Y —t

qe
! |
‘ CONVENTION
AUSTRALIA
Patents Act 1990
REQUEST FOR A STANDARD PATENT
AND NOTICE OF ENTITLEMENT
The Applicant identified below requests the grant of a pdatent to the
nominated person identified below for an invention described in the
accompanying standard complete patent specification.
[70,71]Applicant and Nominated Person:
Motorola, Inc.
1303 East Algonquin Road, Schaumburg, Illinois, 60196, UNITED STATES
OF AMERICA
[S4]Invention Title:
METHOD ARD APPARATUS RN DATA COLLISION DETECTION IN A
MULTI-PROCESSOR COMMUNICATI .¢: (STEM
[72)Actual Inventors:
Peter J. Armbruster
a"%a% James A. Stephens
e : [74]Address for Service:
ceeccon
coee. PHILLIPS ORMONDE & FITZPATRICK
soeo 367 Collins Street
oo o Melbourne 3000 AUSTRALIA
s e [31,33,32]
LX]
ot Details of basic application(s):-
785,124 UNITED STATES OF AMERICA us 30 October 1991
{'=_: Applicant states the following:
LA XN
oe’ 0 1. The nominated person is the assignee of the actual inventor(s)
even 2. The nominated person is
®se® o —the—appiicant
Teee - the assignee of the applicant
LY —eauthorised-te—make—thi-s—appiication—by—the—applicant
of the basic application. i
'°”°§ 3. The basic application(s) was/wexe-the first made in a convention
eoe0 country in respect of the invention.
The nominated person is not an opponent or eligible person
described in Section 33-36 of the Act. 4
. Mj !
o 1 September 1992 J
¥
i
Motorola, Inc. ?.
By PHILLIPS ORMONDE & FITZPATRICK i
Patent Attorneys :
By . .# . . ™
g — q ;
Qur Ref : 302689 0’““’{/‘% f}""’?‘&w& {
v
5999q
4

~ .

AU9222013

(12) PATENT ABRIDGMENT (11) pocument No. AU-B-22019/92
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 655303

(54)

(81)3
(21)
(30)
@1

(43)
(44)
(71)

(72)
(74)

(56)

(57)

Title
METHOD AND APPARATUS FOR DATA COLLISION DETECTION IN A MULTI-PROCESSOR
COMMUNICATION SYSTEM

International Patent Classification(s)
GO5F 013714 GO6F 015/16

Application No. : 22019/92
Priority Data

Number (32) Date (33) Country
785124 30.10.91 US UNITED STATES OF AMERICA

Publication Date : 06.05.93
Publication Date of Accepted Application : 15.12.94

Applicant(s)
MOTOROLA, INC.

Inventor(s)
PETER J. ARMBRUSTER; JAMES A. STEPHENS

Attorney or Agent
PHILLIPS ORMONDE & FITZPATRICK , 367 Collins Street, MELBOURNE VIC 3000

Prior Art Documents
US 4807222
US 4751701
US 4707829

Claim

(22) Application Date : 01.09.92

1. A method for data collision detection and resolution
in a multi-processor communication system including a
plurality of processors coupled by a bus, said method
including the steps of:

first determining by one processor of said plurality
of processors that communication is required with at least
one other processor of said plurality of processors via a
first message on said bus;

seco::d determining by said one processor whether a
data collision flag indicates that a previous data
collision occurred from a transmission of another message;

maximum waiting by said one processor a maximum
time, if said previous data collision occurred;

initiating by said one processor transmission of
said first message, if said data collision flag indicates
a previous data collision has not occurred;

checking to determine whether a new data collision
occurred during transmission of said first message by each
of said plurality of processors by checking a plurality of
source indicators in said first message, said source

00‘0/2

S
,!.

(11) AU-B-22019/92 -2-
(10) 655303

indicators indicating an identity of a processor
transmitting said first message;

continuing transmitting by said one processor said
first message to said at least one other processor, if no
data collision is determined;

waiting by said one processor a selective time, if
said new data collision of said first message is
determined; and

repeating by said one processor said steps of first
determining, second determining, initiating, checking,
continuing transmitting and waiting, if said new data
collision of said first message is determined.

s
v

o

s AR A e 2 20

. 4
L ;
fe

!

