US 20030196078A1

a2 Patent Application Publication (o) Pub. No.: US 2003/0196078 A1l

a9 United States

Wise et al.

43) Pub. Date: Oct. 16, 2003

(54) DATA PIPELINE SYSTEM AND DATA Publication Classification
ENCODING METHOD
(51) Int. CL7 oo GO6F 15/00
(76) Inventors: Adrian P. Wise, Bracknell (GB); (52) US.CL ... 712/300
Martin W. Sotheran, Bristol (GB);
William P. Robbins, Bristol (GB);
Anthony M. Jones, Arnhem-Zuid (NL);
Helen R. Finch, Bristol (GB); Kevin J.
Boyd, Bristol (GB); Anthony Peter J. 7 ABSTRACT
Claydon, Bath Avon (GB)
Correspondence Address: L . .
DISCOVISION ASSOCIATES Apllpelipe Vl?eo decodler and (iie(ziortr)l.pressmn system he(lindles
INTELLECTUAL PROPERTY a.p ura 1t}{ o] §eparate y enc.:o. e .1t streams .arrange as a
DEVELOPMENT single serial bit stream of digital bits and having separately
2355 MAIN STREET, SUITE 200 encoded pairs of control codes and corresponding data
IRVINE, CA 92614 (US) carried in the serial bit stream. The pipeline system employs
a plurality of interconnected stages to decode and decom-
(21) Appl. No.: 09/779,382 press the single bit stream, including a start code detector.
(22) Filed: Feb. 8, 2001 When ip a search mode, the start CQde detector searches.for
a specific start code corresponding to one of multiple
Related U.S. Application Data compression standards. The start code detector responding
to the single serial bit stream generates control tokens and
(60) Division of application No. 09/307,239, filed on Oct. data tokens. A respective one of the tokens includes a
7,.1997, now.Pat.. No. 6,330,666, which is a continu- plurality of data words. Each data word has an extension bit
ation of application No. 08/ 4QO>397> ﬁled on Mar. 7, which indicates a presence of additional words therein. The
1995, now abandoned, which is a continuation-in-part data words are thereby unlimited in number. A token decode
of application No. OS/ 38,2’958’ ﬁl.ed on Feb. 2, 19,95’ circuit positioned in certain of the stages recognizes certain
now abandoned, which is a continuation of applica- of the tokens as control tokens pertinent to that stage and
tion No. 08/082,291, filed on Jun. 24, 1993, now . .
passes unrecognized control tokens to a succeeding stage. A
abandoned. . .
reconfigurable decode and parser processing means posi-
(30) Foreign Application Priority Data tioned in certain of the stages is responsive to a recognized
control token and reconfigures a particular stage to handle an
Jun. 30, 1992 (EP) identified data token. Methods relating to the decoder and
Mar. 24, 1994 (GB) decompression system include processing steps relating
Feb. 28, 1995 (GB) thereto
A B C D E F
vaLp A H L
D3 D2 DI
CYCLE H H H
| <5 accepT
VALD —] H L
CYCLE 2 D4 4 y H [.D3 D27 . ot L
== ACCEPT
VALID —] L H L H H
CYCLE 3 H D4 H L [(037] | [p2 DI
L <& AccePT
VALID —»
D4 D3 D2 D1
H H
CYGLE H H H < accepT
VALID b L H L H H
CYCLE 5 H H D4 D3 D2
/) = L == accepT
vaLip Lo L H L H H
CYCLE 6 H [LPS) 4 L |,D4°4 | D3 L D2 Lt
ACCEPT

US 2003/0196078 A1

Oct. 16,2003 Sheet 1 of 124

Patent Application Publication

1914

\\ T

o]
N

o\
N

+a”]
e

Q]

l.h_.

/T

o

\\I;

N
<

o

N
0
NN

¢q’
/]

\\\Jr

g

¢€d
s

1d300V ==/, /
L 20 €3
\\A
Emooq.u_t\ / /
| NO\I \MO\
4
1d300V iz.vﬂ o\ g \N o\\
/]
1d3V == Nl
B R\ \\ND\
W IS
14320V 4.'_ o\ L
% - ¢d
]
Ld300V =~ r_o\
/]

pll—

I
N o\
SN

3

H

9 3710A0
aimva

S 310A0
ainva

<(sa) 31580

ainvA

€ JT0AD
dinivA

¢ 3710AD
difvA

<H¥Q) 31940

dInvA

N

7

Patent Application Publication Oct. 16,2003 Sheet 2 of 124 US 2003/0196078 A1

._IIJ ’Ilrl _JIJ III _J::I ._!I'
Y
N TR
) NN NN
= [(47 41 A
N N NN
m\& NN NN
f\’!
- o
2 g M e e
SN ' NN
N NaN
- NN NN
3 1 1 I} T3) ?
T|T
< ol k- Jx Bz |4 |4T
o 3y
grér)v \j Y Y Y '
— m P < o) (‘f’
L w w N
s ¢ g g g 3
') O Q (S O &)

US 2003/0196078 A1

Patent Application Publication Oct. 16,2003 Sheet 3 of 124

1d300v____

4 \\ w7
R
1d300V—=—af7 . _
TV H Ta s
S LR s
1a A
1dFON— —aprrr _
T
I V50
LdION— 7
‘.m:a%\w&oﬁji N7
Ld30V >
=x N s
-~ - i
14300V \\\ -7
R ~— W -~ \“o
—L | 7N 77/
3 a

1 A

US 2003/0196078 A1

i

Oct. 16,2003 Sheet 4 of 124

Patent Application Publication

| -V& Ol

“£Q

K — va

3 [

|
g

* /]

—(s9)

¥ 371040

SRR

H

-

1L__

€d

g

|
8

X

€ 310AD

Al

I

BIiE

8

g

144

S 12

¢ 3710AD

(70)

Sy

H
<—— 00

|

- X

e

O«

—(£9)

1d
. 300V o

I 370A0

US 2003/0196078 A1

Oct. 16,2003 Sheet 5 of 124

Patent Application Publication

| ¢-V¢ 914
! m
i e ;
DR CD NG == I
| _
— - |
T =re N H m
1Q 2a “ mmo uAJlIT!\IJmo
— _ “
5 -
oo 4 H _
() (e T Mo
I _
— _
J_ \,ilj _I T_ T
9 (20 =20) | (¢ca)
| |
. _ I
T | — H >
(10 xK—— 1q __ ([20 AT.'W 2Q __
_ !
4' > _I I _ i
1a Aﬂ 1a (2d A_J.l”_ 2a
14300V —» - __I - __
| 1Q S
| (K== 1a) __ 20 x—— 2a
I
_ _

.

Patent Application Publication Oct. 16,2003 Sheet 6 of 124 US 2003/0196078 A1

I
I
I
H!
<—t——
|
|
H.
i
I
LH
l
|
|
=i

< I T :% %
y y

FIG. 3B-|

D5

< <

;r?@‘p’ H

CYCLES
CYCLE®6

P21

@0
ACCEPT

{ D
@0

Patent Application Publication

(1)
"‘H‘ACCEPT

Oct. 16,2003 Sheet 7 of 124

| N
8] [B)E
o o A T
ol o
5

US 2003/0196078 A1

FIG. 3B-2

US 2003/0196078 A1

Oct. 16,2003 Sheet 8 of 124

Patent Application Publication

v Old
1NovT NIV
o) M0
2aNVN LANYN
[Ld300V_ING>——>o— g "% {>0 T % 1q N [Tg3oovn>
ZANI LANI
1NOAT NIAT
M- MO[[]
<_QrvA_Lno}- So@o a NNy g arvA~NI
T 0.L3S 3YION]|
28 1n0qi =N NIQ
7 7 = 7"
| | Mo | | Ne](m
[
<(0:2) viva 1N0| | L—o g | b aq 75<{0:£) V1VQ NI
L L.
OHd|
| Hd|

US 2003/0196078 A1

Oct. 16,2003 Sheet 9 of 124

Patent Application Publication

JAIL
-

(V)G 914

0€9 06G 0GS OIS OLt Oet 06 0SE Olg 02 0£2 061 Ogl

b — ! |

|-

N S |_, | N

| |

o]}

PRREPIES EEVTISUTRN [VUNS TUEPUN SRS N
| LI I O L L L N (A B B N B e Bt

“...ﬂ_.»n__.._.

i L

|1

et

—

00 YeeX 66X oo Y vo YooY9oY eg XgsYooX oo

] |

| L

[|

—

Y)Y eeY ss Y ooYXooY+oYooY 9 YooY esX csY oo 00

L [L

=

—

—

Xoo)(29)_ge Y ss) poXooYvo)oo) 99 ooX e ssX oo} 0o

—

JUduuvdvuvuvuuuryyyyuyl

Uuuvluvuvvuurvururvvuruuy

Patent Application Publication Oct. 16,2003 Sheet 10 of 124 US 2003/0196078 A1

TN LT epHo
LT UL L e

NOT_RESET

04 XOOYo4)ff YOO IN_DATA
| IN_VALID

__ IN_ ACCEPT
00 X 04 ff X D_LDOUT

J Qaout
cc 00 04 Xff OUT_DATA

OUT_VALID
OUT_ ACCEPT

{

| IR

| I
—t+—t

t |
i]

,1,:,,.='::e{::4 ——+]
630 670 710 750 790 830 870

TME
FI1G.5(B)

Patent Application Publication

Oct. 16,2003 Sheet 11 of 124 US 2003/0196078 Al

PH1
PHO
[IN_DATA(7:O)>1—D qIMRL7:0) D Q—[OUT_DATA(7:0D>
MD(2)
ok gN-MD(7:0)| | |
LDIN LDOUT
NAND |
L N_MD(7)
___N_MD(6)
SA
L N_MD(5)
. N_MD(4) [
T MD(3) D Q—DATA_ADDR >
NAND2 NCRI +—CK
D QGEpREY L ADDR
CK
LEPREV
[INCEXTN D Q D QH—{OUT_EXTN>
CK —CK
LEIN LEOUT

FIG. 6

Oct. 16,2003 Sheet 12 of 124 US 2003/0196078 Al

Patent Application Publication

2d0

| 1d300%~LN0

<__arvAa—Lnol-

<___NIX3~1no}

<NLX3"Lno-Lsvi}

L9l

o 15O A0

a9 a o [Ld300V=NI>
e NIvl 13S34~LON]|
Y

9 V_OQI o 5@1

0 a 1 b a QITVA~NI]
o s Gai NIAT

m 4

xo[_ . XOQI.

o a b a NLX3~NI]
LNo3T NIER

d H

xo(xo@l
O @ D q
AJdd" 3071 orid |

LHd |

Patent Application Publication Oct. 16,2003 Sheet 13 of 124 US 2003/0196078 A1

[PH1 °
PHO ‘
LF MID-DATA (7:0) ,
[IN_DATA(7:0)>1p Q : D
MID-ACCEPT——
+DCK | Lp N sq
INV1O
IN.EXTN D Q Do s
o | e NAND 10
[NOT_RESET_O TWE — K
[IN_VALID>HD Q {>°IA DT
NAN
FDCK |LVIN 12
NAND 55
<IN_ACCEPTH H!\Jsv N/lké\iD LAIN 14 | INVi4
~FCHfe =y
| ek B
OR1
MID-DATA (7) NOR
MID- DATA (&)
HB-RATY 18} T I
l - |
MID-DATA (2)
D Qs
] +CK —
NAND 20 sa |
L12 e
N_¢
D Q } —1}
Lex NAND 22
L13 s3]
D Q s
ek NAND 24

FIG. 8(A)

Patent Application Publication

Oct. 16,2003 Sheet 14 of 124 US 2003/0196078 Al

s..._.__.—.
| D Q {OUT_DATA(7:0) >
% +—LCK | LpouT
; D Q {OUT_EXTN >
F—OCK | LE ouT
MID-EXTN
9 T NAND 30 NVEO
(R
' DRQ— 1 >~ [OUT_VALID >
CK
LV OUT
NAND INV
28 28
f Q D o o }—<QUT_ACCEPT]
f CK
NAND LA OUT
26
INV
26 56
o LOI
bRq
27
' 2 LO02
f DRQ —DATA_TOKEN >
—1DICK
’ 2 LO3
; DRq —NOT_DUPLICATE >
CK

FIG.8(B)

Patent Application Publication Oct. 16,2003 Sheet 15 of 124 US 2003/0196078 A1

INIL
(V)6 9l14

€26 B8S8 mm\l wN\. mmw mmm mmm ww¢ mov wmm m.\.N wON m¢_

bt .
ettt —.._4._......_

L L L —
L] 1)
L Tl T

L] 1 |
b0) 800 Jo0fE8(55 25 | ee) s5 | #0595 o0

ml LTl L —
LTI ML Tl
] niG
55 080 Jrgodes(50 |0) ee | 5o Jooeateded| oo
1 L L
L[] nE N [
T L T T

09\ss)_v0 Jodedfrajodf £ oo {90 Yoo €€ Ys900ka(23fen| 00

L] e N

Patent Application Publication Oct. 16,2003 Sheet 16 of

Uy yuy
L UL LU

X 00 X33X 00 XaaX 00

cC

55 X cc X00{33 Y00(gK 00

QOK33_ 094X 00

Ill!lllllll'l(llllllll
T T 1

§=‘]""I T &
o088

1#14J
Tt t

1248 1313

!
T

1
+

[
T L B
923 053 I8 1183

124 US 2003/0196078 A1

PHQ
PH1

NOT_RESET
INLEXTN
IN_DATA
IN_VALID
INCACCEPT
MID_EXTN
MID_DATA
MID_VALID

MID_ACCEPT
OUT-EXTN
OUT_DATA
OUT_VALID
OUT_ACCEPT
DATA_TOKEN
NOT_DUPLICATE

F1G.9(B)

= TIME

Patent Application Publication

Oct. 16,2003 Sheet 17 of 124 US 2003/0196078 Al

43) 44~
Register | Register
46
-
Tok 40 | Action
oxen Identification
Decode 29
§§ —
32 37 s
Input
Latches
5 35 Processing Unit
31
.y M 36
é_

FIG.10

Output
Latches

T

42

Oct. 16,2003 Sheet 18 of 124 US 2003/0196078 Al

Patent Application Publication

(31'H14)
26 OL

All.ll'
b8

. 1 89
L1701 J93BUBTA
g
09
_— L — — LL — weld
£8 18 6L aL 8S |ipuaeyxy
Ioar | ¢8 7z1| 98 |INVQDI| 8L |1maom: 5| 9DBJINU] |y
s welq |19
L oL ¢9
LS
_ T 5 79 9¢g 19
gl Japoda(¥g e
0 ans
0L cL IL oL Iy Q9 aoly; g9 uswyay qg OdLl £9q (4
89 69
” (WOW)
UIYDETA] 18IS

Oct. 16,2003 Sheet 19 of 124 US 2003/0196078 Al

Patent Application Publication

(g1 "o14)
0L

o0l

30!
JOL10314S
1NdNO

A

g0l

2.0l

al 9Ol

GOl

+Ol

¢Ol
4317114
d34d

20! 4

0]0]
JOVJd3LNI
Wvdd

L6

96
Odid

§19

Ad04 | 26

£6

Y
143

3

WVHJ
TYNY3LX3

JOLVYHEINID
SS34dAav

Patent Application Publication Oct. 16,2003 Sheet 20 of 124 US 2003/0196078 A1

DISPLAY
PIPE
20

)]
1 Ll
< O
ZEQ > <
r<_— g O
<< c — M)
Ll & o -
b~ o L
XD i—- o
S = S
L
‘e,
- ~
S
w
= 2
- =
Oio:g o=
O W Lo
%z
W
& S

Patent Application Publication Oct. 16,2003 Sheet 21 of 124 US 2003/0196078 A1

13| /'3/3
L T 1
| |
| | A ™
i |
132
132 7+ B c i
C
C D
32
FIG. 14a
143 144
\ / lal
(1] —7Ft—
/] _.}’_-—F__—_J. b
142
>|42
/]
V4
FIG. 14b
15l

\17
152 FIG. 14c¢

Patent Application Publication Oct. 16,2003 Sheet 22 of 124 US 2003/0196078 A1

X

62

\ ol

PICTURE-START | o

163

PICTURE-END 1+ 164

66

N 165

PICTURE-START | #—

167

Ve

PICTURE-END] —1e8

FIG. I6

Oct. 16,2003 Sheet 23 of 124 US 2003/0196078 Al

Patent Application Publication

b8

. 21491
88 | 1!
561 581 S8l
HOLYYINID L HOLVYINIO
“IWNOIS TUNDIS
vy LM
08|
611
SY3L4
481 NOLLOIA3Yd
mt»
L oL
30VAIINI WYHa
061

ol

Wvydd
TYNH3LX3

€81 ‘ 141 <
044 28l Uds 2l
€Ll
S/ bl
— HOLVYIN3O
SS34aav

Patent Application Publication Oct. 16,2003 Sheet 24 of 124 US 2003/0196078 A1

CORWARD BACKWARD
PREDICTION
PREDICTION
FILTER
FILTER 504
20
202 205

2006

FIG. 18

Patent Application Publication Oct. 16,2003 Sheet 25 of 124 US 2003/0196078 A1

o
N

214

»
: ; ¢
T

\\ > >

\\ g - >

o

Oct. 16,2003 Sheet 26 of 124 US 2003/0196078 Al

Patent Application Publication

02 9ld
1S3
yee
I LYIANOD
SNIMOL OL X3aNI
9¢2 GeZ
827 . 523
4300030 3INIWA IEE 40123130
1
282 ot 922
- - v22
lee 622 |431S1934 300230
/
052

d31SI93Y 14IHS 3d003d 3INMIVA

£cd

122
d31S1938 3MIvA

¢éce

Oct. 16,2003 Sheet 27 of 124 US 2003/0196078 Al

Patent Application Publication

I Ol

9ve

LvZ ANTVA pbe ANTVA Ive

| | i | cve /M

[T TTTOOTOIT TTTO0JOOTOO0]O0[O0T00]O0]O0[O0[00]00[0! [0 [OT [TO[00]00I00[00[00]00{00[00]00[00]

_ _ _ |
Sbc 300D LYVLS £P2 3000 LYvLS

Oct. 16,2003 Sheet 28 of 124 US 2003/0196078 Al

Patent Application Publication

blLe

¢3d°9ld
103 .
mRowN 8¢ —
— Y Sge |-
— G)Z [—— 8.2 +872
192 .
552
-— osz} 192} bs2
- 1G2
— o8¢ | X3
Goe $92 -
HOLVHANIS | ~“aas 1 75 [~
NI o2z QHOM VH.LX3 85 952 \yoivyanze| £9¢
OV 14
992 292 vZ92 252
1292 €9¢

HOLVYH3INTO H¥3AV3H

Patent Application Publication Oct. 16,2003 Sheet 29 of 124 US 2003/0196078 A1

ADDRESS GENERATOR —30|
A
.| CONTROL
3
OTHER - WRITE |«
STAGES/
BLOCKS EXTERNAL
DRAM
OF THE
CHIP 303
it o READ -t o
DRAM INTERFACE
302

FIG.23

Oct. 16,2003 Sheet 30 of 124 US 2003/0196078 Al

Patent Application Publication

SlIg
WV HHAd

1NO vivd .Ag

P2'old

SS3yaayv av3yd

t————— ‘llllll.
21e
2NV Y -
.‘l'll
9]¢
NIRVARVZY
e pl
vy 21 20
~ SYD011g
/S39VLS
Y3IHLO
¢ie
$S3HAAY 3LIMM
L I
P
— — _—
104.LNOD 1d320V/QINTVA

Patent Application Publication Oct. 16,2003 Sheet 31 of 124 US 2003/0196078 A1

FIG. 25
|
) - 15 8
7 e e
e . 5
57 - "63.56
.- 7.0
C D

FIG. 26

Patent Application Publication Oct. 16,2003 Sheet 32 of 124 US 2003/0196078 A1

PARSER
STATE
MACHINE
322
= —
= <
328 < =
- —L"zf‘j"‘_—’o > ™ o
L e © 2 -
I =3 = = Z
1) L < _‘“’
R 24 2 o |327
? L B L ,
323 321 324 325 326

FIG.27

Patent Application Publication Oct. 16,2003 Sheet 33 of 124 US 2003/0196078 A1

INPUT DATA

J,

FORMAT
991

&

1-D PREDICTION
X-COORDINATE
S32

l

DIMENSION
BUFFER

335

Y

1-D PREDICTION
Y-COORDINATE
334

l

OQUTPUT DATA

FIG.28

Patent Application Publication Oct. 16,2003 Sheet 34 of 124 US 2003/0196078 A1

Multiplexed audio/video
data

Y

Audio / Video demultiplexor

Coded video data
Coded audio data

Spatial Decoder
Spatial Decoder et

l
Y

Temporal Decoder Control
Temporal Decoder [-g—»-{ Microprocessor

Y

Image Formatter Audio Decoder
Video Formatter gt/ | g——

Y Y

Raster video data

FIG.29

Patent Application Publication Oct. 16,2003 Sheet 35 of 124 US 2003/0196078 A1

Coded Data
Spatial Formatter Bufier
' Decoder ' »

FIG.30

DRAM

Coded Data -
Spatial | ormatter
Decoder »

FIG.3 |

(DRAM > DRAM

Coded Data 0

Spatial _ | Temporal Formatter
Decoder Decoder ’

FIG.32

Patent Application Publication Oct. 16,2003 Sheet 36 of 124 US 2003/0196078 A1

extension bit
bits 7:0
> —
O 1 T T T I 1 T
| I [Lt !
T 1 I I 1 I i I 1
1 A I 1] I |
1 I i i | T i T
i ! [[S N
1 I T T | I | 1
& word Token 1 L1 L Lt |
] T T T 1 T
1 ! |]
] T T T T 1 T
| | 1 1 1
1 1 1 I | 1 1
0
Y 1 L1 I 1 1 1
1 word Token T T 7 T T T T
—» | O
| N N N | L1 I
Start of Token » T T T T T T T
! | I | I G|
1] T T i | 1 T
1 1 1 { | ! 1
End of Token 0 T T T T T T
—
i { | i i { |
FIG.33
extension bit
bits 7... 0
—~ -
£ Z16lslalalalilo A Address field
1][ala]alalo[D][D[D]d p | Datafield

