| WV AP0 D N O O O
US 20040167984A1
a9 United States

a2 Patent Application Publication o) Pub. No.: US 2004/0167984 A1l

Herrmann (43) Pub. Date: Aug. 26, 2004
(59) SYSTEM PROVIDING METHODOLOGY FOR (60) Provisional application No. 60/481,679, filed on Nov.
ACCESS CONTROL WITH COOPERATIVE 20, 2003. Provisional application No. 60/303,653,
ENFORCEMENT filed on Jul. 6, 2001. Provisional application No.

60/430,458, filed on Dec. 2, 2002,
(75) Inventor: Conrad K. Herrmann, Oakland, CA

(US) Publication Classification
7 .
Cortespondence Address: B3 U, G, e O 0 73901

JOHN A. SMART

708 BLOSSOM HILL RD., #201 (57) ABSTRACT

LOS GATOS, CA 95032 (US)

A system providing methodology for access control with
(73) Assignee: ZONE LABS, INC., San Francisco, CA cooperative enforcement is described. In one embodiment,
(US) for example, a method is described for authorizing a client
to access a service based on compliance with a policy
(21) Appl. No.: 10/708,660 required for access to the service, the method comprises
steps of: specifying a policy required for access to the
(22) Filed: Mar. 17, 2004 service; detecting a request for access to the service from a
client; attempting authentication of the client based on
Related U.S. Application Data credentials presented by the client; if the client is authenti-
cated based on the credentials, determining whether the
(63) Continuation-in-part of application No. 09/944,057, client is in compliance with the policy based, at least in part,

filed on Aug. 30, 2001. on attributes of the client; and if the client is determined to
Continuation-in-part of application No. 10/249,073, be in compliance with the policy, providing access to the
filed on Mar. 13, 2003. service.
400
/— 320
310
- APPLICATION

CLIENT DEVICE SERVER

OPERATING
SYSTEM/ CLIENT
APPLICATIONS
415

CLIENT SECURITY
MODULE

/ 460

(TrueVector
355 SERVER (ADS)
KEBEROS SERVICES
470
SUB-AUTHENTICATION
FILTER
MODULE
351
POLICY
SERVER
SECURITY
CHECKER
359

US 2004/0167984 Al

Patent Application Publication Aug. 26,2004 Sheet 1 of 11

(LYY ¥OId)
d31INIYd AV1dSIa
h
; - J01 po1 - co1
801 901 ANOWIW
oLl N ™ O3dlA
L
~ 30IA3a ¥3ldvay
ONILNIOd QEVORAIM O3aiA
S31I4 viva oL
SNOILYDITddY - ~
wmugmm 3OVHOLS « FOVAEAINL |
Q3xi4 > WWOD
Ll
JOVHOLS (ndd) —
I1GYAONTY — < OVANEINI |
(s)LINN AHOMLIN
gL — ONISS3ID0Ud TVHINID
- WIAOW |--——-- -
oL — ‘ ﬁ Zy
[4
WOY vy
001
cop — zo1 —

Patent Application Publication Aug. 26,2004 Sheet 2 of 11 US 2004/0167984 A1

200
201 201b
APPLICATION APPLICATION BROWSER [] APPLICATION 201
PROGRAM 1 PROGRAM 2 PROGRAM PROGRAM N

3 Y 4 Y

L L J y {
OPERATING SYSTEM

(e.g., WINDOWS 9X/NT/2000/XP, SOLARIS, UNIX, LINUX, MAC 0OS, OR LIKE)

GRAPHICAL

USER INTERFACE
~

/" 220 215 \ 210

DEVICE DRIVERS
(e.g., WINSOCK)

230
il
BIOS
(MICROCODE)

i

DISPLAY MONITOR
NETWORK INTERFACE
COMM PORT
KEYBOARD

MODEM

MOUSE

DISKS

PRINTER

FIG. 2

Patent Application Publication Aug. 26,2004 Sheet 3 of 11 US 2004/0167984 A1

300 ~

:x 320
340\,/~]g //,_

[APPLICATION

/”'310 mTTT SERVER

|
CLIENT DEVICE ‘//,/+/”//'

|
|
|
|
|
|
MODULE !
|
I
|
l

CLIENT SECURITY ——
(TrueVector 430
Engine)
355 -
AUTHENTICATION
SERVER
(KERBEROS
SERVER)
SUB-AUTHENTICATION
] FILTER
: MODULE 351
|
|
|
« | SECURITY
x| CHECKER
Q 359
2|
[
w !
Z |
|
|
I~ 340
N\

Patent Application Publication Aug. 26,2004 Sheet 4 of 11 US 2004/0167984 A1

400
o 320
310
- APPLICATION
CLIENT DEVICE SERVER
OPERATING
SYSTEM / CLIENT
APPLICATIONS
415
CLIENT SECURITY / 460
MODULE
TrueVect
(E‘fgir‘?;” ACTIVE DIRECTORY
355 SERVER (ADS)
KEBEROS SERVICES
470
SUB-AUTHENTICATION
FILTER
MODULE
351
POLICY
SERVER
SECURITY
CHECKER
359

Patent Application Publication Aug. 26,2004 Sheet 5 of 11 US 2004/0167984 A1

C BElGIN j 500

501
K_

CLIENT DEVICE ATTEMPTS TO CONNECT TO SERVICE
(APPLICATION SERVER)

I T 502

CLIENT REQUIRED TO AUTHENTICATE AGAINST
AUTHENTICATION SERVER (ACTIVE DIRECTORY SERVER)

l 503

NORMAL AUTHENTICATION OF CLIENT (USER NAME AND
PASSWORD) BY AUTHENTICATION SERVER

l /~ 504
AUTHENTICATION SERVER CALLS SUB-AUTHENTICATION FILTER
MODULE
l /—— 505

SUB-AUTHENTICATION FILTER INVOKES SECURITY CHECKER:
SECURITY CHECKER ISSUES CHALLENGE TO CLIENT

l 508

DETERMINE IF CLIENT IN COMPLIANCE WITH SECURITY POLICY

TO
FIG. 5B

FIG. 5A

Patent Application Publication Aug. 26,2004 Sheet 6 of 11 US 2004/0167984 A1

FROM
FIG. 5A

l //~5o7

RESULT OF CLIENT COMPLIANCE CHECK RETURNED

-

IF CLIENT IN COMPLIANCE WITH SECURITY POLICY, CLIENT
PERMITTED TO ACCESS SERVICE

l /- 509

IF CLIENT NOT COMPLIANT, CLIENT DENIED ACCESS TO
SERVICE (OR PROVIDED LIMITED ACCESS)

y

(: DONE j)

FIG. 5B

Patent Application Publication Aug. 26,2004 Sheet 7 of 11 US 2004/0167984 A1

C BEGIN) 600

l f_ 601

CLIENT DEVICE CONNECTS TO NETWORK

602

I -

CLIENT RECEIVES NETWORK ADDRESS OF AUTHENTICATION
SERVER

l 803

CLIENT LOGS IN TO AUTHENTICATION SERVER, PROVIDING
REQUIRED CREDENTIALS

604
l ~
AUTHENTICATION SERVER CALLS SUB-AUTHENTICATION FILTER
MODULE
l /— 605

SUB-AUTHENTICATION FILTER MODULE INVOKES SECURITY
CHECKER; SECURITY CHECKER ISSUES CHALLENGE TO CLIENT

606
v -

DETERMINE IF CLIENT IN COMPLIANCE WITH SECURITY POLICY

l /— 607

RESULT OF COMPLIANCE CHECK IS RETURNED

TO
FIG. 6B

'
FIG. 6A

Patent Application Publication Aug. 26,2004 Sheet 8 of 11 US 2004/0167984 A1

FROM
FIG. 6A

* r 608

IF CLIENT IN COMPLIANCE, CLIENT IS GRANTED KERBEROS
TICKET WITH FULL ACCESS PRIVILEGES

l - 609

IF CLIENT NOT IN COMPLIANCE, AUTHENTICATION FAILS OR
CLIENT GRANTED LIMITED ACCESS KERBEROS TICKET

v /‘610

CLIENT SUBSEQUENTLY CONNECTS TO A SERVICE ON
NETWORK AND REQUESTS A TRANSACTION
l /— 611
SERVICE REQUIRES CLIENT TO PRESENT KERBEROS TICKET
612
y -
CLIENT PRESENTS KERBEROS TICKET
613
v -
SERVICE CHECKS TICKET TO DETERMINE IF TICKET CONTAINS
SUFFICIENT PRIVILEGE TO PERMIT REQUESTED TRANSACTION

61
, o

IF TICKET CONTAINS SUFFICIENT PRIVILEGE, SERVICE
EXECUTES TRANSACTION

l /—615

IF TICKET DOES NOT CONTAIN SUFFICIENT PRIVILEGE OR IF NO
TICKET WAS ISSUED, SERVICE DENIES TRANSACTION

(oone)

FIG. 6B

Patent Application Publication Aug. 26,2004 Sheet 9 of 11 US 2004/0167984 A1

700

720
N -

|
| x LINUX / UNIX / SOLARIS SYSTEM
740 S
IS
: E APPLICATION SERVER 730
| Z
|
I /
|
PAM PAM
|
| LIBRARY 750| ™| CONFIG.
/» 710 I FILE 755
l ¢ \
CLIENT DEVICE !
| MgéthJALE PAM_TV
OPERATING i 760 MODULE
SYSTEM/ CLIENT | 765
APPLICATIONS | P
713 :
S SECURITY
CLIENT SECURITY / CHECKER 770
MODULE 1
(TrueVector :
Engine) I
715 !
780
. POLICY
SERVER
4
o
2
= |
Lu b 740
a4

Patent Application Publication Aug. 26,2004 Sheet 10 of 11 US 2004/0167984 A1

(BEGIN j 800
801
y [

CLIENT DEVICE CONNECTS TO NETWORK

0
! - 802
CLIENT RECEIVES NETWORK ADDRESS OF AUTHENTICATION
SERVER

l 803

CLIENT LOGS IN TO AUTHENTICATION SERVER, PROVIDING
REQUIRED CREDENTIALS

80
, 804

POLICY SERVER INVOKED AND ISSUES CHALLENGE TO CLIENT
REQUESTING INFORMATION FROM CLIENT

l /— 805

CLIENT COLLECTS AND SENDS REQUESTED INFORMATION TO
THE POLICY SERVER IN RESPONSE TO CHALLENGE

806
: I

BASED ON INFORMATION RECEIVED FROM CLIENT, POLICY
SERVER DETERMINES IF CLIENT IN COMPLIANCE WITH POLICY

l /— 807
RESULT OF COMPLIANCE CHECK IS RETAINED AND/OR STORED
BY POLICY SERVER
TO
FIG. 8B

'
FIG. 8A

Patent Application Publication Aug. 26,2004 Sheet 11 of 11 US 2004/0167984 A1

FROM
FIG. 8A

‘ /— 808
CLIENT SUBSEQUENTLY CONNECTS TO A SERVICE ON
NETWORK AND REQUESTS A TRANSACTION

l / 809

SERVICE ASKS POLICY SERVER WHETHER CLIENT IS IN
COMPLIANCE WITH POLICY

l /— 810

POLICY SERVER RETURNS RESULTS OF COMPLIANCE CHECK

l 811

IF RESULT RETURNED BY POLICY SERVER INDICATES CLIENT IS
IN COMPLIANCE WITH POLICY, SERVICE ALLOWS TRANSACTION
REQUESTED BY CLIENT

l /- 812

IF RESULT RETURNED BY POLICY SERVER INDICATES CLIENT
NOT IN COMPLIANCE, SERVICE DENIES TRANSACTION

(: DONE j)

FIG. 8B

US 2004/0167984 Al

SYSTEM PROVIDING METHODOLOGY FOR
ACCESS CONTROL WITH COOPERATIVE
ENFORCEMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is related to and claims the
benefit of priority of the following commonly-owned, pres-
ently-pending provisional application(s): application serial
No. 60/481,679 (Docket No. VIV/0014.00), filed Nov. 20,
2003, entitled “System Providing Methodology for Access
Control with Cooperative Enforcementss, of which the
present application is a non-provisional application thereof.
The present application is related to and claims the benefit
of priority of the following commonly-owned, presently-
pending nonprovisional application(s): application Ser. No.
09/944,057 (Docket No. VIV/0003.01), filed Aug.30, 2001,
entitled “System Providing Internet Access Management
with Router-based Policy Enforcement”, of which the
present application is a Continuation-in-part application
thereof; application Ser. No. 10/249,073 (Docket No. VIV/
0010.01), filed Mar. 13, 2003, entitled “System and Meth-
odology for Policy Enforcement”, of which the present
application is a Continuation-in-part application thereof.
The disclosures of each of the foregoing applications are
hereby incorporated by reference in their entirety, including
any appendices or attachments thereof, for all purposes.

COPYRIGHT STATEMENT

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

APPENDIX DATA

[0003] Computer Program Listing Appendix under Sec.
1.52(e): This application includes a transmittal under 37
C.F.R. Sec. 1.52(¢e) of a Computer Program Listing Appen-
dix. The Appendix, which comprises text file(s) that are
IBM-PC machine and Microsoft Windows Operating Sys-
tem compatible, includes the below-listed file(s). All of the
material disclosed in the Computer Program Listing Appen-
dix can be found at the U.S. Patent and Trademark Office
archives and is hereby incorporated by reference into the
present application.

[0004] Object Description: SourceCode.txt created: 11/20/
2003, 8:37 am, size: 67.9 KB; Object ID: File No. 1; Object
Contents: Source Code.

BACKGROUND OF INVENTION
[0005] 1. Field of the Invention

[0006] The present invention relates generally to systems
and methods for maintaining security of computer systems
connected to one or more networks (e.g., Local Area Net-
works or Wide Area Networks) and, more particularly, to a
system providing methodology for access control with coop-
erative enforcement.

Aug. 26, 2004

[0007] 2. Description of the Background Art

[0008] The first computers were largely stand-alone units
with no direct connection to other computers or computer
networks. Data exchanges between computers were mainly
accomplished by exchanging magnetic or optical media such
as floppy disks. Over time, more and more computers were
connected to each other using Local Area Networks or
LANS. In both cases, maintaining security and controlling
what information a computer user could access was rela-
tively simple because the overall computing environment
was limited and clearly defined.

[0009] With the ever-increasing popularity of the Internet,
however, more and more computers are connected to larger
networks. Providing access to vast stores of information, the
Internet is typically accessed by users through Web “brows-
ers” (e.g., Microsoft® Internet Explorer or Netscape Navi-
gator) or other Internet applications. Browsers and other
Internet applications include the ability to access a URL
(Universal Resource Locator) or “Web” site. In the last
several years, the Internet has become pervasive and is used
not only by corporations, but also by a large number of small
businesses and individual users for a wide range of purposes.
Many applications are now Web-enabled, providing services
to remote users through various types of networks.