AUSTRALIA

eatents Act 6 5 5 zZ0 2

COMPLETE . SPECIFICATION
(ORIGINAL)
Class Int. Class
application Number:
Lodged:
i Complete Specification Lodged:
Accepted:
Published:
Priority
Related Art:
LA NN]
. °
LR L
veosos Name of Applicant:
0o
®oree’ Motorola, Inc.
e o
LA 4] Actual Inventor(s):
e0 L]
° o
b Peter J. Armbruster
James A. Stephens
e o Address for Service:
L] e o
L] LR
RXTTN PHILLIPS ORMONDE & FITZPATRICK
0o 4 Patent and Trade Mark Attorneys
367 Collins Street
. Melbourne 3000 AUSTRALIA
L] »
LI) Invention Title:
400804
METHOD AND APPARATUS FOR DATA COLLISION DETECTION IN A MULTI-PROCESSOR
COMMUNICATION SYSTEM :
[S W SN
. L Y)
teet Our Ref : 302689

POF Code: 183224/1437

The following statement is a full description of this invention, including {
the best method of performing it known to applicant (s):

W ran i, SR R L

6006

g

Qoed
.

40
° .
LA RN

[}
LR N N
.

cees

et e

10

15

20

25

30

4

METHOD AND APPARATUS FOR DATA COLLISION DETECTION
IN A MULTI-PROCESSOR COMMUNICATION SYSTEM

Background of the Invention

The present invention pertains to inter-processor
communication and more particularly to data collision
detection and recovery in multi-processor communication
systems.

In distributed control systems, a number of processors
perform portions of the overall operation of a functional
unit, such as a telephone, for example. Modern telephones
are sophisticated devices which provide for a number of
features such as security. In addition, such phones provide
for interfacing with facsimile machines, copying machines
and other telecommunication devices. The processors which
control these different functions must communicate with one
another. Typically, these processors are interconnected by
a bus. This bus may be a serial bus and employ a CARRIER
SENSE MULTIPLE ACCESS WITH COLLISION DETECTION (CSMA/CD) bus
protocol.

These multi-processor communication systems do not
detect data collisions on the bus under all conditions.
Further, such systems do not provide an efficient
arrangement for settling conflicts between processors
involved in a data collision.

Accordingly, it is highly desirable to provide a
multiple processor communication system which detects data
collisions under all conditions and resolves the collisions
by efficiently permitting processors to communicate in a
prioritized fashion.

10

15

20

25

30

35

In accordance with the present invention, a novel
multi-processor communicatiocn system for detection of data
collisions is provided.

According to one aspect of the present invention
there is provided a method for data collision detection
and resolution in a multi-processor communication system
including a plurality of processors coupled by a bus, said
method including the steps of:

first determining by one processor of said plurality
of processors that communication is required with at least
one other processor of said plurality of processors via a
first message on said bus;

second determining by said one processor whether a
data collision flag indicates that a previous data
collision occurred from a transmission of another message;

maximum waiting by said one processor a maximum
time, if said previous data collision occurred;

initiating by said one processor transmission of
said first message, if said data collision flag indicates
a previous data collision has not occurred;

checking to determine whether a new data collision
occurred during transmission of said first message by each
of said plurality of processors by checking a plurality of
source indicators in said first message, said source
indicators indicating an identity of a processor
transmitting said first message;

continuing transmitting by said one processor said
first message to said at least one other processor, if no
data collision is determined;

waiting by said one processor a selective time, if
said new data collision of said first message is
determined; and

repeating by said one processor said steps of first
determining, second determining, initiating, checking,
continuing transmitting and waiting, if said new data
collision of said first message is determined.

According to a further aspect of the present
invention there is provided in a multi-processor
communication system including a plurality of processors

iy Wt

10

15

20

25

30

35

- 2a -

coupled by a bus, a data collision detection arrangement
including:

a plurality of means for transmitting coupled to
said bus and each of said plurality of means for
transmitting being coupled to a corresponding one of said
plurality of processors;

a plurality of means for receiving coupled to said
bus and each of said plurality of means for receiving
being coupled to a coresponding one of said processors,
said means £for receiving a transmitted message via said
bus;

said plurality of said means for transmitting
including means for initiating transmitting a first
message from a source processor to at least one
destination processors;

means for determining by each of said processors
whether a data collision occurred between said first
message and other messages by examining a source processor
indicator in said first message;

said means for determining including first means for
checking by each of said plurality of processors at least
two consecutive source words including said source
processor indicator for determining that each source word
has only one bit set to a particular logic value, each bit
of said source word indicating an identity of a particular
one of said plurality of processors;

means for waiting by said source processor a
selective time before transmitting said first message
again, if a data collision is determined; and

said means for continuing transmitting said first
message of said source processor operating to continue
transmission of said first message, if no data collision
is determined.

