(12) STANDARD PATENT (11) Application No. AU 2006291331 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Script markup
(51) International Patent Classification(s)
GOG6F 17/00 (2006.01) GO6F 17/21 (2006.01)

GOG6F 3/14 (2006.01)
(21) Application No: 2006291331 (22) Date of Filing: 2006.08.29
(87) WIPONo: WO07/032925

(30) Priority Data

(31) Number (32) Date (33) Country
60/716,293 2005.09.12 us
11/318,305 2005.12.23 us

(43) Publication Date: 2007.03.22

(44) Accepted Journal Date: 2011.03.31

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Kothari, Nikhil;Le Roy, Bertrand

(74) Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

(56) Related Art
US 6748569 B1
WO 2001/042977 A1

wO 2007/032925 A1 | IR 00 OO 0 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization _‘7"‘)
International Bureau '

(43) International Publication Date
22 March 2007 (22.03.2007)

DR
|0 R O .0 O 0

(10) International Publication Number

WO 2007/032925 Al

(51) International Patent Classification:
GOGF 17/00 (2006.01) GOGF 3/14 (2006.01)
GOGF 17/21 (2006.01)

(21) International Application Number:

PCT/US2006/034121
(22) International Filing Date: 29 August 2006 (29.08.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/716,293 12 September 2005 (12.09.2005) US
11/318,305 23 December 2005 (23.12.2005) US
(71) Applicant (for all designated States except US): MI-

CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: KOTHARI, Nikhil; One Microsoft Way, Red-
mond, Washington 98052-6399 (US). LE ROY, Bertrand;
One Microsoft Way, Redmond, Washington 98052-6399

(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, 8Y, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SCRIPT MARKUP

MARKUP DOCUMENT ™\ 108

(57) Abstract: A script markup language
provides a declarative mechanism for
defining script based interactive behavior
and application logic associated with a

GENERAL MARKUP ™\ _202

SCRIPT MARKUP ’\2/04
<script element/> ™\ 210

<general markup element A/>—_206
<general markup element B/>—~ 208

<general markup element Z/5~_210

<reference element/> 212
<components element/>—~_214

document. The script markup defining the
interactive behavior and application logic
is presented as an independent portion of
the markup for the document, separated
from any markup concerning the content
and presentation of the document.

10

15

20

25

WO 2007/032925 PCT/US2006/034121

SCRIPT MARKUP

BACKGROUND

Historically, markup was used to refer to the process of marking manuscript copy
for typesetting with directions for formatting such as use of type fonts and sizes, spacing,
indentation, etc. In today's digital age, markup refers to electronic markup, i.e., the
internal and sometimes invisible codes in an electronic document that describe the
formatting of the document. Generally, a user can view the markup of an electronic
document by looking at the source code of the document with the browser displaying the
electronic document. The electronic markup of a document generally provides encoding
of text as well as details about the structure, appearance and presentation of the text and
content in the document.

The markup of an electronic document usually is programmed using a markup
language. A markup language provides syntax and procedures for embedding in a
document tags that control the formatting of the text when the document is viewed by a
special application such as a Web browser. Commonly used electronic markup languages
include HTML, XML, and ASP.NET. Traditionally, markup languages are used to design
the content and appearance of a static document.

However, for an interactive application such as a Web application, the content
and/or presentation of a document such as a Web page may change, for example, based on
user input. The markup of the document thus needs to be accompanied by information
governing the behavior of the document. Traditionally, document behavior has been
implemented procedurally in a script. To provide dynamic document behavior, a markup
of the document may call on methods in the script at the appropriate time. The
intermingling of markup and calls to script methods thus makes it difficult to
independently design the markup for a document. Meanwhile, because a script language
traditionally has been procedural and imperative, a user of 2 document usually cannot use

the script language to design a specific behavior for the document.