[0010] As more and more computers are now connected to
other local and remote computers (e.g., via the Internet), a
whole new set of challenges face system administrators and
individual users alike: these previously closed computing
environments are now open to a worldwide network of
computer systems. A particular set of challenges involves
attacks by perpetrators (hackers) capable of damaging the
local computer systems, misusing those systems, and/or
stealing proprietary data and programs. Another challenge is
in maintaining and securing applications (services) that are
made available to remote users.

[0011] A service is a unit of program logic (e.g., an
application or process) which runs on a remote computer or
in the background on a local computer and provides data to
and/or performs tasks for other programs (e.g., application
programs). The work performed or offered by a service may
include simply serving simple requests for data to be sent or
stored or it may involve more complex tasks. A well known
example of a service that is currently in wide use is the
domain name service (DNS). The domain name service
resolves a URL name to an IP address (and vice versa).
Another example of a service is an FTP (file transfer
protocol) service for transfer of files. Historically, using a
service has involved calling a remote server to obtain data
and/or work from the remote server. However, as computers
have become more powerful, a typical computer environ-
ment also includes services that are available locally.

[0012] Currently, most computer services (i.e., server pro-
grams in a client-server scheme) grant access to remote
computers based on user authentication. In multiprocessing
systems, they do the same thing for other processes on the
same computer. For the purposes of the following discus-
sion, both of these situations will be referred to as “client/
server” computing, where the “client” is a user/program
attempting to access a “server” to use a particular service
(e.g., an application or service on a remote computer).

[0013] Once a client (e.g., user) is authenticated to have
access, these services typically assign access privileges to
each user or group of users. Depending on the function of the

US 2004/0167984 Al

program, the set of access privileges can vary. For file
system service programs (e.g., Netbios, SAMBA, and other
file sharing systems), access rights include the ability to
read, write, execute files, and create or delete files in
directories. For Web servers, access rights include the ability
to execute specific access verbs (e.g., GET, POST, etc.) to
specific URLs. For a sales transaction system, access rights
may include the ability to register a sale, to perform a refund,
to report the day’s tally, and so on.

[0014] Access privilege to a given resource is often speci-
fied as an access control list (ACL) associated with a specific
resource by the operating system or a service application. An
ACL names users and groups, and the list of access rights
each is assigned. ACLs also list the access rights (if any) of
users who are not members of any of the listed groups.

[0015] Although current user authentication systems are
widely used to control access to computer systems and
networks, several problems remain. One problem that is not
addressed by current user authentication systems is ensuring
that all devices that connect to a service or resource comply
with applicable security policies in order to protect these
services and resources. For example, if a remote user that is
connected to a bank for on-line banking does not apply and
enforce the bank’s required security policies, a hacker could
gain unauthorized access to the bank’s systems through the
remote user’s unsecured system. Although a secure connec-
tion may be established between the bank and the user, and
the user may be authenticated for access to the bank’s
systems, if the user’s system is vulnerable to any security
breaches the security of the overall environment may be
jeopardized.

[0016] A related problem is that if a client device is
infected with a virus or worm, it may infect other machines
to which it is connected. For example, an infected computer
that is connected to a particular network (e.g., a corporate
LAN) may be infected with a virus that intentionally tries to
spread itself to other machines. One machine that is not
running the correct anti-virus engine or is not equipped with
current virus signature definition files may jeopardize the
security of many other machines. Ensuring that connected
client devices are running current anti-virus programs is
particularly important, as virus suppression methods are
very time sensitive and failure to use current anti-virus
programs may result in the introduction of a virus that can
cause significant damage.

[0017] A solution is required that validates access and
assigns access privileges to clients based on credentials in
addition to user identity. The solution should ensure that
client devices connecting to services or other resources are
using appropriate security mechanisms and are otherwise in
compliance with required security policies to maintain the
overall security of the environment. In particular, the solu-
tion should ensure that a client device requesting access to
a particular service has appropriate security mechanisms and
virus suppression measures installed and operational before
it is permitted to access the service. The present invention
provides a solution for these and other needs.

SUMMARY OF INVENTION

[0018] A system providing methodology for access con-
trol with cooperative enforcement is described. In one
embodiment, for example, a method of the present invention

Aug. 26, 2004

is described for authorizing a client to access a service based
on compliance with a policy required for access to the
service, the method comprises steps of: specifying a policy
required for access to the service; detecting a request for
access to the service from a client; attempting authentication
of the client based on credentials presented by the client; if
the client is authenticated based on the credentials, deter-
mining whether the client is in compliance with the policy
based, at least in part, on attributes of the client; and if the
client is determined to be in compliance with the policy,
providing access to the service.

[0019] In another embodiment, for example, a system of
the present invention is described for authenticating and
assigning access privileges to a client device for access to a
service, the system comprises: a policy specifying access
privileges to be assigned to a client device based on
attributes of the client device; a primary authentication
module for receiving a request from a client device for
access to the service and determining whether to authenti-
cate the client device for access to the service; and a
supplemental authentication module for examining
attributes of a client device authenticated by the primary
authentication module and assigning access privileges to the
client device based on the policy.

[0020] In yet another embodiment, for example, a method
of the present invention is described for assigning privileges
to a client to use a service based on an access policy, the
method comprises steps of: specifying an access policy for
assigning privileges to a client to use the service based on
attributes of the client; detecting a request for use of the
service from a client; attempting authentication of the client
based on user identity information provided by the client; if
the client is authenticated based on user identity, collecting
attribute information from the client; and assigning privi-
leges to the client to use the service based on the collected
attribute information and the access policy.

[0021] In another embodiment, for example, in a system
comprising a client computer connecting to a service
through a network, a method of the present invention is
described for regulating access to the service based on a
specified access policy, the method comprises steps of:
transmitting a challenge from the service to the client
computer connecting to the service for determining whether
the client computer is in compliance with the specified
access policy, wherein the access policy includes attributes
of the client device that are acceptable for permitting access
to the service; transmitting a response from the client
computer back to the service, for responding to the challenge
issued by the service; and blocking access to the service by
the client computer if the client computer does not respond
appropriately to the challenge issued by the service.

BRIEF DESCRIPTION OF DRAWINGS

[0022] FIG. 1 is a very general block diagram of a
computer system (e.g., an IBM-compatible system) in which
software-implemented processes of the present invention
may be embodied.

[0023] FIG. 2 is a block diagram of a software system for
controlling the operation of the computer system.

[0024] FIG. 3 is a block diagram of an environment in
which the present invention may be embodied.

US 2004/0167984 Al

[0025] FIG. 4 is a block diagram illustrating in more detail
an environment in which the present invention is imple-
mented using sub-authentication filters in a Windows envi-
ronment.

[0026] FIGS. 5A-B comprise a single flowchart illustrat-
ing the operation of the present invention in authenticating
a client attempting to access an application or service (e.g.,
on an application server).

[0027] FIGS. 6A-B comprise a single flowchart illustrat-
ing the operations of the present invention in authenticating
a client accessing a service in a Kerberos implementation.

[0028] FIG. 7 is a block diagram illustrating an environ-
ment in which the methodology of the present invention may
be implemented in a Linux, UNIX, or Solaris environment
using Pluggable Authentication Modules.

[0029] FIGS. 8A-B comprise a single flowchart illustrat-
ing the process of authenticating a client attempting to
access an application or service through a separate security
evaluation service.

DETAILED DESCRIPTION

[0030] Glossary

[0031] The following definitions are offered for purposes
of illustration, not limitation, in order to assist with under-
standing the discussion that follows.

[0032] End point security: End point security is a way of
managing and enforcing security on each computer instead
of relying upon a remote firewall or a remote gateway to
provide security for the local machine or environment. End
point security involves a security agent that resides locally
on each machine. This agent monitors and controls the
interaction of the local machine with other machines and
devices that are connected on a LAN or a larger wide area
network (WAN), such as the Internet, in order to provide
security to the machine.

[0033] Firewall: A firewall is a set of related programs,
typically located at a network gateway server, that protects
the resources of a private network from other networks by
controlling access into and out of the private network. (The
term also implies the security policy that is used with the
programs.) A firewall, working closely with a router pro-
gram, examines each network packet to determine whether
to forward it toward its destination. A firewall may also
include or work with a proxy server that makes network
requests on behalf of users. A firewall is often installed in a
specially designated computer separate from the rest of the
network so that no incoming request directly accesses pri-
vate network resources.

[0034] GSS-API: The Generic Security Service Applica-
tion Program Interface (GSS-API) provides application pro-
grammers uniform access to security services using a variety
of underlying cryptographic mechanisms. The GSS-API
allows a caller application to authenticate a principal iden-
tity, to delegate rights to a peer, and to apply security
services such as confidentiality and integrity on a per-
message basis. Examples of security mechanisms defined
for GSS-API include “The Simple Public-Key GSS-API
Mechanism” and “The Kerberos Version 5 GSS-API Mecha-
nism”. For further information regarding GSS-API, see ¢.g.,
“RFC 2743: Generic Security Service Application Program

Aug. 26, 2004

Interface Version 2, Update 17, available from the Internet
Engineering Task Force (IETF), the disclosure of which is
hereby incorporated by reference. A copy of RFC 2743 is
available via the Internet (e.g., currently at www.ietf.org/
rfc/rfe2743.1xt). See also e.g., “RFC 2853: Generic Security
Service API Version 2: Java Bindings”, available from the
IETF, the disclosure of which is hereby incorporated by
reference. A copy of RFC 2853 is available via the Internet
(e.g., currently at www.ietf.org/rfc/rfc285 3.txt).

[0035] Kerberos: Kerberos is an authentication protocol
for verifying the identities of principals (e.g., a workstation
user or a network server) on an open network. The Kerberos
authentication process generally involves the following
steps. A client sends a request to the authentication server
(AS) requesting “credentials” for a given server. The authen-
tication server responds with these credentials, encrypted to
the client’s key. The credentials consist of: 1) a “ticket” for
the server; and 2) a temporary encryption key (often called
a “session key”). The client transmits the ticket (which
contains the client’s identity and a copy of the session key,
all encrypted to the server’s key) to a server (e.g., an
application server). The session key (now shared by the
client and the server) is used to authenticate the client, and
may optionally be used to authenticate the server. It may also
be used to encrypt further communication between the two
parties or to exchange a separate sub-session key to be used
to encrypt further communication. A typical Kerberos imple-
mentation consists of one or more authentication server(s)
running on physically secure hosts. The authentication serv-
er(s) maintain a database of principals (i.e., users and
servers) and their secret keys. Code libraries provide encryp-
tion and implement the Kerberos protocol. In order to add
authentication to its transactions, a typical network applica-
tion adds one or two calls to the Kerberos library, which
results in the transmission of the necessary messages to
achieve authentication. For further description of Kerberos
authentication, see e.g., “RFC 1510-The Kerberos Network
Authentication Service (V5)”, available from the IETF, the
disclosure of which is hereby incorporated by reference. A
copy of RFC 1510 is available via the Internet (e.g., cur-
rently at www.ietf.org/rfc/rfc1510.txt). Also see e.g., “RFC
1964-The Kerberos Version 5 GSS-API Mechanism”, avail-
able from the IETF, the disclosure of which is hereby
incorporated by reference. A copy of RFC 1964 is available
via the Internet (e.g., currently at www.ietf.org/rfc/
rfc1964.txt).

[0036] MD5: MDS5 is a message-digest algorithm which
takes as input a message of arbitrary length and produces as
output a 128-bit “fingerprint” or “message digest” of the
input. The MD5 algorithm is used primarily in digital
signature applications, where a large file must be “com-
pressed” in a secure manner before being encrypted with a
private (secret) key under a public-key cryptosystem. Fur-
ther description of MDS5 is available in “RFC 1321: The
MD35 Message-Digest Algorithm”, (April 1992), the disclo-
sure of which is hereby incorporated by reference. A copy of
RFC 1321 is available via the Internet (e.g., currently at
www.ietf.org/rfc/rfcl1321.txt).

[0037] Network: A network is a group of two or more
systems linked together. There are many types of computer
networks, including local area networks (LANSs), virtual
private networks (VPNs), metropolitan area networks
(MANSs), campus area networks (CANs), and wide area

US 2004/0167984 Al

networks (WANs) including the Internet. As used herein, the
term “network” refers broadly to any group of two or more
computer systems or devices that are linked together from
time to time (or permanently).

[0038] PAM: PAM stands for Pluggable Authentication
Modules which can be used to assign specific authentication
methods to specific services in an environment running
Linux, UNIX, and/or Solaris operating systems. With the
Pluggable Authentication Module (PAM) framework, mul-
tiple authentication technologies can be added without
changing any of the login services, thereby preserving
existing system environments. PAM modules can be used to
integrate login services with different authentication tech-
nologies, such as RSA, DCE, Kerberos, S/Key, and smart
card based authentication systems. Thus, Pluggable Authen-
tication Modules enable networked machines to exist in a
heterogeneous environment, where multiple security mecha-
nisms are in place. For further description of PAM modules,
see e.g., Samar, V. et al., “Making Login Services Indepen-
dent of Authentication Technologies”, available from Sun-
Soft, Inc., the disclosure of which is hereby incorporated by
reference. A copy of this white paper is available via the
Internet (e.g., currently at wwws.sun.com/software/solaris/
pam/pam.external.pdf).

[0039] Security policy: In general terms, a security
policy is an organization’s statement defining the
rules and practices that regulate how it will provide
security, handle intrusions, and recover from damage
caused by security breaches. An explicit and well-
defined security policy includes a set of rules that are
used to determine whether a given subject will be
permitted to gain access to a specific object. A
security policy may be enforced by hardware and
software systems that effectively implement access
rules for access to systems and information. Further
information on security policies is available in “RFC
2196: Site Security Handbook, (September 1997),
the disclosure of which is hereby incorporated by
reference. A copy of RFC 2196 is available from the
IETF via the Internet (e.g., currently at www.ietf.org/
rfe/rfe2196.1xt). For additional information, see also,
e.g., “RFC 2704: The KeyNote Trust Management
System Version 27, the disclosure of which is hereby
incorporated by reference. A copy of RFC 2704 is
available from the IETF via the Internet (e.g., cur-
rently at www.ietf.org/rfc/rfc2704.txt). In this docu-
ment, “security policy” or “policy” refers to a set of
security policies and rules employed by an individual
or by a corporation, government entity, or any other
organization operating a network or other computing
resources.