A preferred embodiment of the present invention will
now be described with reference to the accompanying
drawings wherein:-

i
4
13
5
i,
i
i
|

i 10
i
[
LA RN]
° -]
o o
o
90000
o
260603
063060 15
L Q
e o
L] 80
a8 []
[3 ‘.6 v
] LAl
: L]
o 20
g cegn
i ¢
!
i
1
y
]
K
[
!
! 25
i .
t
i
]
i
i;l
N;,; - 30
b ;/
n—.\<'-r [S
—

Brief Deageription—of theDrawings
5 FIG. 1 is a block diagram of a multi-processor

communication system in accordance with the present
invention.

FIG. 2 is a block diagram of the multi-processor
arrangement of FIG. 1 in accordance with the present
invention.

FIG. 3 is a character format of a multi-processor
communication system in accordance with the present
invention.

FIG. 4 is a bus protocol data layout in accordance with
the present invention.

FIG. 5 is a flow chart of a collision detection method
in accordance with the present invention.

FIG. 6 is a flow chart of a bus idle detection scheme
in accordance with the present invention.

FIG. 1 is block diagram of a multi-processor
communication arrangement. The processor arrangement
depicted in FIG. 1 is suitable for implementation in secure
telephone terminals. One such secure telephone terminal is
the super economic terminal or SET manufactured by Motorola,
Inc. As shown in FIG. 1, processors 1l-8 are shown connected
to one another via bus 9. Processors 1-4 and 8 are shown.
The ellipses represent processors 5-7 which are not shown
for the sake of simplicity. Processors 1-8 communicate by
sending messages to one another.

Data processors 1 and 2 perform common communications
functions between the SET terminal comprising processors 1-8

and other SET terminals (not shown) via a communication

10

15

20

25

30

network (not shown). Data processors 1 and 2 may be red and
black prncessors for secure telephone terminal applications.
Display processor 3 controls a display unit (not shown)
associated with the secure telephone terminal. Test
processor 4 provides for testing and maintenance of the
secure telephone terminal. Adaptor processor 8 and the
other processors (not shown) provide for interconnection to
and communication with such external devices to the
telephone such as facsimile and copying apparatus. This
interconnection of processors 1-8 via bus 9 facilitates
interprocessor communications of command-type information.
This processor architecture is a distributed control
architecture. That is, there is no master control
processor. Distributed control processing allows for
completely asynchronous operation of each of the processors
within the terminal shown in FIG. 1.

Bus 9 1s a zero dominant bus. Each of the processor 1-
8 communicate via a half-duplex arrangement. The processors
may include such processors as the Motorola DSP56001 or the
68HC1l. The bus includes a single lead open collector path
to which each of the processors are connected. Bus 9 is
based on the 1ll-bit multi-drop mode of the DSP56001 and
68HC1ll processors.

The bus protocol will use carrier sense multiple access
with collision detection (CSMA/CD) for all message transfers
among the processors. When a processor requires to transmit
a message, the processor must first listen to the bus to
ensure that the bus is not presently in use (carrier sense).
If the bus is available, the processor may begin to
transmit. If more than one processor begins to transmit
simultaneously, a collision of data will result. All
processors gonnected to the bus will detect a collision. In
order to detect a collision, each processor receives and
interprets the first two characters for framing errors and

10

15

20

25

30

pattern violations. If the first two characters are
received correctly, that indicates that the transmission is
proceeding collision free. If a collision occurs, the
transmitting processcrs will abort the transmission and
"hback-off" the bus for a particular amount of time prior to
attempting to retransmit the message. A threshold time
limit to wait before the retransmission of the message may
be set. For the secure telephone terminal described herein,
a maximum of three retrys is permitted. A fourth collision
indicates that a bus fault exists and the transmitting
processor will no longer attempt to transmit messages until
the processor is reset. The processor then declares itself
faulty.
Referring to FIG. 2, a more detailed description of the
processor arrangement of FIG. 1 is shown. Two processors 10
and 20 are shown. Processors 10 and 20 correspond to two of
the processors shown in FIG. 1. The other processors are
eliminated for the sake of simplicity of explanation.
Processor 10 includes processor 11 which is connecied to
UART (universal asynchronous receiver transmitter) 13.
Processor 11 is connected to memory 16. Clock 15 is also
connected to UART 13. UART 13 is connected to bus 9 via
receive lead 17 and transmit lead 19.
Similarly, processor arrangement 20 includes processor
21 which is connected to UART 23, Processor 21 is also
connected to memory 26. Clock 25 is also connected to UART
23. UART 23 is connected to bus 9 via receive lead 27 and
transmit lead 29. Up to six other processors would be
connected in a similar fashion. As previously mentioned, JL
the processors may be different processors such as the f
DSP56001 or the 68HCl1ll. Different UARTs may be employed. }
Each UART which is used must have a character format of 11
bits. Clocks 15 and 25 and any other clock corresponding to i

