wo 2014/092840 A 1[I I/ NPFV 00O 000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

19 June 2014 (19.06.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/092840 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
GO6F 1/26 (2006.01) GO6F 1/08 (2006.01)

International Application Number:
PCT/US2013/062024

International Filing Date:
26 September 2013 (26.09.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/735,944 11 December 2012 (11.12.2012) US
13/913,307 7 June 2013 (07.06.2013) US

Applicant: APPLE INC. [US/US]; 1 Infinite Loop, Cu-
pertino, California 95014 (US).

Inventors: DORSEY, John G.; 1 Infinte Loop, Cupettino,
California 95014 (US). ISMAIL, James S.; 1 Infinte
Loop, Cupertino, California 95014 (US). COX, Keith; 1
Infinite Loop, Cupertino, California 95014 (US). KA-
POOR, Gaurav; 1 Infinite Loop, Cupertino, California
95014 (US).

Agents: FERRAZANQO, Michael J. et al; Womble
Carlyle Sandridge & Rice LLP, 10050 North Wolfe Road,
Suite 260, Cupertino, California 95014 (US).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: CLOSED LOOP CPU PERFORMANCE CONTROL

Jiter Threshold T; Jitter Delta ¢i(t)
208 210

S S
&)
p Jitter Control ¢j(t)
214
I'rend ‘Threshold T, Trend R‘eg'a &0 Trend Control &l
22 226 230
)8

Long-Term
216

Ul Frame Rate Control
200

Power
Management
Control Signal

24 Frame Rate 202

FIG. 2A

(57) Abstract: The invention provides a technique for targeted scaling of the voltage and/or frequency of a processor included in a
computing device. One embodiment involves scaling the voltage/frequency of the processor based on the number of frames per
second being input to a frame buffer in order to reduce or eliminate choppiness in animations shown on a display of the computing
device. Another embodiment of the invention involves scaling the voltage/frequency of the processor based on a utilization rate of
the GPU in order to reduce or eliminate any bottleneck caused by slow issuance of instructions from the CPU to the GPU. Yet an -
other embodiment of the invention involves scaling the voltage/frequency of the CPU based on specific types of instructions being
executed by the CPU. Further embodiments include scaling the voltage and/or frequency of a CPU when the CPU executes work -
loads that have characteristics of traditional desktop/laptop computer applications.

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

CLOSED LOOP CPU PERFORMANCE CONTROL

TECHNICAL FIELD

[0001] The present invention relates generally to power management in a mobile
computing device. More particularly, the present invention relates to power
management techniques that correlate to central processor unit (CPU) activity,
memory controller (MC) activity, graphics processing unit (GPU) activity, and user
interface (UI) frame rate activity within the mobile computing device.

BACKGROUND

[0002] Conventional computing devices (e.g., desktop computers and laptop
computers) typically implement one or more algorithms directed to controlling the
operating clock frequency and voltage of processors included therein, such as a CPU
and a GPU. These algorithms are directed to monitoring the CPU/GPU for workloads
that take more than a threshold amount of time to complete. Consider, for example, a
time-intensive image processing workload that takes several minutes for a CPU/GPU
to execute when the CPU/GPU are in a low-performance operating mode. In this
example, the algorithms detect that the workload meets certain criteria (e.g., the
threshold amount of time has passed or processor duty factor has exceeded a
threshold) and cause the CPU/GPU to switch from a low-performance operating
mode to a mid-performance or a high-performance operating mode so that the
workload is completed sooner. These algorithms enable conventional computing
devices to reduce power for short, bursty workloads while providing high
performance for long-running compute tasks.

[0003] Notably, recent years have shown a proliferation in the usage of mobile
computing devices with performance characteristics, energy constraints and
interactive user interfaces that are different from those of desktop/laptop computers,
which affect the types of workloads users execute on mobile devices. More
specifically, unlike traditional long-running pure-compute tasks, mobile applications
instead emphasize interactive performance for visual scenarios such as web browsing,
gaming and photography. Consequently, the aforementioned algorithms—which are
directed to identifying and responding to complex, time-intensive workloads—are not
as effective when implemented in mobile devices since the algorithms cannot

accurately determine when the operating mode of the CPU/GPU should be modified.

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

SUMMARY

[0004] This paper describes various embodiments that relate to the operation of
CPU performance control algorithms within a mobile computing device. In contrast
to conventional approaches, these performance control algorithms can operate based
on feedback received from various components included in the mobile computing
device, such as a frame buffer, a GPU and a memory controller. For example, instead
of focusing solely on the amount of time a workload spends executing on the CPU,
the techniques presented herein measure the smoothness of Ul animations presented
on a display of the mobile computing device, the utilization rates of the GPU or
memory interfaces, and the types of instructions being executed by the CPU.

[0005] One embodiment of the invention sets forth a method for updating an
operating mode of a processor. The method includes the steps of monitoring a cycle-
to-cycle jitter associated with a rate by which a user interface (UI) is animated, and,
further, adjusting an operating mode of the processor based on the cycle-to-cycle
jitter. Adjusting the operating mode of the processor comprises adjusting the voltage
and/or frequency at which the processor is operating. Moreover, monitoring the
cycle-to-cycle jitter comprises analyzing a rate of change in a number of frames per
second (NFPS) being input to a frame buffer associated with the processor. Further,
monitoring the cycle-to-cycle jitter comprises establishing: a jitter control signal
based on short-term sampling of the NFPS being input to the frame buffer, and a trend
control signal based on long-term sampling of the NFPS being input to the frame
buffer.

[0006] Another embodiment of the invention sets forth a method for optimizing
operations of a CPU in a mobile computing device having the CPU configured to
issue instructions to a GPU. The method includes the steps of determining that a
utilization rate of the GPU is exceeding a threshold level, determining that the CPU is
operating in a sub-optimal operating mode, and causing the CPU to enter into an
optimal operating mode where the CPU generates instructions for execution by the
GPU at a faster rate. Causing the CPU to enter into the optimal operating mode
includes establishing a control signal by a control signal generator. Causing the CPU
to enter into the optimal operating mode includes adjusting the voltage and/or
frequency at which the CPU is operating. The method can further include the steps of
determining that the utilization rate of the GPU is no longer exceeding the threshold

level, and causing the CPU to return to a more energy-cfficient operating mode.

2

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

[0007] A third embodiment of the invention sets forth a method for updating an
operating mode of a CPU. The method includes the steps of determining that the
CPU is tasked with executing instructions that are associated with a high instruction-
per-cycle density, and causing the CPU to enter into a high-performance operating
mode to cause an increase in the rate at which the CPU executes the instructions. The
instructions can comprise integer arithmetic instructions, vector floating point (VFP)
arithmetic instructions, single-instruction multiple-data (SIMD) arithmetic
instructions, and load-store instructions. The method can further include the steps of
establishing: an integer arithmetic control signal based on the rate at which integer
arithmetic instructions are being executed by the CPU, a VFP control signal based on
the rate at which VFP arithmetic instructions are being executed by the CPU, a SIMD
control signal based on the rate at which SIMD arithmetic instructions are being
executed by the CPU, and a load-store control signal based on the rate at which load-
store instructions are being executed by the CPU.

[0008] Yet another embodiment of the invention scts forth a method for
optimizing operations of a CPU in a mobile computing device having the CPU
configured to perform transactions with a memory controller that manages access to a
dynamic random-access memory (DRAM) and a flash memory. The method includes
the steps of determining that the data throughputs of memory controller exchanges
with one or more agents are exceeding threshold levels, determining that the CPU is
operating in a sub-optimal operating mode, and causing the CPU to enter into an
optimal operating mode where the CPU performs transactions with the memory
controller at a faster rate. The agents can include the CPU itself or a flash memory
subsystem.

[0009] An additional embodiment of the invention sets forth a method for
updating an operating mode of a CPU while executing workloads that have
characteristics of traditional desktop/laptop computer applications. The method
includes the steps of determining that a utilization rate of the CPU is exceeding a
threshold level, determining that the interactive user interface is updating below a
threshold rate, and causing the CPU to enter into a high-performance operating mode
to allow the mobile device to complete the task more quickly.

[0010] Other embodiments include a non-transitory computer readable medium
storing instructions that, when executed by a processor, cause the processor to carry

out any of the method steps described above. Further embodiments include a system

3

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

that includes at least a processor and a memory storing instructions that, when
executed by the processor, cause the processor to carry out any of the method steps
described above. Yet other embodiments include a system having a management co-
processor separate from the main CPU capable of, either in cooperation with or in
place of the main CPU, carrying out any of the method steps described above.

[0011] Other aspects and advantages of the invention will become apparent from
the following detailed description taken in conjunction with the accompanying
drawings which illustrate, by way of example, the principles of the described
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The included drawings are for illustrative purposes and serve only to
provide examples of possible structures and arrangements for the disclosed inventive
apparatuses and methods for providing portable computing devices. These drawings
in no way limit any changes in form and detail that may be made to the invention by
one skilled in the art without departing from the spirit and scope of the invention.
The embodiments will be readily understood by the following detailed description in
conjunction with the accompanying drawings, wherein like reference numerals
designate like structural elements.

[0013] Figure 1 illustrates a block diagram of a mobile computing device
configured to implement embodiments of the invention.

[0014] Figure 2A illustrates a conceptual diagram of an embodiment directed to
scaling the voltage and/or frequency of a CPU based on the NFPS being supplied to a
frame buffer.

[0015] Figure 2B illustrates a method for updating an operating mode of a CPU
based on monitoring a cycle-to-cycle jitter associated with a rate by which a user
interface (UT) is refreshed, according to one embodiment of the invention.