[0040] Service: Service refers to work performed or
offered by a unit of program logic (e.g., a program or
process). A service is an abstract resource that represents a
capability of performing tasks that form a coherent func-
tionality from the point of view of providers entities and
requester entities. To be used, a service must be realized by
a concrete provider entity, which is usually referred to as the
“provider” or “server”. The service performs tasks for
another program or process which is typically referred to as
the “requester” or “client”. The tasks that are performed may
include serving simple requests for data to be sent or stored
or may include more complex work. Examples of services

Aug. 26, 2004

that perform tasks for other programs include domain name
services and Web services (defined below).

[0041] SSL: SSL is an abbreviation for Secure Sockets
Layer, a protocol developed by Netscape for transmitting
private documents over the Internet. SSL works by using a
public key to encrypt data that is transferred over the SSL
connection. Both Netscape Navigator and Microsoft Internet
Explorer support SSL, and many Web sites use the protocol
to obtain confidential user information, such as credit card
numbers. SSL creates a secure connection between a client
and a server, over which data can be sent securely. For
further information, see e.g., “The SSL Protocol, version
3.07, (Nov. 18, 1996), from the IETF, the disclosure of
which is hereby incorporated by reference. See also, e.g.,
“RFC 2246: The TLS Protocol, version 1.0”, available from
the IETF. A copy of RFC 2246 is available via the Internet
(e.g., currently at www.itef.org/rfc/rfc2246.txt).

[0042] TCP: TCP stands for Transmission Control Proto-
col. TCP is one of the main protocols in TCP/IP networks.
Whereas the IP protocol deals only with packets, TCP
enables two hosts to establish a connection and exchange
streams of data. TCP guarantees delivery of data and also
guarantees that packets will be delivered in the same order
in which they were sent. For an introduction to TCP, see e.g.,
“RFC 793: Transmission Control Program DARPA Internet
Program Protocol Specification”, the disclosure of which is
hereby incorporated by reference. A copy of RFC 793 is
available via the Internet (e.g., currently at www.ietf.org/
rfe/rfc793.txt).

[0043] TCP/AP: TCP/IP stands for Transmission Control
Protocol/Internet Protocol, the suite of communications pro-
tocols used to connect hosts on the Internet. TCP/IP uses
several protocols, the two main ones being TCP and IP.
TCP/IP is built into the UNIX operating system and is used
by the Internet, making it the de facto standard for trans-
mitting data over networks. For an introduction to TCP/IP,
see e.g., “RFC 1180: A TCP/IP Tutorial,” the disclosure of
which is hereby incorporated by reference. A copy of RFC
1180 is available via the Internet (e.g., currently at www.i-
etf.org/rfe/rfc1180.txt).

[0044] TNT: The Trust Negotiation in TLS (TNT) proto-
col is an extension to the TLS handshake protocol that
incorporates trust negotiation into TLS to provide advanced
client/server authentication in TLS. Many business transac-
tions on the Internet occur between “strangers”, that is,
between entities with no prior relationship and no common
security domain. Traditional security approaches based on
identity or capabilities do not solve the problem of estab-
lishing trust between strangers. One new approach to mutual
trust establishment is trust negotiation, the bilateral
exchange of digital credentials to establish trust gradually.
The TNT protocol provides confidential trust negotiation,
verification of private keys during trust negotiation, and a
single trust negotiation protocol supporting interoperable
trust negotiation strategies. For further description of TNT,
see e.g., Hess, A. et al., “Advanced Client/Server Authen-
tication in TLS”, in Proceedings of Network and Distributed
System Security Symposium, San Diego, Calif., February
2002, the disclosure of which is hereby incorporated by
reference.

[0045] UDP: UDP stands for User Datagram Protocol, a
connection-less protocol that, like TCP, runs on top of IP

US 2004/0167984 Al

networks. Unlike TCP/IP, UDP/IP provides very few error
recovery services, offering instead a direct way to send and
receive datagrams over an IP network. UDP is used prima-
rily for broadcasting messages over a network. For addi-
tional information on UDP, see RFC 768, “User Datagram
Protocol”, the disclosure of which is hereby incorporated by
reference. A copy of RFC 768 is available via the Internet
(e.g., currently at www.ietf.org/rfc/rfc768.txt).

[0046] Web Service: A Web service is a software program
or system designed to support interoperable machine-to-
machine interaction over a network. A Web service has an
interface described in a machine-processable format (e.g.,
using Web Services Description Language (WSDL)). Other
programs and systems interact with the Web service in a
manner prescribed by its description (e.g., using SOAP-
messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related stan-
dards). A familiar example of an externalized Web service is
a weather portlet that one can integrate into a Web browser.
Web services can also be used to encapsulate information
and operations. Web services are becoming widely used for
enterprise information exchange and as resources for infor-
mation.

[0047] XML: XML stands for Extensible Markup Lan-
guage, a specification developed by the World Wide Web
Consortium (W3C). XML is a pared-down version of the
Standard Generalized Markup Language (SGML) which is
designed especially for Web documents. It allows designers
to create their own customized tags, enabling the definition,
transmission, validation, and interpretation of data between
applications and between organizations. For further descrip-
tion of XML, see e.g., “Extensible Markup Language
(XML) 1.0”, (2nd Edition, October 6, 2000) a recommended
specification from the W3C, the disclosure of which is
hereby incorporated by reference. A copy of this specifica-
tion is available via the Internet (e.g., currently at
www.w3.0rg/TR/2000/REC-xml-20001006).

[0048] Introduction

[0049] Referring to the figures, exemplary embodiments
of the invention will now be described. The following
description will focus on the presently preferred embodi-
ment of the present invention, which is implemented in
desktop and/or server software (e.g., driver, application, or
the like) operating in an Internet-connected environment
running under an operating system, such as the Microsoft
Windows operating system. The present invention, however,
is not limited to any one particular application or any
particular environment. Instead, those skilled in the art will
find that the system and methods of the present invention
may be advantageously embodied on a variety of different
platforms, including Macintosh, Linux, Solaris, UNIX,
FreeBSD, and the like. Therefore, the description of the
exemplary embodiments that follows is for purposes of
illustration and not limitation. The exemplary embodiments
are primarily described with reference to block diagrams or
flowcharts. As to the flowcharts, each block within the
flowcharts represents both a method step and an apparatus
element for performing the method step. Depending upon
the implementation, the corresponding apparatus element
may be configured in hardware, software, firmware or
combinations thereof.

Aug. 26, 2004

[0050] Computer-Based Implementation

[0051] Basic System Hardware (e.g., for Desktop and
Server Computers)

[0052] The present invention may be implemented on a
conventional or general-purpose computer system, such as
an IBM-compatible personal computer (PC) or server com-
puter. FIG. 1 is a very general block diagram of a computer
system (e.g., an IBM-compatible system) in which software-
implemented processes of the present invention may be
embodied. As shown, system 100 comprises a central pro-
cessing unit(s) (CPU) or processor(s) 101 coupled to a
random-access memory (RAM) 102, a read-only memory
(ROM) 103, a keyboard 106, a printer 107, a pointing device
108, a display or video adapter 104 connected to a display
device 105, a removable (mass) storage device 115 (e.g.,
floppy disk, CD-ROM, CD-R, CD-RW, DVD, or the like),
a fixed (mass) storage device 116 (e.g., hard disk), a com-
munication (COMM) port(s) or interface(s) 110, a modem
112, and a network interface card (NIC) or controller 111
(e.g., Ethernet). Although not shown separately, a real time
system clock is included with the system 100, in a conven-
tional manner.

[0053] CPU 101 comprises a processor of the Intel Pen-
tium family of microprocessors. However, any other suitable
processor may be utilized for implementing the present
invention. The CPU 101 communicates with other compo-
nents of the system via a bi-directional system bus (includ-
ing any necessary input/output (I/O) controller circuitry and
other “glue” logic). The bus, which includes address lines
for addressing system memory, provides data transfer
between and among the various components. Description of
Pentium-class microprocessors and their instruction set, bus
architecture, and control lines is available from Intel Cor-
poration of Santa Clara, Calif. Random-access memory 102
serves as the working memory for the CPU 101. In a typical
configuration, RAM of sixty-four megabytes or more is
employed. More or less memory may be used without
departing from the scope of the present invention. The
read-only memory (ROM) 103 contains the basic input/
output system code (BIOS)—a set of low-level routines in
the ROM that application programs and the operating sys-
tems can use to interact with the hardware, including reading
characters from the keyboard, outputting characters to print-
ers, and so forth.

[0054] Mass storage devices 115, 116 provide persistent
storage on fixed and removable media, such as magnetic,
optical or magnetic-optical storage systems, flash memory,
or any other available mass storage technology. The mass
storage may be shared on a network, or it may be a dedicated
mass storage. As shown in FIG. 1, fixed storage 116 stores
a body of program and data for directing operation of the
computer system, including an operating system, user appli-
cation programs, driver and other support files, as well as
other data files of all sorts. Typically, the fixed storage 116
serves as the main hard disk for the system.

[0055] In basic operation, program logic (including that
which implements methodology of the present invention
described below) is loaded from the removable storage 115
or fixed storage 116 into the main (RAM) memory 102, for
execution by the CPU 101. During operation of the program
logic, the system 100 accepts user input from a keyboard
106 and pointing device 108, as well as speech-based input
from a voice recognition system (not shown). The keyboard

US 2004/0167984 Al

106 permits selection of application programs, entry of
keyboard-based input or data, and selection and manipula-
tion of individual data objects displayed on the screen or
display device 105. Likewise, the pointing device 108, such
as a mouse, track ball, pen device, or the like, permits
selection and manipulation of objects on the display device.
In this manner, these input devices support manual user
input for any process running on the system.

[0056] The computer system 100 displays text and/or
graphic images and other data on the display device 105. The
video adapter 104, which is interposed between the display
105 and the system’s bus, drives the display device 105. The
video adapter 104, which includes video memory accessible
to the CPU 101, provides circuitry that converts pixel data
stored in the video memory to a raster signal suitable for use
by a cathode ray tube (CRT) raster or liquid crystal display
(LCD) monitor. A hard copy of the displayed information, or
other information within the system 100, may be obtained
from the printer 107, or other output device. Printer 107 may
include, for instance, an HP LaserJet printer (available from
Hewlett Packard of Palo Alto, Calif.), for creating hard copy
images of output of the system.

[0057] The system itself communicates with other devices
(e.g., other computers) via the network interface card (NIC)
111 connected to a network (e.g., Ethernet network, Blue-
tooth wireless network, or the like), and/or modem 112 (e.g.,
56K baud, ISDN, DSL, or cable modem), examples of
which are available from 3Com of Santa Clara, Calif. The
system 100 may also communicate with local occasionally-
connected devices (e.g., serial cable-linked devices) via the
communication (COMM) interface 110, which may include
a RS-232 serial port, a Universal Serial Bus (USB) interface,
or the like. Devices that will be commonly connected locally
to the interface 110 include laptop computers, handheld
organizers, digital cameras, and the like.

[0058] IBM-compatible personal computers and server
computers are available from a variety of vendors. Repre-
sentative vendors include Dell Computers of Round Rock,
Tex., Hewlett-Packard of Palo Alto, Calif., and IBM of
Armonk, N.Y. Other suitable computers include Apple-
compatible computers (e.g., Macintosh), which are available
from Apple Computer of Cupertino, Calif., and Sun Solaris
workstations, which are available from Sun Microsystems of
Mountain View, Calif.

[0059] Basic System Software

[0060] FIG. 2 is a block diagram of a software system for
controlling the operation of the computer system 100. As
shown, a computer software system 200 is provided for
directing the operation of the computer system 100. Soft-
ware system 200, which is stored in system memory (RAM)
102 and on fixed storage (e.g., hard disk) 116, includes a
kernel or operating system (OS) 210. The OS 210 manages
low-level aspects of computer operation, including manag-
ing execution of processes, memory allocation, file in-put
and output (I/0), and device I/O. One or more application
programs, such as client application software or “pro-
grams”201 (e.g., 201q, 201b, 201c, 201d) may be “loaded”
(ie., transferred from fixed storage 116 into memory 102)
for execution by the system 100. The applications or other
software intended for use on the computer system 100 may
also be stored as a set of down-loadable computer-execut-
able instructions, for example, for downloading and instal-
lation from an Internet location (e.g., Web server).

Aug. 26, 2004

[0061] Software system 200 includes a graphical user
interface (GUI) 215, for receiving user commands and data
in a graphical (e.g., “point-and-click”) fashion. These inputs,
in turn, may be acted upon by the system 100 in accordance
with instructions from operating system 210, and/or client
application module(s) 201. The GUI 215 also serves to
display the results of operation from the OS 210 and
application(s) 201, whereupon the user may supply addi-
tional inputs or terminate the session. Typically, the OS 210
operates in conjunction with device drivers 220 (e.g., “Win-
sock” driver—Windows’ implementation of a TCP/IP stack)
and the system BIOS microcode 230 (i.e., ROM-based
microcode), particularly when interfacing with peripheral
devices. OS 210 can be provided by a conventional operat-
ing system, such as Microsoft Windows 9x, Microsoft
Windows NT, Microsoft Windows 2000, or Microsoft Win-
dows XP, all available from Microsoft Corporation of Red-
mond, Wash. Alternatively, OS 210 can also be an alterna-
tive operating system, such as the previously mentioned
operating systems.

[0062] The above-described computer hardware and soft-
ware are presented for purposes of illustrating the basic
underlying desktop and server computer components that
may be employed for implementing the present invention.
For purposes of discussion, the following description will
present examples in which it will be assumed that there
exists one or more “servers” (e.g., Web servers) that com-
municate with one or more “clients” (e.g., desktop comput-
ers). In multiprocessing systems, a first or “client” process
may also obtain services from other processes on the same
computer. For the purposes of the following discussion, this
situation is also referred to as “client/server” computing,
where the “client” is a program/process attempting to access
a service provided by another process. The present inven-
tion, however, is not limited to any particular environment
or device configuration. In particular, a client/server distinc-
tion is not necessary to the invention, but is used to provide
a framework for discussion. Instead, the present invention
may be implemented in any type of system architecture or
processing environment capable of supporting the method-
ologies of the present invention presented in detail below.

[0063] Overview

[0064] The present invention comprises a system provid-
ing methodology for validating access and assigning access
privileges to clients based on credentials in addition to user
identity. Many services currently grant access privileges to
clients by means of an access policy, which is based on client
(user) identity only, or on group membership(s) of the user.
The present invention provides for the access policy to grant
privileges based on additional credentials. These additional
credentials which are considered may, for example, include
one or more of the following: security relevant attributes of
the client device; location of the user/client device; and/or
type of client device. The system may also be configured to
evaluate various other attributes of a client device that may
be of interest (e.g., whether anti-virus measures and/or file
integrity policies are in effect at the client device).