-1-

23 Feb 2011

2006291331

10

15

20

25

30

C\NRPonbRDCOMKAWRRIN2 | DOC-22027200)

-2

It is desired, therefore, to provide a computer program product, or a method which
facilitates designing the markup for an electronic document that alleviate one or more of

the above difficulties, or at least provide a useful alternative.
SUMMARY

In accordance with the present invention, there is provided a computer program
product comprising a computer storage medium containing computer-executable
instructions for implementing a method which facilitates designing the markup for an
electronic document such as a Web page which is stored as a markup document in a
database associated with a server computing system, and which is later retrieved for
viewing and design of the markup document at a browser of a client computing system,
and wherein the method facilitates the design by separating script markup language that
defines interactive behavior and application logic associated with the electronic document
from general markup language of the electronic document that defines content and
presentation of the electronic document, the method comprising:

receiving input at a type manager associated with a browser for registering a
custom script object model, the custom script object model containing one or more user
defined attributes comprising properties, methods, or event attributes for use by the
browser in interpreting script objects that conform to the custom script object model and
that are contained within electronic documents that are executed by the browser;

registering the custom script object model with the browser to enable the browser
to interpret script objects that conform to the custom script object model;

retrieving from a database associated with a server computing system an electronic
document stored in the form of a markup document, for display at the browser of a client
computing system, the retrieved electronic document having a markup language that
defines in a first part of the retrieved electronic document a general markup portion
comprised of one or more general markup elements that define formatting of the content
and/or the overall appearance of the electronic document when displayed on a Web page,
the retrieved electronic document having a markup language that defines in a second part
of the same retrieved electronic document a script markup portion comprised of a reference
element and a components element, wherein the reference element references script files

external to the retrieved electronic document, and wherein the components element

23 Feb 2011

2006291331

10

15

20

25

30

CANRPorbADCOWMKAIKRNI2_1.DOC-22102R2011

contains one or more script objects for implementing interactive behavior and application
logic associated with the electronic document when displayed as a Web page, wherein at
least one of the script objects is a custom script object that conforms to the custom script
object model that was registered with the browser;

upon retrieving the electronic document, processing the components element to
instantiate the one or more script objects, including accessing the custom script object
model to determine how to instantiate the at least one script object that conforms to the
custom script object model registered with the browser;

wherein one or more of the script markup elements of the script markup portion
reference at least one general markup element contained in the general markup portion of
the retrieved electronic document, but script elements of the script markup portion are not
referenced by any of the general markup elements of the general markup portion of the
retrieved clectronic document so that the script portion of the retrieved document is kept
separate from the general markup portion when presented for viewing and design on a
browser of a client computing system,;

presenting the retrieved document for display at the browser of the client
computing system with the separate general and script markup portions;

receiving user input that interacts with a portion of the displayed document that is
represented by one or more general markup elements, and in response, accessing the
custom script object model to perform functionality defined by one or more attributes
associated with a custom script object that references the one or more general markup
elements; and

performing the functionality to modify the appearance of the portion of the

displayed document that is represented by the one or more general markup elements.

The present invention also provides a method which facilitates designing the
markup for an electronic document such as a Web page which is stored as a markup
document in a database associated with a server computing system, and which is later
retrieved for viewing and design of the markup document at a browser of a client
computing system, and wherein the method facilitates the design by separating script

markup language that defines interactive behavior and application logic associated with the

23 Feb 2011

2006291331

10

15

20

25

30

C:ANRPorbADCCWMKA\I8R032_1.DOC-22022011

-3A -

electronic document from general markup language of the electronic document that defines
content and presentation of the electronic document, the method comprising:

receiving input at a type manager associated with a browser for registering a
custom script object model, the custom script object model containing one or more user
defined attributes comprising properties, methods, or event attributes for use by the
browser in interpreting script objects that conform to the custom script object modcl and
that are contained within electronic documents that are executed by the browser;

registering the custom script object model with the browser to enable the browser
to interpret script objects that conform to the custom script object model;

retrieving from a database associated with a server computing system an electronic
document stored in the form of a markup document, for display at the browser of a client
computing system, the retrieved electronic document having a markup language that
defines in a first part of the retrieved electronic document a general markup portion
comprised of one or more general markup elements that define formatting of the content
and/or the overall appearance of the electronic document when displayed on a Web page,
the retrieved electronic document having a markup language that defines in a second part
of the same retrieved electronic document a script markup portion comprised of a reference
element and a components element, wherein the reference element references script files
external to the retrieved electronic document, and wherein the components element
contains one or more script objects for implementing interactive behavior and application
logic associated with the electronic document when displayed as a Web page, wherein at
least one of the script objects is a custom script object that conforms to the custom script
object model that was registered with the browser;

upon retrieving the electronic document, processing the components element to
instantiate the one or more script objects, including accessing the custom script object
model to determine how to instantiate the at least one script object that conforms to the
custom script object model registered with the browser;

wherein one or more of the script markup elements of the script markup portion
reference at least one general markup element contained in the general markup portion of
the retrieved electronic document, but script elements of the script markup portion are not

referenced by any of the general markup elements of the general markup portion of the

