一种钛或钛合金的涂层制备方法

本发明属于制备钛涂层技术领域，涉及一种钛或钛合金的涂层制备方法，具体步骤为：

(1) 将氢化钛选粒制备粒径在 100 目至 400 目之间的氢化钛粉末，以所述氢化钛粉末为原料；或者

以所述氢化钛粉末与钛或钛合金的混合粉末为原料，所述混合粉末中氢化钛粉末所占的质量比例
在 60% 以上，且所述混合粉末的粒径在 100 目至 400 目之间；(2) 将步骤 (1) 中所述原料喷涂在基
体上，得到钛或钛合金涂层。该方法可以在大气环境下进行，且可以实现钛或钛合金涂层的大面积
喷涂。
1. 一种钛或钛合金的涂层制备方法，其特征是，具体步骤为：

（1）将氢化钛造粒，制备粒径在 -100 目至 +400 目之间的氢化钛粉末，以所述氢化钛粉末为原料；或者以所述氢化钛粉末与钛或钛合金的混合粉末为原料，所述混合粉末中氢化钛粉末所占的质量比例在 60% 以上，且所述混合粉末的粒径在 -100 目至 +400 目之间；

（2）将步骤（1）中所述原料喷涂在基体上，得到钛涂层。

2. 根据权利要求 1 所述钛或钛合金的涂层制备方法，其特征是，步骤（1）中所述混合粉末为氢化钛粉末与钛的混合粉末，其中氢化钛粉末所占的质量比例为 80%。

3. 根据权利要求 1 或 2 所述钛或钛合金的涂层制备方法，其特征是，步骤（1）中所述造粒的方法是球磨或喷雾干燥。

4. 根据权利要求 1 或 2 所述钛或钛合金的涂层制备方法，其特征是，步骤（2）中所述喷涂的方法是等离子喷涂、爆炸喷涂、超音速火焰喷涂。

5. 根据权利要求 4 所述钛或钛合金的涂层制备方法，其特征是，所述等离子喷涂的工艺参数控制为：喷涂功率为 20 千瓦 -28 千瓦，喷涂距离为 100 毫米 -150 毫米，主气流量为 2000 升 / 小时，次气流量为 0 升 / 小时，载气流量为 300 升 / 小时。

6. 根据权利要求 1 或 2 所述钛或钛合金的涂层制备方法，其特征是，步骤（2）中所述基体为碳钢、合金钢、铝、铝合金、铜或铜合金。
一种钛或钛合金的涂层制备方法

技术领域

[0001] 本发明属于制备钛涂层技术领域，具体涉及一种钛或钛合金的涂层制备方法。

背景技术

[0002] 钛或钛合金具有各种优良性能，如密度小、比强度高、耐腐蚀、耐高温及低温性能好，无磁和无毒等，是新型的功能材料和重要的生物材料，广泛用于航空、航天、舰船及海洋工程、石油化工、冶金、轻工机械、医疗器械等领域。热喷涂技术可快速在基体上大面积沉积较厚的涂层，是工业生产的基本技术。通过热喷涂在基体上制备致密的钛或钛合金涂层，来代替钛材，既经济又能实现其优良的性能。

[0003] 钛金属的活性较高，在空气中很容易被氧化，钛在高温下化学活性急剧增强，具有极强的吸收空气中氧、氮等气体的能力。适底氧化物的存在虽然有助于提高涂层的强度和硬度，但同时却降低了涂层的塑性和韧性，降低了涂层的内聚力，涂层的形成过程中易产生残余应力，当涂层较厚时，残余应力大，易形成微裂纹。因此，在喷涂钛涂层过程中一般需要真空或惰性气体的保护，但是这种生产及加工成本高昂，对基体尺寸有要求，不能大面积喷涂，限制了其推广应用。近年来研究新型喷涂钛涂层技术的迅速发展，如低压等离子喷涂，冷喷涂和低温超音速火焰喷涂等，使得制备性能优良、广泛应用的涂层成为可能，但制备工艺复杂，且成本耗费大。