1 D|ID|D|D|D|D|Dj|D]||3word Token

FiG.34

Patent Application Publication Oct. 16,2003 Sheet 37 of 124 US 2003/0196078 A1

;— extra bit

Ells]7]6]s]ala3]2]1]o0 x | Unused bit
1 XIA|A|AlA|D|D|D|D
Non DATAToken
o({X|o{p|D({OD|{D|D|D}|D
1 XIAlAJAJA|JA|A|D|D
DATAToken
0 DID|D|D|D|D|D|D|D
FiG.35
Y
U Vv Y Y U \"
Y
MPEG 4:2:0 JPEG 2:1:1
macroblock macroblock

FIG.36A FIG.368B

Patent Application Publication Oct. 16,2003 Sheet 38 of 124 US 2003/0196078 A1

clock e
, l I
valid B)]___:lj_[
accept _j_r_____‘_r l
o O IERIIK XXX
TlME=
FIG.37

Coded video dati

V
Spatial
Decoder

()

S
Temporal
Decoder

()

V
Image
Formatter

Control
Lt — ! Microprocessor

300

Raster video data

FIG.38

Patent Application Publication Oct. 16,2003 Sheet 39 of 124 US 2003/0196078 A1

Decoder clock propagation
~ Oscillator
Y 1 Y Y
system de- [« Spatial > Temporal [=— Image
mux ™ Decoder T Decoder —' Formatter
1 11 1

Data propagation

-
s

FIG.39

Clock
/ /
B 3 " 1 . 2,4
valid / accept
- 3 i 1 . 2,4
data / extn
TIME>

F1G.40

Patent Application Publication Oct. 16,2003 Sheet 40 of 124 US 2003/0196078 A1

MNZAZ7%ENSSSN MMM ARRAAR AL AR
[[[[m Access Start Data Transfer Detfault State

FIG.4 |
RAS
[8 ~
DRAM_addr[10:0] | X< X J
fe— 7 —
CAS[3:0] o | [
WE
OE
DRAM_data[31:0] < —

FIG.42 TME

Patent Application Publication Oct. 16,2003 Sheet 41 of 124 US 2003/0196078 A1

L 5 -
RA
o - 6 - >
DRAM_addr[10:0] X XJ
W-E —
Row address timing

CAS[3:0] N
OE
data[31:0] E

Start of read
CAS[3:0]]
OE
data[31:0] E |

Start of write
L - 7]
CAS[3:0] T
OE
data[31:0] = —>

Start of refresh

FIG.43 TME

Patent Application Publication Oct. 16,2003 Sheet 42 of 124 US 2003/0196078 A1

) 1A
81}
=
-
&
E7)
| oy
9 o
l._.
43}
©
Q
q—
- <
()} .
z ©
g o L
’_ gt
«
451
e ~
P
(T) L/
2 ol }
Q
Q T
&}L
tr-H-b- -
=) =)
) ~—
ha o,
e vy}
3 =
© g °,
2 & =
w
<:cc<t|LUuJ o
cr.c:i03|o o

Patent Application Publication Oct. 16,2003 Sheet 43 of 124 US 2003/0196078 A1

RAS .
> : ~
DRAM_addr(10:0] X< X I
fe— 7 —»
CAS(3:0] e 1]
WE
OE
DRAM_data[31:0] —T—
TIME
FIG.45
RAS
j 8 a
DRAM_addr(10:0] < X |
ft— 7 —]
CAS[3:0] T |
WE 1 I
OE
DRAM_data(31:0] B %%%% %4 &K

FIG.46 TIME

Patent Application Publication Oct. 16,2003 Sheet 44 of 124 US 2003/0196078 A1

RA] —
&l

» 9 >
DRAM_addr[10:0] e
CAS[3:0] [
WE
OE
DRAM_data(31:0]

Y

TIME
FIG.47
Hidden bits 23:00 8:0 bR'OW address
__________ - its
High column 21:15 |~ .7
address bits <l
Row address 14:6 | s
RO
) , Columnaddress
o o 19 | bits
Low column 52 | TTtteeelll .
address bits BT AR
........... 3.0
Byte select 1.0 | e

FIG.48

Patent Application Publication Oct. 16,2003 Sheet 45 of 124 US 2003/0196078 A1

10 12 11
[|t -
Any signal
14
FIG.49
Any signal / \
15 16 17
18
Any other
signal

FIG.50 TIME

Patent Application Publication Oct. 16,2003 Sheet 46 of 124 US 2003/0196078 A1

Any bus -
19 20 21
22
Any strobe / j
TIME
FIG.5 1
CAS[3:0]
23 24
DRAM_data[31:0]
TIME

FIG.52

Patent Application Publication Oct. 16,2003 Sheet 47 of 124 US 2003/0196078 A1

enable[1]

enable(0]

addr[7:0]

2

data[7:0]

enable(1]

enable[0]

addr([9:0]

2]

data(7:0]

25 26

\
A
A
\

L

&

30 32

A
A

29 31

FIG.53 TIME

25 26

A
Y

o
2
S

FiG.54 TIME

Patent Application Publication Oct. 16,2003 Sheet 48 of 124 US 2003/0196078 A1

8 bit value 16 bit value 32 bit value
bits{7:0] base + 3
bits{15:8] base + 2
bits[7:0] bits(23:16] base + 1
bits(7:0] bits[15:8] bits[31:24] base +0

FIG.55

Patent Application Publication Oct. 16,2003 Sheet 49 of 124 US 2003/0196078 A1

DOSM
e mmas———
; - l - coded,data
Audio / Video demultiplexer e clock
v ¥
DRAM Spatial -t decoder clock

Decoder -

!

el
.][—)eer?:g(oj;ar‘ P uP < P clock

'

Image il

A

Formatter - Y
I Audio Clock Audio Decoder
f
Display < VTG display clock
FIG.56
35
et —— >
36

L ———>~]
ViH
VIL 7

37

FIG.57

Patent Application Publication Oct. 16,2003 Sheet 50 of 124 US 2003/0196078 A1

Oft-chip DRAM

Coded data bulter Token buffer

!
Y

DRAM interface

4 P 4 Y

Start-up control Huffman nverse
decode and modeler
video
+ demultiplex +
Start code Inverse
detection quantiser
Input circuit Inverse DCT

I S 1

Microprocessor interface (MPI)

4
Y

FIG.58

Coded video data

Y
Error signal, motion
vectors and other Tokens

Patent Application Publication Oct. 16,2003 Sheet 51 of 124 US 2003/0196078 A1

Data bytes or Tokens via

Coded Data Port '——m‘— Tokens to start code detector
> Circuit >
Tokens via
microprocessor
interface
FIG.59

coded_clock o I s 1 A s (O s S VN O

| | |
coded_valid []) 3
coded_accept i i i
coded_exin r] N
byte_mode M T 1

FIG.60 TME

Patent Application Publication Oct. 16,2003 Sheet 52 of 124 US 2003/0196078 A1

Non-data Tokens
3 . . _ o
e Serial analysis of Additional Token <=
€ = DATA Tokens for insertion sb
S § - start codes +9§
0’0 0=
c C C
[¢3] QO
X > O
© °
FiG.6 |
Long DATA Token
E % PRV RN ZaN R v, AN 'J
Y
Start Code
Detector Start code detected and
converted to Token
l Short DATA Token

FIG.62

Patent Application Publication Oct. 16,2003 Sheet 53 of 124 US 2003/0196078 A1

Non data Token inserted before

Start code in DATA Token

Y

start code

s W e e [l B

Start Code
Detector

X *u CE KR I O E s

FIG.63

This looks like an MPEG picture start

\ Y

0x00 0x00 0x01 0x00 0x00

0x01

OxB8

A

This looks like an MPEG group start

FIG.64

Patent Application Publication Oct. 16,2003 Sheet 54 of 124 US 2003/0196078 A1

This looks like an MPEG slice start (0x28)

' Y

00000000 00G00CO0 00000001 0010100C 00000000 000000 00001000

A A

This looks like the prefix for a non-aligned
MPEG start code

FIG.65

data discarded by discard all data
or start code search

“new” video sequence “old” video sequence
| [[NN NNY [
1\ A - >
entry point for new eng of “last" filing system data
video picture blocks

FLUSH inserted to reset
discard all mode

FIG.66

Patent Application Publication Oct. 16,2003 Sheet 55 of 124 US 2003/0196078 A1

'

Detect end of picture and introduce PICTURE_END

'

Optionally stop after PICTURE_END and introduce
a FLUSH following the PICTURE_END

'

Conditionally introduce SEQUENCE_START
before PICTURE_START

'

Introduce CODING_STANDARD
before SEQUENCE_START

'

FIG.67

Patent Application Publication Oct. 16,2003 Sheet 56 of 124 US 2003/0196078 A1

Coded data Huffman Token buﬁ;
buffer decoder |
gg%rg start Bit counter Control logic Output gate :nooggl%?e
detector ™ > el >
A
‘
(Off-chip process)
FIG.68
Coded data and Token buffers
> D c B \ A
\
Bit Enable Qutput
— »i Counter »! Queue > Gate }o»

FiG.69

Patent Application Publication Oct. 16,2003 Sheet 57 of 124 US 2003/0196078 A1

Start code -
detector ete, || Coded data bufter

Huffman
Decoder

!

Token butfer

Inverse
e Quantiser etc.

FIG.70

Buffer limit

Y

Region of buffer

Buffer base holding valid data

l Buffer length /
! s

=)
Y
Y

Buffer read Buffer number

Defined limits of one Physical limit of the DRAM
buffer array

FIG.7 |

Patent Application Publication Oct. 16,2003 Sheet 58 of 124 US 2003/0196078 A1

Parser

Huffman Decoder

-
Coded data and Tokens Tokens to the Token
from coded data buffer Macroblock Counter buffer
ALU
FIG.72
frame buffer horiz_macroblocks
used by codec e >
T
a macroblock 8
o
\ %
valid area of \ G
i ©
picture E,
\ t
T~ g
Y

FIG.73

Patent Application Publication Oct. 16,2003 Sheet 59 of 124 US 2003/0196078 A1

blocks_h_0 blocks_h_1 blocks_h_2
° IoT K A
u
g 0 g M
S S S
a 4 a
FIG.74A FIG.748B FIG.74C
max_h
max_component_id |t—
2 .
1
>l 0
E
FIG.74D

v

horiz_pels + 15
16

horiz_macroblocks =

vert_macroblocks = vert_pels + 15
~ 16

FIG.75

Patent Application Publication Oct. 16,2003 Sheet 60 of 124 US 2003/0196078 A1

From Token buffer

J Run and Level representation of quantised coefficients

Inverse Modeller

l Expanded to 8x8 blocks of quantised coefficients

Inverse Quantiser

l 8x8 blocks of coefficients

Inverse DCT

l 8x8 blocks of pixel information

To output of Spatial

Decoder
FIG.76
Quantised Scale factor
values
Post
Processing

'

FIG.77

Patent Application Publication Oct. 16,2003 Sheet 61 of 124 US 2003/0196078 A1

1
L
l .
Quantised Quantisation Control logic
values tables <
Post
Processing
FIG.78
Scale factor
1
- 1 1
QS??J&QC’ Quantisation
tables
Post T
Processing
Control logic

'

FIG.79

Patent Application Publication Oct. 16,2003 Sheet 62 of 124 US 2003/0196078 A1

OxFF Table 3 Down loaded non-
intra table
0xC0
0xBF Table 2 Down loaded intra
table
0x80
0x7F Table 1 Default non-intra
table
0x40
Ox3F Table 0 Default intra table
0x00
JPEG view of tables MPEG view of tables
FIG.80
Image
Frame
Scan Scan Scan
FIG.8 |
{
O
T — = = o
< < o o o =
QO = < < < w
< | W wn e w = 1!
= w | ' ge) | s} @]
w o o w hu w c >
| il S o I C [} i
Z |2 T = v P~ w o
(@] C o 9 9 w
') ! o 0. (4)]
O [ép}
|
{ |
One scan
FlG.82 l |

One frame

Patent Application Publication Oct. 16,2003 Sheet 63 of 124 US 2003/0196078 A1

(Off-chip DRAM)

4
Y

DRAM interface
A Y A

Form prediction Interpolate /
address filter prediction

4 Y

Separate Picture

motion vectors sequence
control

Y
FIFO

A |
Microprocessor interface (1iPI)

4
'

FIG.83

Block orga?\isad video
data and other Tokens

Error signal, motion
vectors and other Tokens
|

Patent Application Publication Oct. 16,2003 Sheet 64 of 124 US 2003/0196078 A1

Picture 1
Component 2

8
Picture 1 A component_offset_2
Component 1

Picture 1 component_offset_1
Component O

picture_bufter_1

Picture O
Component 2

Picture O A component_offset_2
Component 1

Picture O component_offset_1
Component O

picture_buffer_0
—p

FIG.84

Picture's = O 3 1 2 6 4 5
temporal

reference I P B B o g g

Picturs sequence in
coded data

0 1 2 3 4 S 6 Picture sequence
required for display

FIG.85

Patent Application Publication Oct. 16,2003 Sheet 65 of 124 US 2003/0196078 A1

Picture buffer

! L

FIG.86
Picture buffer Picture buffer
AP f P
»é -
FiG.87
Picture buffer Picture buffer
AB B
-} .

FIG.88

Patent Application Publication Oct. 16,2003 Sheet 66 of 124 US 2003/0196078 A1

Picture buffer Picture buffer
AP/ | T
-+ previous P
orl
FiG.89
Picture buffer Picture bufter

S 4

Form
prediction

Motion vectors

Y

Error data

FIG.90

Patent Application Publication Oct. 16,2003 Sheet 67 of 124 US 2003/0196078 A1

Sequence of pictures

CODING_STANDARD
FLUSH

SEQUENCE_START

picture layer

groups of blocks

macroblocks

blocks

FIG.92

Patent Application Publication Oct. 16,2003 Sheet 68 of 124 US 2003/0196078 A1

I .
w
O
- || @
c e |l o
lf})' ﬁ] i—l Picture formed of groups of blocks 1
w || & || u
By
Tid]ls 3
21| = -
E1E o O
Qilo o =
o .
=
w
*_..
N T O T O
FIG.93
ClF QCIF
0 1 0
2 3 2
4 5 4
6 7
8 9
10

FIG.94

Patent Application Publication Oct. 16,2003 Sheet 69 of 124 US 2003/0196078 A1

Group of blocks formed from
macroblocks

SLICE_START

IS NN BN NS N S

FIG.95

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 | 21 22

23 24 | 25 26 27 | 28 29 30 31 32 33

FIG.96

Patent Application Publication Oct. 16,2003 Sheet 70 of 124 US 2003/0196078 A1

1 2
5 6
3 4
4blocksof Y 1blockofCg 1blockofCgh
data data data
FIG.O7
O o o 10 | QN o o o o — | QN
o O o O |O 10O o O O O | O
< | < | g (<L < | |4 |«q KL
}....
2l |g |22 |= 2lgl2 |2 |g]S
ojajaojojnojQ oo |0 oo

FIG.98

Patent Application Publication Oct. 16,2003 Sheet 71 of 124 US 2003/0196078 A1

S8 58 59 60 61 62 63 64

FIG.9S

sequence layer

group of pictures layer

picture layer

slice layer

macroblocks

blocks

FIG. 100

Patent Application Publication Oct. 16,2003 Sheet 72 of 124 US 2003/0196078 A1

[T T l Yo
(@] @)
c |5 C ||k
< i< < || <
Q || O ||
z || . 2|6 _
w
S w Group of oo = | w oo
» 9 pictures 33 2B ==
o & c%‘% © i §-‘é
Z ||D Z ||D
oo allC
8 Lt 8 w
SRR oo
[l
FIG. 101
[T
0
r &
w
<|ioilO
') |
210 O Group of
o ! ictures
Slu|G P
o= ||
@ o O
©) lost
o
[1]

FIG.102

Patent Application Publication Oct. 16,2003 Sheet 73 of 124 US 2003/0196078 A1

w
O
- | &
Akl S
5 w - Picture bl
Ll uf composed of g
T _1’ g slices S
2 < | E =
5 % O)
o lla |{& a.
=
tl
b=
FIG. 103
{ o ! l o
|.._
%
5 Slice formed of macroblocks
Lul
O
1
n
[| { [

FIG. 104

Patent Application Publication Oct. 16,2003 Sheet 74 of 124 US 2003/0196078 A1

1 2
5 6
3 4
4 blocks of Y 1blockof Cg 1 Dblockof Cg
data data data
FIG. 105

DATA 00
DATA 00
DATA 00
DATA 00
DATA 01
DATA 02
DATA 00
DATA 00
DATA 00
DATA 00
DATA 01
DATA 02

FIG. 106

Patent Application Publication Oct. 16,2003 Sheet 75 of 124 US 2003/0196078 A1

Picture's
temporal
reference
First GOP Second GOP /
0 3 1 2 6 4 5 20153/Picture
sequence in
ftPyBBIP|B{BIl||jlI|B|B|P|B]|B coded data
10 13 11 12 16 14 15 19 17 18 22 20 2t
0O 1t 2 3 4 5 &8 0 1 2 3 4 5 Picture
sequence at
1Bl B{P|B|B|P Bi{8|Il |(B|B|P display
10 11 12 13 14 15 16 17 18 19 20 21 22
> S
j Picture's
“frame
Picture 17 may depend umber”

on 16 and 19

FIG.107

Patent Application Publication Oct. 16,2003 Sheet 76 of 124 US 2003/0196078 A1
MM ZE AN N7 INZAREAA A A
HI[D] Access Start Data Transfer Default State

FIG.1 08
~t 38 >
AS]
- 39 »|
DRAM_addr[{10:0] EX X]
WE 7
Row address timing
CAS[3:0]]
OE
data[31:0] E
Start of read
CAS[3:0]]
OE
data(31:0] []
Start of write
|- 40 —b—{
AS[3:0] T
OE
data[31:0] f —> =
Stant of refresh

FIG.109 TIME

Patent Application Publication

|

RA

w

DRAM_addr[10:0]
CAS(3:0]
WE

OE

DRAM_data[31:0]

RAS
DRAM_addr[10:0]
CAS[3:0]

WE

OE

DRAM_data[31:0]

Oct. 16,2003 Sheet 77 of 124 US 2003/0196078 Al

8

FIG. 1 ||

ot 41 »|
> X]
t— 40 —]
| | |
T o—
FIG.1 10 TIME
{ 42)
X >]
f— 40—
i 1 —
e 43 ——»]
T 1 —
ORI XX
TlME=

Patent Application Publication

|

)

RA
DRAM_addr{10:0]

CAS[3:0]

OE

DRAM_data{31:0]

FIG.1 12

Hidden bits 23
High column 23-21
address bits
Bank select | 16-14
Row address | 16-14
Low column 5
address bits
Byfesélect =~ = " 7

0

FIG.1 13

~ 10 4

Oct. 16,2003 Sheet 78 of 124 US 2003/0196078 A1
—
| 44 b
X]
—
TIME

10 Row address bits

0

Column address bits

Patent Application Publication Oct. 16,2003 Sheet 79 of 124 US 2003/0196078 A1

45 47 46
I‘
Any signal
FIG.1 14
Any signal
45 46 47
53
Any other
signal

FIG.1 15 TIME

Patent Application Publication Oct. 16,2003 Sheet 80 of 124 US 2003/0196078 A1

Any bus /
N\
45 46 47

48
Any strobe / -

Y

-
-

FIG.1 16 TIME

CAS[3:0]

45 46

DRAM_data[31:0]

FIG.1 17 TIME

Patent Application Publication Oct. 16,2003 Sheet 81 of 124 US 2003/0196078 A1

Parser State
Machine
¢: V%B o > ecij
= £ :53 — O
2 S0l |85 = S E
. Js ol oA | < Lle sk,
-] — "l Q = " - (L,

FIG.1 18

Patent Application Publication Oct. 16,2003 Sheet 82 of 124 US 2003/0196078 A1

Read AC
Coefficients

Decode
Tecoeff VLC

Read
6 bit FLC Y
Read I\? cept
) ew
Lot FLC Read Command

1 bit FLC ’

Read Read
7bit FLC 7bit FLC

i

Y Y
0? 0?
N N
Read Read
8 bit FLC 8 bit FLC

v

FIG.T 19

Patent Application Publication Oct. 16,2003 Sheet 83 of 124 US 2003/0196078 A1

Command from Demux

o

A\ f—

next bit ——
1 Y

Huffman
Decode Logic

[B)

=EOB | o=

O

E

=ZRL ! 52

T3

L - @
e e —]

Index to Data

SSSS

SIGN,LEVEL ~ RUN
FIG.120

'.
AC JPEG
Coefficients

Decode
VLC

Index =
ZRL?

/

g

Index =

Patent Application Publication

/L.

/Y

EOB ? /

N

Form

RUN & SIZE
(Ito D)

Read

SIZE Bits

FIG.12 1A

Oct. 16,2003 Sheet 84 of 124 US 2003/0196078 Al

Kead

DCJPEG

Coefficients

Decode
VLC

Index = Y
0 Size?