23 Feb 2011

2006291331

10

15

20

30

CANRPonbNDCOMKAMIKEN32_1 DOC-22/027201)

-3B -

retrieved electronic document so that the script portion of the retrieved document is kept
separate from the general markup portion when presented for viewing and design on a
browser of a client computing system;

presenting the retrieved document for display at the browser of the client
computing system with the separate general and script markup portions;

receiving user input that interacts with a portion of the displayed document that is
represented by one or more general markup elements, and in response, accessing the
custom script object model to perform functionality defined by one or more attributes
associated with a custom script object that references the one or more general markup
elements; and

performing the functionality to modify the appearance of the portion of the

displayed document that is represented by the one or more general markup elements.
DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are hereinafter described, by way of example
only, with reference to the accompanying drawings, wherein:

FIGURE | is a block diagram illustrating an exemplary computing system for
implementing embodiments of the invention;

FIGURE 2 is a block diagram illustrating an exemplary partition of a markup
document according to one embodiment of the invention; and

FIGURE3 is a text diagram illustrating an exemplary markup document

implementing embodiments of the invention.
DETAILED DESCRIPTION

The following text illustrates and describes exemplary embodiments of the
invention. However, those of ordinary skill in the art will appreciate that various changes
can be made therein without departing from the scope of the invention.

FIGURE 1 illustrates an exemplary computing system 100 for implementing
embodiments of the invention. The computing system 100 includes a server
component 102 and a client component 104. Generally, a browser 106 is associated with
the client 104 for displaying a document such as a Web page. In a typical scenario, when

the browser 106

10

15

20

25

30

WO 2007/032925 PCT/US2006/034121

requests to display a document, e.g., a Web page, the client 104 sends a document request
to the server 102. The server 102 then sends the client 104 the markup document 108
containing markup information for displaying the requested document. The markup
document 108 may exist in a database 110 associated with the server 102. Often, the
server 102 and the‘client 104 exist on the same computer system. Alternatively, they may
exist on different computer systems and communicate through a network (not shown).

In embodiments of the invention, upbn receiving the markup document 108, the
browser 106 parses and interprets the markup document 108 to display the requested
document according to the definitions provided in the markup document 108.

In exemplary embodiments of the invention, the markup document 108 for a
document such as a Web page provides general markup that defines the content and/or
presentation of the document. The markup document 108 further includes or references
script markup that defines the behavior of the document. FIGURE 2 illustrates exemplary
blocks of information presented in the markup document 108. As shown in FIGURE 2,
the markup document 108 includes a general markup portion 202 and a script markup
portion 204. L

The general markup portion 202 defines the formatting of the content and/or the
overall appearance of the document to be displayed. The general markup portion 202 may
define one or more general markup elements. For example, FIGURE 2 illustrates that the
general markup portion 202 includes multiple general markup elements such as a general
markup element A (206), a general markup element B (208), and a general markup
element Z (210).

On the other hand, content of the script markup portion 204 defines interactive
behavior and application logic associated with the document to be displayed. In
embodiments of the invention, the content of the script markup portion 204 defines or
references one or more script objects, and instantiates the script objects along with
attributes defining the states, property values of the script objects. As shown in
FIGURE 2, in embodiments of the invention, the script markup portion 204 is separated
from the general markup portion 202 and is an independent portion of the markup
document 108. Alternatively, in some embodiments of the invention, the script markup
portion 204 can be included in a separate file, which is then referenced by the markup
document 108. As shown in FIGURE 2, the content of the script markup portion 204

includes multiple script markup elements such as a script element 210, a reference

10

15

20

25

30

WO 2007/032925 PCT/US2006/034121

element 212, and a components element 214. Both the general markup elements and the
script markup elements are called markup elements.