发明内容

[0004] 针对现有技术中的不足，本发明旨在提供一种钛或钛合金的涂层制备方法，该方法可以实现在大气环境下制备钛涂层，可以实现大面积钛或钛合金的涂层制备。

[0005] 为实现上述目的，本发明所采用的技术方案是：

一种钛或钛合金的涂层制备方法，具体步骤为：

(1) 将氯化钛颗粒制得粒径在 -100 目至 +400 目之间的氯化钛粉末，以所述氯化钛粉末为原料；或者以所述氯化钛粉末与钛或钛合金的混合粉末为原料，所述混合粉末中氯化钛粉末所占的质量比例在 60% 以上，且所述混合粉末的粒径在 -100 目至 +400 目之间；

(2) 将步骤(1) 中所述原料喷涂在基体上，得到钛涂层。

[0006] 步骤(1) 中所述混合粉末优选为氯化钛粉末与钛的混合粉末，其中氯化钛粉末所占的质量比例为 80%。

[0007] 步骤(1) 中所述造粒的方法优选是球磨或喷雾干燥。

[0008] 步骤(2) 中所述喷涂的方法优选是等离子喷涂、爆炸喷涂、超音速火焰喷涂等。

[0009] 所述等离子喷涂的工艺参数优选控制为：喷涂功率为 20 千瓦 -28 千瓦，喷涂距离为 100 毫米 -150 毫米，主气流量为 2000 升 / 小时，次气流量为 0 升 / 小时，载气流量为 300 升 / 小时。

[0010] 步骤(2) 中所述基体优选为碳钢、合金钢、铝、铝合金、铜或铜合金等。

[0011] 下面对本发明做进一步的解释和说明：

3
所述造粒的目的是为了得到适于喷涂的粉末，如粉末粒度适中、粉末流动性好等，使得其粒径在-100至+400目之间。

本发明的原理是：以氯化钛粉末为主要粉末原料，利用其在一定温度下（温度高于1000℃时）完全分解为钛和氢气，在喷涂过程中，分解的氢气对钛颗粒形成一定保护气氛，同时对钛涂层的形成也起到一定保护作用，有利于形成高纯度钛涂层。利用喷涂过程中产生的高温，温度超过3000℃，在高温下，氯化钛粉末分解的氢气充盈在喷枪与基体之间，形成无氧或低氧喷涂环境，分解的钛颗粒随焰流高速（焰流速度可达2000m/s）喷射沉积到基体上。

与现有技术相比，本发明的优势是：
1. 本发明的方法可在大气环境下制备钛或钛合金涂层，而目前已有技术都是在真空环境或气氛保护条件下制备钛涂层。
2. 本发明的方法制备工艺简单，制备条件不苛刻，成本低。
3. 本发明的方法可以实现钛或钛合金涂层大面积喷涂，解决了真空或惰性气氛喷涂的基体尺寸问题。

附图说明
1. 图1是实施例1的氯化钛粉末制备钛涂层显微形貌。
2. 图2是实施例2的氯化钛与钛混合粉末制备钛涂层显微形貌。
3. 图3是实施例3的纯钛粉末制备钛涂层显微形貌(对比例)。

具体实施方式
下面结合附图和实施例对本发明做进一步的说明。

实施例1：
采用等离子喷涂技术，以氯化钛粉末为喷涂粉末原料制备了钛涂层。粉末原料参数如表1所示，等离子喷涂工艺参数如表2所示。

<table>
<thead>
<tr>
<th>原料粉末</th>
<th>纯度</th>
<th>粒度</th>
<th>O₂</th>
<th>N₂</th>
<th>H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯化钛</td>
<td>>99.9</td>
<td>-150至+300</td>
<td>0.12</td>
<td>0.023</td>
<td>4.5</td>
</tr>
</tbody>
</table>