L

Form

RUN & SIZE
(Ito D)

¢

Accept
New
ommand

‘

Read
SIZE Bits

FIG.121IB

Patent Application Publication Oct. 16,2003 Sheet 85 of 124 US 2003/0196078 A1

Lo 4

not_reset pho phi microinstruction
T ™ omwire iff 2-wire i/f | ”
HUFF_TF
17 17
—\——| input data output data {——d—p
———{input ext ouput ext =
FIG.122

——— Control
Logic
Cmd(17:0]
—»_
|
PhC
out_data{16:0
o]
Phi
in_data(16:0] RL{16:0]
— o |
PhO Phi
PhO

FIG.123

Patent Application Publication Oct. 16,2003 Sheet 86 of 124 US 2003/0196078 A1

Command from Demux

\ 7

next bit
1 Y

Huffman

Decode Logic
=
=EOB - =
E &
— ESCAPE 52
Tl
@«
=0 - v

Y
Index to Data
LEVEL or SIGN
or7, 8 bit FLCl J RUN

ALU

SIGN,LEVEL ~ RUN
FIG.124

Oct. 16,2003 Sheet 87 of 124 US 2003/0196078 Al

Patent Application Publication

G2 1'0l4 L 8

- 109)ep abusyo
- PL{BA 22 (snq uaxoy)
JUBISUOD < A _
- / S3p03 UOL}LIpU0D E
L
- 1X8 yndino 1% (ndul [
\ BYBP I«DQC_ ‘lllll*ll
- n g1ep Indino 7
t‘l
LX] sJ8)stBeu padlampany un g
|
-
I -
| BALM- L 8l M=
- J/V 3dIM-C J/LadlMm=-¢ o
U0 1}oNAISUL0UD W lyd oyd 18sadT0uU
SE

4ppe 1dn B3IBp 1dn 8(QBUB Ldn

1senbad 1dn

Patent Application Publication Oct. 16,2003 Sheet 88 of 124 US 2003/0196078 A1

IoN
soc—2N o
p— 10
DETECT £CC >
CC VALID
t, o
8, A REGISTER 403 CONDITION CODES 402
— | — INPUT———},L A _
Sox—) Lont Lon0 [Ty -
— PEG 2-WRE i/f
2-WIRE i/f
-~ T0 UPI| LEVEL
RUN 404 N
™ INPUT___| 6 INeur
A0 —Jppht pno [T RN ADD%} -
gz. ADDU4
10 UPI
CONSTANT ol ;
i e }wpun o lse :D‘T" - |
INPUT DATA Cﬁfg +/'405—f—ADO GND >
] A }iNPUTZ L
INPUT RUN
\
RUN N
6 - RUN L
7 4 ot | GND
INPUT }DATA
A— SIGN 12
CONST EXTEND |—+ SOX
L] A —1 L|sizE L]
=t
phQ ph1
A SIGN -
INPUT BLOCK 400 OUTPUT BLOCK 401
HARDWIRED MB
ADDR | COUNTER STRUCTURE
o DR } ADDRESS DECODE j
ADD | 12 12
SGX ——} ; — REG
UPRI
FIG. 126 REGISTER FILE 407 5
> T0 UP!

Patent Application Publication Oct. 16,2003 Sheet 89 of 124 US 2003/0196078 A1

bmprtize bminstr bmrecalc

bmsnoop

Y

To DRAM interface Addresses

REQeg— |[t——
ACK—»{ |—»

FIG.127

Patent Application Publication Oct. 16,2003 Sheet 90 of 124 US 2003/0196078 A1

TOKEN BUFFER

16 (S}

| MUP [IMEX | iMPAD |-

THSPPK) IMODEL
FIG.128

run =0

ormat = 1

format=10
Reset—

FIG.129

Patent Application Publication

o RS

.D."\ C . to et .

LA SN
W)

. <T

| BUFFER | W

ol HUFFMAN|. .

. _ '-.-’ uJ

B Y SR EJI

‘1 BUFFER <2t

o . -]

S o I :

el :

= 1]

Tea -

we g ® '

TR b= SRR

R o

- -
I .
.
. P
. '_
LI r 4
‘ 2 f
O
h .
. '_
—— *
..)
s '
. e U) ()
.| a ’
- - ’
Pt T
. . B
R
.

.
oo
f
et
. 0
AR
I
.
: .
L s
.,

Oct. 16,2003 Sheet 91 of 124 US 2003/0196078 Al

FIG. 130

Patent Application Publication Oct. 16,2003 Sheet 92 of 124 US 2003/0196078 A1

Address Generator
420

Data ——F—9

External

DRAM
422

Data <&————»

DRAM Interface
421

FIG. 13|

Patent Application Publication Oct. 16,2003 Sheet 93 of 124 US 2003/0196078 A1

valid/accept Control
P ~ >
|y
Write Address
Read Address
___> 4
RAM 1
.
-
Data In
aeln . Data Out
_> '<—
- RAM 2
.

FIG.132

Patent Application Publication

ig_quant_scale

Oct. 16,2003 Sheet 94 of 124 US 2003/0196078 Al

44— oo
"_—'»——‘

—= Post -Functions

FIG.133

see B.8.4.6
|

v

Output

!

xqcaL

| |

' |
igram 1qchb
£
a
Q.
v v | &
S
iqarith
|
1qsnaop

I

FIG. 134

Patent Application Publication Oct. 16,2003 Sheet 95 of 124 US 2003/0196078 A1

& C BodyWord counter
T C)
2
c 9 F 63WordsinBody
o O =
M (O
o o %
= W
! :
T 1 ©
2
PLA 7
%
Q
W O O = -
6T D B2
532 225
T~ .=
T T Ww o O
< @ w =
8 - 0
Q

FIG.135

Patent Application Publication Oct. 16,2003 Sheet 96 of 124 US 2003/0196078 A1
Y{0] m /—\ /\/) X(0]
o ><g v \ -

Y(2] 018 X(3]

038 "’
v ch «o
(6] > 1s ‘ ’ ‘ (2]
d1
ds3
Yis] \ >% A‘ X[6]
1 l“
vl A" 3 S ‘ X(4]
c3s
Q - - X 5
™ O . O (O

Key:

coe
constant coefficient Q ;O adder,subtractor

multiplier

X(7]

FIG.136

Patent Application Publication Oct. 16

,2003 Sheet 97 of 124 US 2003/0196078 A1

roton <
ol Eﬁl ! S oo X(0.7]
Y(1,0]) (o0—{+F)
1 f (]
Y(5.4] 1L 4 ' X[1,6]
!
Y32] A"@! ‘a W@ X(3.4]
— /N
{
Y(7.6) e '-_ ~— . m@ X(2,5]
TN
[Key:
coef constant coefficient camy-save
carry-save muitiplier adder,subtractor

-3~ multivlier ouiput resolver

@, @ resolving adder,

"‘r -Ci + dummy adder/subtractor

subtractor ‘ " (combiners)
. -+ latch
-@_ resolving adder/subtractor '
L 3} 24nput mux latch J
FIG. 137
in_extn—p in_extn_reg block_extn — out_extn
§4n?
. P{= [P o Stgge q < la
in_dataz% & /3 in_datareg Pipeline block_d 7/ £ Hout d
« =
. . o, . . o,)
in_valid—sa =< Min_valid_reg block valid | 5' |— out_valid
block_accept out_acc_reg 1
in_accept«— j < out_accept

FIG.138

Patent Application Publication Oct. 16,2003 Sheet 98 of 124 US 2003/0196078 A1

:},tIZ

12 bit integer

decheck
DATA Error Checking and ~ 440
Recovery
b2
izz
Inverse Zig-Zag RAM 441
L2
ip_fmt 442
Input Formatter
22 10 bits fraction
443
oned

1-D IDCT Transform

15 Dimension

7 bits fraction

tram
Inverse Zig-Zag RAM

444

- 22

oned
1-D IDCT Transform

445

2™ Dimension

|| 22

4 bits fraction

ras
Round and Saturate

- 446

3,{:9

FIG.139

9 bit integer

Patent Application Publication Oct. 16,2003 Sheet 99 of 124 US 2003/0196078 A1

JL{: 12 12 bit integer

decheck
Y
uP port £L—izz
~—7
//‘ 12
Yy
ip_fmt
122 10 bits fraction
|
uP port £——— SNoOOper
~A
oned .
1% Dimension
,r’ 22 7 bits fraction
uP port £—— tram
A
122
oned 2™ Dimension
122 4 bits fraction
p - er
uP port — snoop
1122
ras
49 9 bit integer
uP port £&——] super snooper
<A

d/’ 9

N

FIG.140

Oct. 16,2003 Sheet 100 of 124 US 2003/0196078 Al

Patent Application Publication

(How)
1Pl Ol XNW 4/! NoADﬂH% HAVT | us
(9NIHOLYY ON) TYNOILYNIBNOD - Lp D p
ATIYINT SI.30078 NOWAO0D, 310N = -
L A3
_——

%0018 NOWKOD

// 9/HILVI
B

<

A! I|A1| ¢EHIIV
- EIQ
- — - yGHOLY
jno—y
+

| — lmﬁ] ‘ [Qoo
PR u m A

5 5595 N
MVA_ vOA_ N_ N_ Dzw\vﬁo 1 B _llll OV NY
E EEE 07u3 yb~ue ugTus d7jes dAqQTyes

Patent Application Publication Oct. 16,2003 Sheet 101 of 124 US 2003/0196078 A1

DRAM Interface
-~
. . Micro
Interface
459
et Clock
Address Pre_dactton
Generator Filters Generators
452 454
JTAG
460
F 3
L h
Input Predic- Write Read Output
W%F' ;.Tgfk FIFO |, ton Rudder Lpl Rudder 1 Inter- t»
* face [451 453 ﬁggg; Adder Adggr pfggje
4ol 4 or
450 455 457 ot 458

FIG. 142

Patent Application Publication Oct. 16,2003 Sheet 102 of 124 US 2003/0196078 A1

in_data out_data
.___t ck —:C ck
in_valid Logic out_valid
::C ck _:E ck
in_accept
\\ out_accept
ck IcK
phi T
phO

FIG.143

Patent Application Publication Oct. 16,2003 Sheet 103 of 124 US 2003/0196078 A1

Token Input

!

Token Decode

A

Macroblock Counter

y

Block Calculation Vector Offset

A

Base Block Address

Y A h
Reorder Read Write Requests Prediction
Requests Requests
DRAM Jr'\terface l

FIG.144

Patent Application Publication Oct. 16,2003 Sheet 104 of 124 US 2003/0196078 A1

Input Data

v

Pred. Filters
Formatter

v

1-D Prediction
Filter (x)

'

Dimension
Buffer

v

1-D Prediction
Filter (y)

v

Qutput Data

FIG. 147

Patent Application Publication Oct. 16,2003 Sheet 105 of 124 US 2003/0196078 A1

FIG.145

Forward Data Backward Data

Forward Backward
Prediction Prediction
Filter Filter
L L
Prediction
Filters
Adder

-

To Prediction Adder

FIG.146

Patent Application Publication

Oct. 16,2003 Sheet 106 of 124

US 2003/0196078 A1

ipa ipb ipc in_del
Reg A Reg B Reg C Reg DA
Y
i Bx2mux / \ Cx@mux [/
\ 4
Reg D Reg E Reg DD
y
Reg F Reg DF
out_data out_del
\ v /
FIG. 148
0({1121314;5|6]7
89 101111211314} 15
1617118119120)21122(23
24125(26(127128|29(30{ 31
32|33|34{35|36{37|38]|39
4014142143 |44 45|46 47
48 149150|51|52{53|54]55
56|57158(59|60|61{62|63

FIG. 149

Patent Application Publication Oct. 16,2003 Sheet 107 of 124 US 2003/0196078 A1

!

Reorder input

" FIFO 1
5
Q.] -—
| 3
o S —
> 3
=~ O
i)
FIFO 2
h 4
.
Token
Decode
04 h 4 Qutput
Control
Token FIFO
[nput R Input
Control 7l Interface

FIG. 150

Patent Application Publication Oct. 16,2003 Sheet 108 of 124 US 2003/0196078 A1

/\‘r“—"}
i |
/ U__J
- :'-‘l
Frot
FIG. 15
|
1o . " . 15 8
7. :
oAl B
57 - 63 .56
| 7 .0"
C D

FIG. 152

Patent Application Publication

External signal- notEl

Read Cycle

Oct. 16,2003 Sheet 109 of 124 US 2003/0196078 Al

15nS

Internal signal -Address

Valid

[nternal signal - RnotW

[nternal signal - Prech

[ntemnal signal - Read_Str

Internal signal - Databus

Valid

External signal - DRatabus

~ /

Valid

FIG.153

TIME

Patent Application Publication Oct. 16,2003 Sheet 110 of 124 US 2003/0196078 A1

Write Cycle

External signal- notEl \

15nS

Internal signal -Address X Valid x:

Internal signal - RnotW \ /_

Internal signal - Write_Str / \

25nS
Internal signal - Databus X X Valid X
External signal - Datahus <Va1id >\

FIG.154 TIME

Oct. 16,2003 Sheet 111 of 124 US 2003/0196078 Al

Patent Application Publication

GG 191
2 Viva i '
S avay | 49 $Lno
g sl e -
}
m oviva ! 30V4d3 NI WvHd “
Qv 2553400y 15534adv O SS34aav Ss34adv ' viva
dbyyg | Qu3d av3d avay JLHM - 3LHM

g sl g s | [s] (s] _W»Huﬂm_H_
4 1 " 9} o¢ } 92} 8l 8

25S34¥0QyY 1SS3YAAY 0SS3YAav| | ssawaav viva
NOILVYHINIO NOILVH3INT9D
SS34Qav av3id SSIHAAQV JLIYM
X3aNI $q| [XIaniSNaNOL DM
e} z} s}

W12 010NV ~— SHAAIAIG X3AN1 av3y X3AN! 3LI”M SN3MOL 0414
A JUNLIAd=—= }HO0TD [I3 yIguNvw 434N g,q[| g

=SUPER SNOOPER [s]=SNOOPER

0 .T_

6,
&2 B 2yningo ﬁ ZHWYSAN] 2ANYSdN
0]
ge-{S{8 83110808 o] modw_wmmu:\wﬂwuu 2 Hsdn 4 1AYSdn
8 8 .L W ol _
Li D™ OVYWAYO $3IN OHWVSdN [~ o>m_.m_,.\w._%
Y dy PN @3N

Patent Application Publication Oct. 16,2003 Sheet 112 of 124 US 2003/0196078 A1

pho EEEEEENEEREEE RN
RSN RN E

ph
For convenience pic_clK is
L shown simply re-timed to phO:
in reality this is properly
synchronised.

e —

g)

pic_clk /

pic_ph0

prev_pic_ph0

prn_chg

en_prnum

R IE

new_incr_prn

incr_prn
proum pres_num X pres_num-+I
pres_flag ’
state = PRESO TIME
or TOKEN

FIG. 156

Oct. 16,2003 Sheet 113 of 124 US 2003/0196078 Al

Patent Application Publication

LG9l
(2439 dW31)
— !

NN "Old"M3N

G ;) (2438 ~dW3L) ss1o N
— i
Q_ YV melu m _mumln_s_m:.v DX — O=iApig 1SMApig 1D ==X
I T M (ANI T 0Id ‘/

d17dX3"M3N -

C D Ba.ruxe=ul (0434 dW31)
- 15 i I9ZHB 1
\ G_Q.r LNdLno pud aunyoid AdY—-350
p // 1980001 | PUDA; | ysniy | 140IS~aId (" NTHOL
e a5} fprasnl (""gsSIA"3LVIVA)
s mm%m_m__mcowg L _HSN4 oS dsip 109|2
}coooz,wxoc‘_ux_ B XOW==x| U=wWouj . \
JUDDDA; g XD =jX
0071V R 04d
pPa}b20||0 | a_ﬁmma_ Ap1 plo Joayo JGYREIR AN
Xaput wmﬂ_
SYIHLO EmEEwc_'

N

ommma

Y,

-

=S

1YVLS

Patent Application Publication Oct. 16,2003 Sheet 114 of 124 US 2003/0196078 A1

™~

PRESO M
increment

1 index

(PRESI

'pres_fig | allocated

/

TOKEN) pic_start | flush | lvalid | laccept

FIG.158

Patent Application Publication Oct. 16,2003 Sheet 115 of 124 US 2003/0196078 A1

BUFFER_BASEO = DISP_COMP_OFFSETO0 = 0x00

Ao 71 2 73 Ja . 2A 28
Elu--—\.‘.\,h.\ain.‘ﬂﬂ-ﬁ.«”.‘.\
| 2C ; 2D | 2E + 2F '
S| ; : , 57
Q |)
U” Component 0 »
17 I NSO . J
@ | J
> | 1
I I, 1
ol l t 1
© | |5D8 , , 603
A T SRR SN IR
+ 604 605 62D | 62E |62F FIG. 1 59A
H : b
< ——-—ADDR_HBS_COMPO — — — —
- - DISP_HBS_COMP2 — — — -—»
(-DISP__COMP_OFFSETI = 0x630
o 1 .' I
S T 630 1631 . 1645
O R R R Innnn J
1646 | Component | =~

DISP_VBS

- — — -

68A ,6BB | FIG.| 59B

< -ADDR_HBS_COMPI-»
DISP_COMP_OFFSET2 = 0x7BC

A Mrac 178D ; "7D1

= oo ..

O I } '

O bz Component 2

2 '

> 1932

o | oo FIGL 1590
2 946 ,947 G

ay .

Patent Application Publication

o

0x24 blocks

BUFFER_BASEQO =0

s DISP_COMP_OFFSETO

-

o /1|2 .3

1

4

2A 2B

2C 12D | 2E : 2F

- - - a a -

D8

L

<« DISP_HBS COMPO —m

P

1
S7

- & ol o -

602 603

604 605 ’

1

‘62D

_q-so——-q
B62E «62F

FIG. 160

<«— ADDR_HBS COMPO_____,

—

Oct. 16,2003 Sheet 116 of 124 US 2003/0196078 Al

S_COMPQO

DISP_VB

Patent Application Publication

BUFFER OFFSET 0Ox00
COMPONENT OFFSET

Ox000 +

oooooo

Oct. 16,2003 Sheet 117 of 124 US 2003/0196078 Al

00

01

02

03

04

05

06

07

08

OB

0C

0D

6]

OF

10

11

12

13

14

15116

17

18

19

1A

18

1C

1D

1E

1F

20

21122

23

24

25

26

27

28

28

2A

2B

2C

2D |2E

2F

30

31

32

33

34

35

36

37

38

3913A

3B

SC

S0

Sk

SF

40

41

42

43

44

45146

47

48

49

4A

4B

4C

4D

4E

4F

20

51152

93

54

55

56

37

58

59

DA

5B

5C

SD|SE

SF

60

61

62

63

64

65

66

67

68

69 |6A

68

6C

6D

6E

6F

/70

71

72

73

74

75176

77

/8

/8

7A

7B

/C

/D

/E

7F

80

8182

83

84

85

86

87

88

89

8A

88

8C

8D {8E

8F

COMPONENT1

FIG.16 1A
OFFSET Ox100 +

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

oD

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

COMPONENT1

FIG.16 1B

OFFSET 0Ox200 +

00

01

02

03

04

G5

06

a7/

08

oS

OA

0B

0oC

ob

OF

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

FIG.161C

Oct. 16,2003 Sheet 118 of 124 US 2003/0196078 Al

Patent Application Publication

c9l

BU_WADDR_COMPO_MAXVB+I

BE

FHFEHXVIN 0dNOD daavm Ng

Y

|
1

_MBS_HIGH

A

BU_WAD

{
{

- -

SEBHT04NOD ¥Qavm ng

D R A e Et Lt IR R BB B R

daIM s8N ¥gavm Ng

SAO0T8 NITHLAIM 4TVHT0dWOD Haavm ™ ng

R B i S A S RS

429 | 3¢9 | ae9 09 | v09
€09 | <09 8ds
(0=13544070dW0OD™4AAYM ™ NE '0=3SYE 0YTJANE~HAAYM N E)
0 wsuodwo)) ‘gIayyng

MOYTEIW LSV T 0dWOD dAavm™Ng

NI MOA LSV T 0dW0OD™daavm™Ng
(I+EAKYW0dNOD HAAVM ™ NE)sSEH 0INOD ™ IAAYM NE=MOY 8 W J3d™SHD0TE 0dWOD HAN A NE
LS 14 4% Ev | eb Ly ov 4¢ | d¢ Q¢ |0¢
te V¢ 6l 8l Ll oL Gl vl 1% € 14 b 0

MOY NI W LSVT 0dNOD daavm Ng

~

MOY JTVH NI g~ LSV 0dINOD 3aavm— Ng

Patent Application Publication Oct. 16,2003 Sheet 119 of 124 US 2003/0196078 A1

HMBADDR=0x28 HB=1

01|23 .[29]2a28

oc|20| 26| 2F | “fl |57

VMBADDR=0x5D7 BEERAS
COMPONENT. T. .°,
spg| . | | lerileoz2ls03
VBADDR=0 " 1l e
604605/ *. - |.. 7| - |62D|62E|62F

VBADDR=0x2C

BLOCK ADDRESS=0+0+0x5D8+0x28+0x2C+1=0x62D
FIG. 1 63A

VMBADDR=0 HMBADDR=0x2A
HB=0

veapor=0"" 0|1 | 21]13. ¥ 291201 28

2c] 20|28 | 2F | T T 7

COMPONENT 0
508 602|603
604|605 62D|62E |62F

BLOCK ADDRESS=0+0+0+0x2A+0+0=0x2A
FIG.163B

Patent Application Publication Oct. 16,2003 Sheet 120 of 124 US 2003/0196078 A1

idr data
fc
ADDRI
fC ! /3
ADDR2) (Gvralixr) idr hmbs
fe QOUTPUT_TAQ
ADDR3 L L
fc idr vmbs
ADDR4 fivr Y ﬁw@
fo-+!aar | %IORZ_MBS 1) (VERT_MBSI)
w ADDRS livr + livr
O {)
G fe QHORZ_MBSO) (VERT_MBSG
=]
5
T fel
o3 1C.:2
N ",
5 s (OTFER
G fe 2 /¢ = return to IDLE
% % MB1 fc = first cycle
é fc.lz z = zero flag livr&rar&dixr) (
I N
3 e SETTS
% fc z
<§ () g 1Z&IH26 1%}
05 EE S
IN ' fc
: MB4
261810 W MB4A e imod

fc z

imod3eq? 3eq?2

M)

MBS \z&lic

fe Z8H2618IQCF a0 A5

- fc z&mod3eq2<c
== MB4C

FIG.164

Patent Application Publication Oct. 16,2003 Sheet 121 of 124 US 2003/0196078 A1

UPI_DATA_BUS>

UPI_WRITE_STROBES

[PH]
UPI_WRITE_STROBES

00 [% tﬁ{ , %]i [OADE.0]
: :

DRIVEA_SELECTS

VARIOUS SN
CONSTANTS
SRCA[Z] : Ny SRCB[Z]
SRCA[3]-E - SRCBL3
SRCAL5] SRCBIS]
C
< D
k CK
FIG. 165

CBUS[17:0]

Patent Application Publication Oct. 16,2003 Sheet 122 of 124 US 2003/0196078 A1

ph1 RSN
S

o]

pho MI
1.:'.',: ".-l

BRI

drivealt |/ N
P

ll |

A/B bus W | !
'I" x

l 1

! |

l |

LoadA_0 4J/F'

o

g .':"-:-l

U “a” register
L Loaded
Sl .
FIG. 166 TIME

Patent Application Publication Oct. 16,2003 Sheet 123 of 124 US 2003/0196078 A1

. i
7YYy
]

Yn
FIG.187

COEFF COEFF COEEF
cO3-+=—_"1 ci3 &= c23]
co2 clo 1 c22 &]
co1- 1 c11 - J c21 !
co0-§ 1 1] c10 -4 020 gy
AN 7 7

AL OA TR

L LU l_ L™
PIPE PIPE
[]
RESOLVE 0
____/
FIG.1 68

Patent Application Publication

Oct. 16,2003 Sheet 124 of 124 US 2003/0196078 Al

cO1 c1i -
Reqister 02 Register c12
Adder Adder
1 ¥
%2 Register c03 Register c13
L R —
Y L
Adder Adder
*. c04 { cl4
Register Register
— —
Add & Resolve Add & Resolve
1 t
Register Register
1 1
Saturate Saturate
{ 1
Latch Latch
{ {
out_datal out_datal

FIG.169

US 2003/0196078 Al

DATA PIPELINE SYSTEM AND DATA ENCODING
METHOD

[0001] This is a continuation-in-part application of U.S.
Ser. No. (not yet known) filed Feb. 2, 1995, which is a
continuation application of Ser. No. 08/082,291 filed Jun.
24, 1993. This application claims priority from EPO Appli-
cation No. 92306038.8 filed Jun. 30, 1992, British Applica-
tion No. 9405914 .4 filed Mar. 24, 1994 and British Appli-
cation No. (not yet known) filed Feb. 28, 1995.