In an exemplary embodiment of the invention, the script element 210 defines the
overall scope of the script markup portion 204. All other elements in the script markup
portion 204, such as the reference element 212 and the components element 214, are
contained within the script element 210. Referring back to FIGURE 1, while interpreting
the script markup portion 204, the browser 106 navigates through the script element 210 to
interpret the included definitions, so to decide the behavior of the document to be
displayed.

In embodiments of the invention, the reference element 212 references script files
external to the markup documents 108 that are used by markup elements in the markup
documents 108. The external script files may detail dependency information that the
markup elements may use. Preferably, the external script files may also provide
implementation details of script markup elements defined or referenced in the script
markup portion 204.

The components element 214 contains one or more script object definitions that
actually define the behavior of the document to be displayed. In exemplary embodiments
of the invention, one or more of the script objects defined in the components element 214
may reference and hence define behaviors of one or more of the general markup elements
included in the general markup portion 202.

FIGURE 3 illustrates an exemplary markup document 108 implementing the
exemplary markup elements illustrated in FIGURE 2. As shown in FIGURE 3, the
exemplary markup document 108 contains a hierarchical structure, in which one markup
element may be contained by another markup element. Each markup element includes
tags, as denoted by, for example, <> symbols, with the actual element being detailed
between the tags. Each markup element includes a start tag and an end tag, wherein a start
tag begins a markup element and an end tag ends the corresponding markup element. For
example, as shown in FIGURE 3, the script element 210 begins with the start tag <> on
line 3 and ends with the end tag </> on line 34. As will be described in detail below, the
markup elements in the markup document 108 further contain one or more attributes with
assigned values.

The exemplary markup document 108 shown in FIGURE3 illustrates
script-defined behavior of two counters. As shown in FIGURE 3, lines 1-2 illustrate an

10

15

20

25

30

WO 2007/032925 PCT/US2006/034121

exemplary general markup portion 202. Here, two general markup elements—Counter#1
and Counter#2—are defined, wherein Counter#1 has an "id" attribute with the value
"counterLabell" and Counter#2 has an "id" attribute with the value "counterLabel2."

Lines 3-34 illustrate an exemplary script markup portion 204 that specifies the
behavior of the two counters defined in lines 1-2. Specifically, line3 signals the
beginning of a definition for an exemplary script element 210 and line 34 signals the end
of the definition. The exemplary script element 210 includes an exemplary reference
element 212 (lines 5-8) that links in two JavaScript files—AtlasULjs and AtlasControls.js.
Lines 9-32 illustrate an exemplary. components element 214 that defines a plurality of
script objects. For example, line 10 defines a script object Counter 302 that is identified as
"counterl," while line 11 defines a script object Counter 304 that is identified as
"counter2" and has a value of "10000." The code between lines 12-16 and lines 17-21
each defines a script object Timer (306, 316) that periodically, e.g., every 500 seconds,
enables an event object Tick (308, 318). In embodiments of the invention, a script object
may include one or more sub-script objects. For example, the script object Timer 306
includes an event object Tick 308, which further includes an action object
invokeMethod 310. For another example, the script object Label 312 defined in
lines 22-26 includes a binding object 314. A

In exemplary embodiment of the invention, a script object may be associated with
one or more attributes whose values are used to define the behavior of the script object.
An attribute can be, for example, a property, a method, or an event associated with the
script object. An attribute may also be a reference to another markup element. For
example, the script object Counter 304 defined in line 11 has a property attribute "id" and
a property attribute "value". The action object invokeMethod 310 defined in line 14 has
an method attribute "Method" that is set to an exemplary "increment" method. For
example, instead of using an event object Tick 308, the script object Timer 306 may have
an event attribute "Tick". The scrip object Label 312 defined in line 22 has an attribute
"targetElement" that references the general markup element Counter#1 identified as
"counterLabell" in line 1.

In exemplary embodiments of the invention, a script object may reference a
general markup element defined in the general markup portion202 of the markup
document 108 and define document behavior associated with the referenced general

markup element. For example, the code between lines 22-26 defines a script object

10

15

20

25

30

WO 2007/032925 PCT/US2006/034121

Label 312 that references the general markup element Counter#1 defined in line 1. The
code between lines 27-31 defines a script object Label 320 that references the general
markup element Counter#2 defined in line 2. Consequently, the script objects Label 312
and Label 320 may specify the behaviors of the general markup elements Counter#1 and
Counter#2 in the general markup portion 202.