[0065] The approach of the present invention is to imple-
ment an authentication methodology in which user identity
is established and then additional attributes (e.g., security
enforcement attributes) are provided by the client (and
checked for authenticity if possible) for determining whether

US 2004/0167984 Al

to authenticate a client for access to services (e.g., services
provided by a remote server computer). On the basis of the
user identity, access may be granted or denied, and if it is
granted, access privileges appropriate to the user, his or her
group, and/or his or her role can be granted. On the basis of
the additional security-relevant attributes of the client device
(e.g., a personal computer or laptop computer), its location,
its type, or the like, access privileges may be further
restricted to ensure that unsecured clients (or clients in
locations that are not secure) can have only limited access to
certain services, resources, and/or remote applications.

[0066] The system and methodology of the present inven-
tion can be used, for example, to verify that the client
attempting to access and use a service is running appropriate
security software which is enforcing a required client secu-
rity policy. The client security software and/or security
policy can be identified by checksum, policy distinguished
name, author/publisher, and/or by key policy characteristics
such as a “firewall security level” that is in effect on the
client device. These attributes can then be checked and
evaluated either at the client device or at another device
(e.g., at a server to which the client is requesting access or
a separate security evaluation service). Access to resources
requested by the client may be granted or denied, and/or
access privileges may be established based on this evalua-
tion.

[0067] The solution may also be used to verify a number
of other attributes of the client device that may be of interest.
For instance, the system may check to ensure that required
virus suppression measures are in force on a client device.
The system may, for example, check to determine that an
anti-virus policy is in force which includes use of a particu-
lar anti-virus engine version (e.g., from a particular engine
publisher), a particular data file version, and/or a particular
data file identified by publication date.

[0068] There are a number of other examples of attributes
that may be checked using the system and methodology of
the present invention. For instance, the system may verify
that a particular file integrity policy (e.g., TripWire) is in
force on the client. Additional system check rules may
include verifying that there is a process running on the
computer with a specific name, or version, or MD5 check-
sum value. As another example, a check may be made for a
particular file on the client computer that has a specific file
path and file name, a particular MD5 checksum value,
and/or a date within (or outside) a specific range. The system
may also verify whether there is a registry entry on the client
computer with a value that is (or is not) within an allowed
set of values. These are only some of the examples, and a
number of other checks may also be made using the meth-
odology of the present invention, as desired.

[0069] The approach of the present invention initially
provides for user identity to be collected and evaluated
according to means similar to that of other authentication
protocols. However, instead of only evaluating user identity
before permitting access to services or resources, additional
attributes (e.g., security attributes of the client device) are
also evaluated through a supplemental (or secondary)
authentication process before providing the client with
access to particular services and/or resources. These addi-
tional attributes can be validated in a number of different
ways, including (but not limited to) using a Secure Socket

Aug. 26, 2004

Layer (SSL) certificate exchange, an IPsec certificate
exchange, a trust-establishment certificate exchange, or the
like. Additional attributes can also be validated through
out-of-band communications via a separate security evalu-
ation service. When provided via a separate security evalu-
ation service, the application server (i.e., the server in the
client-server scheme) typically consults the separate security
evaluation service for the result of a separate security
evaluation that was previously made by the service (e.g., an
evaluation made at the time of logon confirmation).

[0070] In the presently preferred embodiment, the system
and methodology of the present invention is utilized for
determining whether a client may have access to particular
services, resources, and/or remote applications. The system
can also establish the access privileges that are provided to
the client based on characteristics of the client (e.g., the
security enforcement attributes presented by the client). A
security policy (or access policy) is maintained based on the
characteristics or attributes (e.g., security enforcement
attributes) that are required or desired as a condition for
accessing an application or service (or certain of its features,
resources, or privileges). The access policy may, for
instance, specify that clients which have specific security
enforcement attributes will be given particular access privi-
leges. The system of the present invention makes a decision
about the access privileges to be provided to a client, based
on whether the client’s attributes (e.g., security enforcement
attributes) match the required attributes specified by the
security policy (access policy). Security enforcement
attributes are only one example of attributes that can be
evaluated using the system and methodology of the present
invention. A number of other attributes and/or conditions
may also be evaluated as previously described.

[0071] Alternatively, the system may consult with a third
party authentication, authorization, and accounting
(“AAA”) service to determine the level of access allowed
the client. In this event, the AAA service typically returns a
list of privileges or group memberships that describe the
appropriate privileges the client should be granted. For
example, a file server normally deals with the following
privileges: “read”, “write”, “execute”, “create”, and
“delete”. In a network system where there are defined
permission groups such as “Administrators”, “Users”, and
“Guests”, there typically is a file server that grants users in
the “Administrators” group all rights, grants “Users” the
rights to “read”, “write”, and “execute” and grants “Guests”
only “read” privileges.

[0072] In one embodiment in which a client device (e.g.,
personal computer) is connecting to the file server (and
establishing a remote file access session), the system first
determines the user’s identity using traditional authentica-
tion technology. Next, the system queries the security
attributes of the client, and checks if those attributes are
acceptable according to the access policy (security policy);
this can happen by either consulting a cached policy or
querying a remote policy server. A cached policy is a policy
stored (e.g., stored on the client device or on the server),
which has been sent through some other means (e.g., sent to
the client by a policy server). For example, the client (or the
server) may have previously downloaded a policy file from
a policy server via HTTP.

[0073] Querying a remote policy server (or other security
evaluation service) for determining whether a client is in

US 2004/0167984 Al

compliance with a security policy generally involves the
following steps. First, the client connects to and sends the
current list of security attributes to the policy server, which
is packaged in a suitably formatted query message that also
includes the user’s identity. Next, the policy server uses the
user’s identity, IP address, connection location, and/or other
parameters, to determine which access policy (security
policy) should be used to evaluate the user’s device (i.e., the
client device). These policies usually would have previously
been configured and assigned by the system’s administrator.
The policy server then examines the list of security attributes
that it received from the client, and checks those attributes
using the rules described in the access policy. The result of
the policy server’s examination is returned to the client
(and/or to one or more server(s) or resources to which the
client is requesting access) in a message that indicates the
client is “compliant” or “non-compliant”. Although the
above discussion provides for the evaluation to be per-
formed at the policy server, those skilled in the art will
appreciate that the evaluation may alternatively be per-
formed (in whole or in part) at the client device. In this case,
the policy server provides a list of the required attributes to
the client device and the client device returns the results of
the evaluation to the server.

[0074] These operations may be illustrated by an example
of a user named “Alice” that is normally granted all privi-
leges (i.e., “read”, “write”, “execute”, “create”, and “delete”
privileges) on a file named “Alice’s Important Document-
.doc” that is stored on her file server “\\ALICESERVER” at
her office. When Alice logs onto her desktop PC (“ALICE-
WORK?) in her office, the system determines that ALICE-
WORK is properly protected by a personal firewall and
anti-virus system. Therefore, when Alice opens a file-shar-
ing session from her PC ALICEWORK to her file server
ALICE-SERVER, the file-sharing session grants her full
privileges. However, when Alice connects to the server from
her home computer ALICEHOME, the system determines
that her home PC is not running a personal firewall or
anti-virus system, and is therefore not compliant with the
required security policy. Therefore, her access privileges are
reduced—either rejecting her file-sharing session or grant-
ing her only “read” privileges.

[0075] System Components

[0076] FIG. 3 is a block diagram of an environment 300
in which the present invention may be embodied. As shown,
environment 300 includes a client device (PC) 310, an
application server 320, and an authentication server 330
which are connected to each other via a network 340. As also
shown, components of the present invention are installed on
the client device 310 and on the authentication server 330.
As shown at FIG. 3, a client security module 355 of the
present invention is installed on the client device 310 and a
sub-authentication filter module 351 and security checker
359 are installed on the authentication server 330.

[0077] The client device 310 may be a standard personal
computer, such as the above-described system 100. Alter-
natively, the client 310 may be a laptop computer, notebook
computer, personal digital assistant (PDA), or “smart”
phone. The client security module 355 is installed and
running on the client device 310. The client device 310 is
connected via the network 340 to the application server 320.
The application server 320 may be any type of application

Aug. 26, 2004

server that accepts tickets (or other instructions) from the
authentication server 330 in order to authorize performance
of certain transactions or interactions. For example, the
application server 320 may accept Kerberos tickets from a
Kerberos authentication server.

[0078] 1t should be noted that for purposes of the follow-
ing discussion the client 310 may connect to the network 340
using either a wireline or wireless connection. For example,
a client may use a wireline connection (e.g., dial-up, ISDN,
DSL, cable modem, T1, or the like) to connect to a network.
The system and methodology of the present invention may
also be used for clients connecting to a network through a
wireless access point. Connecting to a network through a
wireless access point that implements IEEE (Institute of
Electrical and Electronics Engineers) 802.1x closely
resembles the process of logging in to a network via a
wireline connection. Accordingly, those skilled in the art
will appreciate that the methodology of the present invention
is not limited to wireline access to a network, but may also
be advantageously employed in other environments, includ-
ing wireless environments. In addition, although the above
discussion refers to a client device connecting to a network,
devices which may connect to a network for gaining access
to other services may include servers as well as client
devices.

[0079] In one embodiment, the authentication server 330
is a Kerberos server for handling user authentication. How-
ever, the present invention may be used with other authen-
tication mechanisms, including, for example, the Generic
Security Service API (GSS-API), the Extensible Authenti-
cation Protocol (EAP), and/or the RADIUS protocol. For
example, when the client device 310 connects to the appli-
cation server 320, the authentication server 330 is invoked
to authenticate the user. In accordance with the methodology
of the present invention, when the authentication sever 330
authenticates the identity of the user (i.e., the user of client
device 310), it then invokes the sub-authentication filter
module 351. The sub-authentication filter module 351, in
turn, invokes the security checker module 359. The security
checker module 359 uses a “client monitoring protocol” (or
“CMP”) to check if the client device 310 is in compliance
with a required access policy (security policy). Access by the
client device 310 to the application server 320 may be
regulated based upon compliance with the security policy as
hereinafter described.

[0080] It should be noted that the above is only one
example of an environment in which the system and meth-
odology of the present invention may be successfully
employed. In particular, a Kerberos server is used as an
example for discussion purposes and is not required for
implementation of the present invention. The present inven-
tion may be used with a variety of authentication mecha-
nisms, including, for example, GSS-API, EAP (the Exten-
sible Authentication Protocol), and/or the RADIUS
protocol. As will be described below, the system and meth-
odology of the present invention may be implemented in a
number of different environments. For example, the meth-
odology of the present invention may be implemented using
sub-authentication filters in a Windows environment,
through the use of Pluggable Authentication Modules in a
Solaris/Linux environment, as well as through Kerberos

US 2004/0167984 Al

authentication. The operations of the present invention in
several different environments will now be described in
more detail.

[0081] Sub-Authentication Filters in Windows

[0082] Components of Typical Windows Sub-Authentica-
tion Filter Implementation

[0083] FIG. 4 is a block diagram illustrating in more detail
an environment 400 in which the present invention is
implemented using sub-authentication filters in a Windows
environment. In the Windows operating system, a dynamic
link library (DLL) referred to as a “sub-authentication
module” can be implemented to filter logon requests from
client devices. The sub-authentication module can determine
which client device is requesting authentication, and then
apply additional rules to determine if the client is allowed to
access the services. The DLL can also modify security
account manager (SAM) database entries to alter the secu-
rity privileges of the client device.

[0084] As shown at FIG. 4, a typical Windows imple-
mentation includes many of the same components previ-
ously described and illustrated at FIG. 3. These components
include a client device 310, a client security module
(TrueVector engine) 355, an application server 320, a sub-
authentication filter module (sub-authentication DLL) 351, a
security checker 359, and an Ethernet network 340 to allow
the software modules and other components to communicate
with each other. In a typical Windows installation, an Active
Directory Server (ADS) 460 serves as the authentication
server and uses Kerberos authentication services 470 for
authentication of clients (e.g., client device 310) connecting
to the application server (e.g., application server 320). A
policy server 480 is provided for storing a security policy
(access policy) which is required to be implemented as a
condition for accessing the application server 320. As also
shown at FIG. 4, an operating system and client applications
415 are installed on the client device 310. The operation of
these components will now be described.

[0085] FIGS. 5A-B comprise a single flowchart 500 illus-
trating the operation of the present invention in authenticat-
ing a client attempting to access an application or service
(e.g., on an application server). The following description
presents method steps that may be implemented using
computer-executable instructions, for directing operation of
a device under processor control. The computer-executable
instructions may be stored on a computer-readable medium,
such as CD, DVD, flash memory, or the like. The computer-
executable instructions may also be stored as a set of
downloadable computer-executable instructions, for
example, for downloading and installation from an Internet
location (e.g., Web server).

[0086] As shown, the process begins at step 501 when a
client device (e.g., client device 310) attempts to connect to
a service (e.g., a service provided on the application server
320 as shown at FIG. 4). In order to connect to the
application server 320, the client must first connect the client
device 310 to the network 340 (e.g., by powering on the
client device 310 if a connection has already been config-
ured). By connecting to the network, the client 310 is now
able to send communication packets to the application server
320 and the Active Directory Server (ADS) 460.

[0087] When the client device 310 attempts to access the
application server 320, at step 502 the client is first required

Aug. 26, 2004

to log on to the network by authenticating against the ADS
460. At step 503, the client 310 and the ADS 460 (including
the Kerberos services 470) each perform the steps required
by the appropriate authentication protocol (e.g., Kerberos)
for normal user identity (e.g., user name and password)
authentication of the client. This includes passing authenti-
cation messages back and forth between the client and the
ADS 460 for normal authentication of the client device 310.
The exact content and number of these messages depends
upon the authentication method configured for the system
(e.g., by the system administrator). In a Windows environ-
ment, the method of authentication is frequently imple-
mented in a module called a “Security Service Provider
(SSP)”. Further description of Kerberos authentication is
provided in “RFC 1510—The Kerberos Network Authenti-
cation Service (V5)”, available from the Internet Engineer-
ing Task Force (IETF), the disclosure of which is hereby
incorporated by reference. A copy of RFC 1510 is available
via the Internet (e.g., currently at www.ietf.org/rfc/
rfc1510.txt). Also see e.g., “RFC 1964—The Kerberos Ver-
sion 5 GSS-API Mechanism”, available from the IETF, the
disclosure of which is hereby incorporated by reference. A
copy of RFC 1964 is available via the Internet (e.g., cur-
rently at www.ietf.org/rfe/rfc1964.txt).