BACKGROUND OF THE INVENTION

[0002] The present invention is directed to improvements
in methods and apparatus for decompression which operates
to decompress and/or decode a plurality of differently
encoded input signals. The illustrative embodiment chosen
for description hereinafter relates to the decoding of a
plurality of encoded picture standards. More specifically,
this embodiment relates to the decoding of any one of the
well known standards known as JPEG, MPEG and H.261.

[0003] A serial pipeline processing system of the Present
invention comprises a single two-wire bus used for carrying
unique and specialized interactive interfacing tokens, in the
form of control tokens and data tokens, to a plurality of
adaptive decompression circuits and the like positioned as a
reconfigurable pipeline processor.

[0004] Video compression/decompression systems are
generally well-known in the art. However, such systems
have generally seen dedicated in design and use to a single
compression standard. They have also suffered from a
number of other inefficiencies and inflexibility in overall
system and subsystem design and data flow management.

[0005] Examples of prior art systems and subsystems are
enumerated as follows:

[0006] One prior art system is described in U.S. Pat. No.
5,216,724. The apparatus comprises a plurality of compute
modules, in a preferred embodiment, for a total of our
compute modules coupled in parallel. Each of the compute
modules has a processor, dual port memory, scratch-pad
memory, and an arbitration mechanism. A first bus couples
the compute modules and a host processor. The device
comprises a shared memory which is coupled to the host
processor and to the compute modules with a second bus.

[0007] U.S. Pat. No. 4,785,349 discloses a full motion
color digital video signal that is compressed, formatted for
transmission, recorded on compact disc media and decoded
at conventional video frame rates. During compression,
regions of a frame are individually analyzed to select
optimum fill coding methods specific to each region. Region
decoding time estimates are made to optimize compression
thresholds. Region descriptive codes conveying the size and
locations of the regions are grouped together in a first
segment of a data stream. Region fill codes conveying pixel
amplitude indications for the regions are grouped together
according to fill code type and placed in other segments of
the data stream. The data stream segments are individually
variable length coded according to their respective statistical
distributions and formatted to form data frames. The number
of bytes per frame is withered by the addition of auxiliary
data determined by a reverse frame sequence analysis to
provide an average number selected to minimize pauses of
the compact disc during playback, thereby avoiding unpre-

Oct. 16, 2003

dictable seek mode latency periods characteristic of compact
discs. A decoder includes a variable length decoder respon-
sive to statistical information in the code stream for sepa-
rately variable length decoding individual segments of the
data stream. Region location data is derived from region
descriptive data and applied with region fill codes to a
plurality of region specific decoders selected by detection of
the fill code type (e.g., relative, absolute, dyad and DPCM)
and decoded region pixels are stored in a bit map for
subsequent display.

[0008] U.S. Pat. No. 4,922,341 discloses a method for
scene-model-assisted reduction of image data for digital
television signals, whereby a picture signal supplied at time
is to be coded, whereby a predecessor frame from a scene
already coded at time t-1 is present in an image store as a
reference, and whereby the frame-to-frame information is
composed of an amplification factor, a shift factor, and an
adaptively acquired quad-tree division structure. Upon ini-
tialization of the system, a uniform, prescribed gray scale
value or picture half-tone expressed as a defined luminance
value is written into the image store of a coder at the
transmitter and in the image store of a decoder at the receiver
store, in the same way for all picture elements (pixels). Both
the image store in the coder as well as the image store in the
decoder are each operated with feed back to themselves in
amanner such that the content of the image store in the coder
and decoder can be read out in blocks of variable size, can
be amplified with a factor greater than or less than 1 of the
luminance and can be written back into the image store with
shifted addresses, whereby the blocks of variable size are
organized according to a known quad tree data structure.

[0009] U.S. Pat. No. 5,122,875 discloses an apparatus for
encoding/decoding an HDTV signal. The apparatus includes
a compression circuit responsive to high definition video
source signals for providing hierarchically layered code-
words CW representing compressed video data and associ-
ated codewords T, defining the types of data represented by
the codewords CW. A priority selection circuit, responsive to
the codewords CW and T, parses the codewords CW into
high and low priority codeword sequences wherein the high
and low priority codeword sequences correspond to com-
pressed video data of relatively greater and lesser impor-
tance to image reproduction respectively. A transport pro-
cessor, responsive to the high and low priority codeword
sequences, forms high and low priority transport blocks of
high and low priority codewords, respectively. Each trans-
port block includes a header, codewords CW and error
detection check bits. The respective transport blocks are
applied to a forward error check circuit for applying addi-
tional error check data._ Thereafter, the high and low
priority data are applied to a modem wherein quadrature
amplitude modulates respective carriers for transmission.

[0010] U.S. Pat. No. 5,146,325 discloses a video decom-
pression system for decompressing compressed image data
wherein odd and even fields of the video signal are inde-
pendently compressed in sequences of intraframe and inter-
frame compression modes and then interleaved for trans-
mission. The odd and even fields are independently
decompressed. During intervals when valid decompressed
odd/even field data is not available, even/odd field data is
substituted for the. unavailable odd/even field data. Inde-
pendently decompressing the even and odd fields of data and
substituting the opposite field of data for unavailable data

US 2003/0196078 Al

may be used to advantage to reduce image display latency
during system start-up and channel changes.

[0011] U.S. Pat. No. 5,168,356 discloses a video signal
encoding system that includes apparatus for segmenting
encoded video data into transport blocks for signal trans-
mission. The transport block format enhances signal recov-
ery at the receiver by virtue of providing header data from
which a receiver can determine re-entry points into the data
stream on the occurrence of a loss or corruption of trans-
mitted data. The re-entry points are maximized by providing
secondary transport headers embedded within encoded
video data in respective transport blocks.

[0012] U.S. Pat. No. 5,168,375 discloses a method for
processing a field of image data samples to provide for one
or more of the functions of decimation, interpolation, and
sharpening. This is accomplished by an array transform
processor such as that employed in a JPEG compression
system. Blocks of data samples are transformed by the
discrete even cosine transform (DECT) in both the decima-
tion and interpolation processes, after which the number of
frequency terms is altered. In the case of decimation, the
number of frequency terms is reduced, this being followed
by inverse transformation to produce a reduced-size matrix
of sample points representing the original block of data. In
the case of interpolation, additional frequency components
of zero value are inserted into the array of frequency
components after which inverse transformation produces an
enlarged data sampling set without an increase in spectral
bandwidth. In the case of sharpening, accomplished by a
convolution or filtering operation involving multiplication
of transforms of data and filter kernel in the frequency
domain, there is provided an inverse transformation result-
ing in a set of blocks of processed data samples. The blocks
are overlapped followed by a savings of designated samples,
and a discarding of excess samples from regions of overlap.
The spatial representation of the kernel is modified by
reduction of the number of components, for a linear-phase
filter, and zero- padded to equal the number of samples of a
data block, this being followed by forming the discrete odd
cosine transform (DOCT) of the padded kernel matrix.

[0013] U.S. Pat. No. 5,175,617 discloses a system and
method for transmitting logmap video images through tele-
phone line band-limited analog channels. The pixel organi-
zation in the logmap image is designed to match the sensor
geometry of the human eye with a greater concentration of
pixels at the center. The transmitter divides the frequency
band into channels, and assigns one or two pixels to each
channel, for example a 3 KHz voice quality telephone line
is divided into 768 channels spaced about 3.9 Hz apart. Each
channel consists of two carrier waves in quadrature, so each
channel can carry two pixels. Some channels are reserved
for special calibration signals enabling the receiver to detect
both the phase and magnitude of the received signal. If the
sensor and pixels are connected directly to a bank of
oscillators and the receiver can continuously receive each
channel, then the receiver need not be synchronized with the
transmitter. An FFT algorithm implements a fast discrete
approximation to the continuous case in which the receiver
synchronizes to the first frame and then acquires subsequent
frames every frame period. The frame period is relatively
low compared with the sampling period so the receiver is
unlikely to lose frame synchrony once the first frame is
detected. An experimental video telephone transmitted 4

Oct. 16, 2003

frames per second, applied quadrature coding to 1440 pixel
logmap images and obtained an effective data transfer rate in
excess of 40,000 bits per second.

[0014] U.S. Pat. No. 5,185,819 discloses a video compres-
sion system having odd and even fields of video signal that
are independently compressed in sequences of intraframe
and interframe compression modes. The odd and even fields
of independently compressed data are interleaved for trans-
mission such that the intraframe even field compressed data
occurs midway between successive fields of intraframe odd
field compressed data. The interleaved sequence provides
receivers with twice the number of entry points into the
signal for decoding without increasing the amount of data
transmitted.

[0015] U.S. Pat. No. 5,212,742 discloses an apparatus and
method for processing video data for compression/decom-
pression in real-time. The apparatus comprises a plurality of
compute modules, in a preferred embodiment, for a total of
four compute modules coupled in parallel. Each of the
compute modules has a processor, dual port memory,
scratch-pad memory, and an arbitration mechanism. A first
bus couples the compute modules and host processor. Lastly,
the device comprises a shared memory which is coupled to
the host processor and to the compute modules with a second
bus. The method handles assigning portions of the image for
each of the processors to operate upon.

[0016] U.S. Pat. No. 5,231,484 discloses a system and
method for implementing an encoder suitable for use with
the proposed ISO/IEC MPEG standards. Included are three
cooperating components or subsystems that operate to vari-
ously adaptively pre-process the incoming digital motion
video sequences, allocate bits to the pictures in a sequence,
and adaptively quantize transform coefficients in different
regions of a picture in a video sequence so as to provide
optimal visual quality given the number of bits allocated to
that picture.

[0017] U.S. Pat. No. 5,267,334 discloses a method of
removing frame redundancy in a computer system for a
sequence of moving images. The method comprises detect-
ing a first scene change in the sequence of moving images
and generating a first keyframe containing complete scene
information for a First image. The first keyframe is known,
in a preferred embodiment, as a “forward-facing” keyframe
or intraframe, and it is normally present in CCITT com-
pressed video data. The process then comprises generating at
least one intermediate compressed frame; the at least one
intermediate compressed frame containing difference infor-
mation from the first image for at least one image following
the first image in time in the sequence of moving images.
This at least one frame being known as an interframe.
Finally, detecting a second scene change in the sequence of
moving images and generating a second keyframe contain-
ing complete scene information for an image displayed at
the time just prior to the second scene change, known as a
“backward-facing” keyframe. The first keyframe and the at
least one intermediate compressed frame are linked for
forward play, and the second keyframe and the intermediate
compressed frames are linked in reverse for reverse play.
The intraframe may also be used for generation of complete
scene information when the images are played in the for-
ward direction. When this sequence is played in reverse, the
backward-facing keyframe is used for the generation of
complete scene information.

US 2003/0196078 Al

[0018] U.S. Pat. No. 5,276,513 discloses a first circuit
apparatus, comprising a given number of prior-art image-
pyramid stages, together with a second circuit apparatus,
comprising the same given number of novel motion-vector
stages, perform cost-effective hierarchical motion analysis
(HMA) in real-time, with minimum system processing delay
and/or employing minimum system processing delay and/or
employing minimum hardware structure. Specifically, the
first and second circuit apparatus, in response to relatively
high-resolution image data from an ongoing input series of
successive given pixel-density image-data frames that occur
at a relatively high frame rate (e.g., 30 frames per second),
derives, after a certain processing-system delay, an ongoing
output series of successive given pixel-density vector-data
frames that occur at the same given frame rate. Each vector-
data frame is indicative of image motion occurring between
each pair of successive image frames.

[0019] U.S. Pat. No. 5,283,646 discloses a method and
apparatus for enabling a real-time video encoding system to
accurately deliver the desired number of bits per frame,
while coding the image only once, updates the quantization
step size used to quantize coefficients which describe, for
example, an image to be transmitted over a communications
channel. The data is divided into sectors, each sector includ-
ing a plurality of blocks. The blocks are encoded, for
example, using DCT coding, to generate a sequence of
coefficients for each block. The coefficients can be quan-
tized, and depending upon the quantization step, the number
of bits required to describe the data will vary significantly.
At the end of the transmission of each sector of data, the
accumulated actual number of bits expended is compared
with the accumulated desired number of bits expended, for
a selected number of sectors associated with the particular
group of data. The system then readjusts the quantization
step size to target a final desired number of data bits for a
plurality of sectors, for example describing an image. Vari-
ous methods are described for updating the quantization step
size and determining desired bit allocations.

[0020] The article, Chong, Yong M., A Data-Flow Archi-
tecture for Digital Image Processing, Wescon Technical
Papers: No. 2 October/November 1984, discloses a real-time
signal processing system specifically designed for image
processing. More particularly, a token based data-flow archi-
tecture is disclosed wherein the tokens are of a fixed one
word width having a fixed width address field. The system
contains a plurality of identical flow processors connected in
a ring fashion. The tokens contain a data field, a control field
and a tag. The tag field of the token is further broken down
into a processor address field and an identifier field. The
processor address field is used to direct the tokens to the
correct data-flow processor, and the identifier field is used to
label the data such that the data-flow processor knows what
to do with the data. In this way, the identifier field acts as an
instruction for the data-flow processor. The system directs
each token to a specific data-flow processor using a module
number (MN). If the MN matches the MN of the particular
stage, then the appropriate operations are performed upon
the data. If unrecognized, the token is directed to an output
data bus.

[0021] The article, Kimori, S. et al. An Elastic Pipeline
Mechanism by Self-Timed Circuits, IEEE J. of Solid-State
Circuits, Vol. 23, No. 1, February 1988, discloses an elastic
pipeline having self-timed circuits. The asynchronous pipe-

Oct. 16, 2003

line comprises a plurality of pipeline stages. Each of the
pipeline stages consists of a group of input data latches
followed by a combinatorial logic circuit that carries out
logic operations specific to the pipeline stages. The data
latches are simultaneously supplied with a triggering signal
generated by a data-transfer control circuit associated with
that stage. The data-transfer control circuits are intercon-
nected to form a chain through which send and acknowledge
signal lines control a hand-shake mode of data transfer
between the successive pipeline stages. Furthermore, a
decoder is generally provided in each stage to select opera-
tions to be done on the operands in the present stage. It is
also possible to locate the decoder in the preceding stage in
order to pre-decode complex decoding processing and to
alleviate critical path problems in the logic circuit. The
elastic nature of the pipeline eliminates any centralized
control since all the interworkings between the submodules
are determined by a completely localized decision and, in
addition, each submodule can autonomously perform data
buffering and self-timed data-transfer control at the same
times Finally, to increase the elasticity of the pipeline, empty
stages are interleaved between the occupied stages in order
to ensure reliable data transfer between the stages.

[0022] U.S. Pat. No. 5,278,646 discloses an improved
technique for decoding wherein the number of coefficients to
be included in each sub-block is selectable, and a code
indicating the number of coefficients within each layer is
inserted in the bitstream at the beginning of each encoded
video sequence. This technique allows the original runs of
zero coefficients in the highest resolution layer to remain
intact by forming a sub-block for each scale from a selected
number of coefficients along a continuous scan. These sub-
blocks may be decoded in a standard fashion, with an
inverse discrete cosine transform applied to square sub-
blocks obtained by the appropriate zero padding of and/or
discarding of excess coefficients from each of the scales.
This technique further improves decoding efficiency by
allowing an implicit end of block signal to separate blocks,
making it unnecessary to decode an explicit end of block
signal in most cases.

[0023] U.S. Pat. No. 4,903,018 discloses a process and
data processing system for compressing and expanding
structurally associated multiple data sequences. The process
is particular to data sets in which an analysis is made of the
structure in order to identify a characteristic common to a
predetermined number of successive data elements of a data
sequence. In place of data elements, a code is used which is
again decoded during expansion. The common characteristic
is obtained by analyzing data elements which have the same
order number in a number of data sequences. During expan-
sion, the data elements obtained by decoding the code are
ordered in data series on the basis of the order number of
these data series on the basis of the order number of these
data elements. The data processing system for performing
the processes includes a storage matrix (26) and an index
storage (28) having line addresses of the storage matrix (26)
in an assorted line sequence.

[0024] U.S. Pat. No. 4,334,246 discloses a circuit and
method for decompressing video subsequent to its prior
compression for transmission or storage. The circuit
assumes that the original video generated by a raster input
scanner was operated on by a two line one shot predictor,
coded using run length encoding into code words of four,

US 2003/0196078 Al

eight or twelve bits and packed into sixteen bit data words.
This described decompressor, then, unpacks the data by
joining together the sixteen bit data words and then sepa-
rately the individual code words, converts the code words
into a number of all zero four bit nibbles and a terminating
nibble containing one or more one bits which constitutes
decoded data, inspects the actual video of the preceding scan
line and the previous video bits of the present line to produce
depredictor bits and compares the decoded data and depre-
dictor bits to produce the final actual video.

[0025] U.S. Pat. No. 5,060,242 discloses an image signal
processing system DPCM encodes the signal, then Huffman
and run length encodes the signal to produce variable length
code words, which are then tightly packed without gaps for
efficient transmission without loss of any data. The tightly
packed apparatus has a barrel shifter with its shift modulus
controlled by an accumulator receiving code word length
information. An OR gate is connected to the shifter, while a
register is connected to the gate. Apparatus for processing a
tightly packed and decorrelated digital signal has a barrel
shifter and accumulator for unpacking, a Huffman and run
length decoder, and an inverse DCPM decoder.

[0026] U.S. Pat. No. 5,168,375 discloses a method for
processing a field of image data samples to provide for one
or more of the functions of decimation, interpolation, and
sharpening is accomplished by use of an array transform
processor such as that employed in a JPEG compression
system. Blocks of data samples are transformed by the
discrete even cosine transform (DECT) in both the decima-
tion and interpolation processes, after which the number of
frequency terms is altered. In the case of decimation, the
number of frequency terms is reduced, this being followed
by inverse transformation to produce a reduced-size matrix
of sample points representing the original block of data. In
the case of interpolation, additional frequency components
of zero value are inserted into the array of frequency
components after which inverse transformation produces an
enlarged data sampling set without an increase in spectral
bandwidth. In the case of sharpening, accomplished by a
convolution or filtering operation involving multiplication
of transforms of data and filter kernel in the frequency
domain, there is provided an inverse transformation result-
ing in a set of blocks of processed data samples. The blocks
are overlapped followed by a savings of designated samples,
and a discarding of excess samples from regions of overlap.
The spatial representation of the kernel is modified by
reduction of the number of components, for a linear-phase
filter, and zero- padded to equal the number of samples of a
data block, this being followed by forming the discrete odd
cosine transform (DOCT) of the padded kernel matrix.

[0027] U.S. Pat. No. 5,231,486 discloses a high definition
video system processes a bitstream including high and low
priority variable length coded Data words. The coded Data
is separated into packed High Priority Data and packed Low
Priority Data by means of respective data packing units. The
coded Data is continuously applied to both packing units.
High Priority and Low Priority Length words indicating the
bit lengths of high priority and low priority components of
the coded Data are applied to the high and low priority data
packers, respectively. The Low Priority Length word is
zeroed when high Priority Data is to be packed for transport

Oct. 16, 2003

via a first output path, and the High Priority Length word is
zeroed when Low Priority Data is to be packed for transport
via a second output path.

[0028] U.S. Pat. No. 5,287,178 discloses a video signal
encoding system includes a signal processor for segmenting
encoded video data into transport blocks having a header
section and a packed data section. The system also includes
reset control apparatus for releasing resets of system com-
ponents, after a global system reset, in a prescribed non-
simultaneous phased sequence to enable signal processing to
commence in the prescribed sequence. The phased reset
release sequence begins when valid data is sensed as trans-
mitting the data lines.