In embodiments of the invention, a script object may communicate with another
script object by performing a specific action upon occurrence of a specific event. For
example, in embodiments of the invention, a script object may be associated with an event,
the occurrence of which initiates a corresponding event handler, which may link to
developer-defined code for markup elements in the markup document 108. In an
exemplary embodiment of the invention, the event handler includes one or more specific
actions to be performed on one of the script objects in the components element 214. An
exemplary action can be to invoke a method associated with another script object.
Another exemplary action can be to configure a property associated with another script
object. In a typical embodiment of the invention, both the event and the action are also
script objects including one or more attributes. For example, the script object Timer 306
contains an event object Tick 308, the enablement of which initiates an action object
invokeMethod 310. The action object invokeMethod 310 has an attribute "target”
specifying a target script object—"counterl”, for example—and an attribute "method"
specifying the function to be performed on the target script object.

Another exemplary mechanism for one script object to communicate with another
script object is a binding mechanism that connects a property of one script object with a
property of another script object; the change of one property thus is reflected on the other
property. For example, as shown in FIGURE 3, the script object Label 312 includes a
binding object 314. The binding object 314 has an attribute "dataContext" that specifies
the script object and an attribute "dataPath" that specifies one of the script object's
properties with which the script object Label 312 will bind its property "text". As a result
of the binding, the value of the script object Counter 302 defined in line 10 is reflected in
the "text" property associated with the script object Label 312 and hence is displayed in
the general markup element Counter#1 defined in line 1. In an exemplary embodiment of
the invention, a binding object provides a transform functionality that transforms the type

of the property that provides the data into the type of the property that receives the data.

10

15

20

25

WO 2007/032925 PCT/US2006/034121

For example, the transform functionality for the binding object 314 may convert the type
of the property specified by "dataPath" into the type of the property specified by "text".

| It is to be understood that FIGURE 3 illustrates only exemplary formats of a script
markup language for implementing aspects of the invention. These exemplary formats
should be used for illustration purposes only. These exemplary formats do not limit the
script markup language offered by embodiments of the invention to the specific formats,
syntax, and functionalities illustrated. For example, the exemplary markup document 108
has been illustrated using XML syntax and formats. However, those of ordinary skill in
the art will appreciate that aspects of the invention may be implemented in different
markup languages such as HTML, ASP.NET, JavaScript Object Notation, etc.

In embodiments of the invention, a developer may custom define a script object
model. The script object model, for example, specifies attributes, such as property,
method, and/or event attributes, and any sub-script object models that may be associated
with the script object model. The script object model then is registered with the
browser 106, for example, through a type manager associated with the browser 106. The
browser 106 thus knows how to interpret and process a script object instantiated based on
the script object model. As a result, the script markup language provided by aspects of the
invention is extensible in that new script object models can be defined and registered with
a browser for interpreting script markups containing script objects instantiated based on
the script object models.

Although aspects of the invention have been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rathef, the specific features and acts described above are disclosed as

example forms of implementing the claims.

CANRPornbRDCOWMKAREDI2 1. DOC-220272011

-8A -

The reference in this specification to any prior publication (or information derived

23 Feb 2011

from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general

5 knowledge in the field of endeavour to which this specification relates.

Throughout this specification and claims which follow, unless the context requires

2006291331

otherwise, the word "comprise", and variations such as "comprises" and "comprising”, will
be understood to imply the inclusion of a stated integer or step or group of integers or steps

|
i 10 but not the exclusion of any other integer or step or group of integers or steps.
I

23 Feb 2011

2006291331

10

15

20

25

30

CANRPorbNICOWK AVIIRENTY_1.DOC-220272011

.9

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer program product comprising a computer storage medium
containing computer-executable instructions for implementing a method which facilitates
designing the markup for an electronic document such as a Web page which is stored as a
markup document in a database associated with a server computing system, and which is
later retrieved for viewing and design of the markup document at a browser of a client
computing system, and wherein the method facilitates the design by separating script
markup language that defines interactive behavior and application logic associated with the
electronic document from general markup language of the electronic document that defines
content and presentation of the electronic document, the method comprising:

receiving input at a type manager associated with a browser for registering a
custom script object model, the custom script object model containing one or more user
defined attributes comprising properties, methods, or event attributes for use by the
browser in interpreting script objects that conform to the custom script object model and
that are contained within electronic documents that are executed by the browser;