[0016] Figures 2C-2E illustrate a method for scaling the voltage and/or frequency
of a CPU based on the NFPS being input to a frame buffer, according to one
embodiment of the invention.

[0017] Figure 3A illustrates a conceptual diagram of an embodiment directed to
scaling the voltage and/or frequency of a CPU based on a utilization rate of a GPU.
[0018] Figure 3B illustrates a method for entering a CPU into an optimal
operating mode based on a utilization rate of a GPU, according to one embodiment of

the invention.

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

[0019] Figure 3C illustrates a method for scaling the power and/or frequency of a
CPU based on a utilization rate of a GPU, according to one embodiment of the
invention.

[0020] Figure 4A illustrates a conceptual diagram of an embodiment directed to
analyzing the rate at which certain types of instructions are being executed by a CPU
and scaling the voltage and/or frequency of the CPU based on the rate.

[0021] Figures 4B-4E illustrate a method for analyzing the rate at which certain
types of instructions are being executed by a CPU and scaling the voltage and/or
frequency of the CPU based on the rate, according to one embodiment of the
invention.

[0022] Figure 5A illustrates a conceptual diagram of an embodiment directed to
analyzing a rate at which a CPU performs transactions with a memory controller that
manages access to a DRAM and a flash memory, according to one embodiment of the
invention.

[0023] Figure 5B illustrates a method for optimizing operations of a CPU in a
mobile computing device having the CPU configured to perform transactions with a
memory controller that manages access to a DRAM and a flash memory, according to
one embodiment of the invention.

[0024] Figure 6A illustrates a conceptual diagram of an embodiment directed to
scaling the voltage and/or frequency of a CPU when the CPU executes workloads that
have characteristics of traditional desktop/laptop computer applications, according to
one embodiment of the invention.

[0025] Figure 6B illustrates a method for scaling the voltage and/or frequency of
a CPU when the CPU executes workloads that have characteristics of traditional
desktop/laptop computer applications, according to one embodiment of the invention.
[0026] In the figures, elements referred to with the same or similar reference
numerals include the same or similar structure, use, or procedure, as described in the
first instance of occurrence of the reference numeral.

DETAILED DESCRIPTION

[0027] Representative applications of apparatuses and methods according to the
presently described embodiments are provided in this section. These examples are
being provided solely to add context and aid in the understanding of the described
embodiments. It will thus be apparent to one skilled in the art that the presently

described embodiments can be practiced without some or all of these specific details.

5

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

In other instances, well known process steps have not been described in detail in order
to avoid unnecessarily obscuring the presently described embodiments. Other
applications are possible, such that the following examples should not be taken as
limiting,

[0028] In the following detailed description, references are made to the
accompanying drawings, which form a part of the description and in which are
shown, by way of illustration, specific embodiments in accordance with the described
embodiments. Although these embodiments are described in sufficient detail to
enable one skilled in the art to practice the described embodiments, it is understood
that these examples are not limiting; such that other embodiments may be used, and
changes may be made without departing from the spirit and scope of the described
embodiments.

[0029] As set forth above, embodiments of the invention are directed to scaling
the voltage and/or frequency of a CPU included in a mobile computing device. In
particular, the embodiments are directed to alleviating a variety of performance and
energy efficiency issues that are often exhibited by mobile computing devices and
that are not well-addressed by conventional power-management techniques. As set
forth in greater detail below, the embodiments alleviate these performance and energy
efficiency issues by implementing techniques that focus on various aspects of how
processes are carried out within the mobile computing device. For example, one
embodiment of the invention involves scaling the voltage and/or frequency of the
CPU based on the number of frames per second (NFPS) being input to a frame buffer
in order to reduce or eliminate choppiness in animations shown on a display of the
mobile computing device. Another embodiment of the invention involves scaling the
voltage and/or frequency of the CPU based on a utilization rate of the GPU in order to
reduce or eliminate any bottleneck caused by slow issuance of instructions from the
CPU to the GPU. A third embodiment of the invention involves scaling the voltage
and/or frequency of the CPU based on the throughput of data transiting the memory
controller. A fourth embodiment of the invention involves scaling the voltage and/or
frequency of the CPU based on specific types of instructions being executed by the
CPU. An additional embodiment of the invention involves scaling the voltage and/or
frequency of the CPU based on the duty factor of the CPU for workloads that cause a

user interface to animate below a threshold rate.

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

[0030] As noted above, one existing performance issue exhibited by mobile
computing devices involves the smoothness of animations shown on a display of the
mobile computing device. For example, choppy display of an animation (e.g.,
scrolling of a web page) contributes to a poor user experience and should be
eliminated whenever possible. Accordingly, one embodiment of the invention
involves scaling the voltage and/or frequency of the CPU based on the number of
frames-per-second (NFPS) being supplied to a frame buffer included in the mobile
computing device. In particular, a monitor measures short-term “jitter” in the NFPS
being input to the frame buffer as well as the long-term stability of the NFPS being
input to the frame buffer to determine whether the CPU is operating at a power and/or
frequency sufficient to produce smooth animations. More specifically, when the
monitor observes changes in the NFPS, the monitor increases the voltage and/or
frequency of the CPU to smooth out the NFPS. Conversely, when the monitor
observes that the NFPS is stable, the monitor decreases the voltage and/or frequency
of the CPU in order to conserve energy.

[0031] Another existing performance issue exhibited by mobile computing
devices involves the bottleneck that often occurs between instructions issued by CPU
to the GPU. For example, the CPU can operate in a sub-optimal mode when the
activity of the GPU is such that the GPU requests new instructions from the CPU at a
rate faster than the CPU can produce the new instructions (e.g., during GPU
benchmark tests). While in the sub-optimal mode, the CPU can operate at a sub-
optimal voltage and/or frequency. Accordingly, when it is determined that a
utilization rate of the GPU is exceeding a threshold level and that the CPU is
operating in a sub-optimal operating mode, the CPU can be configured to enter into
an optimal operating mode, which increases the rate at which the CPU generates
instructions to be executed by the GPU. Adjusting the operating mode of the CPU
can include adjusting the voltage and/or frequency at which the CPU is operating.
Later, when it can be determined that the utilization rate of the GPU is no longer
exceeding the threshold level, the CPU can be configured to enter back into the sub-
optimal operating mode. In this manner, critical GPU workloads—such as graphics
benchmarks—are not hindered by the CPU when the CPU is operating at a sub-
optimal voltage and/or frequency.

[0032] Yet another existing performance issue exhibited by mobile computing

devices involves the bottleneck that is introduced when the CPU manages data flows

7

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

between the memory controller and one or more memory agents. For example, the
CPU can operate in a sub-optimal mode when encoding a video and writing the result
to DRAM at a rate slower than a rate at which the memory interface is capable of
operating. As another example, the CPU can operate in a sub-optimal mode when
executing a flash memory subsystem device driver for the purpose of reading data
from the flash memory subsystem, where executing the driver slowly may increase
access latency. While in the sub-optimal mode, the CPU can operate at a sub-optimal
voltage and/or frequency. Accordingly, when it is determined that a read or write
throughput of traffic between the CPU and the memory controller is exceeding
threshold levels—or, that the read or write throughput of traffic between the flash
memory subsystem and the memory controller is exceeding threshold levels, and that
the CPU is operating in a sub-optimal operating mode—the CPU can be configured to
enter into an optimal operating mode. Later, when it can be determined that these
throughputs are no longer exceeding the threshold levels, the CPU can be configured
to enter back into the sub-optimal operating mode.

[0033] Another existing energy efficiency issue exhibited by mobile computing
devices involves erroneously increasing the voltage and/or frequency of the CPU
solely based on the utilization rate of the CPU. For example, a simple spin loop
workload—such as a loop that frequently checks for a specific condition to be met—
may increase the utilization rate of the CPU to 99% and cause, via conventional
algorithms, the voltage and/or frequency of the CPU to be increased. Importantly, in
this example, such an increase in no way promotes a faster completion of the spin
loop, so energy is wasted in doing so. However, some specific workloads executed
by the CPU—such as those involving integer arithmetic, VFP arithmetic, SIMD
arithmetic and load-store operations—can benefit from an increase in the voltage
and/or frequency of the CPU. Accordingly, yet another embodiment of the invention
involves the monitor analyzing the rate at which certain types of instructions are
being executed by the CPU and scaling the voltage and/or frequency of the CPU
based on the rate. In this manner, wasteful CPU performance increases can be
avoided, thereby saving energy.

[0034] Another existing energy efficiency issue exhibited by mobile computing
devices involves erroneously increasing the voltage and/or frequency of the CPU
solely based on the utilization rate of the CPU while executing workloads for which a

user is not waiting for results. For example, a video game containing a spinloop may

8

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

exhibit high CPU utilization, but increasing the voltage and/or frequency of the CPU
by conventional algorithms will increase CPU power while possibly not increasing
the NFPS produced by the game. By contrast, a circuit layout optimization tool may
also exhibit high CPU utilization, but here increasing the voltage and/or frequency of
the CPU by conventional algorithms may reduce the time a user must wait for the
result of the computation. Accordingly, another embodiment of the invention
involves monitoring the Ul frame rate and increasing the voltage and/or frequency of
the CPU by conventional algorithms only when the UI frame rate is below a threshold
and the CPU utilization is above a threshold. When the UI is not a principal
component of the workload, this embodiment permits the energy budget of the mobile
device to be biased towards CPU-based computation.