easat !

s s

10

15

20

25

30

another processor arrangement provide the same frequency to
each of the UARTs with a plus or minus 2 percent drift.
FIG. 3 depicts the character format for messages
transmitted among the processors 1-8 via bus 9. The
character (byte) formatting includes one start bit, followed
by 8 data bits, DO - D7, followed by two stop bits. Since
bus 9 is a zero dominant bus, it is typically at logic 1.
Therefore, the start bit makes a transition from logic 1 to
logic 0. Data bits DO - D7 may take on either value logic 1
or logic 0. The two stop bits are each at a logic 1 value.
Therefore, on consecutive characters a transition is always
made from logic 1 to logic 0 when a new character is sent
for transmission.
Referring to FIG. 4, typical message 30 is shown,
Message 30 which may be sent from one processor to another
includes source byte 31 followed by another duplicate (of
byte 31) source byte 32 followed by destination byte 33.
Next, a number of data bytes 34 follow. Lastly, idle byte
35 ends the message 30.
Source bytes 31 and 32 are the identity of the
processor which is transmitting the message. Destination
byte 33 is the identity of the processor which is to receive
the message. The values for source bytes 31, 32 and
destination byte 33 which identify each of processors 1-8
are shown below in Table 1. Table 1 is stored in memory 16,
26 and others (not shown) Address field bytes 31, 32, 33
include bits DO - D7 with DO being the low order and D7
being the highest order bit. For each of processors 1-8 a
particular bit in the address field byte 1s set to logic 1. *
For example, for processor 1, DO is set to logic 1. For
processor 2, D1 is set to logic 1, etc. An address field b
byte of all zeros is a illegal address. A processor b
recelving a source byte 31 or 32 with a framing error or an ;

e 1

5

10

15

20

25

illegal address indicates that there has been a data

collision on bus 9.

TABLE 1

Address Field (BYTE)

Destination Processor

o
[y

D2 |D3 |D4 |D5 |D6

ES)

o
o
o
o
o

Illegal Address

Processor 1

Processor

Procegsor

Processor

Processor

Processcr

Processor

ojojojolololo|rijojo
olololojolo]r]olo]u

olololojoirjo]o
ojolojolrlolo]e
olojolr|ojojolo
olojrlolololo|e
olrlojo]ojolo]o

[ad (=] [=] [=] [=] [=] [=] (=} {=] | o]
o|ajoa|u]swin

Processor

|

Each processor on bus 9 checks every message that is
transmitted. 1In this way, each processor determines whether
the message is for that processor and whether a data
collision has occurred. 1If a data collision has occurred,
each processor sets its own local data collision flag.

Referring to FIG. 5, the process for transmitting a
message from one processor to another is shown. This
process is executed by each of processors 1-8 when it is
determined they need to transmit a message to another
processor. When a processor determines that data
transmission is required, block 40 is entered. Block 40
transfers control to block 42. Block 42 determines whether
bus 9 interconnecting processors 1-8 is idle. If bus 9 is
busy, block 42 repeats the testing of whether bus 9 is idle
until such time as bus 9 becomes idle. When bus 9 is idle,
block 42 transfers control to block 44 via the YES path.
The bus test of block 52 may be implemented in various ways.
These particular implementations will be shown later,

Next, each processor checks its own local collision
flag to determine whether it is set. If the processor’s