[0029] U.S. Pat. No. 5,124,790 to Nakayama discloses a
reverse quantizer to be used with image memory. The
inverse quantizer is used in the standard way to decode
differential predictive coding method (DPCM) encoded
data.]

[0030] U.S. Pat. No. 5,136,371 to Savatier et al. is directed
to a de-quantizer having an adjustable quantizational level
which is variable and determined by the fullness of the
buffer. The applicants state that the novel aspect of their
invention is the maximum available data rate that is
achieved. Buffer overflow and underflow is avoided by
adapting the quantization step size the quantizer 152 and the
de-quantizer 156 by means of a quantizational level which
is recalculated after each block has been encoded. The
quantization level is calculated as a function of the amount
of already encoded data for the frame, compared with the
total buffer size. In this manner, the quantization level can
advantageously be recalculated by the decoder and does not
have to be transmitted.

[0031] U.S. Pat. No. 5,142,380 to Sakagami et al. dis-
closes an image compression apparatus suitable for use with
still images such as those formed by electronic still cameras
using solid state image sensors. The quantizer employed is
connected to a memory means from which threshold values
of a quantization matrix for the laminate signal, Y, and rom
15 stores threshold values of a quantization matrix for the
crominant signals I and Q.

[0032] U.S.Pat. No. 5,193,002 to Guichard et al. disclosed
an apparatus for coding/decoding image signals in real time
in conjunction with the CCITT standard H.261. A digital
signal processor carries out direct quantization and reverse
quantization.

[0033] U.S. Pat. No. 5,241,383 to Chen et al. describes an
apparatus with a pseudo-constant bit rate video coding
achieved by an adjustable quantization parameter. The
qunatization parameter utilized by the quantizer 32 is peri-
odically adjusted to increase or decrease the amount of code
bits generated by the coding circuit. The change in quanti-
zation parameters for coding the next group of pictures is
determined by a deviation measure between the actual
number of code bits generated by the coding circuits for the
previous group of pictures in an estimate number of code
bits for the previous group of pictures. The number of code
bits generated by the coding circuit is controlled by con-
trolling the quantizer step sizes. In general smaller quantizer
step sizes result in more code bits in larger quantizer step
sizes result in fewer code bits.

[0034] U.S.Pat. Nos. 5,113,255 to Nagata et al; 5,126,842
to Andrews et al; 5,253,058 to Gharavi; 5,260,782 to Hui;

US 2003/0196078 Al

and 5,212,742 to Normile et al are included for background
and as a general description of the art.

[0035] Accordingly, those concerned with the design,
development and use of video compression/decompression
systems and related subsystems have long recognized a need
for improved methods and apparatus providing enhanced
flexibility, efficiency and performance. The present inven-
tion clearly fulfills all these needs.

SUMMARY OF THE INVENTION

[0036] Briefly, and in general terms, the present invention
provides an input, an output and a plurality of processing
stages between the input and the output, the plurality of
processing stages being interconnected by a two-wire inter-
face for conveyance of tokens along a pipeline, and control
and/or DATA tokens in the form of universal adaptation
units for interfacing with all of the stages in the pipeline and
interacting with selected stages in the pipeline for control,
data and/or combined control-data functions among the
processing stages, whereby the processing stages in the
pipeline are afforded enhanced flexibility in configuration
and processing.

[0037] Each of the processing stages in the pipeline may
include both primary and secondary storage, and the stages
in the pipeline are reconfigurable in response to recognition
of selected tokens. The tokens in the pipeline are dynami-
cally adaptive and may be position dependent upon the
processing stages for performance of functions or position
independent of the processing stages for performance of
functions.

[0038] In a pipeline machine, in accordance with the
invention, the tokens may be altered by interfacing with the
stages, and the tokens may interact with all of the processing
stages in the pipeline or only with some but less than all of
said processing stages. The tokens in the pipeline may
interact with adjacent processing stages or with non-adjacent
processing stages, and the tokens may reconfigure the pro-
cessing stages. Such tokens may be position dependent for
some functions and position independent for other functions
in the pipeline.

[0039] The tokens, in combination with the reconfigurable
processing stages, provide a basic building block for the
pipeline system. The interaction of the tokens with a pro-
cessing stage in the pipeline may be conditioned by the
previous processing history of that processing stage. The
tokens may have address fields which characterize the
tokens, and the interactions with a processing stage may be
determined by such address fields.

[0040] In an improved pipeline machine, in accordance
with the invention, the tokens may include an extension bit
for each token, the extension bit indicating the presence of
additional words in that token and identifying the last word
in that token. The address fields may be of variable length
and may also be Huffman coded.

[0041] In the improved pipeline machine, the tokens may
be generated by a processing stage. Such pipeline tokens
may include data for transfer to the processing stages or the
tokens may be devoid of data. Some of the tokens may be
identified as DATA tokens and provide data to the processing
stages in the pipeline, while other tokens are identified as
control tokens and only condition the processing stages in

Oct. 16, 2003

the pipeline, such conditioning including reconfiguring of
the processing stages. Still other tokens may provide both
data and conditioning to the processing stages in the pipe-
line. Some of said tokens may identify coding standards to
the processing stages in the pipeline, whereas other tokens
may operate independent of any coding standard among the
processing stages. The tokens may be capable of successive
alteration by the processing stages in the pipeline.

[0042] In accordance with the invention, the interactive
flexibility of the tokens in cooperation with the processing
stages facilitates greater functional diversity of the process-
ing stages for resident structure in the pipeline, and the
flexibility of the tokens facilitates system expansion and/or
alteration. The tokens may be capable of facilitating a
plurality of functions within any processing stage in the
pipeline. Such pipeline tokens may be either hardware based
or software based. Hence, the tokens facilitate more efficient
uses of system bandwidth in the pipeline. The tokens may
provide data and control simultaneously to the processing
stages in the pipeline.

[0043] The invention may include a pipeline processing
machine for handling plurality of separately encoded bit
streams arranged as a single serial bit stream of digital bits
and having separately encoded pairs of control codes and
corresponding data carried in the serial bit stream and
employing a plurality of stages interconnected by a two-wire
interface, further characterized by a start code detector
responsive to the single serial bit stream for generating
control tokens and DATA tokens for application to the
two-wire interface, a token decode circuit positioned in
certain of the stages for recognizing certain of the tokens as
control tokens pertinent to that stage and for passing unrec-
ognized control tokens along the pipeline, and a reconfig-
urable decode and parser processing means responsive to a
recognized control token for reconfiguring a particular stage
to handle an identified DATA token.

[0044] The pipeline machine may also include first and
second registers, the first register being positioned as an
input of the decode and parser means, with the second
register positioned as an output of the decode and parser
means. One of the processing stages may be a spatial
decoder, a second of the stages being a token generator for
generating control tokens and DATA tokens for passage
along the two-wire interface. A token decode means is
positioned in the spatial decoder for recognizing certain of
the tokens as control tokens pertinent to the spatial decoder
and for configuring the spatial decoder for spatially decod-
ing DATA tokens following a control token into a first
decoded format.

[0045] A further stage may be a temporal decoder posi-
tioned downstream in the pipeline from the spatial decoder,
with a second token decode means positioned in the tem-
poral decoder for recognizing certain of the tokens as control
tokens pertinent to the temporal decoder and for configuring
the temporal decoder for temporally decoding the DATA
tokens following the control token into a first decoded
format. The temporal decoder may utilize a reconfigurable
prediction filter which is reconfigurable by a prediction
token.

[0046] Data may be moved along the two-wire interface
within the temporal decoder in 8x8 pel data blocks, and
address means may be provided for storing and retrieving

US 2003/0196078 Al

such data blocks along block boundaries. The address means
may store and retrieve blocks of data across block bound-
aries. The address means reorders said blocks as picture data
for display. The data blocks stored and retrieved may be
greater and/or smaller than 8x8 pel data blocks. Circuit
means may also be provided for either displaying the output
of the temporal decoder or writing the output back into a
picture memory location. The decoded format may be either
a still picture format or a moving picture format.

[0047] The processing stage may also include, in accor-
dance with the invention, a token decoder for decoding the
address of a token and an action identifier responsive to the
token decoder to implement configuration of the processing
stage. The processing stages reside in a pipeline processing
machine having a plurality of the processing stages inter-
connected by a two-wire interface bus, with control tokens
and DATA tokens passing over the two-wire interface. A
token decode circuit is positioned in certain of the process-
ing stages for recognizing certain of the tokens as control
tokens pertinent to that stage and for passing unrecognized
control tokens along the pipeline. A first input latch circuit
may be positioned on the two-wire interface preceding the
processing stage and a second output latch circuit may be
positioned on the two-wire interface succeeding the process-
ing stage. The token decode circuit is connected to the
two-wire interface through the first input latch. Predeter-
mined processing stages may include a decoding circuit
connected to the output of a predetermined data storage
device, whereby each processing stage assumes the active
state only when the stage contains a predetermined stage
activation signal pattern and remains in the activation mode
until the stage contains a predetermined stage deactivation
pattern.

[0048] In accordance with the invention, one of the stages
is a Start Code Detector for receiving the input and being
adapted to generate and/or convert the tokens. The Start
Code Detector is responsive to data to create tokens,
searches for and detects start codes and produces tokens in
response thereto, and is capable of detecting overlapping
start codes, whereby the first start code is ignored and the
second start code is used to create start code tokens.

[0049] The Start Code Detector stage is adapted to search
an input data stream in a search mode for a selected start
code. The detector searches for breaks in the data stream,
and the search may be made of data from an external data
source. The Start Code Detector stage may produce a
START CODE token, a PICTURE_START token, a SLICE-
_START token, a PICTURE_END token, a SEQUENCE-
_START token, a SEQUENCE_END token, and/or a
GROUP_START token. The Start Code Detector stage may
also perform a padding function by adding bits to the last
word of a token.

[0050] The Start Code Detector may provide, in a machine
for handling a plurality of separately encoded bit streams
arranged as a serial bit stream of digital bits and having
separately encoded pairs of start codes and data carried in
the serial bit stream, a Start Code Detector subsystem having
first, second and third registers connected in serial fashion,
each of the registers storing a different number of bits from
the bit stream, the first register storing a value, the second
register and a first decode means identifying a start code
associated with the value contained in said first register.

Oct. 16, 2003

Circuit means shift the latter value to a predetermined end of
the third register, and a second decode means is arranged for
accepting data from the third register in parallel.

[0051] A memory may also be provided which is respon-
sive to the second decode means for providing one or more
control tokens stored in the memory as a result of the
decoding of the value associated with the start code. A
plurality of tag shift registers may be provided for handling
tags indicating the validity of data from the registers. The
system may also include means for accessing the input data
stream from a microprocessor interface, and means for
formatting and organizing the data stream.

[0052] In accordance with the invention, the Start Code
Detector may identify start codes of varying widths associ-
ated with differently encoded bit streams. The detector may
generate a plurality of DATA Tokens from the input data
stream. Further in accordance with the invention, the system
may be a pipeline system and the Start Code Detector may
be positioned as the first processing stage in the pipeline.

[0053] The present invention also provides, in a digital
picture information processing system, means for selectively
configuring the system to process data in accordance with a
plurality of different picture compression/decompression
standards. The picture standards may include JPEG, MPEG,
and/or H.261, or any other standards and any combination of
such picture standards, without departing in any way from
the spirit and scope of the invention. In accordance with the
invention, the system may include a spatial decoder for
video data and having a Huffman decoder, an index to data
and an arithmetic logic unit with a microcode ROM having
separate stored programs for each of a plurality of different
picture compression/decompression standards, such pro-
grams being selectable by an interfacing adaptation unit in
the form of a token, so that processing for a plurality of
picture standards is facilitated. A multi-standard system in
accordance with the invention, may utilize tokens for its
operation regardless of the selected picture standard, and the
tokens may be utilized as a generic communication protocol
in the system for all of the various picture standards. The
system may be further characterized by a multi-standard
token for mapping differently encoded data streams arranged
on a single serial stream of data onto a single decoder using
a mixture of standard dependent and standard independent
hardware and control tokens. The system may also include
an address generation means for arranging macroblocks of
data associated with different picture standards into a com-
mon addressing scheme.

[0054] The present invention also provides, in a system
having a plurality of processing stages, a universal adapta-
tion unit in the form of an interactive interfacing token for
control and/or data functions among the processing stages,
the token being a PICTURE_START code token for indi-
cating that the start of a picture will follow in the subsequent
DATA token.

[0055] The token may also be a PICTURE_END token for
indicating the end of an individual picture.

[0056] The token may also be a FLUSH token for clearing
buffers and resetting the system as it proceeds down the
system from the input to the output. In accordance with the
invention, the FLUSH token may variably reset the stages as
the token proceeds down the pipeline.

US 2003/0196078 Al

[0057] The token may also be a CODING_STANDARD
token for conditioning the system for processing in a
selected one of a plurality of picture compression/decom-
pression standards.

[0058] The CODING_STANDARD token may designate
the picture standard as JPEG, and/or any other appropriate
picture standard. At least some of the processing stages
reconfigure in response to the CODING_STANDARD
token.

[0059] One of the processing stages in the system may be
a Huffman decoder and parser and, upon receipt of a
CODING_STANDARD control token, the parser is reset to
an address location corresponding to the location of a
program for handling the picture standard identified by the
CODING_STANDARD control token. A reset address may
also be selected by the CODING_STANDARD control
token corresponding to a memory location used for testing
the Huffman decoder and parser.

[0060] The Huffman decoder may include a decoding
stage and an Index to Data stage, and the parser stage may
send an instruction to the Index to Data Unit to select tables
needed for a particular identified coding standard, the parser
stage indicating whether the arriving data is inverted or not.

[0061] The aforedescribed tokens may take the form of an
interactive metamorphic interfacing token.

[0062] The present invention also provides a system for
decoding video data, having a Huffman decoder, an index to
data (ITOD) stage, an arithmetic logic unit (ALU), and a
data buffering means immediately following the system,
whereby time spread for video pictures of varying data size
can be controlled.

[0063] The system may include a spatial decoder having a
two-wire interface intercon-necting processing stages, the
interface enabling serial processing for data and parallel
processing for control.

[0064] As previously indicated, the system may further
include a ROM having separate stored programs for each of
a plurality of picture standards, the programs being select-
able by a token to facilitate processing for a plurality of
different picture standards.

[0065] The spatial decoder system also includes a token
formatter for formatting tokens, so that DATA tokens are
created.

[0066] The system may also include a decoding stage and
a parser stage for sending an instruction to the Index to Data
Unit to select tables needed for a particular identified coding
standard, the parser stage indicating whether the arriving
data is inverted or not. The tables may be arranged within a
memory for enabling multiple use of the tables where
appropriate.

[0067] The present invention also provides a pipeline
system having an input data stream, and a processing stage
for receiving the input data stream, the stage including
means for recognizing specified bit stream patterns, whereby
said stage facilitates random access and error recovery. In
accordance with the invention, the processing stage may be
a start code detector and the bit stream patterns may include
start codes. Hence, the invention provides a search-mode
means for searching differently encoded data streams

Oct. 16, 2003

arranged as a single serial stream of data for allowing
random access and enhanced error recovery.

[0068] The present invention also provides a pipeline
machine having means for performing a stop-after-picture
operation for achieving a clear end to picture data decoding,
for indicating the end of a picture, and for clearing the
pipeline, wherein such means generates a combination of a
PICTURE_END token and a FLUSH token.

[0069] The present invention also provides, in a pipeline
machine, a fixed size, fixed width buffer and means for
padding the buffer to pass an arbitrary number of bits
through the buffer. The padding means may be a start code
detector.

[0070] Padding may be performed only on the last word of
a token and padding insures uniformity of word size. In
accordance with the invention, a reconfigurable processing
stage may be provided as a spatial decoder and the padding
means adds to picture data being handled by the spatial
decoder sufficent additional bits such that each decom-
pressed picture at the output of the spatial decoder is of the
same length in bits.

[0071] The present invention also provides, in a system
having a data stream including run length code, an inverse
modeller means active upon the data stream from a token for
expending out the run level code to a run of zero data
followed by a level, whereby each token is expressed with
a specified number of values. The token may be a DATA
token.

[0072] The inverse modeller means blocks tokens which
lack the specified number of values, and the specified
number of values may be 64 coefficients in a presently
preferred embodiment of the invention.

[0073] The practice of the invention may include an
expanding circuit for accepting a DATA token having run
length codes and decoding the run length codes. A padder
circuit in communication with the expanding circuit checks
that the DATA token has a predetermined length so that if the
DATA token has less than the predetermined length, the
padder circuit adds units of data to the DATA token until the
predetermined length is achieved. A bypass circuit is also
provided for bypassing any token other than a DATA token
around the expanding circuit and the padding circuit.

[0074] In accordance with the invention, a method is
provided for data to efficiently fill a buffer, including pro-
viding first type tokens having a first predetermined width,
and at least one of the following formats:

[0075] Format A—ExxxxxxLLLLLLLLLLL
[0076] Format B—ERRRRRRLLLLLLLLLLL
[0077] Format C—EO000000LLLLLLLLLLL

[0078] where E=extention bit; F=specifics format; R=run
bit; L=length bit or non-data token; x=“don’t care” bit,
splitting format A tokens into a format Oa token having a
form of ELLLLLLLLLLL, splitting format B tokens into a
format 1 token having the form of FRRRRRR00000 and a
format Oa data token, splitting format C tokens into a format
0 token having the form of FLLLLLLLLLLL, and packing
format 0, format Oa and format 1 tokens into a buffer, having
a second predetermined width.

US 2003/0196078 Al

[0079] The invention also provides an apparatus for pro-
viding a time delay to a group of compressed pictures, the
pictures corresponding to a video compression/ decompres-
sion standard, wherein words of data containing compressed
pictures are counted by a counter circuit and a micropro-
cessor, in communication with the counter circuit and
adapted to receive start-up information consistent with the
standard of video decompression, communicates the start-up
information to the counter circuit.

[0080] An inverse modeller circuit, for accepting the
words of data and capable of delaying the words of data, is
in communication with a control circuit intermediate the
counter circuit and the inverse modeller circuit, the control
circuit also communicating with the counter circuit which
compares the start-up information with the counted words of
data and signals the control circuit. The control circuit
queues the signals in correspondence to the words of data
that have met the start-up criterion and controls the inverse
modeller delay feature.

[0081] The present invention also provides in a pipeline
system having an inverse modeller stage and an inverse
discrete cosine transform stage, the improvement character-
ized by a processing stage, positioned between the inverse
modeller stage and the inverse discrete cosine transform
stage, responsive to a token table for processing data.

[0082] In accordance with the invention, the token may be
a QUANT_TABLE token for causing the processing stage to
generate a quantization table.

[0083] The present invention also provides a Huffman
decoder for decoding data words encoded according to the
Huffman coding provisions of either H.261, JPEG or MPEG
standards, the data words including an identifier that iden-
tifies the Huffman code standard under which the data words
were coded, and comprising means for receiving the Huff-
man coded data words, means for reading the identifier to
determine which standard governed the Huffman coding of
the received data words, means for converting the data
words to JPEG Huffman coded data words, if necessary, in
response to reading the identifier that identifies the Huffman
coded data words as H.261 or MPEG Huffman coded, means
operably connected to the Huffman coded data words receiv-
ing means for generating an index number associated with
each JPEG Huffman coded data word received from the
Huffman coded data words receiving means, and means for
operating a lookup table containing a Huffman code table
having the format used under the JPEG standard to transmit
JPEG Huffman table information, including an input for
receiving an index number from the index number generat-
ing means, and including an output that is a decoded data
word corresponding to the index number.

[0084] The invention further relates, in varying degrees of
scope, to a method for decoding data words encoded accord-
ing to the Huffman coding provisions of either H.261, JPEG
or MPEG standards, the data words including an identifier
that identifies the Huffman code standard under which the
data words were coded, such steps comprising receiving the
Huffman coded data words, including reading the identifier
to determine which standard governed the Huffman coding
of the received data words, if necessary, in response to
reading the identifier that identifies the Huffman coded data
words as H.261 or MPEG Huffman coded, generating an
index number associated with each JPEG Huffman coded

Oct. 16, 2003

data word received, operating a lookup table containing a
Huffman code table having the format used under the JPEG
standard to transmit JPEG Huffman table information,
including receiving an index number, and generating a
decoded data word corresponding to the received index
number.

[0085] The above and other objectives and advantages of
the invention will become apparent from the following more
detailed description when taken in conjunction with the
accompanying drawings.

DESCRIPTION OF THE DRAWINGS

[0086] FIG. 1 illustrates six cycles of a six-stage pipeline
for different combinations of two internal control signals;

[0087] FIGS. 2a and 2b illustrate a pipeline in which each
stage includes auxiliary data storage. They also show the
manner in which pipeline stages can “compress” and
“expand” in response to delays in the pipeline;

[0088] FIGS. 3a(1), 3a(2) , 3b(1) and 3b2) illustrate the
control of data transfer between stages of a preferred
embodiment of a pipeline using a two-wire interface and a
multi-phase clock;

[0089] FIG. 4 is a block diagram that illustrates a basic
embodiment of a pipeline stage that incorporates a two-wire
transfer control and also shows two consecutive pipeline
processing stages with the two-wire transfer control;

[0090] FIGS. 5a and 5b taken together depict one
example of a timing diagram that shows the relationship
between timing signals, input and output data, and internal

control signals used in the pipeline stage as shown in FIG.
4

[0091] FIG. 6 is a block diagram of one example of a
pipeline stage that holds its state under the control of an
extension bit;

[0092] FIG. 7 is a block diagram of a pipeline stage that
decodes stage activation data words;

[0093] FIGS. 8z and 8b taken together form a block
diagram showing the use of the two-wire transfer control in
an exemplifying “data duplication” pipeline stage;

[0094] FIGS. 9a and 9b taken together depict one
example of a timing diagram that shows the two-phase
clock, the two-wire transfer control signals and the other

internal data and control signals used in the exemplifying
embodiment shown in FIGS. 8a and 8b.