registering the custom script object model with the browser to enable the browser
to interpret script objects that conform to the custom script object model;

retrieving from a database associated with a server computing system an electronic
document stored in the form of a markup document, for display at the browser of a client
computing system, the retrieved clectronic document having a markup language that
defines in a first part of the retrieved electronic document a general markup portion
comprised of one or more general markup elements that define formatting of the content
and/or the overall appearance of the electronic document when displayed on a Web page,
the retrieved electronic document having a markup language that defines in a second part
of the same retrieved electronic document a script markup portion comprised of a reference
element and a components element, wherein the reference element references script files
external to the retrieved electronic document, and wherein the components element
contains one or more script objects for implementing interactive behavior and application

logic associated with the elcctronic document when displayed as a Web page, wherein at

23 Feb 2011

2006291331

10

20

25

30

CANRPonbRDCCWMEK AVHIRAOTY_ 1. DOC-22A1201 1

-10-

least one of the script objects is a custom script object that conforms to the custom script
object model that was registered with the browser;

upon retrieving the electronic document, processing the components element to
instantiate the one or more script objects, including accessing the custom script object
model to determine how to instantiate the at least one script object that conforms to the
custom script object model registered with the browser;

wherein one or more of the script markup elements of the script markup portion
reference at least one general markup element contained in the general markup portion of
the retrieved electronic document, but script elements of the script markup portion are not
referenced by any of the general markup elements of the general markup portion of the
retrieved electronic document so that the script portion of the retrieved document is kept
separate from the general markup portion when presented for viewing and design on a
browser of a client computing system;

presenting the retrieved document for display at the browser of the client
computing system with the separate general and script markup portions;

receiving user input that interacts with a portion of the displayed document that is
represented by one or more general markup elements, and in response, accessing the
custom script object model to perform functionality defined by one or more attributes
associated with a custom script object that references the one or more general markup
elements; and

performing the functionality to modify the appearance of the portion of the

displayed document that is represented by the one or more general markup elements.

2. The computer program product of Claim 1, wherein one of the one or more
script objects references one of the one or more general markup elements in the general

markup portion.

3. The computer program product of Claim 1 or 2, wherein one of the one or

more script objects includes one or more sub-script objects.

23 Feb 2011

2006291331

10

20

25

30

CANRPonbADCCOMK AVH&ROTY_) DOC-2221201 |

-11 -

4, The computer program product of Claim 3, wherein one of the sub-script
objects is a binding object for connecting an attribute of the script object with an attribute

of another script object, wherein both attributes are property attributes.

5. The computer program product of Claim 4, wherein the binding object
includes a function for converting type of the attribute of the script object into type of the

attribute of the another script object.

6. The computer program product of any one of Claims 3 to 5, wherein one of

the sub-script objects is an event object.

7. The computer program product of Claim 6, wherein the event object further

includes an event handler detailing what to do when the event occurs.

8. The computer program product of Claim 7, wherein the event handler

includes an action object that initiates a specific action when the event occurs.

9. The computer program product of Claim 8, wherein the action involves

executing an attribute of another script object, wherein the attribute is a method attribute.

10. The computer program product of Claim 8, wherein the action involves
configuring an attribute of another script object, wherein the attribute is a property

attribute.

11. A method which facilitates designing the markup for an electronic
document such as a Web page which is stored as a markup document in a database
associated with a server computing system, and which is later retrieved for viewing and
design of the markup document at a browser of a client computing system, and wherein the
method facilitates the design by separating script markup language that defines interactive

behavior and application logic associated with the electronic document from general

23 Feb 2011

2006291331

10

15

20

25

30

CANRPonbRDCCWKAWKROTY_ 1. DOC-22/12011

-12-

markup language of the electronic document that defines content and presentation of the
electronic document, the method comprising:

receiving input at a type manager associated with a browser for registering a
custom script object model, the custom script object model containing one or more user
defined attributes comprising propertics, methods, or event attributes for use by the
browser in interpreting script objects that conform to the custom script object model and
that are contained within electronic documents that are executed by the browser;

registering the custom script object model with the browser to enable the browser
to interpret script objects that conform to the custom script object model,