Y @ﬁii"lw' -

local collision flag is set, block 44 transfers control to
block 46 via the YES path. This indicates that other
processors were transmitting messages when a data collision
occurred. Block 46 then backs-off the bus (waits a
5 predetermined maximum time before attempting to transmit
again). Block 46 then after waiting transfers control to
block 42 to determine whether the bus is idle.
If the collision flag is not set, block 44 transfers
control to block 48 via the NO path. Block 48 initiates the
10 data transmission according to the protocol shown in FIG. 4.
The UART (universal asynchronous receiver transmitter)

begins transmitting data over the bus. The receiver portion

9 .00 of the UART reads the transmitted data including source
eg0ant bytes 31 and 32 of FIG. 4 (block 50). Block 51 determines
®aa® 15 whether only one bit is set in each of the source bytes. As

previously mentioned, the source bytes identify the

processor who is transmitting the data. Valid source bytes

for each of the processors are shown in Table 1. If a
framing error or an illegal address is detected, this
‘f DR 20 indicates a data collision occurred. For the data collision
§ *eas's situation block 51 transfers control to block 58 via the NO

path. If only one bit is set in each of the source bytes,
block 51 transfers control to block 52 via the YES path.
Optionally, block 52 determines whether the same bit is set

25 for each of the source bytes 31 and 32. If the same bits
are not set, block 52 transfers control to block 58 via the
NO path. Block 58 backs-off the bus (waits a predetermined
time) according to Table 2. The times set in Table 2 for
each of the processors including the maximum time used by

30 Dblock 46 are organized such that N9, the maximum time, is
greater than any of the other back-off times, N8 - N1l. N8
is greater than N7, N7 is greater than N6, etc. As a
result, 1f block 51 and block 52 detected a NO result to the
test, this indicates that the particular processor has had a

e

L

e

data collision with another processor. Each of the
processors involved then backs-off a predetermined amount of
time according to Table 2 before attempting to retransmit.
In this way, processor 1 is given priority over all the
5 other processors. Processor 2 is given priority over all
the other processors except processor 1 and so forth.
Further, Table 2 may be dynamically changed to give
particular processors priority over other processors. Also,
"the maximum time N9 may be dynamically-changed to be a
10 longer or shorter time, greater than each of the other times

N1l - N8.
LA TABLE 2
:0::: Processor ack-off Time (in character times)
%aeoe’ Processor 1 N1
°e. 3 Processor 2 N2
:,, M: Processor 3 N3
o %ad Processor 4 N4
Processor 5 N5
Processor 6 N6
Processor 7 N7
‘:.‘.‘3 Processor 8 N8
cooe ‘ Maximum Time N9
®ae® ¥ 15
oitity If only one bit is set in each of the source bytes and
O’ it is the same bit set for both source bytes 31 and 32,
block 51 transfers control to block 54 via the YES path.
sreves 20 Since no data collisions have been detected, block 54 ¢
49009
feres® continues the message transmission of the protocol shown in

FIG. 4. The process is then ended, block 56.
FIG. 6 depicts the details of the bus idle test, block
42 of FIG. 5. The bus idle test is entered and block 60
25 transfers control to block 61. This testing allows UARTs
with and without idle receive indicatocrs to be employed in
the system design. Block 61 detzrmine whether the UART
associated with this processor has an idle receive

it
’
H

L R R

10
°o¢nn 15

2, 0,8 20

25

10

indicator, block 61. If the particular UART has an idle
receive indicator, block 61 transfers control to block 62
via the YES path. The processor then reads the indicator
from the UART, block 62. Block 63 tests the indicator to
determine whether it is set. If the indicator is set, block
63 transfers control to block 64 via the NO path. Block 64
continues on with the process, that is, block 44 is given
control as shown in FIG. 5. If the indicator is set, biwock
63'transfers control to block 61 via the YES path and the
bus idle process is repeated until the bus becomes idle.

If the UART did not have a receive indicator, block 61
transfers control to block 66 via the NO path. Block 66
determines whether there are eleven consecutive bit times of
logic 1. Since the bus is at logic 1 unless the processors
are communicating, eleven consecutive bit times of logic 1
indicate that the bus is idle. 1If there are eleven
consecutive bit times of logic 1, block 66 transfers control
tc block 67 via the YES path and the process continues.

This corresponds to the transfer from block 42 to block 44
of FIG. 5. If the bus is busy, eleven consecutive bit times
of logic 1 will not be seen and block 66 transfers control
to block 61 via the NO path. The bus idle status will then
be re-examined until the bus is idle. This corresponds to
the NO path of block 42 of FIG. 5.