[0088] Authentication Message Sequence

[0089] One example of an authentication message
sequence is a simple Kerberos user name/password chal-
lenge-response protocol, which follows the following
sequence:

[0090] 1. The client device (e.g., PC) 310 sends
packet to the ADS 460 containing the user name and
requesting authentication.

[0091] 2. The ADS 460 sends packet to the client
device 310 challenging the password and containing
a challenge key which is a sequence of random
characters.

[0092] 3. The client device 310 retrieves the pass-
word from the end user.

[0093] 4. The client device 310 concatenates the
random characters to the end-user’s password, places
the resulting string into a buffer, and then generates
a one-way hash value of the buffer contents (e.g.,
using an MD5 algorithm).

[0094] 5. The client device 310 sends the MD35 hash
value to the ADS 460 in a packet to request authen-
tication.

[0095] 6. The ADS 460 also computes the same MD5
hash value using the password it has stored in its
database together with the challenge sequence.

[0096] 7. The ADS 460 compares the two hash val-
ues. If they match, the ADS 460 has authenticated
the user. If they do not match, the ADS 460 rejects
the authentication of the client device 310.

[0097] Kerberos Service Invokes Sub-Authentication Fil-
ter

[0098] If the ADS 460, using its configured Security
Service Provider (e.g., Kerberos services 470), manages to
authenticate the user, then at step 504 the Kerberos services
470 calls a sub-authentication filter module 351 registered in

US 2004/0167984 Al

the system registry. The sub-authentication filter module 351
is intended to allow customization of the logon approval
process without having to change the Security Service
Provider (e.g., Kerberos service) itself; as SSPs are complex
pieces of software, whereas a sub-authentication filter is
much simpler to implement.

[0099] In the presently preferred embodiment in a Win-
dows environment, the sub-authentication filter module 351
implements a “Msv1l_ OSubAuthenticationFilter” function
(described below), which can return a value to indicate that
the user should be logged on, or can return a value to
indicate the user should not be logged on to the system. The
filter function can also return a variety of other connection
attributes including security group membership and Ker-
beros ticket validity lifetime. In the presently preferred
embodiment of the system, a primary function of the sub-
authentication filter module 351 is to check whether the user
(e.g., the client device 310 in this example) is in compliance
with a required security policy. To perform this check, the
sub-authentication filter module 351 invokes the security
checker module 359 as will now be described.

[0100] Security Challenge to Client

[0101] After the security checker 359 is invoked by the
sub-authentication filter module 351, at step 505 the security
checker issues a challenge to the client security module 355
on the client device 310. More particularly, the security
checker 359 challenges the TrueVector engine of the client
security module 355 using a “client monitoring protocol” or
“CMP” challenge message. In response, at step 506 the
TrueVector engine of the client security module 355 consults
the policy server 480 for obtaining the current security
policy and compares the current security policy to the
cached policy stored locally on the client device 310. As part
of this process, the client security module 355 on the client
device 310 determines whether the client is in compliance
with this updated (i.e., current) security policy. The
TrueVector engine of the client security module 355 then
returns the result of this compliance check to the security
checker 359.

[0102] Inanalternative embodiment, the policy server 480
may perform the security check. The process for the policy
server 480 checking whether a client is in compliance with
a required security policy generally involves the perfor-
mance of the following steps:

[0103] 1. The client security module 355 on the client
device 310 connects to and sends the current list of
security attributes to the policy server 480. The list of
security attributes is packaged in a suitably formatted
query message that also includes the user’s identity.

[0104] 2. The policy server 480 uses the user’s iden-
tity, IP address, connection location, and/or other
parameters to determine which security policy
should be used to evaluate the user and the client
device 310. These policies would have previously
been configured and assigned by the system’s admin-
istrator.

[0105] 3. The policy server 480 examines the list of
security attributes that it received from the client
device 310, and checks those attributes using the
rules described in the security policy.

Aug. 26, 2004

[0106] 4. The result of the examination process by the
policy server 480 is returned to the client device 310
in a message that indicates “compliant” or “non-
compliant”. The client may then return the result of
this compliance check to the security checker 359.
Alternatively (or in addition), the policy server 480
may return the result directly to the security checker
359.

[0107] Grant of Privileges to the Client Based on Security
Check

[0108] In the presently preferred embodiment, the security
checker 359, in turn, returns a value (e.g., numerical value)
at step 507 to indicate the status of the client that was
checked (e.g., the client device 310). For example, if the
value returned number is equal to 0, then the client is
accepted as secure and the sub-authentication filter module
351 will typically authorize the user (e.g., client device 310)
to access the application server 320 at step 508 by returning
“STATUS_SUCCESS” as a return code. If the security
checker 359 returns a non-zero value (e.g., a value of 1 or
greater) to the sub-authentication filter module 351, then the
client is not accepted as secure and at step 509 the sub-
authentication filter module 359 will deny authorization to
access the application server 320 by returning an error code.

[0109] Alternatively, if the client is not accepted as secure
the sub-authentication module 359 may authorize the user
(e.g., client 310) to access the application server, but alter the
user’s access group membership by altering the user’s group
membership in a “UserAll—=SecurityDescriptor” data struc-
ture that was passed into the sub-authentication filter module
351. This data structure is a self-referential security descrip-
tor that describes the security privileges of an account.
Changing this data structure alters the contents of a SAM
(security account manager) database when the sub-authen-
tication filter module 351 returns the result of the security
check. In one embodiment of the system, the group mem-
bership of the user is changed to grant only limited group
membership when the user (client) is not in compliance with
the current security policy. In this manner, the user can be
granted access to the network using “Guest” group privi-
leges only. In this event, the computers in the domain can be
configured to allow members of the “Guest” group read-only
access to their services, for instance. This group membership
privilege is typically encoded into a Kerberos ticket issued
by a Kerberos key distribution center (KDC) component of
the Kerberos services 470.

[0110] ADS Issues a Kerberos Ticket to the Client

[0111] Upon successful authentication, the Kerberos ser-
vices 470 of the ADS 460 will authorize the client to access
the application server 320. Typically, the Kerberos KDC
service will grant the client 310 a Kerberos ticket that will
allow the client to connect and authenticate against the
application server 320 (and/or other application servers in
the domain). The ticket generally contains, among other
things, an “AuthorizationData” field that contains, in a
Microsoft ADS implementation, a “SecurityDescriptor” data
structure. This “SecurityDescriptor” data structure
describes, among other things, the group memberships the
user of the client device is assigned.

US 2004/0167984 Al

[0112] Authorizing a Transaction by Checking the Ker-
beros Ticket

[0113] When the client device attempts to perform a
transaction with any Kerberos-compatible application server
in the network, the application server will request from the
client proof that it has permission to perform the transaction,
in the form of the Kerberos ticket that was issued to the
client. If the client has been successful in authenticating with
the ADS server, then it will have been issued a Kerberos
ticket that the application server can use to authorize the
transaction. However, if the client has been issued a Ker-
beros ticket that contains only “Guest” group membership
privileges, then the application server might deny access to
the client, or it may authorize only limited privileges for the
transaction.

[0114] The precise set of privileges granted to members of
each ADS group can vary depending on various factors,
including the kind of application server that is involved. For
example, if the application server is a file server, the user
rights granted to a “Guest” user may be limited to “read only
access to the Guest share folder; no access to any other
folder”. Those skilled in the art will appreciate that various
other privileges may be configured and assigned to clients
using the methodology of the present invention.

[0115] Operations with Kerberos

[0116] FIGS. 6A-B comprise a single flowchart 600 illus-
trating the operations of the present invention in authenti-
cating a client accessing a service in a Kerberos implemen-
tation. As with the prior flowchart, the following description
presents method steps that may be implemented using
computer-executable instructions, for directing operation of
a device under processor control. The computer-executable
instructions may be stored on a computer-readable medium,
such as CD, DVD, flash memory, or the like. The computer-
executable instructions may also be stored as a set of
downloadable computer-executable instructions, for
example, for downloading and installation from an Internet
location (e.g., Web server).

[0117] The process begins at step 601 with a client (e.g.,
a personal computer) connecting to a network to attempt to
gain access to a service available on the network. At step 602
the client receives the network address of an authentication
server. Next, at step 603 the client logs in to the authenti-
cation server and provides required credentials (e.g., user
name and password or other credentials). The client and the
authentication server perform the steps required for normal
user identity (e.g., user name and pass-word) authentication
of the client.

[0118] After the user is initially authenticated (e.g., based
on user name and password), at step 604 the authentication
server calls a sub-authentication filter module. At step 605,
the sub-authentication filter module invokes a security
checker module. The security checker module issues a
security challenge. As previously described, the security
challenge may be issued directly to the client or by request-
ing results of a security evaluation previously performed by
a policy server or other security evaluation service. Next, at
step 606 a determination is made as to whether the client is
in compliance with the security policy required for access.
In the presently preferred embodiment, this determination is
made at the client in most cases; however, the determination

Aug. 26, 2004

may also be made by the server issuing the challenge or by
a separate security evaluation service (e.g., policy server or
the like). The result of the compliance check is returned at
step 607.

[0119] If the client is in compliance with the security
policy, at step 608 the client is granted a Kerberos ticket
containing appropriate access privileges (e.g., full access
privileges). However, if the client is not in compliance with
the policy, at step 609 the authentication of the client fails or
the client is granted a limited access Kerberos ticket (i.e.,
limited privileges, such as read-only access or access to only
certain resources).

[0120] At step 610 the client subsequently connects to a
service available on the network and requests a transaction.
In response, at step 611 the service requires the client to
present its Kerberos ticket. At step 612 the client presents the
Kerberos ticket to the service in response to the request. At
step 613 the service checks the ticket to determine if it
contains sufficient privilege to permit the requested trans-
action. If the ticket contains sufficient privilege to permit the
transaction, at step 614 the service executes the transaction.
However, if the Kerberos ticket does not contain sufficient
privilege, or if no ticket was issued to the client, at step 615
the service denies the transaction requested by the client.

[0121] Kerberos Implementation

[0122] A pure Kerberos implementation may be con-
structed to perform the same authentication process
described above. However, unlike the case of the above-
described Microsoft Windows ADS implementation, no
sub-authentication filter module is required for a pure Ker-
beros implementation. Those skilled in the art will appreci-
ate similar functionality can be built into the readily avail-
able open-source Kerberos implementations (e.g., MIT
Athena, MAC OSX) instead of implementing such func-
tionality in separate sub-authentication modules.

[0123] The steps listed above for the Microsoft sub-
authentication operation describe the operational steps that
are applicable in the case of a general Kerberos implemen-
tation. However, the sub-authentication module is replaced
with built-in code in the Kerberos implementation which
accomplishes the same task as an external sub-authentica-
tion filter module (including the functions of the security
checker module).

[0124] Pluggable Authentication Modules

[0125] FIG. 7 is a block diagram illustrating an environ-
ment 700 in which the methodology of the present invention
may be implemented in a Linux, UNIX, or Solaris environ-
ment using Pluggable Authentication Modules. Pluggable
Authentication Modules (or “PAM modules”) allow mul-
tiple authentication mechanisms to be used collectively or
independently. As shown, the environment 700 includes a
client device 710 connected to a system 720 and a policy
server 780 via a network 740. The system 720 may be
running a Linux, UNIX, or Solaris operating system and
includes an application server 730, a PAM library 750, a
PAM configuration file 755, a PAM (standard authentica-
tion) module 760, a PAM_TV module 765, and a security
checker 770. Although these modules are shown as being
installed together on a single machine, they may also be
installed on different machines, as desired. The client device
710 includes an operating system/client applications 713 and

US 2004/0167984 Al

the client security module (TrueVector engine) 715 as pre-
viously described. The operations of these components in
authentication of a user will now be described.

[0126] Initially, the Pluggable Authentication Modules are
configured to require an additional authentication method
for each protected service on the system 720. An additional
PAM module(s) is added for authentication of a user (client)
on a designated (named) service (e.g., a service provided by
the application server 730). It should be noted that the PAM
module(s) which is added for purposes of implementing the
methodology of the present invention is typically an addi-
tional module that works in conjunction with another mod-
ule that performs the primary authentication based on user
identity. As shown at FIG. 7, the PAM_TV module 765
implements the methodology of the present invention for
supplemental authentication of the user. This PAM_TV
module 765 is typically used in conjunction with a standard
PAM module 760 which authenticates a client in a standard
fashion based upon user identity (e.g., user name and
password). In this case, both of the PAM modules used for
user authentication (e.g., PAM module 760 and PAM_TV
module 765) are listed in the PAM configuration file 755 in
the appropriate order. Those skilled in the art will appreciate,
however, that a single module providing for both authenti-
cation of user identity and supplemental authentication of
other attributes could be used instead of multiple modules,
if desired.

[0127] When a client (e.g., client device 710) attempts to
connect to the application server 730, the required PAM
modules are invoked by the application server 730 (via the
PAM library 750) to authenticate the user (e.g., based on
user identity) as well as to authenticate (or authorize) the
client device for access based upon supplemental attributes
of the user and/or the client device. A “pam_sm_authenti-
cate” function or a “pam_sm_open_session” function is
called, as appropriate, to approve the authentication of the
client or a new application server session for the client (e.g.,
the client device 710).

[0128] When the PAM_TV module 765 implementing the
methodology of the present invention is invoked, it calls the
client security checker 770 (described below) to perform the
check on the client computer’s security. This security check
may be performed directly or indirectly. For instance, the
security check can be performed by issuing a challenge to
the client and evaluating the response in a manner similar to
that described above for the Windows sub-authentication
filter implementation. Alternatively, a separate security
evaluation service (e.g., a policy server) may be consulted
for the result of a prior security evaluation. Based on the
examination of the attributes of the client device 710, the
security checker 770 typically returns a value of zero (0) to
indicate that the client is secure, or a value of one (1) or
above to indicate that the client is not secure. If the client
security checker 770 returns a zero value, indicating that the
client is secure (i.e., in compliance with the required security
policy), the PAM_TV module 765 returns “PAM_SUC-
CESS” to allow the authentication to succeed. However, if
the security checker 770 returns a non-zero value, the
PAM_TV module 765 returns “PAM_AUTH_ERR” to pre-
vent the authentication of the client from succeeding. For
example, if the PAM library 750 returns “PAM_SUCCESS”

Aug. 26, 2004

to the application server 730, the application server 730
grants access to the client device 710; otherwise, it denies
access.

[0129] 1t should be noted that instead of simply blocking
or granting access to the client device, a client found not to
be in compliance may permitted to access the application
server 730, but with reduced privileges. For instance, the
user may be permitted to access the application server, but
provided with read-only access. Those skilled in the art will
appreciate that various other privileges may be configured
and assigned to clients based on the results of the compli-
ance evaluation. One embodiment of the present invention
implemented using sub-authentication filters in a Windows
environment will next be described in greater detail.