[0035] According to these techniques, the default operating mode of the CPU is
minimum performance, and increased performance is provided only to workloads that
can benefit from such an increase. For example, by scaling the operating mode of the
CPU relative to Ul frame rate smoothness, interactive applications that do not benefit
from the higher performance of newer CPUs can save tens to thousands of milliwatts
relative to existing power management algorithms. At the same time, high-end
graphical applications are permitted to access the full compute performance of both
the CPU and the GPU. High-throughput data transaction workloads are similarly
permitted to access the full compute performance of the CPU. Monitoring arithmetic
and load-store instruction densities enables a distinction to be established between
workloads that perform useful computations with additional CPU performance and
those that do not, thereby saving hundreds of milliwatts on applications that task the
CPU with executing “busy loops.” Finally, by considering the UI frame rate, the use
of conventional algorithms that increase CPU performance in response to high CPU
utilization can be enabled when the user is waiting for a time-intensive computation
to complete, but disabled for animation workloads that may not benefit from
increased performance.

[0036] As set forth above, various embodiments of the invention are directed to
scaling of the voltage and/or frequency of a CPU included in a mobile computing
device. A detailed description of the embodiments is provided below in conjunction
with Figures 1, 2A-2E, 3A-3C, and 4A-4E. In particular, Figure 1 illustrates a block
diagram of a mobile computing device 100 configured to implement embodiments of

the invention. As shown in Figure 1, mobile computing device 100 includes

9

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

subsystems such as CPU 102, a memory controller 103, a system memory 104, GPU
106, frame buffer 108, and display device 110. As is well-known, CPU 102 generates
and transmits instructions 103 to GPU 106 for execution, where GPU 106 consumes
the instructions at a rate that is influenced at least by the utilization rate of GPU 106
and a rate at which CPU 102 is generating and transmitting the instructions 103 to
GPU 106. Frame buffer 108 is configured to continually receive and store an
updated sequence of frames that are eventually output to display device 110. Also
shown in Figure 1 are monitor 112 and power manager 114, which are loaded in
system memory 104 and configured to execute on mobile computing device 100. In
one embodiment, system memory 104 include both a DRAM subsystem (not
illustrated) and a flash memory subsystem (not illustrated) that are managed by the
memory controller 103. Although not illustrated in Figure 1, each of monitor 112 and
power manager 114 can run on an operating system (OS) that is configured to execute
on mobile computing device 100. Additionally, monitor 112 and power manager 114
can run on a management co-processor (not illustrated) that is separate and distinct
from the CPU 102.

[0037] As described in greater detail below, monitor 112 is configured to
implement various techniques directed toward identifying circumstances where a
change in the voltage and/or frequency of CPU 102 is beneficial to the overall
performance of mobile computing device 100 and energy savings within mobile
computing device 100. In particular, monitor 112 receives, from a number of
controllers, control signals that scale with a focus on a particular activity within
mobile computing device 100, e.g., the rate of change in the NFPS being input to the
frame buffer 108, the utilization rate of GPU 106, the data throughputs of the memory
controller 103, the rate at which specific types of instructions are being executed by
CPU 102, or the rate at which a user interface is being updated. In turn, monitor 112
processes the control signals and outputs the control signals to power manager 114,
whereupon the power manager 114 correspondingly scales the voltage and/or
frequency of CPU 102. For example, one control signal can slowly increase in value
(e.g., the utilization rate of GPU 106) and cause the power manager 114 to
correspondingly increase the voltage and/or frequency of CPU 102, thereby reducing
or eliminating a potential bottleneck that might occur between the rate at which GPU

106 is able to consume instructions issued by CPU 102.

10

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

[0038] In one embodiment, each controller produces a scalar value—also referred
to herein as a “control effort”—that takes on a value from 0 to 255, where larger
values are expressions of a desire for higher performance. Each of the controllers
produces a control effort value independently of the other controllers. As described in
greater detail below, the control effort value that determines the CPU 102
performance configuration is the maximum of the individual control efforts. Given
the winning control effort, the mapping to a CPU 102 performance configuration may
vary. In one embodiment, the range 0—255 may be linearly mapped to qualified CPU
102 frequencies. In a related embodiment, the mapping may instead be linear in CPU
102 voltage rather than frequency. In another embodiment, the mapping may involve
the use of frequency/voltage dithering to produce a more precise mapping through
pulse width modulation techniques. In yet another embodiment, the mapping may
also determine the number of CPU 102 cores that may be concurrently active in a
multi-core environment. For example, a lower control effort value may restrict the
mobile computing device 100 to single-core operation as a means of conserving
energy. In yet another embodiment, the mapping may also determine the selection of
a primary core or secondary core, where the primary core is more powerful than the
secondary core and is configured to operate during high demand periods, and where
the secondary core is less powerful than the primary core and is configured to operate
during low demand periods.

[0039] Figure 2A illustrates a conceptual diagram 200 of the embodiment directed
to scaling the voltage and/or frequency of CPU 102 based on the NFPS being input to
frame buffer 108. As shown in Figure 2A, the NFPS being input to frame buffer 108
is represented by frame rate 202, which is analyzed by monitor 112 and observed by a
user of mobile computing device 100 via display device 110. Jitter component 204,
which is managed by monitor 112, is configured to analyze (via the outermost loop of
Figure 2A) short-term changes (i.e., cycle-to-cycle jitter) in the NFPS being input to
frame buffer 108 within a short-term threshold amount of time. Notably, the NFPS
being input to frame buffer 108 is correlated to the smoothness of user interfaces
(Uls) that are displayed on display device 110, which significantly impacts overall
user experience. In one embodiment, the cycle-to-cycle jitter is defined as the
difference in instantancous frame rates over two consecutive frame rate samples.
Consider, for example, the absolute times of three sequential frame buffer 108

updates T1, T2 and T3, where the instantaneous frame rate F(1 to 2) = 1/(T2-T1) and

11

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

the instantaneous frame rate F(2 to 3) = 1/(T3-T2). According to this example, the
cycle-to-cycle jitter associated with this sequence is equal to the absolute value of
(F(2 to 3) — F(1 to 2)), which is then output by jitter component 204 and compared at
comparator 206 against a jitter threshold T; 208 (e.g., three frames per second (FPS)).
[0040] As shown in Figure 2A, comparator 206 is configured to output a jitter
delta ej(t) 210 to jitter control signal generator 212. When the output of jitter
component 204 is less than jitter threshold T; 208, the jitter delta e;(t) 210 is negative,
which is what allows the comparator 206 to unwind when performance is sufficient to
enable smooth animation. The jitter control signal generator 212 can be any form of a
controller filter that is closed-loop stable. In one embodiment, the jitter control signal
generator 212 can be an integrator that, in turn, integrates jitter deltas e;(t) 210 as they
are output by comparator 206 and outputs a jitter control signal c;(t) 214. In one
embodiment, jitter control signal generator 212 can be configured to apply a gain K;
to the integrated jitter deltas e;(t) 210 in order to amplify the jitter control signal c;(t)
214. Next, the jitter control signal cj(t) 214 is directed to max-selector 232, which
outputs a maximum of the jitter control signal cj(t) 214, or a trend control signal c(t)
230 that is produced according to the innermost loop of Figure 2A described below.
[0041] More specifically, the innermost loop of Figure 2A represents monitor 112
analyzing long-term changes that occur in the NFPS being input to frame buffer 108
within a long-term threshold amount of time. Specifically, a long-term sample 216
and a long-term sample 218 are analyzed at comparator 220 to produce a trend value
that represents the rate of change of the NFPS being input to frame buffer 108 over
the long-term threshold amount of time. The absolute value of the trend value is then
compared at comparator 222 against a trend threshold T; 224 (e.g., one FPS), and
comparator 222 outputs a trend delta e(t) 226 to trend control signal generator 228.
The trend control signal generator 228 can be any form of a controller filter that is
closed-loop stable. In one embodiment, the trend control signal generator 228 can be
an integrator that, in turn, integrates trend deltas e(t) 226 as they are output by
comparator 222 and outputs the trend control signal c(t) 230. The trend control
signal generator 228 can also be configured to apply a gain K; to the integrated trend
deltas e(t) 226 in order to amplify the trend control signal ci(t) 230.

[0042] In some cases, an animation can exhibit high short-term jitter but is still
stable over the long term. For example, a game that is not performance-limited but

that uses imprecise frame rate timing may display this behavior. To avoid

12

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

unnecessarily increasing CPU 102 performance for these cases, a linkage can exist
between the jitter and trend controllers. More specifically, if the trend control effort
is below some small value epsilon, a jitter value of zero (instead of the actual
measured jitter sample) is supplied to the jitter delta term calculator, which has the
effect of forcing the jitter loop to unwind so long as the trend loop is also unwound.
[0043] As noted above, max-selector 232 is configured to output a maximum of
jitter control signal ¢j(t) 214, or trend control signal ¢(t) 230, as a power management
control signal 234 to power manager 114. In turn, power manager 114 scales the
voltage and/or frequency of CPU 102 according to power management control signal
234. Accordingly, monitor 112 enables the performance of CPU 102 to scale
dynamically in order to reduce or eliminate choppiness in the NFPS being input to
frame buffer 108, thereby providing energy savings and enhancing overall user
experience.

[0044] Notably, at some point, most animations stop. Accordingly, embodiments
of the invention incorporate a threshold amount of time after observing the last frame
buffer 108 update (e.g., tens or hundreds of milliseconds). If no new update arrives in
that time, the integrators are reset (and, therefore, the control efforts) to zero. As a
result, shortly after an animation ends, the Ul control loop will cease to have an
influence on the operating mode of CPU 102.