Data collisions on the bus are affected by the
following system designs. First, all processors may
transmit and receive asynchronously from the other
processors. Second, transmitting and receiving bit clocks
may vary plus or minus 2 percent for a worst case difference
of 4 percent between two transmitting processors. Third,
the proc¢essors sample the data on the bus by detecting the
start bit of the eleven-bit character and sampling the data
bits at the mid-bit point with reference to the falling edge
of the start bit.

“43,

ié‘_g'”:"

11

If there is no clock skew (clock rate difference} then
mid-bit sample detects data collisions. In order to detect
data collisions given the above system design (referencing
the falling edge of the start bit of the first transmitting

5 processor as a reference point), and assuming a maximum 4
percent clock skew, there are three conditione which must be
analyzed. These conditions are: (1) transmission starting

from within zero to 50 percent (of a bit time) from the

reference edge; (2) transmissions starting after 86 percent

10 (of a bit time) from the reference edge; and (3)
transmissions starting from within 51 percent to 85 percent
(of a bit time) from the reference edge. For the first

condition (zero to 50 percent), each processor will detect

0ga0es an invalid source byte within the first character. This is
e 15 due to the mid-bit sampling approach which, for example,
oe,8 will detect an all zeros source byte and interpret this as a
data collision.

For the second condition (greater than 86 percent shift
:k‘ in the transmission from the reference edge), a data

T " 20 collision will be detected as an invalid source byte or a
framing error within the first character. A framing error

within the first character will occur because the 4 percent
k drift between the two reference clocks over bits 2 - 10 of

A the first character of the source byte will cause the

| 25 leading edge of both processors bit 10 to be within 36
oo percent (9 bits + 4 percent/bit) of each other. To detect a
framing error, the leading edge of one of the processors’
bit 10 must cross the mid-bit sampling point which is at the

} 50 percent point of bit 10. Therefore, if one processor
MQT“J 30 starts a transmission 87 percent past the reference point
and has a 36 percent faster clock, the final edge will be 51
percent (87-36) into bit 10 of the first character. All
processor receilverxrs will theretore detect a framing error
from their associated UART. To ensure that a framing error

T e

Vs

10

15

20

25

30

12

will occur, two stop bits, each of a logic 1 have been
employed as shown in FIG. 3.

For the third condition mentioned above (a data
collision within 51 to 81 percent of the start bit), a data
collision may not be detected as an invalid source byte or a
framing error within the first character of the byte.
Consider the following example. Bits 10 and 11 of each
character will always be set to logic 1. Therefore, a drift
of 36 percent can occur over 9 bits (4 percent drift per bit
times 9 bits). This 36 percent drift can occur prior to bit
10. If one processor starts a transmission 51 to 86 percent
past a reference point of the other processor and the first
processor makes up a 36 percent difference due to a faster
clock, the transmitted bit 10s of each processor will be
within 15 (51-36) to 50 percent (81-36) of one another.
Since each bit is sampled mid-bit (50 percent into the bit)
each processor will see bit 10 as a valid stop bit and a
framing error will not be detected. If the second processor
begins transmitting 51 to 86 percent past the reference
point of the first processor and the two processors have a
source byte identity of two adjacent bits, then all
receiving processors will see a valid source byte. This
data collision will not be detected. All processors on the
bus will begin sampling the data at mid-bit times with
reference to the starting bit of the first processor. After
9 bits, processors A and B will have caught up allowing for
the maximum 4 percent drift per bit. For bit 10, the
difference between the two processors will be 50 percent of
a bit time. As a result, all processors will sample bit 10
as a valid stop bit and a data collision will not be
detected. 1In order to overcome the problem of the third
condition, the source byte which uniquely identifies each
processor is repeated as shown in FIG. 4, byte 32, by each
processor. Allowing again for the maximum drift of 4

- e

O e p——

13

percent per bit, the second characters transmitted by each
processor will lave leading edges (the 12th transmitted bit)
which differ by less than 33 percent (81-48). This error
condition will be detected bas in the first condition as

5 mentioned above.