retrieving from a database associated with a server computing system an electronic
document stored in the form of a markup document, for display at the browser of a client
computing system, the retrieved electronic document having a markup language that
defines in a first part of the retrieved electronic document a general markup portion
comprised of one or more general markup elements that definc formatting of the content
and/or the overall appearance of the electronic document when displayed on a Web page,
the retrieved electronic document having a markup language that defines in a second part
of the same retrieved electronic document a script markup portion comprised of a reference
clement and a components element, wherein the reference element references script files
external to the retrieved electronic document, and wherein the components element
contains one or more script objects for implementing interactive behavior and application
logic associated with the electronic document when displayed as a Web page, wherein at
least one of the script objects is a custom script object that conforms to the custom script
object model that was registered with the browser;

upon retrieving the electronic document, processing the components element to
instantiate the one or more script objects, including accessing the custom script object
model to determine how to instantiate the at least one script object that conforms to the
custom script object model registered with the browser;

wherein one or more of the script markup elements of the script markup portion
reference at least one general markup element contained in the general markup portion of
the retrieved electronic document, but script elements of the script markup portion are not

referenced by any of the general markup elements of the gencral markup portion of the

23 Feb 2011

2006291331

15

20

25

CANRPonbOCCWMKA4KEN79_| DOC-22/022011

213 -

retrieved electronic document so that the script portion of the retrieved document is kept
separate from the general markup portion when presented for viewing and design on a
browser of a client computing system;

presenting the retrieved document for display at the browser of the client
computing system with the separate general and script markup portions;

receiving user input that interacts with a portion of the displayed document that is
represented by one or more general markup clements, and in response, accessing the
custom script object model to perform functionality defined by one or more attributes
associated with a custom script object that references the one or more general markup
elements; and

performing the functionality to modify the appearance of the portion of the

displayed document that is represented by the one or more general markup elements.

12. The computer program product of any one of claims 1 to 10 wherein the
custom script object model further specifies a sub-script object model that is associated

with the custom script object model.

13. A computer program product, substantially as hereinbefore described with

reference to the accompanying drawings.

14. A method which facilitates designing the markup for an electronic
document, substantially as hereinbefore described with reference to the accompanying

drawings.

WO 2007/032925 PCT/US2006/034121

13
100
102 104
-
SERVER » CLIENT
v 106
/] L‘J
BROWSER
MARKUP
DOCUMENT
S — —
Fig. 1.

SUBSTITUTE SHEET (RULE 26)

WO 2007/032925 PCT/US2006/034121

/3

MARKUP DOCUMENT ™_108

GENERAL MARKUP™_202
<general markup element A5\ _206
<general markup element B/>\%03

<generai markup element Z/>"\£10

SCRIPT MARKUP ~. 204
<script element/>"_210
<reference element/> ™\ _212
<components element/>—~ 214

\/\

Fig.2.

SUBSTITUTE SHEET (RULE 26)

WO 2007/032925

PCT/US2006/034121

3/3

108

Counter #1: <span1 ﬁ';counterLabeli">dé7§j§5;1$<ibr P> o
Counter #2: 0

<script type="text/xml-script"> ~ 210
<page xmlins:script="http:/schemas.microsoft.com/xmI-script/2005">

<feferences>—~212

<add src="../ScriptLibrary/AtlasULjs" />

<add src="../SctiptLibrary/AtlasControls.js" />
</references>

NNV B N

9 <components>"\/ 214

10 302 ~Scounter id="counterl" />

11 3pg~Zsounter id="counter2" value="10000" />
306

12 <tither interval="500" enabled="truc">
13 <tick>
14 <invokeMethod target="counter1" method="increment" />
15 <ftick>
16 </timer> 310
16
17 <timer interval="500" enabled="true">
18 <tick
19 <invokeMethod target="counter2" method="decrement" />
20 <ftick>
imer>
21 </timer 312
22 <label targetElement="counterLabell ">
23 <binding 314
24 - <binding dataContext="counter1" dataPath="value" property="text" />
25 </bindings>
>
26 32 ()\;ll\abel
27 <label targetElement="counterLabel2">
28 <bindings>
29 <binding dataContext="counter2" dataPath="value" property="text" />
30 </bindings>
31 </label>
32 </components>
33 </page>
34 </script>

Fig.3.

SUBSTITUTE SHEET (RULE 26)

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