[0095] FIG. 10 is a block diagram of a reconfigurable
processing stage;

[0096]
[0097]
[0098]

[0099] FIGS. 14a-c show various arrangements of
memory blocks used in the present invention:

[0100] FIG. 14a is a memory map showing a first arrange-
ment of macroblocks;

[0101] FIG. 14b is a memory map showing a second
arrangement of macroblocks;

FIG. 11 is a block diagram of a spatial decoder;
FIG. 12 is a block diagram of a temporal decoder;
FIG. 13 is a block diagram of a video formatter;

US 2003/0196078 Al

[0102] FIG. 14c is a memory map showing a further
arrangement of macroblocks;

[0103] FIG. 15 shows a Venn diagram of possible table
selection values;

[0104] FIG. 16 shows the variable length of picture data
used in the present invention;

[0105] FIG. 17 is a block diagram of the temporal decoder
including the prediction filters;

[0106] FIG. 18 is a pictorial representation of the predic-
tion filtering process;

[0107] FIG. 19 shows a generalized representation of the
macroblock structure;

[0108] FIG. 20 shows a generalized block diagram of a
Start Code Detector;

[0109] FIG. 21 illustrates examples of start codes in a data
stream;
[0110] FIG. 22 is a block diagram depicting the relation-

ship between the flag generator, decode index, header gen-
erator, extra word generator and output latches;

[0111] FIG. 23 is a block diagram of the Spatial Decoder
DRAM interface;

[0112] FIG. 24 is a block diagram of a write swing buffer;

[0113] FIG. 25 is a pictorial diagram illustrating predic-
tion data offset from the block being processed;

[0114] FIG. 26 is a pictorial diagram illustrating predic-
tion data offset by (1,1);

[0115] FIG. 27 is ablock diagram illustrating the Huffman
decoder and parser state machine of the Spatial Decoder.

[0116] FIG. 28 is a block diagram illustrating the predic-
tion filter.

FIGURES

[0117] FIG. 29 shows a typical deocder system;
[0118] FIG. 30 shows a JPEG still picture deocer;
[0119] FIG. 31 shows a JPEG video decoder;

[0120] FIG. 32 shows a multi-standard video decoder;
[0121] FIG. 33 shows the start and the end of a token;
[0122] FIG. 34 shows a token address and data fields;

[0123] FIG. 35 shows a token on an interface wider than
8 bits;

[0124] FIG. 36 shows a macroblock structure;
[0125] FIG. 37 shows a two-wire interface protocol,

[0126] FIG. 38 shows the location of external two-wire
interfaces;

[0127] FIG. 39 shows clock propagation;

[0128] FIG. 40 shows two-wire interface timing;
[0129] FIG. 41 shows examples of access structure;
[0130] FIG. 42 shows a read transfer cycle;

[0131] FIG. 43 shows an access start timing;

Oct. 16, 2003

[0132] FIG. 44 shows an example access with two write
transfers;

[0133]
[0134]
[0135] FIG. 47 shows a refresh cycle;

[0136] FIG. 48 shows a 32 bit data bus and a 258 kbit deep
DRAMSs (9 bit row address);

FIG. 45 shows a read transfer cycle;

FIG. 46 shows a write transfer cycle;

[0137] FIG. 49 shows timing parameters for any strobe
signal;

[0138] FIG. 50 shows timing parameters between any two
strobe signals;

[0139] FIG. 51 shows timing parameters between a bus
and a strobe;

[0140] FIG. 52 shows timing parameters between a bus
and a strobe;

[0141] FIG. 53 shows an MPI read timing;
[0142] FIG. 54 shows an MPI write timing;

[0143] FIG. 55 shows organization of large integers in the
memory map;

[0144] FIG. 56 shows a typical decoder clock regime;
[0145] FIG. 57 shows input clock requirements;

[0146] FIG. 58 shows the Spatial Decoder;

[0147] FIG. 59 shows the inputs and outputs of the input
circuit;

[0148] FIG. 60 shows the coded port protocol;

[0149] FIG. 61 shows the start code detector;

[0150] FIG. 62 shows start codes detected and converted
to Tokens;

[0151] FIG. 63 shows the start codes detector passing
Tokens;

[0152] FIG. 64 shows overlapping MPEG start codes
(byte aligned);

[0153] FIG. 65 shows overlapping MPEG start codes (not
byte aligned),

[0154] FIG. 66 shows jumping between two video
sequences;

[0155]
[0156] FIG. 68 shows decoder start-up control;

[0157] FIG. 69 shows enabled streams queued before the
output;

[0158] FIG. 70 shows a spatial decoder buffer;
[0159] FIG. 71 shows a buffer pionter;
[0160] FIG. 72 shows a video demux;

FIG. 67 shows a sequence of extra Token insertion;

[0161] FIG. 73 shows a construction of a picture;

[0162] FIG. 74 shows a construction of a 4:2:2 macrob-
lock;

[0163] FIG. 75 shows a calculating macroblock dimen-
sion from pel ones;

US 2003/0196078 Al

[0164] FIG. 76 shows spatial decoding;

[0165] FIG. 77 shows an overview of H.261 inverse
quantization;

[0166] FIG. 78 shows an overview of JPEG inverse
quantization;

[0167] FIG. 79 shows an overview of MPEG inverse
quantization;

[0168] FIG. 80 shows a quantization table memory map;

[0169] FIG. 81 shows an overview of JPEG baseline
sequential structure;

[0170] FIG. 82 shows a tokenised JPEG picture;

[0171] FIG. 83 shows a temporal decoder;

[0172] FIG. 84 shows a pciture buffer specification;
[0173] FIG. 85 shows an MPEG picture sequence (m=3);

[0174] FIG. 86 shows how “I” pictures are stored and
output;

[0175] FIG. 87 shows how “P” pictures are formed, stored
and output;

[0176] FIG. 88 shows how “B” pictures are formed and
output;

[0177] FIG. 89 shows P picutre formation;

[0178] FIG. 90 shows H.261 prediction formation;
[0179] FIG. 91 shows an H.261 “sequence”;
[0180] FIG. 92 shows a hierarchy of H.261 syntax;
[0181] FIG. 93 shows an H.261 picture layer;

[0182] FIG. 94 shows an H.261 arrangement of groups of
blocks;

[0183] FIG. 95 shows an H.261 “slice” layer;

[0184] FIG. 96 shows an H.261 arrangement of macrob-
locks;

[0185] FIG. 97 shows an H.261 sequence of blocks;
[0186] FIG. 98 shows an H.261 macroblock layer;

[0187] FIG. 99 shows an H.261 arrangement of pels in
blocks;

[0188] FIG. 100 shows a hierarchy of MPEG syntax;
[0189] FIG. 101 shows an MPEG sequence layer;
[0190] FIG. 102 shows an MPEG group of pictures layer;
[0191] FIG. 103 shows an MPEG picture layer;
[0192] FIG. 104 shows an MPEG “slice” layer;
[0193] FIG. 105 shows an MPEG sequence of blocks;
[0194] FIG. 106 shows an MPEG macroblock layer;
[0195] FIG. 107 shows an “open GOP”;

[0196] FIG. 108 shows examples of access structure;
[0197] FIG. 109 shows access start timing;

[0198] FIG. 110 shows a fast page read cycle;

[0199] FIG. 111 shows a fast page write cycle;

Oct. 16, 2003

[0200]

[0201] FIG. 113 shows extracting row and column
address from a chip address;

FIG. 112 shows a refresh cycle;

[0202] FIG. 114 shows timing parameters for any strobe
signal;

[0203] FIG. 115 shows timing parameters between any
two strobe signals;

[0204] FIG. 116 shows timing parameters between a bus
and a strobe;

[0205] FIG. 117 shows timing parameters between a bus
and a strobe;

[0206] FIG. 118 shows a Huffman decoder and parser;

[0207] FIG. 119 shows an H.261 and an MPEG AC
Coefficient Decoding Flow Chart;

[0208] FIG. 120 shows a block diagram for JPEG (AC
and DC) coefficient decoding;

[0209] FIG. 121 shows a flow diagram for JPEG (AC and
DC) coefficient decoding;

[0210] FIG. 122 shows an interface to the Huffman Token
Formatter;

[0211] FIG. 123 shows a token formatter block diagram;

[0212] FIG. 124 shows an H.261 and an MPEG AC
Coefficieint Decoding;

[0213] FIG. 125 shows the interface to the Huffman ALU;

[0214] FIG. 126 shows the basic structure of the Huffman
ALU;

[0215] FIG. 127 shows the buffer manager;

[0216] FIG. 128 shows an imodel and hsppk block dia-
gram,

[0217] FIG. 129 shows an imex state diagram;
[0218] FIG. 130 illustrates the buffer start-up;
[0219] FIG. 131 shows a DRAM interface;
[0220] FIG. 132 shows a write swing buffer;
[0221] FIG. 133 shows an arithmetic block;
[0222] FIG. 134 shows an iq block digram;
[0223] FIG. 135 shows an igca state machine;

[0224] FIG. 136 shows an IDCT 1-D Transform Algo-
rithm;

[0225] FIG. 137 shows an IDCT 1-D Transform Archi-
tecture;

[0226] FIG. 138 shows a token stream block diagram;
[0227] FIG. 139 shows a standard block structure;

[0228] FIG. 140 is a block diagram showing; micropro-
cessor test access;

[0229] FIG. 141 shows 1-D Transform Micro-Architec-
ture;

[0230]
gram;

FIG. 142 shows a temporal decoder block dia-

US 2003/0196078 Al

[0231] FIG. 143 shows the structure of a Two-wire inter-
face stage;

[0232] FIG. 144 shows the address generator block dia-
gram,

[0233] FIG. 145 shows the block and pixel offsets;
[0234] FIG. 146 shows multiple prediction filters;
[0235] FIG. 147 shows a single prediction filter;
[0236] FIG. 148 shows the 1-D prediction filter;

[0237] FIG. 149 shows a block of pixels;

[0238] FIG. 150 shows the structure of the read rudder;
[0239] FIG. 151 shows the block and pixel offsets;
[0240] FIG. 152 shows a prediction example;

[0241] FIG. 153 shows the read cycle;

[0242] FIG. 154 shows the write cycle;

[0243] FIG. 155 shows the top-level registers block dia-
gram with timing references;

[0244] FIG. 156 shows the control for incrementing pre-
sentation numbers;

[0245] FIG. 157 shows the buffer manager state machine
(complete);

[0246] FIG. 158 shows the state macien main loop;

[0247] FIG. 159 shows the buffer O containing an SIF (22
by 18 macroblocks) picture;

[0248] FIG. 160 shows the SIF component 0 with a
display window;

[0249] FIG. 161 shows an example picture format show-
ing storage block address;

[0250] FIG. 162 shows a buffer O containing a SIF (22 by
18 macroblocks) picture;

[0251] FIG. 163 shows an example address calculation;

[0252] FIG. 164 shows a write address generatoin state
machine;

[0253] FIG. 165 shows a slice of the datapath;

[0254] FIG, 166 shows a two cycle operation of the
datapath;

[0255] FIG. 167 shows mode 1 filtering;

[0256] FIG. 168 shows a horizontal up-sampler datapath;
and

[0257] FIG. 169 shows the strcutre of the color-space
converter.

[0258] In the ensuing description of the practice of the
invention, the following terms are frequently used and are
generally defined by the following glossary:

GLOSSARY

[0259] BLOCK: An 8-row by 8-column matrix of pels,
or 64 DCT coefficients (source, quantized or dequan-
tized).

[0260] CHROMINANCE (COMPONENT): A matrix,
block or single pel representing one of the two color

Oct. 16, 2003

difference signals related to the primary colors in the
manner defined in the bit stream. The symbols used for
the color difference signals are Cr and Cb.

[0261] CODED REPRESENTATION: A data element
as represented in its encoded form.

[0262] CODED VIDEO BIT STREAM: A coded rep-
resentation of a series of one or more pictures as
defined in this specification.

[0263] CODED ORDER: The order in which the pic-
tures are transmitted and decoded. This order is not
necessarily the same as the display order.

[0264] COMPONENT: A matrix, block or single pel
from one of the three matrices (luminance and two
chrominance) that make up a picture.

[0265] COMPRESSION: Reduction in the number of
bits used to represent an item of data.

[0266] DECODER: An embodiment of a decoding pro-
cess.

[0267] DECODING (PROCESS): The process defined
in this specification that reads an input coded bitstream
and produces decoded pictures or audio samples.

[0268] DISPLAY ORDER: The order in which the
decoded pictures are displayed. Typically, this is the
same order in which they were presented at the input of
the encoder.

[0269] ENCODING (PROCESS): A process, not speci-
fied in this specification, that reads a stream of input
pictures or audio samples and produces a valid coded
bitstream as defined in this specification.

[0270] INTRA CODING: Coding of a macroblock or
picture that uses information only from that macrob-
lock or picture.

[0271] LUMINANCE (COMPONENT): A matrix,
block or single pel representing a monochrome repre-
sentation of the signal and related to the primary colors
in the manner defined in the bit stream. The symbol
used for luminance is Y.

[0272] MACROBLOCK: The four 8 by 8 blocks of
luminance data and the two (for 4:2:0 chroma format)
four (for 4:2:2 chroma format) or eight (for 4:4:4
chroma format) corresponding 8 by 8 blocks of chromi-
nance data coming from a 16 by 16 section of the
luminance component of the picture. Macroblock is
sometimes used to refer to the pel data and sometimes
to the coded representation of the pel values and other
data elements defined in the macroblock header of the
syntax defined in this part of this specification. To one
of ordinary skill in the art, the usage is clear from the
context.

[0273] MOTION COMPENSATION: The use of
motion vectors to improve the efficiency of the predic-
tion of pel values. The prediction uses motion vectors
to provide offsets into the past and/or future reference
pictures containing previously decoded pel values that
are used to form the prediction error signal.

[0274] MOTION VECTOR: A two-dimensional vector
used for motion compensation that provides an offset

US 2003/0196078 Al

from the coordinate position in the current picture to
the coordinates in a reference picture.

[0275] NON-INTRA CODING: Coding of a macrob-
lock or picture that uses information both from itself
and from macroblocks and pictures occurring at other
times.

[0276] PEL: Picture element.

[0277] PICTURE: Source, coded or reconstructed
image data. A source or reconstructed picture consists
of three rectangular matrices of 8-bit numbers repre-
senting the luminance and two chrominance signals.
For progressive video, a picture is identical to a frame,
while for interlaced video, a picture can refer to a
frame, or the top field or the bottom field of the frame
depending on the context.

[0278] PREDICTION: The use of a predictor to provide
an estimate of the pel value or data element currently
being decoded.

[0279] RECONFIGURABLE PROCESS STAGE
(RPS): A stage, which in response to a recognized
token, reconfigures itself to perform various operations.

[0280] SLICE: A series of macroblocks.

[0281] TOKEN: A universal adaptation unit in the form
of an interactive interfacing messenger package for
control and/or data functions.

[0282] START CODES [SYSTEM AND VIDEO]:
32-bit codes embedded in a coded bitstream that are
unique. They are used for several purposes including
identifying some of the structures in the coding syntax.

[0283] VARIABLE LENGTH CODING; VLC: A
reversible procedure for coding that assigns shorter
code-words to frequent events and longer code-words
to less frequent events.

[0284] VIDEO SEQUENCE: A series of one or more
pictures. Detailed Descriptions

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

[0285] As an introduction to the most general features
used in a pipeline system which is utilized in the preferred
embodiments of the invention, FIG. 1 is a greatly simplified
illustration of six cycles of a six-stage pipeline. (As is
explained in greater detail below, the preferred embodiment
of the pipeline includes several advantageous features not
shown in FIG. 1.).

[0286] Referring now to the drawings, wherein like ref-
erence numerals denote like or corresponding elements
throughout the various figures of the drawings, and more
particularly to FIG. 1, there is shown a block diagram of six
cycles in practice of the present invention. Each row of
boxes illustrates a cycle and each of the different stages are
labelled A-F, respectively. Each shaded box indicates that
the corresponding stage holds valid data, i.e., data that is to
be processed in one of the pipeline stages. After processing
(which may involve nothing more than a simple transfer
without manipulation of the data) valid data is transferred
out of the pipeline as valid output data. Note that an actual
pipeline application may include more or fewer than six

12

Oct. 16, 2003

pipeline stages. As will be appreciated, the present invention
may be used with any number of pipeline stages. Further-
more, data may be processed in more than one stage and the
processing time for different stages can differ.

[0287] In addition to clock and data signals (described
below), the pipeline includes two transfer control signals --
a “VALID” signal and an “ACCEPT” signal. These signals
are used to control the transfer of data within the pipeline.
The VALID signal, which is illustrated as the upper of the
two lines connecting neighboring stages, is passed in a
forward or downstream direction from each pipeline stage to
the nearest neighboring device. This device may be another
pipeline stage or some other system. For example, the last
pipeline stage may pass its data on to subsequent processing
circuitry. The ACCEPT signal, which is illustrated as the
lower of the two lines connecting neighboring stages, passes
in the other direction upstream to a preceding device.

[0288] A data pipeline system of the type used in the
practice of the present invention has, in preferred embodi-
ments, one or more of the following characteristics:

[0289] 1. The pipeline is “elastic” such that a delay at
a is particular pipeline stage causes the minimum
disturbance possible to other pipeline stages. Suc-
ceeding pipeline stages are allowed to continue pro-
cessing and, therefore, this means that gaps open up
in the stream of data following the delayed stage.
Similarly, preceding pipeline stages may also con-
tinue where possible. In this case, any gaps in the
data stream may, wherever possible, be removed
from the stream, of data.

[0290] 2. Control signals that arbitrate the pipeline
are organized so that they only propagate to the
nearest neighboring pipeline stages. In the case of
signals flowing in the same direction as the data flow,
this is the immediately succeeding stage. In the case
of signals flowing in the opposite direction to the
data flow, this is the immediately preceding stage.

[0291] 3. The data in the pipeline is encoded such that
many different types of data are processed in the
pipeline. This encoding accommodates data packets
of variable size and the size of the packet need not be
known in advance.

[0292] 4. The overhead associated with describing
the type of data is as small as possible.

[0293] 5. It is possible for each pipeline stage to
recognize only the minimum number of data types
that are needed for its required function. It should,
however, still be able to pass all data types onto the
succeeding stage even though it does not recognize
them. This enables communication between non-
adjacent pipeline stages.

[0294] Although not shown in FIG. 1, there are data lines,
either single lines or several parallel lines, which form a data
bus that also lead into and out of each pipeline stage. As is
explained and illustrated in greater detail below, data is
transferred into, out of, and between the stages of the
pipeline over the data lines.

[0295] Note that the first pipeline stage may receive data
and control signals from any form of preceding device. For
example, reception circuitry of a digital image transmission

US 2003/0196078 Al

system, another pipeline, or the like. On the other hand, it
may generate itself, all or part of the data to be processed in
the pipeline. Indeed, as is explained be-low, a “stage” may
contain arbitrary processing circuitry, including none at all
(for simple passing of data) or entire systems (for example,
another pipeline or even multiple systems or pipelines), and
it may generate, change, and delete data as desired.

[0296] When a pipeline stage contains valid data that is to
be transferred down the pipeline, the VALID signal, which
indicates data validity, need not be transferred further than
to the immediately subsequent pipeline stage. A two-wire
interface is, therefore, included between every pair of pipe-
line stages in the system. This includes a two-wire interface
between a preceding device and the first stage, and between
a subsequent device and the last stage, if such other devices
are included and data is to be transferred between then and
the pipeline.

[0297] Each of the signals, ACCEPT and VALID, has a
HIGH and a LOW value. These values are abbreviated as
“H” and “L”, respectively. The most common applications
of the pipeline, in practicing the invention, will typically be
digital. In such digital implementations, the HIGH value
may, for example, be a logical “1” and the LOW value may
be a logical “0”. The system is not restricted to digital
implementations, however, and in analog implementations,
the HIGH value may be a voltage or other similar quantity
above (or below) a set threshold, with the LOW value being
indicated by the corresponding signal being below (or
above) the same or some other threshold. For digital appli-
cations, the present invention may be implemented using
any known technology, such as CMOS, bipolar etc.

[0298] 1t is not necessary to use a distinct storage device
and wires to provide for storage of VALID signals. This is
true even in a digital embodiment. All that is required is that
the indication of “validity” of the data be stored along with
the data. By way of example only, in digital television
pictures that are represented by digital values, as specified in
the international standard CCIR 601, certain specific values
are not allowed. In this system, eight-bit binary numbers are
used to represent samples of the picture and the values zero
and 255 may not be used.

[0299] 1If such a picture were to be processed in a pipeline
built in the practice of the present invention, then one of
these values (zero, for example) could be used to indicate
that the data in a specific stage in the pipeline is not valid.
Accordingly, any non-zero data would be deemed to be
valid. In this example, there is no specific latch that can be
identified and said to be storing the “validness” of the
associated data. Nonetheless, the validity of the data is
stored along with the data.

[0300] As shown in FIG. 1, the state of the VALID signal
into each stage is indicated as an “H” or an “L.” on an upper,
right-pointed arrow. Therefore, the VALID signal from
Stage A into Stage B is LOW, and the VALID signal from
Stage D into Stage E is HIGH. The state of the ACCEPT
signal into each stage is indicated as an “H” or an “L” on a
lower, left-pointing arrow. Hence, the ACCEPT signal from
Stage E into Stage D is HIGH, whereas the ACCEPT signal
from the device connected downstream of the pipeline into
Stage F is LOW.

[0301] Data is transferred from one stage to another during
a cycle (explained below) whenever the ACCEPT signal of

Oct. 16, 2003

the downstream stage into its upstream neighbor is HIGH. If
the ACCEPT signal is LOW between two stages, then data
is not transferred between these stages.