As can be seen from the above description, a multi-

processor communication system is shown which detects data
collisions and provides for prioritized access to the system

data bus. This communication system provides for

10 prioritizing subsequent communications among the processors
according to a table-driven dynamically changeable
arrangement. In addition, this system provides for
processors which were not directly involved in a data
collision from intervening with a request for access to the

oo 15 system bus prior to resolution of data collisions between
%o other processors by havinyg the non-colliding processor wait
e a maximum time limit before again attempting to transmit a

message. This arrangement provides a multi-processor

communication system in which data collisions are rapidly
= 20 detected and communication among the processors is
established by a prioritized arrangement. Thls prioritized
arrangement is particularly useful in situations in which a
number of processors are each performing a dedicated portion
of the overall function of the system.

e N v St et

; 25 Although the preferred embodiment of the invention has
’ been illustrated, and that form described in detail, it will
i be readily apparent to those skilled in the art that various
modifications may be made therein without departing from the

spirit of the invention or from the scope of the appended
30 claims.

a
»

i

i
b
M

t

i

H

f

A

10

15

20

25

30

35

- 14 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for data collision detection and resolution
in a multi-processor communication system including a
plurality of processors coupled by a bus, said method
including the steps of:

first determining by one processor of said plurality
of processors that communication is required with at least
one other processor of said plurality of processors via a
first messagz on said bus;

second determining by said one processor whether a
data collision flag indicates that a previous data
collision occurred from a transmission of another message;

maximum waiting by said one processor a maximum
time, if said previous data collision occurred;

initiating by said one processor transmission of
said first message, if said data collision flag indicates
a previous data collision has not occurred;

checking to determine whether a new data collision
occurred during transmission of said first message by each
of said plurality of processors by checking a plurality of
source indicators in said first message, said source
indicators indicating an identity of a processor
transmitting said first message;

continuing transmitting by said one processor said
first message to said at least one octher processor, if no
data collision is determined;

waiting by said one processor a selective time, if
said new data collision of said first message is
determined; and

repeating by said one processor said steps of first
determining, second determining, initiating, checking,
continuing transmitting and waiting, if said new data
collision of said first message is determined.
2. A method for data collision detection and resolution
as claimed in claim 1, wherein there is further included
the steps of:

third determining by said one processor whether said
bus is idle prior to transmitting; and

10

15

20

25

30

35

- 15 -

second repeating by said one processor said step of
third determining until said bus becomes idle, if said bus
is not idle.
3. A method for data collision detection and resolution
as claimed in claim 2, wherein said step of second
determining includes the steps of:

second waiting by said one processor a maximum time
greater than said selective time, if a previous data
collision occured; and

third repeating by said one processor said steps of
first determining, second determining, checking, waiting a
selective time, repeating, transmitting, third
determining, and second repeating if said first message
incurred a data collission.
4, A method for data collision detection and
resolution as c¢laimed in claim 3, wherein said step of
checking includes the steps of:

initiating by said one processor a transmission of
said first message;

second checking by said one processor at least two
of said source indicators from said transmitted message;
and

fourth determining by said one processor whether
only one-bit is set in each of said at least two source
indicators of said message.
S. A method for data collision detection and resolution
as claimed in claim 4, wherein said step of second
checking further includes the step of fifth determining by
said one processor whether, said one-bit set in each of
said at 1least two source indicators 1is in a same bit
position within said source indicator.
6. A method for data collision detection and resolution
as claimed in claim 5, wherein said step of waiting
includes the steps of:

reading by said one processor from a table a value
representing an amount of time;

third waiting by said one processor said amount of
time before retransmitting said first message;

repeating by said one processor the steps of first

4

&
b

10

15

20

25

30

35

- 16 -

determining, second determining, checking, waiting a
selective time, repeating, transmitting, third
determining, second repeating, initiating, second
checking, fourth determining; fifth determining, reading,
and third waiting; and

said steps of reading and third waiting and
repeating being performed after said step of fifth
determining for other than one-bit being set of said
source indicators or if the bits set in said source
indicators are not in the same position within said source
indicators.

7. A method for data collision detection and resolution
as claimed in claim 6, wherein said step of transmitting
includes the step of continuing to transmit by said one
processor said message to said at 1least one other
processor, after said step of fifth determining that only
one-bit is set in each source indicator and said one-bit
is in the same position within each source indicator.