[0045] Figure 2B illustrates a method 270 for updating an operating mode of CPU
102 based on monitoring a cycle-to-cycle jitter associated with a rate by which a user
interface (UI) is refreshed, according to one embodiment of the invention. Although
the method steps 270 are described in conjunction with Figures 1 and 2A, persons
skilled in the art will understand that any system configured to perform the method
steps, in any order, is within the scope of the invention.

[0046] As shown in Figure 2B, the method 270 begins at step 272, which
monitors a cycle-to-cycle jitter associated with a rate by which a user interface (UI) is
refreshed. At step 274, monitor 112 adjusts an operating mode of the CPU based on
the cycle-to-cycle jitter.

[0047] Figures 2C-2E illustrate a method 230 for scaling the voltage and/or
frequency of CPU 102 based on the NFPS being input to frame buffer 108, according
to one embodiment of the invention. Although the method steps 230 are described in

conjunction with Figures 1 and 2A, persons skilled in the art will understand that any

13

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

system configured to perform the method steps, in any order, is within the scope of
the invention.

[0048] As shown in Figure 2C, the method 230 begins at step 231, where monitor
112 is configured to monitor frames being input into the frame buffer 108. At step
232, monitor 112 establishes a first short-term sample of a NFPS being input into the
frame buffer 108. At step 234, monitor 112 establishes a second short-term sample of
the NFPS being input into the frame buffer 108. At step 236, monitor 112 establishes
a jitter value by taking the absolute value of the difference between the first short-
term sample and the second short-term sample. Notably, steps 231-236 represent
jitter component 204 described above in conjunction with Figure 2A.

[0049] At step 240, monitor 112 outputs a jitter delta value to a jitter integrator.
At step 242, monitor 112 integrates, at the jitter integrator, the jitter delta value with
previously-output jitter delta values to produce a jitter-based power management
control signal. At step 244, monitor 112 outputs the jitter-based power management
control signal.

[0050] At step 245, which is illustrated in Figure 4D, monitor 112 monitors
frames being input into the frame buffer 108. At step 246, monitor 112 establishes a
first long-term sample of the NFPS being input to the frame buffer 108. At step 248,
monitor 112 establishes a second long-term sample of the NFPS being input to the
frame buffer 108. At step 250, monitor 112 establishes a trend value by taking the
absolute value of the difference between the first long-term sample and the second
long-term sample. Notably, steps 245-250 represent long-term sample 216, long-term
sample 218, and comparator 220 described above in conjunction with Figure 2A.
[0051] At step 254, monitor 112 outputs a trend delta value to a trend integrator.
At step 256, monitor 112 integrates, at the trend integrator, the trend delta value with
previously-output trend delta values to produce a trend-based power management
control signal. At step 258, monitor 112 outputs the trend-based power management
control signal.

[0052] Turning now to Figure 2E, at step 260, monitor 112 determines whether
the jitter-based control signal is greater than the trend-based control signal. Notably,
step 260 represents max-selector 232 described above in conjunction with Figure 2A.
If, at step 260, monitor 112 determines that the jitter-based control signal is greater
than the trend-based control signal, then the method 230 proceeds to step 262, where

monitor 112 scales the power and/or frequency of CPU 102 according to the jitter-

14

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

based control signal. Otherwise, the method 230 proceeds to step 264, where monitor
112 scales the power and/or frequency of CPU 102 according to the trend-based
control signal.

[0053] Figure 3A illustrates a conceptual diagram 300 of the embodiment directed
to scaling the power and/or frequency of CPU 102 based on the utilization rate of
GPU 106. As shown in Figure 3A, the conceptual diagram 300 includes a single loop
that is directed to analyzing the utilization rate of GPU 106. In particular, GPU 106
provides GPU utilization rate feedback 302 to comparator 304, which is configured to
compare the GPU utilization rate feedback 302 to a GPU utilization threshold Ty 306
(e.g., 99%).

[0054] If the GPU utilization threshold T, 306 is exceeded by the GPU utilization
rate feedback 302, then comparator 304 outputs a delta eq(t) 308 to control signal
generator 310. The control signal generator 310 can be any form of a controller filter
that is closed-loop stable. In one embodiment, control signal generator 310 can be an
integrator that, in turn, integrates deltas eg(t) 308 as they are output by comparator
304 and outputs a GPU control signal ce(t) 312 to power manager 114. Control signal
generator 310 can be configured to apply a gain K, to the integrated deltas e4(t) 308 in
order to amplify the power management control signal 314. In turn, power manager
114 receives the power management control signal 314 and accordingly scales the
power and/or frequency of CPU 102. In this manner, the performance of CPU 102
scales with the utilization rate of GPU 106 so that CPU 102 is able to issue
instructions at a rate that is commensurate with the rate at which GPU 106 is
consuming the instructions. As a result, bottlenecks that often occur between CPU
102 and GPU 106 are reduced or eliminated, thereby enhancing overall performance
of mobile computing device 100 and ensuring that the full potential of GPU 106 is not
hindered by lack of CPU 102 performance.

[0055] Figure 3B illustrates a method 330 for entering CPU 102 into an optimal
operating mode based on a utilization rate of GPU 106, according to one embodiment
of the invention. Although the method steps 330 are described in conjunction with
Figures 1 and 3A, persons skilled in the art will understand that any system
configured to perform the method steps, in any order, is within the scope of the
invention.

[0056] As shown in Figure 3B, the method 330 begins at step 331, where monitor
112 is configured to monitor the output of GPU 106. At step 332, monitor 112

15

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

samples a current utilization rate of GPU 106. At step 334, monitor 112 determines
whether the current utilization rate exceeds a GPU utilization threshold. If, at step
334, monitor 112 determines that the current utilization rate exceeds the GPU
utilization threshold, then the method 330 proceeds to step 335. At step 335, monitor
112 determines whether CPU 102 is operating in a sub-optimal operating mode. If, at
step 335, monitor 112 determines that CPU 102 is operating in a sub-optimal
operating mode, then the method 330 proceeds to step 336. Otherwise, the method
330 proceeds back to step 331, where steps 331-335 are repeated until the current
utilization rate exceeds the GPU utilization threshold and CPU 102 is operating in a
sub-optimal operating mode. At step 336, monitor 112 causes CPU 102 to enter into
an optimal operating mode where CPU 102 generates instructions for execution by
GPU 106 at a faster rate.

[0057] Figure 3C illustrates a method 350 for scaling the power and/or frequency
of CPU 102 based on the utilization rate of GPU 106, according to one embodiment
of the invention. Although the method steps 350 are described in conjunction with
Figures 1 and 3A, persons skilled in the art will understand that any system
configured to perform the method steps, in any order, is within the scope of the
invention.

[0058] As shown in Figure 3C, the method 350 begins at step 351, where monitor
112 is configured to monitor the output of GPU 106. At step 352, monitor 112
samples a current utilization rate of GPU 106. At step 356, monitor 112 outputs a
GPU utilization delta value to a GPU utilization integrator. Notably, steps 351-356
represent comparator 304 and control signal generator 310 described above in
conjunction with Figure 3A. At step 358, monitor 112 integrates, at the GPU
utilization integrator, the GPU utilization delta value with previously-output GPU
utilization delta values to produce a GPU utilization-based power management
control signal. At step 360, monitor 112 scales the power and/or frequency of CPU
102 according to the GPU utilization-based power management control signal.

[0059] Figure 4A illustrates a conceptual diagram 400 of the embodiment directed
to analyzing the rate at which certain types of instructions are being executed by CPU
102 and scaling the power and/or frequency of CPU 102 based on the rate. As shown
in Figure 4A, monitor 112 analyzes the rate at which four specific types of
instructions are being executed: integer arithmetic instructions 402 (the outermost

loop), SIMD arithmetic instructions 414 (the second outermost loop), VFP

16

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

instructions 426 (the third outermost loop), and load/store instructions 438 (the
innermost loop). Workloads exhibiting high instruction-per-cycle densities of these
instruction types are often well-optimized and can benefit from increases in the power
and/or frequency of CPU 102.

[0060] Beginning with the outermost loop, the integer arithmetic instructions 402
are compared at comparator 404 against an integer threshold T; 406 (e.g., two
hundred fifty instructions per cycle). If the integer threshold T; 406 is exceeded by
the rate at which integer arithmetic instructions 402 are being processed by CPU 102,
then comparator 404 outputs an integer delta ei(t) 408 to integer control signal
generator 410. The integer control signal generator 410 can be any form of a
controller filter that is closed-loop stable. In one embodiment, the integer control
signal generator 410 can be an integrator that, in turn, integrates integer deltas e;(t)
408 as they are output by comparator 404 and outputs an integer control signal ci(t)
412. Next, the integer control signal c;(t) 412 is directed to max-selector 449, which,
as described in greater detail below, outputs a maximum of the integer control signal
ci(t) 412, a SIMD control signal cy(t) 424 that is produced according to the second
outermost loop of Figure 4A, a VFP control signal c,(t) 436 that is produced
according to the third outermost loop of Figure 4A, or a load/store control signal ci(t)
448 that is produced according to the innermost loop of Figure 4A.

[0061] At the second outermost loop of Figure 4A, the SIMD arithmetic
instructions 414 are compared at comparator 416 against a SIMD threshold T, 418
(e.g., one hundred fifty instructions per cycle). If the SIMD threshold T, 418 is
exceeded by the rate at which SIMD arithmetic instructions 414 are being processed
by CPU 102, then comparator 416 outputs a SIMD delta en(t) 420 to SIMD control
signal generator 422. The SIMD control signal generator 422 can be any form of a
controller filter that is closed-loop stable. In one embodiment, the SIMD control
signal generator 422 can be an integrator that, in turn, integrates SIMD deltas ey(t)
420 as they are output by comparator 416 and outputs the SIMD control signal cy(t)
424 to max-selector 449.