[0302] Referring again to FIG. 1, if a box is shaded, the
corresponding pipeline stage is assumed, by way of
example, to contain valid output data. Likewise, the VALID
signal which is passed from that stage to the following stage
is HIGH. FIG. 1 illustrates the pipeline when stages B, D,
and E contain valid data. Stages A, C, and F do not contain
valid data. At the beginning, the VALID signal into pipeline
stage A is HIGH, meaning that the data on the transmission
line into the pipeline is valid.

[0303] Also at this time, the ACCEPT signal into pipeline
stage F is LOW, so that no data, whether valid or not, is
transferred out of Stage F. Note that both valid and invalid
data is transferred between pipeline stages. Invalid data,
which is data not worth saving, may be written over, thereby,
eliminating it from the pipeline. However, valid data must
not be written over since it is data that must be saved for
processing or use in a downstream device e.g., a pipeline
stage, a device or a system connected to the pipeline that
receives data from the pipeline.

[0304] In the pipeline illustrated in FIG. 1, Stage E
contains valid data D1, Stage D contains valid data D2,
Stage B contains valid data D3, and a device (not shown)
connected to one pipeline upstream contains data D4 that is
to be transferred into and processed in the pipeline. Stages
B, D and E, in addition to the upstream device, contain valid
data and, therefore, the VALID signal from these stages or
devices into their respective following devices is HIGH. The
VALID signal from the Stages A, C and F is, however, LOW
since these stages do not contain valid data.

[0305] Assume now that the device connected down-
stream from the pipeline is not ready to accept data from the
pipeline. The device signals this by setting the correspond-
ing ACCEPT signal LOW into Stage F. Stage F itself,
however, does not contain valid data and is, therefore, able
to accept data from the preceding Stage E. Hence, the
ACCEPT signal from Stage F into Stage E is set HIGH.

[0306] Similarly, Stage E contains valid data and Stage F
is ready to accept this data. Hence, Stage E can accept new
data as long as the valid data D1 is first transferred to Stage
F. In other words, although Stage F cannot transfer data
downstream, all the other stages can do so without any valid
data being overwritten or lost. At the end of Cycle 1, data
can, therefore, be “shifted” one step to the right. This
condition is shown in Cycle 2.

[0307] In the illustrated example, the downstream device
is still if not ready to accept new data in Cycle 2 and,
therefore, the ACCEPT signal into Stage F is still LOW.
Stage F cannot, therefore, accept new data since doing so
would cause valid data D1 to be overwritten and lost. The
ACCEPT signal from Stage F into Stage E, therefore, goes
LOW, as does the ACCEPT signal from Stage E into Stage
D since Stage E also contains valid data D2. All of the Stages
A-D, however, are able to accept new data (either because
they do not contain valid data or because they are able to
shift their valid data downstream and accept near data) and
they signal this condition to their immediately preceding
neighbors by setting tneir corresponding ACCEPT signals
HIGH.

US 2003/0196078 Al

[0308] The state of the pipelines after Cycle 2 is illustrated
in FIG. 1 for the row labelled Cycle 3. By way of example,
it is assumed that the downstream device is still not ready to
accept new data from Stage F (the ACCEPT signal into
Stage F is LOW). Stages E and F, therefore, are still
“blocked”, but in Cycle 3, Stage D has received the valid
data D3, which has overwritten the invalid data that was
previously in this stage. Since Stage D cannot pass on data
D3 in Cycle 3, it cannot accept new data and, therefore, sets
the ACCEPT signal into Stage C LOW. However, stages
A-C are ready to accept new data and signal this by setting
their corresponding ACCEPT signals HIGH. Note that data
D4 has been shifted from Stage A to Stage B.

[0309] Assume now that the downstream device becomes
ready to accept new data in Cycle 4. It signals this to the
pipeline by setting the ACCEPT signal into Stage F HIGH.
Although Stages C-F contain valid data, they can now shift
the data downstream and are, thus, able to accept new data.
Since each stage is therefore able to shift data one step
downstream, they set their respective ACCEPT signals out
HIGH.

[0310] As long as the ACCEPT signal into the final
pipeline stage (in this example, Stage F) is HIGH, the
pipeline shown in FIG. 1 acts as a rigid pipeline and simply
shifts data one step downstream on each cycle. Accordingly,
in Cycle 5, data D1, which was contained in Stage F in Cycle
4, 1s shifted out of the pipeline to the subsequent device, and
all other data is shifted one step downstream.

[0311] Assume now, that the ACCEPT signal into Stage F
goes LOW in Cycle 5. Once again, this means that Stages
D-F are not able to accept new data, and the ACCEPT
signals out of these stages into their immediately preceding
neighbors go LOW. Hence, the data D2, D3 and D4 cannot
shift downstream, however, the data D5 can. The corre-
sponding state of the pipeline after Cycle 5 is, thus, shown
in FIG. 1 as Cycle 6.

[0312] The ability of the pipeline, in accordance with the
preferred embodiments of the present invention, to “fill up”
empty processing stages is highly advantageous since the
processing stages in the pipeline thereby become decouple
from one another. In other words, even though a pipeline
stage may not be ready to accept data, the entire pipeline
does not have to stop and wait for the delayed stage. Rather,
when one stage is unable to accept valid data it simply forms
a temporary “wall” in the pipeline. Nonetheless, stages
downstream of the “wall” can continue to advance valid data
even to circuitry connected to the pipeline, and stages to the
left of the “wall” can still accept and transfer valid data
downstream. Even when several pipeline stages temporarily
cannot accept new data, other stages can continue to operate
normally. In particular, the pipeline can continue to accept
data into its initial stage A as long as stage A does not already
contain valid data that cannot be advanced due to the next
stage not being ready to accept new data. As this example
illustrates, data can be transferred into the pipeline and
between stages even when one or more processing stages is
blocked.

[0313] In the embodiment shown in FIG. 1, it is assumed
that the various pipeline stages do not store the ACCEPT
signals they receive from their immediately following neigh-
bors. Instead, whenever the ACCEPT signal into a down-
stream stage goes LOW, this LOW signal is propagated

Oct. 16, 2003

upstream as far as the nearest pipeline stage that does not
contain valid data. For example, referring to FIG. 1, it was
assumed that the ACCEPT signal into Stage F goes LOW in
Cycle 1. In Cycle 2, the LOW signal propagates from Stage
F back to Stage D.

[0314] In Cycle 3, when the data D3 is latched into Stage
D, the ACCEPT signal propagates upstream four stages to
Stage C. When the ACCEPT signal into Stage F goes HIGH
in Cycle 4, it must propagate upstream all the way to Stage
C. In other words, the change in the ACCEPT signal must
propagate backs four stages. It is not necessary, however, in
the embodiment illustrated in FIG. 1, for the ACCEPT
signal to propagate all the way back to the beginning of the
pipeline if there is some intermediate stage that is able to
accept new data.

[0315] In the embodiment illustrated in FIG. 1, each
pipeline stage will still need separate input and output data
latches to allow data to be transferred between stages
without unintended overwriting. Also, although the pipeline
illustrated in FIG. 1 is able to “compress” when downstream
pipeline stages are blocked, i.e., they cannot pass on the data
they contain, the pipeline does not “expand” to provide
stages that contain no valid data between stages that do
contain valid data. Rather, the ability to compress depends
on there being cycles during which no valid data is presented
to the first pipeline stage.

[0316] In Cycle 4, for example, if the ACCEPT signal into
Stage F remained LOW and valid data filled pipeline stages
A and B, as long as valid data continued to be presented to
Stage A the pipeline would not be able to compress any
further and valid input data could be lost. Nonetheless, the
pipeline illustrated in FIG. 1 reduces the risk of data loss
since t is able to compress as long as there is a pipeline stage
that does not contain valid data.

[0317] FIG. 2 illustrates another embodiment of the pipe-
line that can both compress and expand in a logical manner
and which includes circuitry that limits propagation of the
ACCEPT signal to the nearest preceding stage. Although the
circuitry for implementing this embodiment is explained and
illustrated in greater detail below, FIG. 2 serves to illustrate
the principle by which it operates.

[0318] For ease of comparison only, the input data and
ACCEPT signals into the pipeline embodiment shown in
FIG. 2 are the same as in the pipeline embodiment shown
in FIG. 1. Accordingly, stages E, D and B contain valid data
D1, D2 and D3, respectively. The ACCEPT signal into Stage
F is LOW; and data D4 is presented to the beginning pipeline
Stage A. In FIG. 2, three lines are shown connecting each
neighboring pair of pipeline stages. The uppermost line,
which may be a bus, is a data line. The middle line is the line
over which the VALID signal is transferred, while the
bottom line is the line over which the ACCEPT signal is
transferred. Also, as before, the ACCEPT signal into Stage
F remains LOW except in Cycle 4. Furthermore, additional
data DS is presented to the pipeline in Cycle 4.

[0319] In FIG. 2, cach pipeline stage is represented as a
block divided into two halves to illustrate that each stage in
this embodiment of the pipeline includes primary and sec-
ondary data storage elements. In FIG. 2, the primary data
storage is shown as the right half of each stage. However, it
will be appreciated that this delineation is for the purpose of
illustration only and is not intended as a limitation.

US 2003/0196078 Al

[0320] As FIG. 2 illustrates, as long as the ACCEPT
signal into a stage is HIGH, data is transferred from the
primary storage elements of the stage to the secondary
storage elements of the following stage during any given
cycle. Accordingly, although the ACCEPT signal into Stage
F is LOW, the ACCEPT signal into all other stages is HIGH
so that the data D1, D2 and D3 is shifted forward one stage
in Cycle 2 and the data D4 is shifted into the first Stage A.

[0321] Up to this point, the pipeline embodiment shown in
FIG. 2 acts in a manner similar to the pipeline embodiment
shown in FIG. 1. The ACCEPT signal from Stage F into
Stage c, however, is HIGH even though the ACCEPT signal
into Stage F is LOW. As is explained below, because of the
secondary storage elements, it is not necessary for the LOW
ACCEPT signal to propagate upstream beyond Stage F.
Moreover, by leaving the ACCEPT signal into Stage E
HIGH, Stage F signals that it is ready to accept new data.
Since Stage F is not able to transfer the data D1 in its
primary storage elements downstream (the ACCEPT signal
into Stage F is LOW) in Cycle 3, Stage E must, therefore,
transfer the data D2 into the secondary storage elements of
Stage F. Since both the primary and the secondary storage
elements of Stage F now contain valid data that cannot be
passed on, the ACCEPT signal from Stage F into Stage E is
set LOW. Accordingly, this represents a propagation of the
LOW ACCEPT signal back only one stage relative to Cycle
2, whereas this ACCEPT signal had to be propagated back
all the way to Stage C in the embodiment shown in FIG. 1.

[0322] Since Stages A-E are able to pass on their data, the
ACCEPT signals from the stages into their immediately
preceding neighbors are set HIGH. Consequently, the data
D3 and D4 are shifted one stage to the right so that, in Cycle
4, they are loaded into the primary data storage elements of
Stage E and Stage C, respectively. Although Stage E now
contains valid data D3 in its primary storage elements, its
secondary storage elements can still be used to store other
data without risk of overwriting any valid data.

[0323] Assume now, as before, that the ACCEPT signal
into Stage F becomes HIGH in Cycle 4. This indicates that
the downstream device to which the pipeline passes data is
ready to accept data from the pipeline. Stage F, however, has
set its ACCEPT signal LOW and, thus, indicates to Stage E
that Stage F is not prepared to accept new data. Observe that
the ACCEPT signals for each cycle indicate what will
“happen” in the next cycle, that is, whether data will be
passed on (ACCEPT HIGH) or whether data must remain in
place (ACCEPT LOW). Therefore, from Cycle 4 to Cycle 5,
the data D1 is passed from Stage F to the following device,
the data D2 is shifted from secondary to primary storage in
Stage F, but the data D3in Stage F is not transferred to Stage
F. The data D4 and D35 can be transferred into the following
pipeline stages as normal since the following stages have
their ACCEPT signals HIGH.

[0324] Comparing the state of the pipeline in Cycle 4 and
Cycle 5, it can be seen that the provision of secondary
storage elements, enables the pipeline embodiment shown in
FIG. 2 to expand, that is, to free up data storage elements
into which valid data can be advanced. For example, in
Cycle 4, the data blocks D1, D2 and D3 form a “solid wall”
since their data cannot be transferred until the ACCEPT
signal into Stage F goes HIGH. Once this signal does
become HIGH, however, data D1 is shifted out of the

Oct. 16, 2003

pipeline, data D2 is shifted into the primary storage elements
of Stage F, and the secondary storage elements of Stage F
become free to accept new data if the following device is not
able to receive the data D2 and the pipeline must once again
“compress.” This is shown in Cycle 6, for which the data D3
has been shifted into the secondary storage elements of
Stage F and the data D4 has been passed on from Stage D
to Stage E as normal.

[0325] FIGS. 3a(1) , 3a(2) , 3b(1) and 3H(2 (which are
referred to collectively as FIG. 3) illustrate generally a
preferred embodiment of the pipeline. This preferred
embodiment implements the structure shown in FIG. 2
using a two-phase, non-overlapping clock with phases g0
and ¢1. Although a two-phase clock is preferred, it will be
appreciated that it is also possible to drive the various
embodiments of the invention using a clock with more than
two phases.

[0326] As shown in FIG. 3, each pipeline stage is repre-
sented as having two separate boxes which illustrate the
primary and secondary storage elements. Also, although the
VALID signal and the data lines connect the various pipeline
stages as before, for ease of illustration, only the ACCEPT
signal is shown in FIG. 3. A change of state during a clock
phase of certain of the ACCEPT signals is indicated in FIG.
3 using an upward-pointing arrow for changes from LOW to
HIGH. Similarly, a downward-pointing arrow for changes
from HIGH to LOW. Transfer of data from one storage
element to another is indicated by a large open arrow. It is
assumed that the VALID signal out of the primary or
secondary storage elements of any given stage is HIGH
whenever the storage elements contain valid data.

[0327] In FIG. 3, each cycle is shown as consisting of a
full period of the non-overlapping clock phases ¢0 and @1.
As is explained in greater detail below, data is transferred
from the secondary storage elements (shown as the left box
in each stage) to the primary storage elements (shown as the
right box in each stage) during clock cycle g0, whereas data
is transferred from the primary storage elements of one stage
to the secondary storage elements of the following stage
during the clock cycle g0. FIG. 3 also illustrates that the
primary and secondary storage elements in each stage are
further connected via an internal acceptance line to pass an
ACCEPT signal In the same manner that the ACCEPT signal
is passed from stage to stage. In this way, the secondary
storage element will know when it can pass its date to the
primary storage element.

[0328] FIG. 3 shows the g1 phase of Cycle 1, in which
data D1, D2 and D3, which were previously shifted into the
secondary storage elements of Stages E, D and B, respec-
tively, are shifted into the primary storage elements of the
respective stage. During the ¢1 phase of Cycle 1, the
pipeline, therefore, assumes the same configuration as is
shown as Cycle 1 of FIG. 2. As before, the ACCEPT signal
into Stage F is assumed to be LOW. As FIG. 3 illustrates,
however, this means that the ACCEPT signal into the
primary storage element of Stage F is LOW, but since this
storage element does not contain valid data, it sets the
ACCEPT signal into its secondary storage element HIGH.

[0329] The ACCEPT signal from the secondary storage
elements of Stage F into the primary storage elements of
Stage E is also set HIGH since the secondary storage
elements of Stage F do not contain valid data. As before,

US 2003/0196078 Al

since the primary storage elements of Stage F are able to
accept data, data in all the upstream primary and secondary
storage elements can be shifted downstream without any
valid data being overwritten. The shift of data from one stage
to the next takes place during the next g0 phase in Cycle 2.
For example, the valid data D1 contained in the primary
storage element of Stage E is shifted into the secondary
storage element of Stage F, the data D4 is shifted into the
pipeline, that is, into the secondary storage element of Stage
A, and so forth.

[0330] The primary storage element of Stage F still does
not contain valid data during the ¢0 phase in Cycle 2 and,
therefore, the ACCEPT signal from the primary storage
elements into the secondary storage elements of Stage F
remains HIGH. During the ¢1 phase in Cycle 2, data can
therefore be shifted yet another step to the right, i.e., from
the secondary to the primary storage elements within each
stage.

[0331] However, once valid data is loaded into the primary
storage elements of Stage F, if the ACCEPT into Stage F
from the downstream device is still LOW), it is not possible
to shift data out of the secondary storage element of Stage
F. without overwriting and destroying the valid data D1. The
ACCEPT signal from the primary storage elements into the
secondary storage elements of Stage F therefore goes LOW.
Data D2, however, can still be shifted into the secondary
storage of Stage F since it did not contain valid data and its
ACCEPT signal out was HIGH.

[0332] During the g1 phase of Cycle 3, it is not possible
to shift data D2 into the primary storage elements of Stage
F, although data can be shifted within all the previous stages.
Once valid data is loaded into the secondary storage ele-
ments of Stage F, however, Stage F is not able to pass on this
data. It signals this event setting its ACCEPT signal out
LOW.

[0333] Assuming that the ACCEPT signal into Stage F
remains LOW, data upstream of Stage F can continue to be
shifted between stages and within stages on the respective
clock phases until the next valid data block D3 reaches the
primary storage elements of Stage E. As illustrated, this
condition is reached during the al phase of Cycle 4.

[0334] During the g0 phase of Cycle 5, data D3 has been
loaded into the primary storage element of Stage E. Since
this data cannot be shifted further, the ACCEPT signal out
of the primary storage elements of Stage E is set LOW.
Upstream data can be shifted as normal.

[0335] Assume now, as in Cycle 5 of FIG. 2, that the
device is connected downstream of the pipeline is able to
accept pipeline data. It signals this event by setting the
ACCEPT signal into pipeline Stage F HIGH during the ¢1
phase of Cycle 4. The primary storage elements of Stage F
can now shift data to the right and they are also able to
accept new data. Hence, the data D1 was shifted out during
the @1 phase of Cycle 5 so that the primary storage elements
of Stage F no longer contain data that must be saved. During
the @1 phase of Cycle 5, the data D2 is, therefore, shifted
within Stage F from the secondary storage elements to the
primary storage elements. The secondary storage elements
of Stage F are also able to accept new data and signal this
by setting the ACCEPT signal into the primary storage
elements of Stage E HIGH. During transfer of data within a

Oct. 16, 2003

stage, that is, from its secondary to its primary storage
elements, both sets or storage elements will contain the same
data, but the data in the secondary storage elements can be
overwritten with no data loss since this data will also be held
in the primary storage elements. The same holds true for data
transfer from the primary storage elements of one stage into
the secondary storage elements of a subsequent stage.

[0336] Assume now, that the ACCEPT signal into the
primary storage elements of Stage F goes LOW during the
@1 phase in Cycle 5. This means that Stage F is not able to
transfer the data D2 out of the pipeline. Stage F, conse-
quently, sets the ACCEPT signal from its primary to its
secondary storage elements LOW to prevent overwriting of
the valid data D2. The data D2 stored in the secondary
storage elements of Stage F, however, can be overwritten
without loss, and the data D3, is therefore, transferred into
the secondary storage elements of Stage F during the @0
phase of Cycle 6. Data D4 and D5 can be shifted down-
stream as normal. Once valid data D3 is stored in Stage F
along with data D2, as long as the ACCEPT signal into the
primary storage elements of Stage F is LOW, neither of the
secondary storage elements can accept new data, and it
signals this by setting the ACCEPT signal into Stage E
LOW.

[0337] When the ACCEPT signal into the pipeline from
the downstream device changes from LOW to HIGH or vice
versa, this change does not have to propagate upstream
within the pipeline further than to the immediately preceding
storage elements (within the same stage or within the
preceding pipeline stage). Rather, this change propagates
upstream within the pipeline one storage element block per
clock phase.

[0338] As this example illustrates, the concept of a “stage”
in the pipeline structure illustrated in FIG. 3 is to some
extent a matter of perception. Since data is transferred within
a stage (from the secondary to the primary storage elements)
as it is between stages (from the primary storage elements of
the upstream stage into the secondary storage elements of
the neighboring downstream stage), one could just as well
consider a stage to consist of “primary,” storage elements
followed by “secondary storage elements” instead of as
illustrated in FIG. 3. The concept of “primary” and second-
ary” storage elements is, therefore, mostly a question of
labeling. In FIG. 3, the “primary” storage elements can also
be referred to as “output” storage elements, since they are
the elements from which data is transferred out of a stage
into a following stage or device, and the “secondary” storage
elements could be “input” storage elements for the same
stage.

[0339] In explaining the aforementioned embodiments, as
shown in FIGS. 1-3, only the transfer of data under the
control of the ACCEPT and VALID signals has been men-
tioned. It is to be further understood that each pipeline stage
may also process the data it has received arbitrarily before
passing it between its internal storage elements or before
passing it to the following pipeline stage. Therefore, refer-
ring once again to FIG. 3, a pipeline stage can, therefore, be
defined as the portion of the pipeline that contains input and
output storage elements and that arbitrarily processes data
stored in its storage elements.

[0340] Furthermore, the “device” downstream from the
pipeline Stage F, need not be some other type of hardware

US 2003/0196078 Al

structure, but rather it can be another section of the same or
part of another pipeline. As illustrated below, a pipeline
stage can set its ACCEPT signal LOW not only when all of
the downstream storage elements are filled with valid data,
but also when a stage requires more than one clock phase to
finish processing its data. This also can occur when at creates
valid data in one or both of its storage elements. In other
words, it is not necessary for a stage simply to pass on the
ACCEPT signal based on whether or not the immediately
downstream storage elements contains valid data that cannot
be passed on. Rather, the ACCEPT signal itself may also be
altered within The stage or, by circuitry external to the stage,
in order to control the passage of data between adjacent
storage elements. The VALID signal may also be processed
in an analogous manner.

