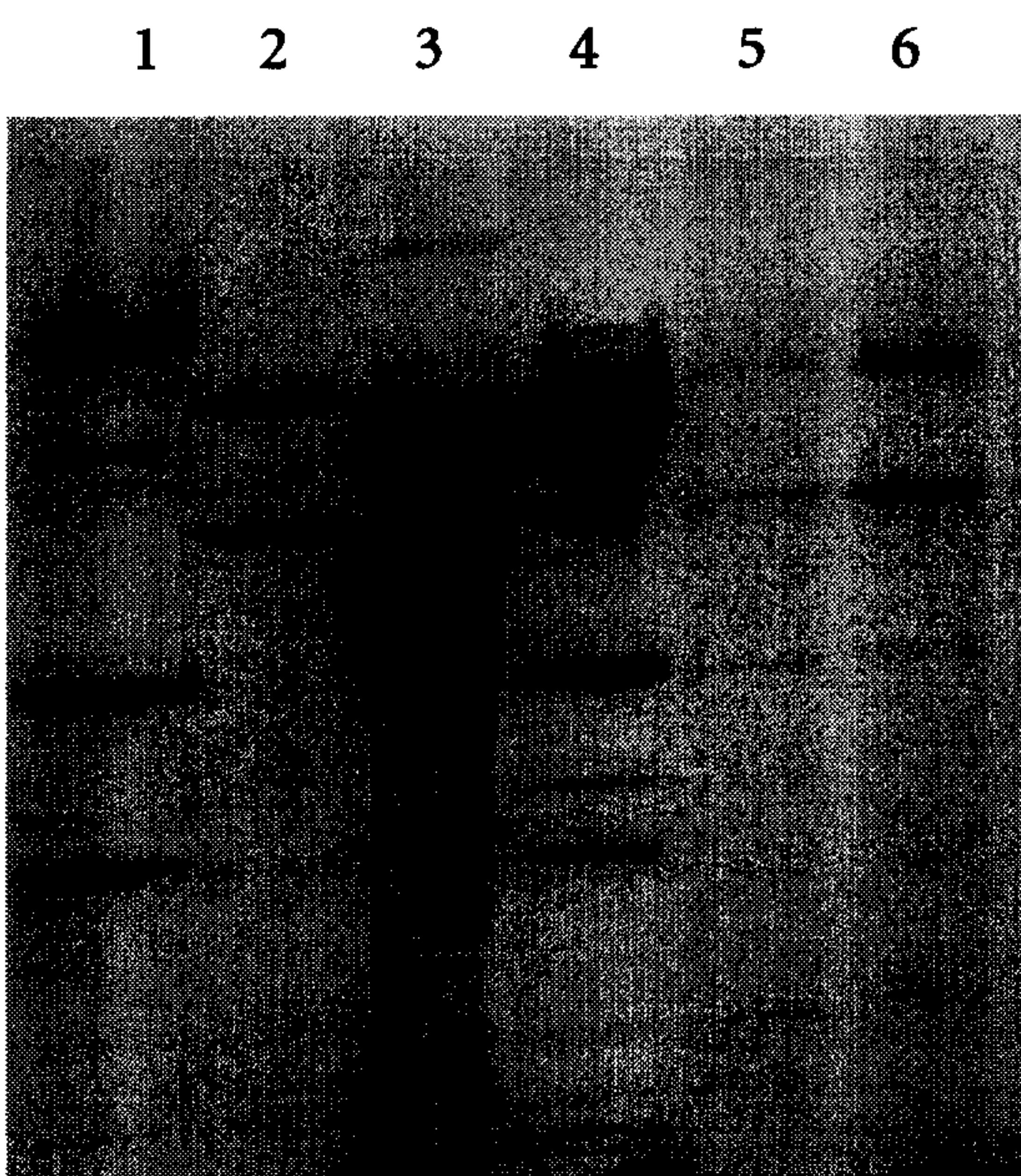
1. Method for producing an active heterodimeric AMV-RT in soluble form in a prokaryotic host cell, wherein
 - (i) one or several DNA sequence(s) which code for the α - and β -chain of the AMV-RT are cloned in expression plasmids,
 - (ii) the expression plasmids are transformed in prokaryotic cells,
 - (iii) the soluble expression of the heterodimeric AMV-RT is induced,
 - (iv) the expression occurs at a growth temperature of 10°C to 25°C and at an inducer concentration of 0.1 to 0.5 mM, and
 - (v) the recombinant heterodimeric AMV-RT is isolated from the cells, wherein the expression of the heterodimeric AMV-RT is increased by co-expression of helper genes.
2. Method as claimed in claim 1, wherein the DNA sequences coding for the α - and β -chain are expressed on separate expression plasmids cloned into one cell.
3. Method as claimed in claim 1, wherein the DNA sequences coding for the α - and β -chain are expressed on one expression plasmid cloned into one cell.
4. Method as claimed in any one of claims 1 to 3, wherein the α - as well as the β -chain is fused with a peptide sequence capable of reversible binding to affinity chromatography materials, such that one of the α - or β -chains is fused to a peptide sequence composed of 2 to 10 arginine residues and the other chain is fused with a peptide sequence composed of 2 to 10 histidine residues.
5. Method as claimed in claim 4, wherein the DNA sequences coding for the α - and β -chain which are linked to DNA sequences coding for the peptide sequences that are capable of reversible binding to affinity chromatography materials, are expressed on one expression plasmid cloned into one cell.