[0062] At the third outermost loop of Figure 4A, the VFP instructions 426 are
compared at comparator 430 against a VFP threshold T, 428 (e.g., fifty instructions
per cycle). If the VFP threshold T, 428 is exceeded by the rate at which VFP
instructions 426 are being processed by CPU 102, then comparator 430 outputs a VFP
delta ey(t) 432 to VFP control signal generator 434. The VFP control signal generator

17

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

434 can be any form of a controller filter that is closed-loop stable. In one
embodiment, the VFP control signal generator 434 can be an integrator that, in turn,
integrates VFP deltas ey(t) 432 as they are output by comparator 430 and outputs the
VFP control signal c,(t) 436 to max-selector 449.

[0063] At the innermost loop of Figure 4A, the load/store instructions 438 are
compared at comparator 442 against a load/store threshold Ty, 439. If the load/store
threshold Ty 439 is exceeded by the rate at which load/store instructions 438 are
being processed by CPU 102, then comparator 442 outputs a load/store delta ey (t) 444
to load/store control signal generator 446. The load/store control signal generator 446
can be any form of a controller filter that is closed-loop stable. In one embodiment,
the load/store control signal generator 446 can be an integrator that, in turn, integrates
load/store deltas ep(t) 444 as they are output by comparator 442 and outputs the
load/store control signal c;(t) 448 to max-selector 449.

[0064] As noted above, max-selector 449 is configured to output a maximum of
the integer control signal c;(t) 412, the SIMD control signal c,(t) 424, the VFP control
signal cy(t) 436, and the load/store control signal ci(t) 448 as a power management
control signal 440 to power manager 114. In turn, power manager 114 scales the
power and/or frequency of CPU 102 according to power management control signal
440. Accordingly, monitor 112 enables the performance of CPU 102 to scale
dynamically when specific types of instructions that benefit from such a scaling are
being executing by CPU 102. Notably, monitor 112 can be further configured to
provide similar scaling in response to other types of instructions being executed by
CPU 102, such as load/store instructions.

[0065] Figures 4B-4E illustrate a method 450 for analyzing the rate at which
certain types of instructions are being executed by CPU 102 and scaling the voltage
and/or frequency of CPU 102 based on the rate, according to one embodiment of the
invention. Although the method steps 450 are described in conjunction with Figures
1 and 4A, persons skilled in the art will understand that any system configured to
perform the method steps, in any order, is within the scope of the invention.

[0066] As shown in Figure 4B, the method 450 begins at step 452, where monitor
112 samples a first rate at which SIMD instructions are being executed by a central
processing unit (CPU). At step 456, monitor 112 outputs a SIMD delta value to a
SIMD arithmetic integrator. At step 458, monitor 112 integrates, at the SIMD
arithmetic integrator, the SIMD arithmetic delta value with previously-output SIMD

18

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

arithmetic delta values to produce a SIMD arithmetic-based power management
control signal.

[0067] Turning now to Figure 4C, at step 460, monitor 112 samples a second rate
at which vector floating point (VFP) instructions are being executed by CPU 102. At
step 464, monitor 112 outputs a VFP arithmetic delta value to a VFP arithmetic
integrator. At step 466, monitor 112 integrates, at the VFP arithmetic integrator, the
VFP arithmetic delta value with previously-output VFP delta values to produce a
VFP-based power management control signal.

[0068] Turning now to Figure 4D, at step 468, monitor 112 samples a third rate at
which load/store instructions are being executed by CPU 102. At step 472, monitor
112 outputs a load/store delta value to a load/store integrator. At step 474, monitor
112 integrates, at the load/store integrator, the load/store delta value with previously-
output load/store delta values to produce a load/store-based power management
control signal.

[0069] Turning now to Figure 4E, at step 476, monitor 112 samples a fourth rate
at which integer arithmetic instructions are being executed by CPU 102. At step 480,
monitor 112 outputs an integer arithmetic delta value to an integer arithmetic
integrator. At step 482, monitor 112 integrates, at the integer arithmetic integrator,
the integer arithmetic delta value with previously-output integer arithmetic delta
values to produce an integer arithmetic-based power management control signal.
[0070] At step 484, monitor 112 selects a largest of the SIMD arithmetic-based
power management control signal, the VFP-based power management control signal,
and the integer arithmetic-based power management control signal. At step 486,
monitor 112 scales a power level of the CPU based on the selected power
management control signal.

[0071] As previously noted herein, embodiments of the invention also include a
method for optimizing operations of the CPU 102 where the CPU 102 is configured to
perform transactions with the memory controller 103 that manages access to a DRAM
and a flash memory. According to one embodiment, memory controller 103 is
configured to separately measure the throughput of traffic to and from the CPU 102
and also separately measure the throughput of traffic to and from the flash memory
subsystem. This technique provides increased CPU 102 performance for high-

throughput data transaction workloads, e.g., video encoding and high-performance

19

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

photography. Once memory activity exceeds the relevant threshold(s), CPU
performance is elevated.

[0072] Figure 5A illustrates a conceptual diagram of an embodiment directed to
analyzing a rate at which the CPU 102 performs transactions with the memory
controller 103, according to one embodiment of the invention. As shown in Figure
SA, monitor 112 analyzes the throughput of traffic to and from the CPU and also the
throughput of traffic to and from the flash memory subsystem, which is represented in
Figure 5A as: flash memory OUT 502 (the outermost loop), flash memory IN 514
(the second outermost loop), CPU OUT 526 (the third outermost loop), and CPU IN
538 (the innermost loop), respectively.

[0073] Beginning with the outermost loop, flash memory OUT 502 is compared
at comparator 504 against a flash memory OUT threshold T; 506. If flash memory
OUT threshold T; 506 is exceeded by the rate of flash memory OUT 502, then
comparator 504 outputs a flash memory OUT delta ei(t) 508 to flash memory OUT
control signal generator 510. The flash memory OUT control signal generator 510
can be any form of a controller filter that is closed-loop stable. In one embodiment,
the flash memory OUT control signal generator 510 can be an integrator that, in turn,
integrates flash memory OUT deltas ei(t) 508 as they are output by comparator 504
and outputs a flash memory OUT control signal ci(t) 512. Next, the flash memory
OUT control signal ¢;(t) 512 is directed to max-selector 549, which, as described in
greater detail below, outputs a maximum of the flash memory OUT control signal
ci(t) 512, a flash memory IN control signal c,(t) 524 that is produced according to the
second outermost loop of Figure 5A, a CPU OUT control signal cy(t) 536 that is
produced according to the third outermost loop of Figure 5A, or a CPU IN control
signal cr(t) 548 that is produced according to the innermost loop of Figure 5A.

[0074] At the second outermost loop of Figure 5A, flash memory IN 514 is
compared at comparator 516 against a flash memory IN threshold T, 518. If flash
memory IN threshold T, 518 is exceeded by the rate of flash memory IN 514, then
comparator 516 outputs a flash memory IN delta e,(t) 520 to flash memory IN control
signal generator 522. The flash memory IN control signal generator 522 can be any
form of a controller filter that is closed-loop stable. In one embodiment, the flash
memory IN control signal generator 522 can be an integrator that, in turn, integrates
flash memory IN deltas en(t) 520 as they are output by comparator 516 and outputs
the flash memory IN control signal cy(t) 524 to max-selector 549.

20

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

[0075] At the third outermost loop of Figure 5A, CPU OUT 526 is compared at
comparator 530 against a CPU OUT threshold T, 528. If CPU OUT threshold Ty, 528
is exceeded by the rate of CPU OUT 526, then comparator 530 outputs a CPU OUT
delta e, (t) 532 to CPU OUT control signal generator 534. The CPU OUT control
signal generator 534 can be any form of a controller filter that is closed-loop stable.
In one embodiment, the CPU OUT control signal generator 534 can be an integrator
that, in turn, integrates CPU OUT deltas e (t) 532 as they are output by comparator
530 and outputs the CPU OUT control signal c,(t) 536 to max-selector 549.

[0076] At the innermost loop of Figure 5A, CPU IN 538 is compared at
comparator 542 against a CPU IN threshold Ty, 539. If CPU IN threshold Ty, 539 is
exceeded by the rate of CPU IN 538, then comparator 542 outputs a CPU IN delta
er(t) 544 to CPU IN control signal generator 546. The CPU IN control signal
generator 546 can be any form of a controller filter that is closed-loop stable. In one
embodiment, the CPU IN control signal generator 546 can be an integrator that, in
turn, integrates CPU IN deltas er(t) 544 as they are output by comparator 542 and
outputs the CPU IN control signal c1(t) 548 to max-selector 549.

[0077] As noted above, max-selector 549 is configured to output a maximum of
the flash memory OUT control signal ci(t) 512, the flash memory IN control signal
cn(t) 524, the CPU OUT control signal c,(t) 536, and the CPU IN control signal cy(t)
548 as a power management control signal 540 to power manager 114. In turn, power
manager 114 scales the power and/or frequency of CPU 102 according to power
management control signal 540. Accordingly, monitor 112 enables the performance
of CPU 102 to scale dynamically when executing high-throughput data transaction
workloads, e.g., video encoding and high-performance photography.