表2 等离子喷涂制备钛涂层工艺参数

<table>
<thead>
<tr>
<th>工艺参数</th>
<th>喷涂功率</th>
<th>喷涂喷嘴</th>
<th>主气流量</th>
<th>次气流量</th>
<th>载气流量</th>
</tr>
</thead>
<tbody>
<tr>
<td>数值</td>
<td>28(400A,700V)</td>
<td>150</td>
<td>2000</td>
<td>0</td>
<td>300</td>
</tr>
</tbody>
</table>

涂层微观形貌：氯化钛粉末制备钛涂层表面显微形貌如图1所示。由图1涂层表面微观形貌可见，氯化钛粉末制备的涂层表面光洁，孔隙少。
涂层成分分析：等离子喷涂氢化钛粉末制作钛涂层的成分分析结果如表 3 所示。对比表 3 和表 1 可见，氢化钛粉末制作的涂层氧含量稍高于粉末原料中的氧含量，但是氮含量低于粉末原料，分析其原因是氢化钛粉末在喷涂过程中分解的氢对分解的钛颗粒起到一定保护作用，降低了钛颗粒与大气中氧、氮的结合。

表 3 涂层成分分析结果

<table>
<thead>
<tr>
<th>成分</th>
<th>O%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>钛涂层</td>
<td>1.86</td>
<td>0.95</td>
</tr>
</tbody>
</table>

实施例 2：

采用等离子喷涂技术制作钛涂层。粉末原料为氢化铁 (80%) 与钛 (20%) 的混合粉末。粉末原料参数如表 4 所示，等离子喷涂工艺参数如表 5 所示。

表 4 喷涂粉末原料参数

<table>
<thead>
<tr>
<th>原料粉末</th>
<th>纯度,%</th>
<th>粒度/μm</th>
<th>O%</th>
<th>N%</th>
<th>H%</th>
</tr>
</thead>
<tbody>
<tr>
<td>氢化铁</td>
<td>>99.9</td>
<td>-150 至+300</td>
<td>0.12</td>
<td>0.023</td>
<td>4.5</td>
</tr>
<tr>
<td>钛</td>
<td>>99.7</td>
<td>-150 至+300</td>
<td>0.17</td>
<td>0.006</td>
<td>0.009</td>
</tr>
</tbody>
</table>

氢化钛与钛混合粉末制作的钛涂层表面显微形貌如图 2 所示。由图 2 涂层表面微观形貌可见，氢化钛和钛混合粉末制作的涂层表面光滑，孔隙少。

涂层成分分析：等离子喷涂氢化钛与钛混合粉末制作钛涂层的成分分析结果如表 6 所示。

表 5 等离子喷涂制作钛涂层工艺参数

<table>
<thead>
<tr>
<th>工艺参数</th>
<th>喷涂功率 (KW)</th>
<th>喷涂喷距 (mm)</th>
<th>主气流量 (N2, 1h)</th>
<th>次气流量 (H2, 1h)</th>
<th>载气流量 (N2, 1h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>数值</td>
<td>28(400A, 70v)</td>
<td>120</td>
<td>2000</td>
<td>0</td>
<td>300</td>
</tr>
</tbody>
</table>

实施例 3（对比例）：

采用等离子喷涂技术，以纯钛粉末为喷涂粉末原料制作钛涂层。粉末原料参数和等离子喷涂制作钛涂层工艺参数如表 1 和表 2 所示。

涂层微观形貌：纯钛粉末制备钛涂层表面显微形貌如图 3 所示。由图 3 涂层表面微观形貌可见，大气环境下喷涂纯钛粉末制作的钛涂层表面可见较多孔隙。涂层成分分析：等离子喷涂纯钛粉末制作钛涂层的成分分析结果如表 7 所示。对比表 7 和表 3 或表 6 可见，纯钛粉末制作的涂层氧含量、氮含量均高于粉末原料中的含量，分析其原因是钛在喷涂过程中，容易与大气中的氧、氮结合，形成氧化钛、氮化钛等。
表7 涂层成分分析结果

<table>
<thead>
<tr>
<th>成分</th>
<th>O/%</th>
<th>N/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>钛涂层</td>
<td>9.5</td>
<td>4.6</td>
</tr>
</tbody>
</table>
图 3