[0130] Detailed Internal Operation

[0131] Sub-Authentication Filters in a Windows Environ-
ment

[0132] As described above, in the Windows operating
system, a DLL called a “sub-authentication module” can be
implemented to filter log on requests from client devices
(e.g., client PCs). The module can determine which client is
requesting authentication, and then apply additional rules to
determine if the client is allowed to access particular ser-
vices (e.g., determining if the client is in compliance with a
security policy). The DLL can also modify security account
manager (SAM) database entries to alter the security privi-
leges of the client device. Additional information regarding
implementation of a sub-authentication filter module in
Windows is available from Microsoft Corporation and is
available via the Internet (e.g., currently at msdn.microsoft-
.com/library/en-us/security/security/msv1__Osubauthentica-
tionroutine.asp).

[0133] In the following example, a “Msv1__0SubAuthen-
ticationFilter” function is implemented and exported from a
DLL:

1: NTSTATUS

2: NTAPI

3: Msvl_ OSubAuthenticationFilter (

4: IN NETLOGON_LOGON__INFO_ CLASS LogonLevel,
5: IN PVOID LogonInformation,

6: IN ULONG Flags,

7: IN PUSER_ALIL_INFORMATION UserAll,
8: OUT PULONG WhichFields,

9: OUT PULONG UserFlags,

10: OUT PBOOLEAN Authoritative,

11: OUT PLARGE_INTEGER LogoffTime,

12: OUT PLARGE__INTEGER KickoffTime
13:)

[0134] The above “Msvl_0SubAuthenticationFilter”
function is registered as an “Auth0” handler, which is the
general authentication filter for a Windows machine or a
Domain Controller. The authentication filter function returns
“STATUS,;SUCCESS?” if the authentication is approved, or
an error code if the authentication is not approved. The
“Logoninformation” field at line 5 above is a pointer to a
“NETLONON_LOGON_IDENTITY_INFO” data struc-
ture, which includes information about the client logging on,
including the user name, authenticating domain, and the
client workstation or device.

US 2004/0167984 Al

[0135] The following sub-authentication filter module
invokes a security checker routine which is responsible for
sending a challenge packet to a client workstation (device)
for authentication of the client device:

1: Msvl__OSubAuthenticationFilter (

2: IN NETLOGON_LOGON_INFO_ CLASS LogonLevel,
3: IN PVOID LogonInformation,

4: IN ULONG Flags,

5: IN PUSER_ALL_INFORMATION UserAll,
6: OUT PULONG WhichFields,

7: OUT PULONG UserFlags,

8: OUT PBOOLEAN Authoritative,

9: OUT PLARGE__INTEGER LogoffTime,

10: OUT PLARGE_INTEGER KickoffTime
11:)

13: NTSTATUS Status;

14: SYSTEMTIME CurrentTime;

15: PNETLOGON_LOGON__IDENTITY_INFO Identity =

16: (PNETLOGON_LOGON_IDENTITY_ INFO)LogonInformation;
17: WCHAR wszComputerName[MAX_COMPUTERNAME__

LENGTH+1];

18: DWORD cbSize = MAX_COMPUTERNAME_ LENGTH+1;
19:

20: Status = STATUS__SUCCESS;

21:

22: * Authoritative = TRUE;
23: *UserFlags = 0;
24: *WhichFields = 0;

27: GetLocalTime(&CurrentTime);
29: if(!Identity)

31: logprintf(“No identity\r\n™);
32: return Status;
33: }

36: logprintf(

37: “%02d/%02d/%d %02d:%02d:%02d: Logon (level=%d
YWINToWL (ToWZ)

from %wZ\r\n”,

38: CurrentTime.wMonth, CurrentTime.wDay, CurrentTime.
wYear,

39: CurrentTime.wHour, CurrentTime.wMinute, Current
Time.wSecond,

40: LogonLevel,

41: &Identity->LogonDomainName, &Identity->UserName,
42: &UserAll->FullName, &Identity->Workstation);

45 switch (LogonLevel)

47: case NetlogonInteractivelnformation:

48: case NetlogonServicelnformation:

49: case NetlogonNetworkInformation:

50: GetComputerNameW(wszComputerName, &cbSize)

52: J/ If client is remote
53: if (Identity->Workstation.Buffer != NULL &&

54: wesnemp(Identity->Workstation. Buffer, wszComputerName,
Identity->Workstation.Length) 1= 0)

55:

56: // check the client using the checkelient utility

5T

58: if (_wspawnl (_P_ WAIT, L“checkelient.exe”,
59: Identity->Workstation. Buffer) != 0)

60:

61: Status = ERROR_INVALID_ WORKSTATION;
62: logprintf(“Invalid foreign workstation login from:
WL,

&Identity->Workstation);

Aug. 26, 2004

-continued

66: LARGE_ INTEGER CurrentUTCTime;
67: QuerySystemTime(&CurrentUTCTime);

69: if (LogoffTime)

71: // this sets the ticket lifetime to HeartbeatRate
(30 minutes default)

72: LogoffTime->QuadPart = CurrentUTCTime.QuadPart
+

(HeartbeatRate * 10000000);

73:

T4:

75: if (KickoffTime) {

76: KickoffTime->HighPart = O0x7FFFFFFF;

77: KickoffTime->LowPart = OxFFFFFFFF;

78: }

79: break;

81: default:
82: return STATUS__INVALID__INFO__CLASS;
83: }

85: return Status;

[0136] As shown at lines 58-59, the sub-authentication
filter module invokes a security checker routine named
“checkclient.exe”. This security checker, when invoked,
issues a challenge packet requesting the client to confirm its
security attributes. The security checker then verifies the
identity of the client and determines if the attributes of the
client device are appropriate according to the required
security policy. If the attributes are not appropriate (e.g., the
client is not in compliance with a required security policy)
then the security checker routine returns an error from the
filter function.

[0137]

[0138] In a network environment with many service appli-
cations distributed on different network nodes, a Kerberos-
based authentication/authorization system is often used. In a
Kerberos implementation, the authentication system is sepa-
rated from the service requesting the authentication. When
the client wishes to utilize a service application, the client
logs on to a Kerberos “key distribution center” (or “KDC”
server). For standard user identity authentication, if the
client can be authenticated using a normal authentication
protocol (e.g., user name/password), the client is given a
“ticket”. This ticket is then presented to the service when the
client connects to the application service, through an “Inter-
net Key Exchange” (or “IKE”) protocol. The ticket contains
data indicating what types of services it can provide access
to, and it also contains an expiration date. Most importantly,
the ticket also contains cryptographic information used to
validate the integrity and validity of the ticket itself; this
allows the application service to safely grant access to a
ticket-holding client without having to check back with the
Kerberos authentication server.

Implementation in a Kerberos System

[0139] To implement the security checking mechanism of
the present invention in a Kerberos environment simply
requires that the client security checking be done as part of
the KDC interaction/authentication process as described

US 2004/0167984 Al

above. The client security checking is performed against the
KDC server instead of exchanging the client security infor-
mation with the application server. If the client computer is
not in compliance with the required security policy, the KDC
server can either reject the client (i.e., not issue a ticket to the
client), or it can grant the client a ticket with more limited
access privileges than would normally be granted to an end
user that is in compliance with the security policy.

[0140] In a network using a Microsoft Active Directory
Server (ADS) for authentication, it is possible to implement
this same type of behavior. This same type of behavior may
be established by implementing and registering a “Msv1__
O0SubAuthenticationFilter” function on all Domain Control-
lers (containing Kerberos KDCs) in the network.

[0141] Pluggable Authentication Modules in Unix/Solaris/
Linux

[0142] In the Unix family of operating systems (including
Solaris and Linux), Pluggable Authentication Modules
(PAM modules) can be used to assign specific authentication
methods to specific services. With the Pluggable Authenti-
cation Module (PAM) framework, multiple authentication
technologies can be added without changing any of the login
services, thereby preserving existing system environments.
PAM modules can be used to integrate login services with
different authentication technologies, such as RSA, DCE,
Kerberos, S/Key, and smart card based authentication sys-
tems. Thus, Pluggable Authentication Modules enable net-
worked machines to exist peacefully in a heterogeneous
environment, where multiple security mechanisms are in
place.

[0143] The following example illustrates the signature of
a “pam_sm_authenticate” method which is implemented
and exported from a loadable library called “pam_coop.so™:

1: PAM_EXTERN int
2: pam__sm_ authenticate (pam__handle_t * pamh,
3: int flags, int arge, const char **argv)

[0144] The PAM module is registered in a PAM configu-
ration file and is associated with one or more services
running on the server computer. The following is an example
PAM configuration file named “/etc/pam.d/ftpd”, which
configures a number of authentication settings for an FTP
(file transfer protocol) daemon:

1: # PAM configuration for ftpd

2: auth requisite pam__securetty.so
3: auth required pam__nologin.so

4: auth required pam__env.so

5: auth required pam_ unix.so nulok
6: account required pam_ unix.so

7: account required pam__coop.so

8: session required pam_ unix.so

9: session optional pam_ lastlog.so

10: password required pam_ unix.so nullok obscure min=4
max=8

[0145] Commonly, PAM configuration files are stored in
the “/etc/pam.d” directory, and each file is associated with a
service (e.g., an FTP daemon in this example) that is running

Aug. 26, 2004

on the computer. In this example, the file called “login”
controls the main user login processing for the sever com-
puter. Lines 1-6 and 8-10 above are configuration commands
which would be commonly found in any PAM-compliant
installation. Of particular interest, the code at line 7 indicates
that the PAM system must invoke the “pam_coop.so” mod-
ule in order to allow a user to login successfully, and it also
indicates that if the “pam_coop.so module” denies access,
then the user is not permitted to log into the computer (i.e.,
the server). Alternative PAM implementations may provide
for storing configuration information in a single configura-
tion file called “/etc/pam.cont”. The information stored in
this single configuration file is otherwise identical to the
information stored in the “/etc/pam.d” directory.

[0146] When a client attempts to authenticate to the ser-
vice, the service invokes the PAM subsystem to perform the
authentication using the PAM authentication function “pam-
_authenticate”. The PAM subsystem reads (or has read) the
configuration file associated with the service and consults
each of the authentication modules listed in the configura-
tion file. Since one of the listed authentication modules is the
module that implements client compliance checking, the
“pam_coop.so module” will be called during the processing
of the authentication. In particular, when a new session is
created on the service for communicating with the client, the
above “pam_sm_authenticate” method is invoked.

[0147] When the session is requested by a remote com-
puter, most services will provide the host name of the remote
computer making the access request. The following “pam-
_sm_open_session” method can retrieve this host name
using a “pam_get.item” method as follows:

[0148] 1:rhost_retval=pam_get item(pamh, PAM-

_RHOST, (const void**)&rhost);

[0149] When the host address is retrieved, the address is
passed to a utility to check the host integrity of the accessing
client (remote host) as follows:

1: if (_spawnl (_P_ WAIT, “checkelient.exe”,

2: rthost__retval) != 0)

3:

4: logprintf(“Invalid foreign workstation login from: %
wZ\n”,

&Identity->Workstation);

5: return PAM__AUTH__ERR;

6: }

7: else

8 return PAM__ SUCCESS;

[0150] As shown, a “checkclient.exe” utility is invoked at
line 1. The “checkclient.exe” utility is a security checker
responsible for communication with the client to check the
security attributes of the client. This security checker sends
a challenge packet to the remote host (i.e., client), requesting
the client to confirm its security attributes. The security
checker then determines if the attributes are appropriate
according to the required security policy, and if they are not
then the security checker returns an error (i.e., “return
PAM_AUTH_ERR” as shown at line 5).

[0151] When the “pam_sm_authenticate” method returns,
the PAM subsystem remembers the return value, and may
continue calling the other PAM modules listed in the ser-

US 2004/0167984 Al

vice’s configuration file to confirm the user’s authentication.
When all the necessary modules have been consulted, the
PAM subsystem computes the aggregate result of all the
modules, as specified in the configuration file. The aggregate
result will usually be “PAM_SUCCESS” if all the required
modules returned “PAM_SUCCESS?”, otherwise it will be
“PAM_AUTH_ERR” if any one of the required modules
returned “PAM_AUTH_ERR”. The PAM subsystem then
returns this result to the service, which accepts or rejects the
user session based on this final authentication result. In the
case of the FTP daemon above, the daecmon can issue an FTP
“530 Not logged in” error.

[0152] How Compliance is Requested and Communicated

[0153] In one embodiment, the security checker (i.e., the
above-described “checkclient” utility) employs a “client
monitoring protocol” for communication with the client.
The client monitoring protocol (CMP) is a simple monitor-
ing protocol that is used to check the security attributes of
the client device (e.g., that a particular security solution is
installed on the client computer and/or that the client is
running a particular version of the security solution). The
CMP may also be used to monitor and enforce compliance
with any additional policies selected by the administrator
(e.g., that the client is using particular anti-virus software).
The CMP currently uses the UDP protocol on both the
server-side and on the client-side. Challenge and response
packets are encrypted for transmission between the client
and the server. Each packet generally consists of a header, a
body, and (optional) additional parameters. This structure
ensures expandability and interoperability even if the server-
side security checker and the client(s) use different versions
of the protocol.

[0154] The server-side security checker module sends an
initial CMP challenge packet to a client device seeking to
access particular resources as part of the authentication
process. The CMP challenge packet is a UDP message which
is formulated and sent to the client. In the presently preferred
embodiment, the challenge packet has a fixed header and it
has additional parameters that can be selected as options in
order to check for particular attributes or conditions at the
client device. For example, a “client version” option allows
the administrator to require that a specific minimum version
of the security solution be installed on the client computer.
An “anti-virus challenge” option provides for checking for
anti-virus enforcement. The security checker module looks
for the appropriate code to verify if the anti-virus program
is running on the client machine and if both the anti-virus
program and the associated data file are up to date. The
security checker module may also issue periodic “heartbeat”
challenges every N seconds or minutes, as determined by the
monitoring frequency setting established by the administra-
tor.

[0155] Upon receipt of a challenge packet, the client
security module of the present invention (which is installed
on the client device) formulates an appropriate response
message using the same CMP protocol. The response mes-
sage describes whether the client is currently compliant with
the requirements provided in the challenge message. The
security checker may then communicate the results of the
security check and/or determine whether, and to what extent,
the client should be permitted access based on the security
check.