6. Method as claimed in any one of claims 1 to 3, wherein the α - and β -chain are fused with peptide sequences capable of reversible binding to affinity chromatography materials, wherein the peptide sequences are both composed of 2 to 10 arginine residues or are both composed of 2 to 10 histidine residues.
7. Method as claimed in claim 6, wherein the DNA sequences coding for the α - and β -chain which are linked to DNA sequences coding for the peptide sequences that are capable of reversible binding to affinity chromatography materials, are expressed on one expression plasmid cloned into one cell.
8. Method as claimed in any one of claims 1 to 3, wherein the α - and β -chain are each fused with a peptide sequence composed of 2 to 10 histidine residues capable of reversible binding to affinity chromatography materials.
9. Method as claimed in claim 8, wherein the DNA sequences coding for the α - and β -chain which are linked to DNA sequences coding for the peptide sequences that are capable of reversible binding to affinity chromatography materials, are expressed on one expression plasmid cloned into one cell.
10. Method as claimed in any one of claims 1 to 9, wherein the *trpT* gene which codes for the tryptophan tRNA is used as the helper gene.
11. Method as claimed in claim 10, wherein the expression is increased by further co-expression of chaperone genes.
12. Method as claimed in claim 11, wherein the genes for GroEL, GroES, Dnak, DnaJ, GrpE or ClpB are co-expressed.
13. Method as claimed in any one of claims 4 to 9, wherein affinity chromatography materials are used to isolate or purify the recombinant heterodimeric AMV-RT.

- 54 -


14. Method as claimed in claim 13, wherein the affinity chromatography materials used for the purification reversibly bind the peptide sequences bound to the α - or β -chain.

15. Method as claimed in any one of claims 1 to 14, wherein the DNA sequences are SEQ ID NO: 4 and SEQ ID NO: 5, and wherein SEQ ID NO: 5 or SEQ ID NO: 4 and SEQ ID NO: 5 are expressed in the prokaryotic host cell.


16. Method as claimed in any one of claims 1 to 15, wherein *E. coli* is used as the prokaryotic host cell.

17. Method as claimed in any one of claims 1 to 16, wherein the active heterodimeric AMV-RT is composed of the subunits SEQ ID NO: 6 and SEQ ID NO: 7.

Figure 1

Figure 2

Figure 3