[0078] Figure 5B illustrates a method 550 for optimizing operations of CPU 102
when CPU 102 is configured to perform transactions with memory controller 103 and
memory controller 103 is configured to manage access to a DRAM and a flash
memory, according to one embodiment of the invention. As shown, the method 550
begins at step 552, where monitor 112 samples first, second, third, and fourth rates at
which traffic is being throughput through a memory controller, where the first rate
and the second rate correspond to traffic throughput to/from the CPU 102,
respectively, and the third rate and the fourth rate correspond to traffic throughput

to/from a flash memory subsystem, respectively.

21

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

[0079] At step 554, monitor 112 outputs, for each of the first, second, third, and
fourth rates, a throughput delta value to a first, second, third, and fourth throughput
integrator, respectively. At step 556, monitor 112, at each of the first, second, third,
and fourth throughput integrators, integrate the first, second, third, and fourth
throughput delta values, respectively, with previously-output first, second, third, and
fourth throughput delta values, respectively, to produce first, second, third, and fourth
throughput-based power management control signals, respectively.

[0080] At step 558, monitor 112 selects a largest of the first, second, third, and
fourth throughput-based power management control signals. At step 560, monitor
112 scales a power level of the CPU 102 on the selected power management control
signal.

[0081] Figure 6A illustrates a conceptual diagram 600 of an embodiment directed
to scaling the voltage and/or frequency of the CPU 102 when the CPU 102 executes
workloads that have characteristics of traditional desktop/laptop computer
applications, according to one embodiment of the invention. In particular, according
to this embodiment, the voltage and/or frequency of the CPU 102 is only scaled when
the mobile computing device 100 does not appear to be executing a Ul-oriented
workload. As illustrated in Figure 6A, the technique involves two control loops,
where the first control loop is configured to monitor CPU 102 for a CPU complex (or
“package”) utilization measurement 601, and where the second control loop is
configured to monitor CPU 102 for a core utilization measurement 613.

[0082] According to the embodiment illustrated in Figure 6A, the first control
loop involves measuring a fraction of the sample interval in which at least one core of
CPU 102 is active. The complex utilization measurement 601 is compared at
comparator 602 against a complex utilization target 603 (e.g., 99%), and a delta ey(t)
604 is output by comparator 602 to an integrator 605. Next, the output of integrator
605 1s fed into a max-selector 628, which outputs a maximum of the output of the
integrator 605 and an integrator 624 of the second loop (described in greater detail
below).

[0083] The second control loop involves measuring the duty factor of the cores of
the CPU 102 by adding up the time each core spends active. For example, a dual-core
CPU 102 would report a utilization of 100% if both of the cores were active
throughout an entire sample interval. As shown in Figure 6A, the core utilization

measurement 613 is compared at comparator 614 against a core utilization target 615

22

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

(e.g., 90%), and a delta e,(t) 616 is output by comparator 614 to an integrator 624,
Next, the output of integrator 624 is fed into the max-selector 628, which, as noted
above, outputs a maximum of the output of the integrator 605 and the integrator 624.
Finally, component 630 takes into account whether or not a threshold NFPS are being
input into the frame buffer 108. In particular, if a threshold NFPS (e.g., 15 FPS) are
being input into the frame buffer 108, then the output of the max-selector 628 is not
fed into the power manager 114; otherwise, the output of the max-selector 628 is fed
into the power manager 114, and the voltage and/or frequency of the CPU 102 is
scaled according to the output of the max-selector 628.

[0084] Figure 6B illustrates a method 650 for scaling the voltage and/or
frequency of a CPU when the CPU executes workloads that have characteristics of
traditional desktop/laptop computer applications, according to one embodiment of the
invention.

[0085] As shown, the method 650 begins at step 652, where monitor 112
generates a first control signal based at least in part on measuring a sample interval in
which at least one core of a central processing unit (CPU) is active. At step 654,
monitor 112 generates a second control signal based at least in part on measuring an
amount of time that each core of the CPU is active. At step 656, monitor 112 selects
a maximum of the first control signal and the second control signal. At step 658,
monitor 112 determines if a user interface activity level exceeds a threshold (e.g., by
monitoring a NFPS being input into the frame buffer 108). If, at step 658, monitor
112 determines that the user interface activity level exceeds the threshold, then
method 650 ends; otherwise, at step 660, monitor 112 scales a voltage and/or
frequency of the CPU based on the control signal selected at step 656.

[0086] Although the foregoing invention has been described in detail by way of
illustration and example for purposes of clarity and understanding, it will be
recognized that the above described invention may be embodied in numerous other
specific variations and embodiments without departing from the spirit or essential
characteristics of the invention. Certain changes and modifications may be practiced,
and it is understood that the invention is not to be limited by the foregoing details, but

rather is to be defined by the scope of the appended claims.

23

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

CLAIMS

What is claimed is:

1. A method for updating an operating mode of a central processing unit (CPU),
comprising:
monitoring a cycle-to-cycle jitter associated with a rate by which a user
interface (UI) is refreshed; and
adjusting an operating mode of the CPU based on the cycle-to-cycle jitter.
2. The method of claim 1, wherein adjusting the operating mode of the CPU
comprises adjusting the voltage and/or frequency at which the CPU is operating.
3. The method of claim 1, wherein monitoring the cycle-to-cycle jitter comprises
analyzing a rate of change in a number of frames per second (NFPS) being input to a
frame buffer associated with the CPU.
4, The method of claim 1, wherein monitoring the cycle-to-cycle jitter comprises
establishing:
a jitter control signal based on short-term sampling of the NFPS being input to
the frame buffer; and
a trend control signal based on long-term sampling of the NFPS being input to
the frame buffer.
5. The method of claim 4, wherein the operating mode of the CPU is adjusted via
a control signal that is selected from a maximum of the jitter control signal and the
trend control signal.
6. The method of claim 4, further comprising applying a first gain value to the
jitter control signal and applying a second gain value to the trend control signal.
7. The method of claim 1, wherein the CPU is a central processing unit (CPU)
included in a mobile computing device.
8. In a mobile computing device having a central processing unit (CPU)
configured to issue instructions to a graphical processing unit (GPU), a method for
optimizing operations of the CPU, comprising:
determining that a utilization rate of the GPU is exceeding a threshold level;
determining that the CPU is operating in a sub-optimal operating mode; and
causing the CPU to enter into an optimal operating mode where the CPU

generates instructions for execution by the GPU at a faster rate.

24

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

9. The method of claim 8, wherein causing the CPU to enter into the optimal
operating mode comprises:
establishing a control signal by a control signal generator.
10. The method of claim 8, wherein causing the CPU to enter into the optimal
operating mode comprises adjusting a power and/or frequency at which the CPU is
operating.
11. The method of claim &, further comprising:
determining that the utilization rate of the GPU is no longer exceeding the
threshold level; and
causing the CPU to enter back into the sub-optimal operating mode.
12. The method of claim 8, wherein the threshold level is a dynamic value that is
adjusted to influence when the CPU enters into the optimal operating mode or enters
into the sub-optimal operating mode.
13. A method for updating an operating mode of a central processing unit (CPU),
comprising:
determining that the CPU is tasked with executing instructions that are
associated with a high instruction-per-cycle density; and
causing the CPU to enter into a high-performance operating mode to cause an
increase in the rate at which the CPU executes the instructions.
14. The method of claim 13, wherein the instructions comprise integer arithmetic
instructions, single instruction multiple data (SIMD) instructions, vector floating
point (VFP) instructions, and load/store instructions.
15. The method of claim 14, wherein the step of determining comprises
establishing:
an integer arithmetic control signal based on the rate at which integer
arithmetic instructions are being executed by the CPU;
a SIMD control signal based on the rate at which SIMD instructions are being
executed by the CPU;
a VFP control signal based on the rate at which VFP instructions are being
executed by the CPU; and
a load/store control signal based on the rate at which load/store instructions

are being executed by the CPU.

25

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

16. The method of claim 15, wherein the operating mode of the CPU is adjusted
via a control signal that is selected from a maximum of the integer arithmetic control
signal, the SIMD control signal, the VFP control signal, and the load/store control
signal.
17. The method of claim 15, further comprising applying a first gain value to the
integer arithmetic control signal, applying a second gain value to the SIMD control
signal, applying a third gain value to the VFP control signal, and applying a fourth
gain value to the load/store control signal.\
18. A system, comprising;
a central processing unit (CPU);
a frame buffer; and
a memory storing instructions that, when executed by the CPU, cause the CPU
to implement a method, wherein the method comprises:
monitoring a cycle-to-cycle jitter associated with a rate by which a
user interface (UI) is refreshed; an
adjusting an operating mode of the CPU based on the cycle-to-cycle
Jitter.
19. The system of claim 18, wherein adjusting the operating mode of the CPU
comprises adjusting the power and/or frequency at which the CPU is operating.
20. The system of claim 18, wherein monitoring the cycle-to-cycle jitter
comprises analyzing a rate of change in a number of frames per second (NFPS) being
input to the frame buffer.
21. The system of claim 18, wherein monitoring the cycle-to-cycle jitter
comprises establishing:
a jitter control signal based on short-term sampling of the NFPS being input to
the frame buffer; and
a trend control signal based on long-term sampling of the NFPS being input to
the frame buffer.
22. The system of claim 21, wherein the jitter control signal and the trend control
signal are used to produce a final control signal whose value maps to a particular
operating mode of the CPU.
23. The system of claim 22, wherein the value of the final control signal defines a

number of cores to be operating within the CPU.