8. In a multi-processor communication system including
a plurality of processors coupleddl by a bus, a data
collision detection arrangement including:

a plurality of means for transmitting coupled to
said bus and each of said plurality of means for
transmitting being coupled to a corresponding one of said
plurality of processors;

a plurality of means for receiving coupled to said
bus and each of said plurality of means for receiving
being coupled to a coresponding one of said processors,
said means for receiving a transmitted message via said
bus;

said plurality of said means for transmitting
including means for initiating transmitting a first
message from a source processor to at least one
destination processors;

means for determining by each of said processors
whether a data collision occurred between said first
message and other messages by examining a source processor
indicator in said first message;

said means for determining including first means for

BRSPS

10

15

20

25

- 17 -

checking by each of said plurality of processors at 1least
two consecutive source words including said source
processor indicator for determining that each source word
has only one bit set to a particular logic value, each bit
of said source word indicating an identity of a particular
one of said plurality of processors;

means for waiting by said source procsssor a
selective time before transmitting said first message
again, if a data collision is determined; and

said means for continuing transmitting said first
message of said source processor operating to continue
transmission of said first message, if no data collision
is determined.
9. A method and apparatus for data collision detection
and resolution in a multi-processor communication system
substantially as shown in the drawings.

DATED: 4 October, 1994.
PHILLIPS ORMONDE & FITZPATRICK
Attorneys for:

MOTOROLA INC.

5275u

N

;

'
3
L.
P

1
.

sast
¢t

sett

she2
1
[N NS

[y
(AN}
(3

Tt
.
) (XYY}

10

20

METHOD AND APPARATUS FOR DATA COLLISION DETECTION
IN A MULTI-PROCESSOR COMMUNICATION SYSTEM

Abstract of the Disclgsure

A method and apparatus for data collision detection and
resolution in a multi-processor communication system. The
system inc¢ludes a plurality of processors (1, 2, 3, 4, 5, 6,
7, 8) coupled via a common bus (9). When it is required
that one processor (1, 2, 3, 4, 5, 6, 7 or 8) communicate
with another processor (1, 2, 3, 4, 5, 6, 7 or 8), the first
processor (1, 2, 3, 4, 5, 6, 7 or 8) determines whether a
data collision flag is set. The processor (1, 2, 3, 4, 5,
6, 7 or 8) then checks a number of indicators to determine
whether the identity of the transmitting processor (1, 2, 3,
4, 5, 6, 7 or 8) is what it is expected to be. If a data
collision is found, the processor (1, 2, 3, 4, 5, 6, 7 or 8)
waits a selective time before transmitting a message (30).
The processor (1, 2, 3, 4, 5, 6, 7 or 8) then repeats the
data collision checking and transmitting the message (30) to
the other processor (1, 2, 3, 4, 5, 6, 7 or 8) when no data
collision is found. The time to wait is dependent upon the
identity of the processor (1, 2, 3, 4, 5, 6, 7 or 8) and is
table driven.

b

v

g i e T

v N
22079 /ZZ
1 2
) , L
DATA DATA
PROCESSOR PROCESSOR
A B
- ! ' o
‘ | :
DISPLAY TEST .e. | ADAPTOR
PROCESSOR | | PROCESSOR PROCESSOR
7 o, T
3 4 8
FIGA. 1
eSS ORI SR e - 1 [ettt e |
[y | [MEMORY | CLOCK | | | [cLock MEMORY | |
""" : | ’ ml | 7 ol
f : a1 Bl cea 12| 23 21 T
: 4
; | [PROCESSOR J«—>{UART] | | [UART J+—{ PROCESSOR] |
] T 1 | Y) |
B gy g i — o b ae oo am o]
T 5 R AR I I 1~
10 197 ~17 277F =29 20
e | .
9
FIG. 2
| FIG. 3
: START| DATA _[sToP[sTop
BIT [DO THRU D7| BIT | BIT
; |
TRANSMITTED
FIRST
FI1IG. <
31 32 33 34 35
\) \ \ \
SOURCE BYTE[SOURCE BYTE|DESTINATION BYTE|DATA BYTES |IDLE BYTE
!
TRANSMITTED !
FIRST 30

| v

_ S

BACKOFF (WAIT)
MAXIMUM TIM

o
46
48
INITIATE TRANSMISSION}
50 1
[CHECK SOURCE BYTES 31 & 32
NO |BACKOFF (WAIT)]
ONLY ONE BIT ACCORDING
SET TO TABLE
51 X
58
L
IS SAME
BIT SET
FOR SOURCE s a
CBYTES 31 ,
& 32 |
. 54 |
CONTINUE TRANSMISSION ;
FI1IGe. &5

DOES UART
HAVE. IDLE RECEIVE
INDICATOR

NO

61

ARE THERE
11 CONSECUTIVE BIT
TIMES OF A '
LOGIC 1

2

NO

IS
INDICATOR

YES SET

CONTINUE

67

CONTINUE
64

e tte

R FIG. 6