Aug. 26, 2004

[0156] Those skilled in the art will appreciate that there
are a number of other ways to communicate compliance
status using other communication mechanisms. For
example, security compliance may be checked using the
EAP protocol which defines a challenge-response protocol
between an authentication server and a client computer. For
further information regarding EAP, see e.g., “RFC 2284:
PPP Extensible Authentication Protocol”, available from the
Internet Engineering Task Force (IETF), the disclosure of
which is hereby incorporated by reference. A copy of RFC
2284 is available via the Internet (e.g., currently at www.i-
etf.org/rfc/rfc2284.txt). As another example, the RADIUS
protocol, which uses UDP messages to perform a challenge/
response protocol, may also be used for compliance check-
ing. For further information regarding RADIUS, see e.g.,
“RFC 2865: Remote Authentication Dial In User Service
(RADIUS)”, available from the IETF, the disclosure of
which is hereby incorporated by reference. A copy of RFC
2865 is available via the Internet (e.g., currently at www.i-
etf.org/rfc/rfc2865.txt). Alternatively, certificates may be
exchanged by the client and server via a TLS or TNT trust
exchange.

[0157] The above discussion uses an example of how
compliance status can be requested and communicated by
issuing challenges to a client and receiving responses from
the client. As previously discussed, there are a number of
different ways in which security attributes may be commu-
nicated and validated. For instance, an alternative embodi-
ment of the present invention provides for the additional
security attributes to be validated through out-of-band com-
munications via a separate security evaluation service. In
this alternative embodiment, if a client has already con-
nected to the network, the security attributes may have been
previously evaluated by a separate security evaluation ser-
vice (e.g., a policy server or the like). Typically, the security
evaluation service evaluates security compliance at the time
of initial authentication of the client. Subsequently, when the
client requests a particular service or transaction, the results
of the prior security evaluation are obtained from the secu-
rity evaluation service rather than using the above challenge/
response process directly with the client. In other words,
when the client requested a particular service or application,
the separate security evaluation service would be consulted
for the result of a prior evaluation. Those skilled in the art
will appreciate that there are a number of approaches that
may be used to communicate regarding the compliance
status of client devices requesting access to services or
resources.

[0158] FIGS. 8A-B comprise a single flowchart 800 illus-
trating the process of authenticating a client attempting to
access an application or service (e.g., on an application
server) through a separate security evaluation service. As
with the prior flowcharts, the following description presents
method steps that may be implemented using computer-
executable instructions, for directing operation of a device
under processor control. The computer-executable instruc-
tions may be stored on a computer-readable medium, such as
CD, DVD, flash memory, or the like. The computer-execut-
able instructions may also be stored as a set of downloadable
computer-executable instructions, for example, for down-
loading and installation from an Internet location (e.g., Web
server).

US 2004/0167984 Al

[0159] At step 801 a client (e.g., a personal computer)
connects to a network to attempt to gain access to a service
available on the network. At step 802 the client receives the
network address of an authentication server. The client logs
in to the authentication server and provides required cre-
dentials (e.g., user name and password or other credentials)
at step 803. If the client is authenticated, a security evalu-
ation service (e.g., policy server) is then invoked to deter-
mine the client’s compliance with a policy required for
access to services and resources. At step 804 the policy
server issues a communication (e.g., policy challenge) to the
client requesting information from the client about its state.

[0160] Inresponse to the challenge from the policy server,
the client collects and sends the requested information to the
policy server at step 805. The information received by the
policy server may, for example, include the policy MD5 of
the policy on the client device and/or other relevant infor-
mation required to determine the client’s compliance status.
Based on the information received from the client, at step
806 the policy server determines whether or not the client is
in compliance with the required policy. It should be noted
that the client may alternatively perform the evaluation itself
and send the results of the compliance check to the policy
server as previously described. At step 807, the policy server
retains and/or stores the result of the compliance evaluation.

[0161] The client subsequently connects to a service avail-
able on the network and requests a transaction at step 808.
In response, at step 809 the service communicates with the
policy server (e.g., sends a message to the policy server)
asking the policy server whether or not the client is in
compliance with the policy. At step 810 the policy server
returns the result of the compliance check of the client
indicating whether or not the client is in compliance with the
policy. If the response (ie., result of compliance check)
received from the policy server indicates that the client is in
compliance, then at step 811 the service allows the transac-
tion requested by the client. However, if the result returned
by the policy server indicates that the client is not in
compliance with the policy, at step 812 the service denies the
transaction.

[0162] As yet another alternative example, the server
providing the service that is requested by the client can be
constructed and configured to check some or all of the policy
rules that the policy server may otherwise evaluate, thereby
removing the need to use an external policy server for policy
enforcement. Those skilled in the art will appreciate that a
number of other configurations may be used for evaluating
and enforcing compliance with a policy. For example, a
particular server may handle certain matters while invoking
an external policy service in other situations, depending on
such factors as the complexity of the decision-making
process and the performance impact of consulting an exter-
nal policy service.

[0163] How Compliance is Evaluated

[0164] A basic implementation of the compliance evalu-
ation process will now be briefly described. In the presently
preferred embodiment, checking the client’s system con-
figuration for compliance with a security policy involves
several basic steps. These steps generally follow after the
user authentication (e.g., user name and password authen-
tication) has been completed.

[0165] The server (e.g., the security checker on the server
or a separate security evaluation service) initially requests a

Aug. 26, 2004

client configuration report with specified parameters from
the client. The list of parameters requested in the report is
specified by the required security policy. In response, the
client provides the client security checker on the server a
client configuration report. The client configuration report
describes configuration information about the client, includ-
ing those parameters requested by the server.

[0166] Next, the security checker evaluates the client
configuration report for compliance against the required
policy. Generally, the security checker determines whether
or not the values provided in the client configuration report
are within the allowed (or required) range. Based on this
evaluation, the security checker on the server generates a
compliance report. The compliance report indicates if there
are any noteworthy results in the compliance check step.
These items can either be parameter requirements which are
not satisfied (and therefore indicate an out-of-compliance
condition), or they can be parameter requirements which are
within an allowed range, but nevertheless should be logged
for further examination or to alert the user or administrator.
Finally, a compliance result is compiled from the compli-
ance report, which indicates either that the client is “com-
pliant” or “out-of-compliance”.

[0167] If the client is determined to be “out of compli-
ance” the system should take appropriate action to block or
restrict further client access either to the system, or to certain
of its services or resources. The above security evaluation
process may easily be modified to fit circumstances or
performance requirements, as needed. One option, for
instance, is for the server to push the compliance require-
ments to the client and have the client compute the compli-
ance report and compliance status. This frees the server from
needing to process the compliance report, which may reduce
CPU processing overhead at the server. Those skilled in the
art will appreciate that the above evaluation process can be
performed at either the client or the server depending on
various factors, including which alternative minimizes the
amount of data that must be sent back and forth and system
responsiveness to changes in security policies.

[0168] In fact, in many cases the compliance evaluation is
most efficiently performed on the client device, as perform-
ing the evaluation at the client can off load processing from
the server and reduce the amount of information that must be
communicated by the client to the server. For example, the
server (or an external policy server) may send a policy or a
set of required security attributes to the client. The client can
then evaluate compliance with the policy and simply inform
the server of the result of the compliance evaluation. This
message informing the server of the result can be quite
small, thereby preserving bandwidth as well as reducing
processing overhead at the server. However, this structure
may require a relatively large policy (or set of required
security attributes) to be downloaded to, or otherwise avail-
able at, the client. This is particularly true if the security
policy that is being enforced has a large number of condi-
tions (e.g., required security attributes). A security policy
may, for example, include a long list of processes (e.g., with
a particular file name or checksum) that should not be
running on the client device. It would be inefficient to send
a lengthy list of conditions of this nature to the client every
time that compliance is to be evaluated. However, given that
the security policy is often available at the client device
(e.g., as it has previously been downloaded to the client by

US 2004/0167984 Al

a separate policy server), the amount of data that must be
communicated to the client is minimal in many cases. Also,
because the frequency of policy changes is generally low
compared to the number of times compliance is evaluated,
performing the evaluation at the client typically results in an
over-all reduction in the volume of data that must be
communicated between the client and the server.

[0169] In certain cases, however, it may be more advan-
tageous for the client to send data to the server which the
server can then evaluate. For example, the policy enforced
by the server may be modified to require an updated anti-
virus release (e.g., to require clients to download a new set
of virus definitions in response to a virus emergency in
which a new virus is spreading rapidly). In this case, it is
generally inefficient to require each client device to down-
load an entirely new policy just because the anti-virus rule
has been updated. Instead, the virus information is provided
to the server, enabling the server to determine which clients
are (and are not) in compliance with the anti-virus rule of the
policy. The server may then take action based on this
information. For example, in the case of a virus emergency,
the server may “restrict” connected clients that are not in
compliance with the anti-virus rule and send them a message
informing them that they need to update their anti-virus
software and/or definition files. As illustrated by the above
examples, the security evaluation may be performed at the
client or at the server. Alternatively, security compliance
may be evaluated by a separate security evaluation service
as previously described.

[0170] Example of Client Compliance Evaluation

[0171] When the client has received a compliance chal-
lenge in the form of a CMP packet, it can read the packet to
determine what kind of compliance is required. If compli-
ance only requires the presence of a security client, this can
readily be determined by loading a TrueVector engine API
library (a loadable library called “vspubapi.dll”) and calling
an API function to determine if the security client is running.
Loading the TrueVector engine API library is accomplished
using the standard Windows “LoadLibrary” function. How-
ever, the following “CheckCodeSignature” function checks
the validity of the API library before loading it:

1: BOOL TriggerIntegrityClient:: CheckCodeSignature(const
char*

szFileName)

2: {

3: int ilen;

4: int iWLen;

5: WCHAR?* szwTVFile;

6: WIN_TRUST_ACTDATA_CONTEXT_WITH_ SUBJECT trust
Data;

a3
7: WIN_TRUST_SUBJECT_FILE trustFile;
8: GUID guidAction = WIN_SPUB__ACTION_ PUBLISHED__
SOFTWARE;
9: GUID guidSubjectPeImage = WIN_TRUST_SUBJTYPE_PE__
IMAGE;
10: BOOL bResult = FALSE;

12: if (thFileWVT)
13: hFileWVT = Load Library(WVT_FILE_ NAME);

15: if (hFileWVT)

{
17 if (\pWinVerifyTrust)

Aug. 26, 2004

-continued

18: pWinVerifyTrust = (PWINVERIFYTRUST)GetProcAddress
(hFileW VT,

WVT_FUNC_NAME);

19: if (pWinVerifyTrust)

20:

21: // convert file path to widechar* for WinVerifyTrust

O

22: iLen = strlen(szFileName);

23: iWLen = (iLen + 1) * sizeof(WCHARY);
24: szwI'VFile = (WCHAR*)malloc(iWLen);
25: if (szwT VFile)

26:

27: ZeroMemory(szwTVFile, iWLen);

28: mbstowes(szwTVFile, szFileName, iLen);

29:

30: // fill out WinVerifyTrust() data structures
31: trustFile.lpPath = szwTVFile;

32: trustFile.hFile = INVALID__HANDLE__VALUE;
33:

34: trustData.hClientToken = NULL;

3s: trustData.SubjectType = &guidSubjectPelmage;
36: trustData.Subject = &trustFile;

37:

38: // Call WinVerifyTrust()

39: bResult = pWin VerifyTrust((HWND)INVALID_ HAN
DLE_VALUE,

&guidAction,

40: &trustData) == ERROR_SUCCESS;
41: free(szwT VFile);

42: }

43}

44;

45: return bResult;

46: }

[0172] The above function checks the code signature of a
file (e.g., the TrueVector API library file) before the file is
loaded. If the function returns “TRUE”, then the file is safe
to be loaded using the standard Windows “LoadLibrary()”
function.

[0173] After the TrueVector engine API file has been
validated and loaded, the following “AreYouThere()” func-
tion of the TrueVector API library checks for the presence of
the TrueVector engine:

1: BOOL TriggerIntegrityClient::Are YouThere()

2:{

3 int iSize = iVersionBufferSize;

4:

5: typedef BOOL (___stdeall *MYPROC)(LPSTR szVersion,
INT* size);

6: MYPROC pfunc;

7: if((hTVLibrary !=NULL) &&

8: ((pfunc = (MYPROC) GetProcAddress(hTVLibrary,“tvls
TvRunning™))

1=NULL))

9: {

10: BOOL retVal = pfunc(szTvVersion, &iSize);
11: if(iSize > iVersionBufferSize)

12: {

13: delete [] szTvVersion;

14: szTvVersion = new char|iSize];

15: iVersionBufferSize = iSize;

16: return pfunc(szTvVersion, &iSize);

17:

18: else

19: return retVal;

20}

US 2004/0167984 Al

-continued
21 else
22: return FALSE;
23: }

[0174] The above function checks to determine if the
TrueVector engine (the client security software) is running
on the client. If compliance only requires the presence of a
security client, then this function can determine whether or
not the client is in compliance.

[0175] A security policy may also provide for additional
compliance checking beyond simply detecting the presence
of a security client. In this case, the additional security
requirements are provided to the client for compliance
evaluation at the client. In the presently preferred embodi-
ment, an XML description of the security requirements
(attributes) is provided to the client in a CMP packet sent to
the client. Although XML is used in the currently preferred
embodiment, those skilled in the art will appreciate that
other data formats may also be used for describing the
attributes to be evaluated. For example, this information
could be represented in text strings or in an ASN.1 (Abstract
Syntax Notation One) file. To evaluate compliance with
these security requirements at the client, the same initial
steps described above are required to load the TrueVector
engine API library. However, additional steps are required to
determine if the client device (e.g., computer) is compliant
with the security requirements.

[0176] The TrueVector API library provides a “tvGetSe-
curityProviderInfo” function to obtain information about the
current state of the client device, including information
about the security client installed on the client device. The
function currently returns data in the form of an XML
Unicode string which describes the current compliance state
of the client as described below. The current state of the
client computer is then compared to the requirements that
were described in the incoming CMP packet for determining
whether the client is in compliance with the security require-
ments.

[0177] The above is one example of a process that may be
used for checking security compliance of a client device.
Those skilled in the art will recognize that a similar com-
pliance checking process can be implemented using various
other security engines, including anti-virus, firewall, and/or
spyware checkers. For example, an anti-virus engine can be
used for determining if the client was in compliance with
required anti-virus rules. As another example, a configura-
tion checker (e.g., HfNetCheckPro from Shavlik Technolo-
gies of Roseville, Minn.) can be used to determine if
necessary product releases, patches, or other files have been
installed or applied at the client device. Accordingly, it
should be understood that the above example of compliance
checking using the TrueVector engine is only one example
of a security engine or module that can be used for per-
forming a compliance evaluation.