26

WO 2014/092840 PCT/US2013/062024

10

15

20

25

30

24. A method for optimizing operations of a central processing unit (CPU) that is
configured to perform transactions with a memory controller, the method comprising:
monitoring data throughput within the memory controller, wherein the
memory controller is configured to interface with a dynamic random
access memory (DRAM) and a flash memory; and
adjusting an operating mode of the CPU based on the monitored data
throughput.
25. The method of claim 24, wherein monitoring the data throughput includes:
monitoring data throughput to and from the CPU; and
monitoring data throughput to and from the flash memory.
26. The method of claim 25, further comprising:
establishing first and second control signals based on the monitored data
throughput to and from the CPU, respectively; and
establishing third and fourth control signals based on the monitored data
throughput to and from the flash memory, respectively.
27. The method of claim 26, further comprising a final control signal based on a
maximum of the first, second, third, and fourth control signals, wherein the operating
mode of the CPU is based on the final control signal.
28. A method for updating an operating mode of a central processing unit (CPU)
when the CPU is executing workloads that are characteristic of traditional
desktop/laptop computer applications, the method comprising:
generating a first control signal based at least in part on measuring a sample
interval in which at least one core of the CPU is active;
generating a second control signal based at least in part on measuring an
amount of time that each core of the CPU is active; and
adjusting the operating mode of the CPU based on a maximum of the first
control signal and the second control signal when less than a threshold
number of frames per second are being input into a frame buffer.
29. The method of claim 28, wherein adjusting the operating mode of the CPU
comprises adjusting the voltage and/or frequency at which the CPU is operating.
30. The method of claim 28, further comprising applying a first gain value to the

first control signal and applying a second gain value to the second control signal.

27

WO 2014/092840 PCT/US2013/062024

31. The method of claim 28, wherein the CPU is a central processing unit (CPU)

included in a mobile computing device.

28

WO 2014/092840 PCT/US2013/062024

1/18
Memory Controller
103
Memory 104
e s Central Processing Unit P
¢ (CPU) 102 ¢
Monitor < Instruct; Power Manager
112 nstructions (PM) 114
103
A
¢ Craphics Processing Unit » T
(GPU) 106

® Frame Buffer (FB) 108

Display Device 110

FIG. 1

PCT/US2013/062024

WO 2014/092840

V< DIA

0T

2/18

A 4

101[

91¢
wId [-3u0]

81¢
W [-3U0T

8TC < w
_—~ 0tc 97T pTT
1,
! (12 Tonuo) pudiy, () eija(pudIL, ' PIOYSOIY [, Uiy,
801 |, 01 |, VI |,
< @ [{] 00 [na [¢ cee
1 14%4
C0T drey swelq V€T """ (1) jonuo)) 1ONI[v+
[eudIS [0nU0)
JuswSRURIA rave < \ﬁ
10MOJ w <
01¢C
(1) ey JonIf
00T __

[o1u0) Ay awelq 1N

80T
'L PIoyso L, sopif

WO 2014/092840 PCT/US2013/062024

3/18

Monitor a cycle-to-cycle jitter associated with a rate by which a user
interface (Ul) is refreshed
272

Adjust an operating mode of the CPU based on the cycle-to-cycle jitter
274

End

FIG. 2B

WO 2014/092840 PCT/US2013/062024

4/18

K230
(A)

Monitor frames being input into a frame buffer
231

l

Establish a first short-term sample of a number of frames per second
(NFPS) being input to the frame buffer
232

l

Establish a second short-term sample of a NFPS being input to the frame
buffer
234

l

Establish a jitter value by taking the absolute value of the difference
between the first short-term sample and the second short-term sample
236

l

Output a jitter delta value to a jitter integrator
240

l

At the jitter integrator, integrate the jitter delta value with previously-
output jitter delta values to produce a jitter-based power management
control signal
242

l

Output the jitter-based power management control signal
244

FIG. 2C

WO 2014/092840 PCT/US2013/062024

5/18
o 230

Monitor frames being input to a frame buffer
245

:

Establish a first long-term sample of the NFPS being input to the frame
buffer
246

!

Establish a second long-term sample of the NFPS being input to the frame
buffer
248

:

Establish a trend value by taking the absolute value of the difference
between the first long-term sample and the second long-term sample
250

:

Output a trend delta value to a trend integrator
254

!

At the trend integrator, integrate the trend delta value with previously-
output trend delta values to produce a trend-based power management
control signal
256

:

Output the trend-based power management control signal
258

FIG. 2D

WO 2014/092840 PCT/US2013/062024

6/18

The jitter-based
control signal is greater than the

trend-based control
signal? 260

NO

Scale the power and/or frequency of a central processing unit (CPU)
according to the jitter-based control signal
262

Scale the power and/or frequency of the CPU according to the trend-based
control signal <«
264

End

FIG. 2E

PCT/US2013/062024

WO 2014/092840

7/18

901
ndo

Ve DIA

0¢
Jorqpadd
dyey uonezinn NdO

S

0re

co1 suoponysuy /| ! J
Nd w
(483
(1)% Jonuo) NdH
01 _
ndd A
1483
[eudIS [01U0)
JuSUOSRURIA
Iomod
00¢ 101U0)
20URWIONI™ NdD —

80€
W2 weg

90¢
3L poysaiy,
uonezimn Ndo

WO 2014/092840 PCT/US2013/062024

8/18

K 330
(Begin)

A 4

Monitor a graphics processing unit (GPU)
331

Sample a current utilization rate of a GPU
332

The current
utilization rate exceeds a GPU
NO utilization threshold?
334

The CPU is operating
in a sub-optimal operating mode?
335

NO

Cause CPU to enter into an optimal operating mode where the CPU
generates instructions for execution by the GPU at a faster rate
336

End

FIG. 3B

WO 2014/092840 PCT/US2013/062024

9/18 — 350

Monitor a graphics processing unit (GPU)
351

Sample a current utilization rate of a GPU
352

Output a GPU utilization delta value to a GPU utilization integrator
356

At the GPU utilization integrator, integrate the GPU utilization delta value
with previously-output GPU utilization delta values to produce a GPU
utilization-based power management control signal
358

Scale a power level of a central processing unit (CPU) according to the
GPU utilization-based power management control signal
360

End

FIG. 3C

PCT/US2013/062024

WO 2014/092840

10/18

Vv 'DIA

137
210)S/peOT
w 1474
) 77 e 6ty 9Ty
(1)10 Jomuo) (1)10 ypop 2101S/pROT LL PIOYsaIy L, (ddA) yurod
dI0)S/peO] 210)S/PROT 3uneorq
J0JOOA
w 14374
9ty
N (43 7% 8Ty
(2)' Jonu0) () eOP dJA "L PIOUSONL ddAA \ viy
ddA dNIS
A 4
1l | vl | _ P 187
ndd [ma [0 ory) w e 3 <
- 1 evgoﬂwwqoo 0cy 819 1/. 0p
1)% BIOP AINIS “L Proysary L dNIS
[eudIS [01U0) ANIS ® P Togaug
JuSWSRURIA]) 4
omog \
< 174017
w 0¥ < w X
Ly 80% 90
(1) Jonuo) (1) vyop 108011 'L PIOYSOIY T, 103Uy

103U

00y 1omu0)

oouewIOLRd NdD

WO 2014/092840 PCT/US2013/062024

11/18

K 450

A 4

Sample a first rate at which SIMD arithmetic instructions are being
executed by a central processing unit (CPU)
452

A 4

Output a SIMD arithmetic delta value to a SIMD arithmetic integrator
456

A 4

At the SIMD arithmetic integrator, integrate the SIMD arithmetic delta
value with previously-output SIMD arithmetic delta values to produce a

SIMD arithmetic-based power management control signal
458

®

FIG. 4B

WO 2014/092840 PCT/US2013/062024

12/18

Sample a second rate at which vector floating point (VFP) instructions are
being executed by the CPU
460

Output a VFP arithmetic delta value to a VFP arithmetic integrator
464

At the VFP arithmetic integrator, integrate the VFP arithmetic delta value
with previously-output VFP delta values to produce a VFP-based power
management control signal
466

FIG. 4C

WO 2014/092840 PCT/US2013/062024

13/18
K 450

Sample a third rate at which load/store instructions are being executed by
the CPU
468

Output a load/store delta value to a load/store integrator
472

At the load/store integrator, integrate the load/store delta value with
previously-output load/store delta values to produce a load/store-based
power management control signal
474

FIG. 4D

WO 2014/092840 PCT/US2013/062024

14/18
K 450

Sample a fourth rate at which integer arithmetic instructions are being
executed by the CPU
476

|

Output an integer arithmetic delta value to an integer arithmetic integrator
480

l

At the integer arithmetic integrator, integrate the integer arithmetic delta
value with previously-output integer arithmetic delta values to produce an
integer arithmetic-based power management control signal
482

Select a largest of the SIMD arithmetic-based power management control
signal, the VFP-based power management control signal, the load/store-
based power management control signal, and the integer arithmetic-based
power management control signal
484

l

Scale a power level of the CPU based on the selected power management
control signal
486

End

FIG. 4E

PCT/US2013/062024

WO 2014/092840

VS DIA

8¢S
ur NdD
w <
8¥S
7S (0)1o 6ts
(1)1 Jonuo) ®)9p Ul NdD 11 proysoayy, / 9¢s
ur NdD ur NdD mo NdO
1499
©)
Ay 9¢¢
15 K (439 8TS
i (3)* Jonuo) (o wPP N0 NdD *L PIOYSOIL / vis
mo Ndd O NdD TEd
\ 4 A 4
o1 || vt | . « 9I¢
na | | wa | ors X w -~) w <
A VTS /.
0zS 81¢S
0FS (1) jonuo) U5 By7op U USE “L Plogsory cos
e oo . (1) e3[op U[yserq e —— mo yse[q
JudwZRURIA -
1DMod \
~ [48Y 30S 90¢
(1) jouo) ()% B9 NQ YSeld AL proysaiq],
006 [0nu0) o~ mo yserd mo yserq