[0178] How Compliance is Described

[0179] Inthe presently preferred embodiment, compliance
checking involves several basic data structures, which rep-
resent the data exchanged or evaluated by the system at each
of the compliance evaluation steps. Note that while in the

Aug. 26, 2004

system of the present invention these data structures are
usually represented as either text strings or XML documents,
the same information could be represented in other data
formats, as desired. For instance, the data could be repre-
sented in ASN.1 format. ASN.1, or Abstract Syntax Notation
One, is an International Standards Organization (ISO) data
representation format used to achieve interoperability
between platforms.

[0180] A first data structure in the presently preferred
embodiment is a “reporting requirements” data structure.
The reporting requirements data structure contains a list of
attributes that the client is required to report. A second data
structure is a “configuration report” data structure, which
lists the values of the required reporting parameters. The
configuration report data structure is structured as a list of
attributes and their values. The following is a simple
example of a member of the configuration report data
structure:

1: Example:

2: <ConfigurationReport>

3: <provider type=“zonelabs” policyMd5=“"" policyVersion
N

4: <provider type=“symantec.nav” datDate=“2003-11-13
00:00:00

-08:00” datVersion="51113w" engineVersion="4.2.0.7"
status="notRunning” />

5: </ConfigurationReport>

[0181] A third data structure is a “compliance require-
ments” (or compliance rules) data structure. The compliance
rules data structure lists certain required values or ranges to
be used for determining whether or not a client is in
compliance with a security policy. The following definition
illustrates the syntax for the rules in XML

1: <ComplianceRules>

2: <ComplianceRule operator="eq|lt|gt|between”
provider=“provider.name”

3: attribute =“attrib.name” operandl=“valuel” operand2
=“value2”

4: status="status_ string” message="“user warning message’
/>

5: </ComplianceRules>

3

[0182] Another example is as follows:

1: <ComplianceRules>

2: <ComplianceRule operator=“ge” provider=“zonelabs”
attribute="client Version”

3: operand1=“5.4.2” status="status_string” message="user
warning

message” />

4: <ComplianceRule operator=“ge” provider=“symantec.n
av’

attribute="datVersion”

5: operandl1=“8.0” status="status__string” message="user
warning

message” />

6: </ComplianceRules>

[0183] Another data structure of the currently preferred
embodiment is a “compliance report” data structure. The

US 2004/0167984 Al

compliance report data structure lists noteworthy items that
were found by applying the compliance rules to the client
configuration report. Several example entries in the compli-
ance report data structure are illustrated below. The follow-
ing is an entry indicating that the version of the security
software installed on the client is not up to date:

1: <ComplianceReport>

2: Compliance Status: ZoneLabs.clientVersion too low

3: Compliance Code: non-compliant

4: User-message: ZA__CLIENTVERSION Your client version
is not

up to date

5: </ComplianceReport>

[0184] The following is another example entry:

1: <ComplianceReport>

2: Compliance Status: Symantec.nav.datDate too old

3: Compliance Code: non-compliant

4: User-message: AV_DAT__FILE__OUT__OF__DATE Your Antivirus
version

must be updated

5: </ComplianceReport>

[0185] The above entry indicates that the virus definition
file (e.g., .dat file) in use at the client is out of date.

[0186] Another example entry is as follows:

1: <ComplianceReport>

2: Compliance Status: ZoneLabs.clientVersion update available

3: Compliance Code: Compliant

4: User-message: ZA_ CLIENTUPGRADE An update is available
for

your client

5: </ComplianceReport>

[0187] This entry indicates that although the client is
compliant, the client is not using the most current version of
the client security module and may wish to install an
available update.

[0188] 1In the currently preferred embodiment, the com-
pliance result is an enumerated type with one of two values.
A value of “compliant” indicates that the client is in com-
pliance with required elements of the security policy. A
value of “non-compliant” indicates that the client is not in
compliance with the policy. In one embodiment, the result of
a compliance check will be equal to “non-compliant” if any
line item in the compliance report is marked as “non-
compliant”.

[0189] Currently, if the compliance check is performed at
the client device, the compliance result is communicated
from the client back to the compliance checker as a response
message from the client to the security checker module of
the system. In the response message, the value of “compli-
ant” is encoded as the value zero (0), and the value of
“non-compliant” is encoded as a non-zero value. If the client
device sends a response message indicating that it is “non-
compliant”, the security checker program will generally exit

Aug. 26, 2004

and return a non-zero value (e.g., the value one (1)) to its
caller (for example, the sub-authentication filter DLL). If the
client device replies that it is “compliant”, the security
checker module will usually exit and return a zero value to
its caller. As previously described, the compliance check
may be performed at the client or at the server, or compli-
ance may be evaluated by a separate security evaluation
service.

[0190] While the invention is described in some detail
with specific reference to a single-preferred embodiment and
certain alternatives, there is no intent to limit the invention
to that particular embodiment or those specific alternatives.
Although the above discussion uses an example of checking
security attributes of a client for compliance with a security
policy, the present invention may also be used to verify a
number of other attributes of the client device that may be
of interest. For instance, the system and methodology of the
present invention may also check to ensure that required
virus suppression measures or file integrity mechanisms are
in force on a client device. Accordingly, those skilled in the
art will appreciate that modifications may be made to the
preferred embodiment without departing from the teachings
of the present invention.

1. A method for authorizing a client to access a service
based on compliance with a policy required for access to the
service, the method comprising:

specifying a policy required for access to the service;
detecting a request for access to the service from a client;

attempting authentication of the client based on creden-
tials presented by the client;

if the client is authenticated based on the credentials,
determining whether the client is in compliance with
said policy based, at least in part, on attributes of the
client; and

if the client is determined to be in compliance with said
policy, providing access to the service.
2. The method of claim 1, wherein the service comprises
a remote service accessible by the client through a network.
3. The method of claim 1, further comprising:

restricting access to the service if the client is determined

to be non-compliant with said policy.

4. The method of claim 3, wherein restricting access
includes assigning limited access privileges to the client.

5. The method of claim 3, wherein restricting access
includes issuing a Kerberos ticket specifying limited access
privileges if the client is determined to be non-compliant
with the policy.

6. The method of claim 1, wherein said policy comprises
a security policy.

7. The method of claim 6, wherein said security policy
includes security measures required on the client.

8. The method of claim 1, wherein said policy includes
anti-virus measures required on the client.

9. The method of claim 1, wherein said step of providing
access includes issuing a Kerberos ticket specifying access
privileges provided to the client.

10. The method of claim 1, wherein attributes of the client
include a selected one of a file integrity policy in effect at the

US 2004/0167984 Al

client, a file installed at the client, a process running at the
client, a particular checksum value at the client, and a
registry entry at the client.

11. The method of claim 1, wherein said detecting step
includes detecting a request for access to a server by a
remote client.

12. The method of claim 1, wherein said detecting step
includes detecting a request for access to a service on a
computer system by another process on the computer sys-
tem.

13. The method of claim 1, wherein said attempting
authentication step includes authentication based on user
identity.

14. The method of claim 1, wherein said attempting
authentication step includes using a selected one of Kerberos
authentication, Pluggable Authentication Module (PAM)
authentication, Extensible Authentication Protocol (EAP)
authentication, Generic Security Service API (GSS-API)
authentication, and trust negotiation in TLS (TNT) authen-
tication.

15. The method of claim 1, wherein said credentials
include a selected one of a user name, a password, and a
certificate.

16. The method of claim 1, wherein said determining step
includes obtaining attribute information from the client.

17. The method of claim 16, wherein said step of obtain-
ing information from the client includes requesting attribute
information collected by a client-side component.

18. The method of claim 1, wherein said determining step
includes substeps of:

providing a copy of the policy to the client; and

performing a compliance check at the client to determine

compliance with the policy.

19. The method of claim 1, wherein said determining step
includes obtaining information from a security evaluation
service that has previously evaluated compliance by the
client with the policy.

20. A computer-readable medium having processor-ex-
ecutable instructions for performing the method of claim 1.

21. A downloadable set of processor-executable instruc-
tions for performing the method of claim 1.

22. A system for authenticating and assigning access
privileges to a client device for access to a service, the
system comprising:

a policy specifying access privileges to be assigned to a
client device based on attributes of the client device;

a primary authentication module for receiving a request
from a client device for access to the service and
determining whether to authenticate the client device
for access to the service; and

a supplemental authentication module for examining
attributes of a client device authenticated by said pri-
mary authentication module and assigning access privi-
leges to the client device based on the policy.

23. The system of claim 22, wherein said policy com-

prises a security policy.

24. The system of claim 22, wherein said policy includes
security attributes of the client device.

25. The system of claim 22, wherein said step of exam-
ining attributes of the client device includes determining
whether specified anti-virus measures are in effect on the
client device.

Aug. 26, 2004

26. The system of claim 22, wherein said step of exam-
ining attributes of the client device includes examining a
selected one of a file integrity policy in effect at the client
device, a file installed at the client device, a process running
at the client device, a particular checksum value at the client
device, and a registry entry at the client device.

27. The system of claim 22, wherein said primary authen-
tication module uses a selected one of Kerberos authentica-
tion, Pluggable Authentication Module (PAM) authentica-
tion, Extensible Authentication Protocol (EAP)
authentication, Generic Security Service API (GSS-API)
authentication, and trust negotiation in TLS (TNT) authen-
tication.

28. The system of claim 22, wherein said primary authen-
tication module authenticates the client device based upon
user identity.

29. The system of claim 28, wherein the client device
provides a user name and password to said primary authen-
tication module for authenticating user identity.

30. The system of claim 28, wherein the client device
provides a digital certificate to said primary authentication
module for authenticating user identity.

31. The system of claim 22, wherein the supplemental
authentication module includes a component on the client
device for collecting attribute information.

32. The system of claim 31, wherein the component on the
client device evaluates the collected attribute information at
the client device for determining compliance of the client
device with the policy.

33. The system of claim 32, further comprising:

a policy server for providing the policy to the client

device.

34. The system of claim 22, wherein the supplemental
authentication module receives information about attributes
of the client device from the client device.

35. The system of claim 34, wherein the client device
provides attribute information to the supplemental authen-
tication module in response to a message from the supple-
mental authentication module.

36. The system of claim 35, wherein said attribute infor-
mation is provided as a selected one of a text string, an
Extensible Markup Language (XML) document, and an
Abstract Syntax Notation One (ASN.1) file.

37. The system of claim 22, wherein the supplemental
authentication module permits access to the service if the
client device is in compliance with the policy.

38. The system of claim 22, wherein the supplemental
authentication module issues a Kerberos ticket specifying
the client device’s access privileges.

39. The system of claim 22, wherein the supplemental
authentication module restricts access to the service if the
client device is non-compliant with the policy.

40. The system of claim 22, further comprising:

a policy server in communication with the supplemental
authentication module for evaluating compliance by
the client device with the policy based upon attributes
of the client device.

41. The system of claim 22, wherein the supplemental
authentication module comprises a selected one of an anti-
virus engine, a configuration checker, and a security engine.

42. A method for assigning privileges to a client to use a
service based on an access policy, the method comprising:

US 2004/0167984 Al

specifying an access policy for assigning privileges to a
client to use the service based on attributes of the client;

detecting a request for use of the service from a client;

attempting authentication of the client based on user
identity information provided by the client;

if the client is authenticated based on user identity,
collecting attribute information from the client; and

assigning privileges to the client to use the service based
on the collected attribute information and the access
policy.

43. The method of claim 42, wherein said step of assign-
ing privileges includes blocking access to the service if the
client is determined to be non-compliant with the access
policy.

44. The method of claim 42, wherein said step of assign-
ing privileges includes restricting access to the service if the
client is determined to be non-compliant with the access
policy.

45. The method of claim 42, wherein set step of assigning
privileges includes issuing a Kerberos ticket to the client.

46. The method of claim 42, wherein said access policy
includes security measures required on the client.

47. The method of claim 42, wherein said access policy
includes anti-virus measures required on the client.

48. The method of claim 42, wherein said access policy
includes an attribute required for the client.

49. The method of claim 48, wherein said attribute
includes a selected one of a file integrity policy in effect at
the client, a file installed at the client, a process running at
the client, a particular checksum value at the client, and a
registry entry at the client.

50. The method of claim 42, wherein said detecting step
includes detecting a request for access to a server by a
remote client.

51. The method of claim 42, wherein said collecting step
includes requesting attribute information from the client.

52. The method of claim 51, wherein the attribute infor-
mation is provided as a selected one of a text string, an
Extensible Markup Language (XML) document, and an
Abstract Syntax Notation One (ASN.1) file.

53. The method of claim 42, wherein said collecting step
includes using a client-side component for collecting
attribute information.

54. The method of claim 53, wherein said client-side
component determines whether the client is in compliance
with the access policy based on the collected attribute
information.

55. The method of claim 53, wherein said client-side
component sends the collected attribute information to a
policy server for determining whether the client is in com-
pliance with the access policy.

56. A computer-readable medium having processor-ex-
ecutable instructions for performing the method of claim 42.

Aug. 26, 2004

57. A downloadable set of processor-executable instruc-
tions for performing the method of claim 42.

58. In a system comprising a client computer connecting
to a service through a network, a method for regulating
access to the service based on a specified access policy, the
method comprising:

transmitting a challenge from the service to the client
computer connecting to the service for determining
whether the client computer is in compliance with said
specified access policy, wherein said access policy
includes attributes of the client device that are accept-
able for permitting access to the service;

transmitting a response from the client computer back to
the service, for responding to the challenge issued by
the service; and

blocking access to the service by the client computer if the
client computer does not respond appropriately to the
challenge issued by the service.

59. The method of claim 58, wherein said access policy
includes rules that are enforced against selected ones of
users, computers, and groups thereof.

60. The method of claim 58, wherein said challenge
includes at least some rules of said access policy that are
transmitted to the client computer.

61. The method of claim 58, wherein said access policy is
provided at the client computer.

62. The method of claim 61, wherein the client computer
performs a compliance check for determining compliance
with the access policy and returns the compliance check
result in response to the challenge.

63. The method of claim 58, wherein said attributes
include a selected one of a file integrity policy in effect at the
client computer, a file installed at the client computer, a
process running at the client computer, a particular check-
sum value at the client computer, and a registry entry at the
client computer.

64. The method of claim 58, further comprising:

otherwise, permitting access to the service by the client

computer.

65. The method of claim 64, wherein permitting the client
computer to access the service includes assigning access
privileges based on the response received from the client
computer.

66. The method of claim 65, wherein assigning access
privileges includes issuing a Kerberos ticket for providing
said access privileges to the client computer.

67. A downloadable set of processor-executable instruc-
tions for performing the method of claim 58.

68. A computer-readable medium having processor-ex-
ecutable instructions for performing the method of claim 58.