QOUBWIONYJ ATOWA

WO 2014/092840 PCT/US2013/062024

16/18
f 550

Sample first, second, third, and fourth rates at which traffic is being
throughput through a memory controller, where the first rate and the
second rate correspond to traffic throughput to/from a central processing
unit (CPU), respectively, and the third rate and the fourth rate correspond
to traffic throughput to/from a flash memory subsystem, respectively
552

l

Output, for each of the first, second, third, and fourth rates, a throughput
delta value to a first, second, third, and fourth throughput integrator,
respectively
554

l

At each of the first, second, third, and fourth throughput integrators,
integrate the first, second, third, and fourth throughput delta values,
respectively, with previously-output first, second, third, and fourth
throughput delta values, respectively, to produce first, second, third, and
fourth throughput-based power management control signals, respectively
556

l

Select a largest of the first, second, third, and fourth throughput-based
power management control signals
558

l

Scale a power level of a CPU and/or the flash memory based on the
selected power management control signal
560

End
FIG. 5B

PCT/US2013/062024

WO 2014/092840

17/18

V9 'DIA

<01
ndo

009 —

149!
Nd

Jsuruuny 10

0¢9

109
(1) JuOWAINSBIN H

uonezinn xodwo) €19

(3)n JuUOWAINSBIN
H uonezIn) 910D

8¢9

$09
09
(Mo mred
€09
1038181, UONEZI[NN)
xd1dwo)
9
919
()" wipQg

$19 393re],
uonezI[n) 910D

WO 2014/092840 PCT/US2013/062024

18/18
K 650

Generate a first control signal based at least in part on measuring a sample
interval in which at least one core of a central processing unit (CPU) is
active
652

Generate a second control signal based at least in part on measuring an
amount of time that each core of the CPU is active
654

Select a maximum of the first control signal and the second control signal
656

User interface
activity level exceeds a threshold?

YES 658

Scale a voltage and/or frequency of the CPU based on the selected control
signal
660

End

FIG. 6B

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/062024

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 1/26(2006.01)i, GOGF 1/08(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GOG6F 1/26; GO6F 11/30; HO4B 3/28; GO1R 23/16; GO6F 15/173; GO6F 15/00;, HO3K 17/16; GO6T 1/20;
GO6T 1/60; GO6F 9/00; GO1R 13/34; GO6T 1/00; GO6F 11/00; GO6F 13/00; GO6F 1/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords:

frequency, CPU, jitter, rate, user, interface, GPU, instruction, cycle, memory, control, signal, threshold

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2011-0031996 A1 (AFSHIN MOMTAZ) 10 February 2011 1-2,7
See paragraphs [0005], [0012], [0020], [0032], [0048], [0054], [0056];
and figures 1, 3.

Y 18-19
A 3-6,20-23
Y WO 1999-046608 A1 (LECROY S.A.) 16 September 1999 18-19

See page 14, lines 5-10; and figures 12-13.

X US 2012-0162234 A1 (PAUL BLINZER et al.) 28 June 2012 8-10
See paragraphs [0016], [0037], [0044], [0046], [0080], [0091], [0105];
and figures 1A, 3.

A 11-12
A US 2012-0249564 A1 (WANGGEN LIU et al.) 04 October 2012 8-12
See paragraphs [0028]-[0029], [0037]; and figures 1-3.
X US 2006-0106923 Al (RAJEEV BALASUBRAMONIAN et al.) 18 May 2006 13
See paragraphs [0006], [0048]-[0049]; and figures 3-7.
Y 14
A 15-17
g Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
22 January 2014 (22.01.2014) 23 January 2014 (23.01.2014)
Name and mailing address of the [ISA/KR Authorized officer
Korean Intellectual Property Office
N 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, LEE, Dong Yun
. * 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8734

Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2013/062024
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2005-0125637 A1 (WILCO DIJKSTRA et al.) 09 June 2005 14
See paragraphs [0009]-[0010], [0114], [0139], [0243]; and figures 1, 8-9.
X US 2007-0250689 A1 (ARIS ARISTODEMOU et al.) 25 October 2007 24-25
See paragraphs [0020], [0023], [0047], [0056], [0058]; and figures 2-3.
A 26-27
A US 2010-0077232 A1 (SANJEEV JAHAGIRDAR et al.) 25 March 2010 24-27
See paragraphs [0017], [0028]-[0029], [0034]; and figures 1, 3.
A US 2002-0087291 A1 (BARNES COOPER) 04 July 2002 28-31
See paragraphs [0020], [0023]-[0024]; and figures 2, 7.
A WO 1995-031782 A1 (AST RESEARCH, INC.) 23 November 1995 28-31

See page 4, lines 24-29; page 5, lines 15-20; and figures 1, 13.

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/062024

Box No. Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:;

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Group [; Claims 1-7 and 18-23, drawn to a method and a system for updating an operating mode of a central processing unit
(CPU) based on a cycle-to-cycle jitter.

Group II; Claims 8-12, drawn to a method for optimizing operations of a central processing unit (CPU) in a mobile
computing device having the CPU configured to issue instructions to a graphical processing unit (GPU).

Group III: Claims 13-17, drawn to a method for updating an operating mode of a central processing unit (CPU) with
executing instructions.

Group IV: Claims 24-27, drawn to a method for optimizing operations of a central processing unit (CPU) that is configured
to perform transactions with a memory controller.

Group V: Claims 28-31, drawn to a method for updating an operating mode of a central processing unit (CPU) when the
CPU is executing workloads that are characteristic of traditional desktop/laptop computer applications..

1. |:| As all required addtional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment
of any additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4, |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest |:| The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.
|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/062024
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011-0031996 Al 10/02/2011 US 2010-0182045 Al 22/07/2010
US 7839161 B2 23/11/2010
US 8289045 B2 16/10/2012
WO 99-46608 Al 16/09/1999 AT 273519 T 15/08/2004
AU 1999-30690 Al 27/09/1999
AU 1999-30690 B2 27/03/2003
CA 2323085 Al 16/09/1999
CN 1230683 CO 07/12/2005
CN 1292876 AO 25/04/2001
DE 69919337 D1 16/09/2004
DE 69919337 T2 01/09/2005
EP 1062521 Al 27/12/2000
EP 1062521 B1 11/08/2004
JP 2002-506975 A 05/03/2002
NZ 506934 A 20/12/2002
US 2001-0001850 Al 24/05/2001
US 6195617 Bl 27/02/2001
US 6311138 B2 30/10/2001
US 2012-0162234 Al 28/06/2012 EP 2652611 Al 23/10/2013
US 2012-0249564 Al 04/10/2012 CN 102656603 A 05/09/2012
EP 2513860 Al 24/10/2012
WO 2011-072419 Al 23/06/2011
US 2006-0106923 Al 18/05/2006 CN 101023417 A 22/08/2007
EP 1771792 A2 11/04/2007
EP 1771792 A 17/12/2008
JP 2008-502083 A 24/01/2008
KR 10-2007-0022386 A 26/02/2007
KR 10-2007-0072848 A 06/07/2007
US 2009-0216997 Al 27/08/2009
US 7490220 B2 10/02/2009
US 8103856 B2 24/01/2012
WO 2006-083291 A2 10/08/2006
WO 2006-083291 A3 11/01/2007
US 2005-0125637 Al 09/06/2005 GB 0328524 DO 14/01/2004
GB 2411973 A 14/09/2005
GB 2411973 B 27/09/2006
JP 2005-174299 A 30/06/2005
JP 2011-048860 A 10/03/2011
JP 4708761 B2 22/06/2011
US 7689811 B2 30/03/2010
US 2007-0250689 Al 25/10/2007 WO 2007-112031 A2 04/10/2007
WO 2007-112031 A3 02/10/2008

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/062024
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010-0077232 Al 25/03/2010 CN 101676833 A 24/03/2010
CN 101676833 B 05/12/2012
DE 102009041723 Al 15/04/2010
DE 102009041723 B4 29/05/2013
JP 2012-503233 A 02/02/2012
JP 5090569 B2 05/12/2012
KR 10-1254878 Bl 15/04/2013
KR 10-2011-0055674 A 25/05/2011
TW 201024986 A 01/07/2010
US 2012-210105 Al 16/08/2012
US 8028181 B2 27/09/2011
WO 2010-033446 A2 25/03/2010
WO 2010-033446 A3 27/05/2010
US 2002-0087291 Al 04/07/2002 AT 338304 T 15/09/2006
AU 2002-226936 Al 16/07/2002
AU 2002-226936 A8 16/07/2002
BR 0116651 A 13/07/2004
CN 100338581 CO 19/09/2007
CN 1633644 A 29/06/2005
DE 60122780 D1 12/10/2006
DE 60122780 T2 13/09/2007
EP 1358557 A2 05/11/2003
EP 1358557 Bl 30/08/2006
HK 1058088 Al 13/04/2007
TW 552547 A 11/09/2003
US 6711526 B2 23/03/2004
WO 02-054244 A2 11/07/2002
WO 02-054244 A3 12/09/2003
WO 95-31782 Al 23/11/1995 AU 2364095 A 05/12/1995
CA 2186349 Al 23/11/1995
CA 2186349 C 23/09/2008
US 05564015 A 08/10/1996

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - wo-search-report
	Page 49 - wo-search-report
	Page 50 - wo-search-report
	Page 51 - wo-search-report
	Page 52 - wo-search-report