[0341] A great advantage of the two-wire interface (one
wire for each of the VALID and ACCEPT signals) is its
ability to control the pipeline without the control signals
needing to propagate back up the pipeline all the way to its
beginning stage. Referring once again to FIG. 1, Cycle 3, for
example, although stage F “tells” stage E that it cannot
accept data, and stage E tells stage D, and stage D tells stage
C. Indeed, if there had been more stages containing valid
data, then this signal would have propagated back even
further along the pipeline. In the embodiment shown in FIG.
3, Cycle 3, the LOW ACCEPT signal is not propagated any
further upstream than to Stage E and, then, only to its
primary storage elements.

[0342] As described below, this embodiment is able to
achieve this flexibility without adding significantly to the
silicon area that is required to implement the design. Typi-
cally, each latch in the pipeline used for data storage requires
only a single extra transistor (which lays out very efficiently
in silicon). In addition, two extra latches and a small number
of gates are preferably added to process the ACCEPT and
VALID signals that are associated with the data latches in
each half-stage.

[0343] FIG. 4 illustrates a hardware structure that imple-
ments a stage as shown in FIG. 3.

[0344] By way of example only, it is assumed that eight-
bit data is to be transferred (with or without further manipu-
lation in optional combinatorial logic circuits) in parallel
through the pipeline. However, it will be appreciated that
either more or less than eight-bit data can be used in
practicing the invention. Furthermore, the two-wire inter-
face in accordance with this embodiment is, however, suit-
able for use with any data bus width, and the data bus width
may even change from one stage to the next if a particular
application so requires. The interface in accordance with this
embodiment can also be used to process analog signals.

[0345] As discussed previously, while other conventional
timing arrangements may be used, the interface is preferably
controlled by a two-phase, non-overlapping clock. In FIGS.
4-9, these clock phase signals are referred to as PHO and
PH1. In FIG. 4, a line is shown for each clock phase signal.

[0346] Input data enters a pipeline stage over a multi-bit
data bus IN_DATA and is transferred to a following pipeline
stage or to subsequent receiving circuitry over an output data
bus OUT_DATA. The input data is first loaded in a manner
described below into a series of input latches (one for each
input data signal) collectively referred to as LDIN, which
constitute the secondary storage elements described above.

Oct. 16, 2003

[0347] In the illustrated example of this embodiment, it is
assumed that the Q outputs of all latches follow their D
inputs, that is, they are “loaded”, when the clock input is
HIGH, i.e., at a logic “1” level. Additionally, the Q outputs
hold their last values. In other words, the Q outputs are
“latched” on the falling edge of their respective clock
signals. Each latch has for its clock either one of two
non-overlapping clock signals PHO or PH1 (as shown in
FIG. 5) or the logical AND combination of one of these
clock signals PHO, PH1 and one logic signal. The invention
works equally well, however, by providing latches that latch
on he rising edges of the clock signals, or any other known
latching arrangement, as long as conventional methods are
applied to ensure proper timing of the latching operations.

[0348] The output data from the input data latch LDIN
passes via an arbitrary and optional combinatorial logic
circuit B1, which may be provided to convert output data
from input latch LDIN into intermediate data, which is then
later loaded in an output data latch LDOUT, which com-
prises the primary storage elements described above. The
output from the output data latch LDOUT nay similarly pass
through an arbitrary and optional combinatorial logic circuit
B2 before being passed onward as OUT_DATA to the next
device downstream. This may be another pipeline stage or
any other device connected to the pipeline.

[0349] In the practice of the present invention, each stage
of the pipeline also includes a validation input latch LVIN,
a validation output latch LVOUT, an acceptance input latch
LAIN, and an acceptance output latch LAOUT. Each of
these four latches is, preferably, a simple, single-stage latch.
The outputs from latches LVIN, LVOUT, LAIN and
LAOUT are, respectively, QVIN, QVOUT, QAIN, QAOUT.
The output signal QVIN from the validation input latch is
connected either directly as an input to the validation output
latch LVOUT, or via intermediate logic devices or circuits
that may alter the signal.

[0350] Similarly, the output validation signal QVOUT of
a given stage may be connected either directly to the input
of the validation input latch QVIN of the following stage, or
via intermediate devices or logic circuits, which may alter
the validation signal. This output QVIN is also connected to
a logic gate (to be described below) , whose output is
connected to the input of the acceptance input latch LAIN.
The output QAOUT from the acceptance output latch
LAOUT is connected to a similar logic gate (described
below), optionally via another logic gate.

[0351] As shown in FIG. 4, the output validation signal
QVOUT forms an OUT_VALID signa that can be received
by subsequent stages as an IN_VALID signal, or simply to
indicate valid data to subsequent circuity connected to the
pipeline. The readiness of the following circuit or stage to
accept data is indicated to each stage as the signal OUT-
_ACCEPT, which is connected as the input to the acceptance
output latch LAOUT, preferably via logic circuitry, which is
described below. Similarly, the output QAOUT of the accep-
tance output latch LAOUT is connected as the input to the
acceptance input latch LAIN, preferably via logic circuitry,
which is described below.

[0352] In practicing the present invention, the output
signals QVIN, QVOUT from the validation latches LVIN,
LVOUT are combined with the acceptance signals QAOUT,
OUT_ACCEPT, respectively, to form the inputs to the

US 2003/0196078 Al

acceptance latches LAIN, LAOUT, respectively. In the
embodiment illustrated in FIG. 4, these input signals are
formed as the logical NAND combination of the respective
validation signals QVIN, QVOUT, with the logical inverse
of the respective acceptance output signals QAOUT, OUT
ACCEPT. Conventional logic gates, NAND1 and NAND2,
perform the NAND operation, and the inverters INV1, INV2
form the logical inverses of the respective acceptance sig-
nals.

[0353] As is well known in the art of digital design, the
output from a NAND gate is a logical “1” when any or all
of its input signals are in the logical “0” state. The output
from a NAND gate is, therefore, a logical “0” only when all
of its inputs are in the logical “1” state. Also well known in
the art, is that the output of a digital inverter such as INV1
is a logical “1” when its input signal is a “0” and is a “0”
when its input signal is a “1”

[0354] The inputs to the NAND gate NANDI1 are, there-
fore, QVIN and NOT (QAOUT), where “NOT” indicates
binary inversion. Using known techniques, the input to the
acceptance latch LAIN can be resolved as follows:

[0355] NAND(QVIN,NOT(QAOUT))=NOT(QVIN)
OR QAODT

[0356] In other words, the combination of the inverter
INV1 and the NAND gate NANDI is a logical “1” either
when the signal QVIN is a “0” or the signal QAOUT is a
“17, or both. The gate NAND1 and the inverter INV1 can,
therefore, be implemented by a single OR gate that has one
of its inputs tied directly to the QAOUT output of the
acceptance latch LAOUT and its other input tied to the
inverse of the output signal QVIN of the validation input
latch LVIN.

[0357] As is well known in the art of digital design, many
latches suitable for use as the validation and acceptance
latches may have two outputs, Q and NOT(Q), that is, Q and
its logical inverse. If such latches are chosen, the one input
to the OR gate can, therefore, be tied directly to the NOT(Q)
output of the validation latch LVIN. The gate NAND1 and
the inverter INV1 can be implemented using well known
conventional techniques. Depending on the latch architec-
ture used, however, it may be more efficient to use a latch
without an inverting output, and to provide instead the gate
NANDI1 and the inverter INV1, both of which also can be
implemented efficiently in a silicon device. Accordingly, any
known arrangement may be used to generate the Q signal
and/or its logical inverse.

[0358] The data and validation latches LDIN, LDOOT,
LVIN and LVOUT, load their respective data inputs when
both clock signals (PHO at the input side and PH1 at the
output side) and the output from the acceptance latch of the
same side are logical “1”. Thus, the clock signal (PHO for
the input latches LDIN and LVIN) and the output of the
respective acceptance latch (in this case, LAIN) are used in
a logical AND manner and data is loaded only when they are
both logical “1”.

[0359] In particular applications, such as CMOS imple-
mentations of the latches, the logical AND operation that
controls the reading (via the illustrated CK or enabling
“input”) of the latches can be implemented easily in a
conventional manner by connecting the respective enabling
input signals (for example, PHO and QAIN for the latches

Oct. 16, 2003

LVIN and LDIN), to the gates of MOS transistors connected
in series in the input lines of the latches. Consequently, is
necessary to provide an actual logic AND gate, which might
cause problems of timing due to propagation delay in
high-speed applications. The AND gate shown in the figures,
therefore, only indicates the logical function to be performed
in generating the enable signals of the various latches.

[0360] Thus, the data latch LDIN loads input data only
when PHO and QAIN are both “17. It will latch this data
when either of these two signals goes to a “0”.

[0361] Although only one of the clock phase signals PHO
or PH1, is used to clock the data and validation latches at the
input (and output) side of the pipeline stage, the other clock
phase signal is used, directly, to clock the acceptance latch
at the same side. In other words, the acceptance latch on
either side (input or output) of a pipeline stage is preferably
clocked “out of phase” with the data and validation latches
on the same side. For example, PH1 is used to clock the
acceptance input latch, although PHO is used in generating
the clock signal CK for the data latch LDIN and the
validation latch LVIN.

[0362] As an example of the operation of a pipeline
augmented by the two-wire validation and acceptance cir-
cuitry assume that no valid data is initially presented at the
input to the circuit, either from a preceding pipeline stage, or
from a transmission device. In other words, assume that the
validation input signal IN_VALID to the illustrated stage has
not gone to a “1” since the system was most recently reset.
Assume further that several clock cycles have taken place
since the system was last reset and, accordingly, the circuitry
has reached a steady-state condition. The validation input
signal QVIN from the validation latch :N is, therefore,
loaded as a “0” during the next positive period of the clock
PHO. The input to the acceptance input latch LAIN (via the
gate NAND1 or another equivalent gate), is, therefore,
loaded as a “1” during the next positive period of the clock
signal PH1. In other words, since the data in the data input
latch LDIN is not valid, the stage signals that it is ready to
accept input data (since it does not hold any data worth
saving).

[0363] In this example, note that the signal IN_ACCEPT
is used to enable the data and validation latches LDIN and
LVIN. Since the signal IN_ACCEPT at this time is a “17,
these latches effectively work as conventional transparent
latches so that whatever data is on the IN DATA bus simply
is loaded into the data latch LDIN as soon as the clock signal
PHO goes to a “1”. Of course, this invalid data will also be
loaded into the next data latch LDOUT of the following
pipeline stage as long as the output QAOUT from its
acceptance latch is a “1”.

[0364] Hence, as long as a data latch does not contain
valid data, it accepts or “loads” any data presented to it
during the next positive period of its respective clock signal.
On the other hand, such invalid data is not loaded in any
stage for which the acceptance signal from its corresponding
acceptance latch is low (that is, a “0”). Furthermore, the
output signal from a validation latch (which forms the
validation input signal to the subsequent validation latch)
remains a “0” as long as the corresponding IN_VALID (or
QVIN) signal to the validation latch is low.

[0365] When the input data to a data latch is valid, the
validation signal IN_VALID indicates this by rising to a “1”.

US 2003/0196078 Al

The output of the corresponding validation latch then rises
to a “1” on the next rising edge of its respective clock phase
signal. For example, the validation input signal QVIN of
latch LVIN rises to a “1” when its corresponding IN_VALID
signal goes high (that is, rises to a “1”) on the next rising
edge of the clock phase signal PHO.

[0366] Assume now, instead, that the data input latch
LDIN contains valid data. if the data output latch LDOUT is
read, to accept new data, its acceptance signal QAOUT will
be a “1”. In this case, during the next positive period of the
clock signal PH1, the data latch LDOUT and validation latch
LVOUT will be enabled, and the data latch LDOUT will
load the data present at its input. This will occur before the
next rising edge of the other clock signal PHO, since the
clock signals are non-overlapping. At the next rising edge of
PHO, the preceding data latch (LDIN) will, therefore, not
latch in new input data from the preceding stage until the
data output latch LDOUT has safely latched the data trans-
ferred from the latch LDIN.

[0367] Accordingly, the same sequence is followed by
every adjacent pair of data latches (within a stage or between
adjacent stages) that are able to accept data, since they will
be operating based on alternate phases of the clock. Any data
latch that is not ready to accept new data because it contains
valid data that cannot yet be passed, will have an output
acceptance signal (the QA output from its acceptance latch
LA) that is LOW, and its data latch LDIN or LDOUT will
not be loaded. Hence, as long as the acceptance signal (the
output from the acceptance latch) of a given stage or side
(input or output) of a stage is LOW, its corresponding data
latch will not be loaded.

[0368] FIG. 4 also shows a reset feature included in a
preferred embodiment. In the illustrated example, a reset
signal NOTRESETO is connected to an inverting reset input
R (inversion is hereby indicated by a small circle, as is
conventional) of the validation output latch LVOUT. As is
well known, this Leans that the validation latch LVOUT will
be forced to output a “0” whenever the reset signal NOTRE-
SETO becomes a “0”. One advantage of resetting the latch
when the reset signal goes low (becomes a “0”) is that a
break in transmission will reset the latches. They will then
be in their “null” or reset state whenever a valid transmission
begins and the reset signal goes HIGH. The reset signal
NOTRESETO, therefore, operates as a digital “ON/OFF”
switch, such that it must be at a HIGH value in order to
activate the pipeline.

[0369] Note that it is not necessary to reset all of the
latches that hold valid data in the pipeline. As depicted in
FIG. 4, the validation input latch LVIN is not directly reset
by the reset signal NOTRESETO, but rather is reset indi-
rectly. Assume that the reset signal NOTRESETO drops to a
“0”. The validation output signal QVOUT also drops to a
“07, regardless of its previous state, whereupon the input to
the acceptance output latch LAOUT (via the gate NAND1)
goes HIGH. The acceptance output signal QAOUT also rises
to a “1”. This QAOUT value of “1” is then transferred as a
“1” to the input of the acceptance input latch LAIN regard-
less of the state of the validation input signal QVIN. The
acceptance input signal QAIN then rises to a “1” at the next
rising edge of the clock signal PH1. Assuming that the
validation signal IN_VALID has been correctly reset to a
“0”, then upon the subsequent rising edge of the clock signal

Oct. 16, 2003

PHO, the output from the validation latch LVIN will become
a “07, as it would have done if it had been reset directly.

[0370] As this example illustrates, it is only necessary to
reset the validation latch in only one side of each stage
(including the final stage) in order to reset all validation
latches. In fact, in many applications, it will not be necessary
to reset every other validation latch: If the reset signal
NOTRESETO can be guaranteed to be low during more than
one complete cycle of both phases PH0, PH1 of the clock,
then the “automatic reset” (a backwards propagation of the
reset signal) will occur for validation latches an preceding
pipeline stages. Indeed, if the reset signal is need low for at
least as many full cycles of both phases of the clock as there
are pipeline stages, it will only be necessary to directly reset
the validation output latch in the final pipeline stage.

[0371] FIGS. 5a and 5b (referred to collectively as FIG.
5) illustrate a timing diagram showing the relationship
between the non-overlapping clock signals PHO, PH1, the
effect of the reset signal, and the holding and transfer of data
for the different permutations of validation and acceptance
signals into and between the two illustrated sides of a
pipeline stage configured in the embodiment shown in FIG.
4. In the example illustrated in the timing diagram of FIG.
5, it has been assumed that the outputs from the data latches
LDIN, LDOUT are passed without further manipulation by
intervening logic blocks B1, B2. This is by way of example
and not necessarily by way of limitation. It is to be under-
stood that any combinatorial logic structures may be
included between the data latches of consecutive pipeline
stages, or between the input and output sides of a single
pipeline stage. The actual illustrated values for the input data
(for example the HEX data words “aa” or “04”) are also
merely illustrative. As is mentioned above, the input data
bus may have any width (and may even be analog), as long
as the data latches or other storage devices are able to
accommodate and latch or store each bit or value of the input
word.

[0372] Preferred Data Structure—*“tokens”

[0373] In the sample application shown in FIG. 4, each
stage processes all input data, since there is no control
circuitry that excludes any stage from allowing input data to
pass through its combinatorial logic block B1, B2, and so
forth. To provide greater flexibility, the present invention
includes a data structure in which “tokens” are used to
distribute data and control information throughout the sys-
tem. Each token consists of a series of binary bits separated
into one or more blocks of token words. Furthermore, the
bits fall into one of three types: address bits (A), data bits
(D), or an extension bit (E). Assume by way of example and,
not necessarily by way of limitation, that data is transferred
as words over an 8-bit bus with a 1-bit extension bit line. An
example of a four-word token is, in order of transmission:

First word:
Second
word:
Third word: E
Fourth word: E

[eslles]
oo O»
oo O»
oo O»
oo Ouo”
oo Ouo”
oo Ouo”
oo Ouo”
oo Ouo”

[0374] Note that the extension bit E is used as an addition
(preferably) to each data word. In addition, the address field

US 2003/0196078 Al

can be of variable length and is preferably transmitted just
after the extension bit of the first word.

[0375] Tokens, therefore, consist of one or more words of
(binary) digital data in the present invention. Each of these
words is transferred in sequence and preferably in parallel,
although this method of transfer is not necessary: serial data
transfer is also possible using known techniques. For
example, in a video parser, control information is transmit-
ted in parallel, whereas data is transmitted serially.

[0376] As the example illustrates, each token has, prefer-
ably at the start, an address field (the string of A-bits) that
identifies the type of data that is contained in the token. In
most applications, a single word or portion of a word is
sufficient to transfer the entire address field, but this is not
necessary in accordance with the invention, so long as logic
circuitry is included in the corresponding pipeline stages that
is able to store some representation of partial address fields
long enough for the stages to receive and decode the entire
address field.

[0377] Note that no dedicated wires or registers are
required to transmit the address field. It is transmitted using
the data bits. As is explained below, a pipeline stage will not
be slowed down if it is not intended to be activated by the
particular address field, i.e., the stage will be able to pass
along the token without delay.

[0378] The remainder of the data in the token following
the address field is not constrained by the use of tokens.
These D-data bits may take on any values and the meaning
attached to these bits is of no importance here. That is, the
meaning of the data can vary, for example, depending upon
where the data is positioned within the system at a particular
point in time. The number of data bits D appended after the
address field can be as long or as short as required, and the
number of data words in different tokens may vary greatly.
The address field and extension bit are used to convey
control signals to the pipeline stages. Because the number of
words in the data field (the string of D bits) can be arbitrary,
as can be the information conveyed in the data field can also
vary accordingly. The explanation below is, therefore,
directed to the use of the address and extension bits.

[0379] In the present invention, tokens are a particularly
useful data structure when a number of blocks of circuitry
are connected together in a relatively simple configuration.
The simplest configuration is a pipeline of processing steps.
For example, in the one shown in FIG. 1. The use of tokens,
however, is not restricted to use on a pipeline structure.

[0380] Assume once again that each box represents a
complete pipeline stage. In the pipeline of FIG. 1, data flows
from left to right in the diagram. Data enters the machine and
passes into processing Stage A. This may or may not modify
the data and it then passes the data to Stage B. The
modification, if any, may be arbitrarily complicated and, in
general, there will not be the same number of data items
flowing into any stage as flow out. Stage B modifies the data
again and passes it onto Stage C, and so forth. In a scheme
such as this, it is impossible for data to flow in the opposite
direction, so that, for example, Stage C cannot pass data to
Stage A. This restriction is often perfectly acceptable.

[0381] On the other hand, it is very desirable for Stage A
to be able to communicate information to Stage C even
though there is no direct connection between the two blocks.

Oct. 16, 2003

Stage A and C communication is only via Stage B. One
advantage of the tokens is their ability to achieve this kind
of communication. Since any processing stage that does not
recognize a token simply passes it on unaltered to the next
block.

[0382] According to this example, an extension bit is
transmitted along with the address and data fields in each
token so that a processing stage can pass on a token (which
can be of arbitrary length) without having to decode its
address at all. According to this example, any token in which
the extension bit is HIGH (a “1”) is followed by a subse-
quent word which is part of the same token. This word also
has an extension bit, which indicates whether there is a
further token word in the token. When a stage encounters a
token word whose extension bit is LOW (a “07), it is known
to be the last word of the token. The next word is then
assumed to be the first word of a new token.

[0383] Note that although the simple pipeline of process-
ing stages is particularly useful, it will be appreciated that
tokens may be applied to more complicated configurations
of processing elements. An example of a more complicated
processing element is described below.

[0384] It is not necessary, in accordance with the present
invention, to use the state of the extension bit to signal the
last word of a given token by giving it an extension bit set
to “0”. One alternative to the preferred scheme is to move
the extension bit so that it indicates the first word of a token
instead of the last. This can be accomplished with appro-
priate changes in the decoding hardware.

[0385] The advantage of using the extension bit of the
present invention to signal the last word in a token rather
than the first, is that it is often useful to modify the behavior
of a block of circuitry depending upon whether or not a
token has extension bits. An example of this is a token that
activates a stage that processes video quantization values
stored in a quantization table (typically a memory device).
For example, a table containing 64 eight-bit arbitrary binary
integers.

[0386] In order to load a new quantization table into the
quantizer stage of the pipeline, a “QUANT_TABLE” token
is sent to the quantizer. In such a case the token, for example,
consists of 65 token words. The first word contains the code
“QUANT_TABLE”, i.e., build a quantization table. This is
followed by 64 words, which are the integers of the quan-
tization table.

[0387] When encoding video data, it is occasionally nec-
essary to transmit such a quantization table. In order to
accomplish this function, a QUANT_TABLE token with no
extension words can be sent to the quantizer stage. On
seeing this token, and noting that the extension bit of its first
word is LOW, the quantizer stage can read out its quanti-
zation table and construct a QUANT_TABLE token which
includes the 64 quantization table values. The extension bit
of the first word (which was LOW) is changed so that it is
HIGH and the token continues, with HIGH extension bits,
until the new end of the token, indicated by a LOW
extension bit on the sixty. fourth quantization table value.
This proceeds in the typical way through the system and is
encoded into the bit stream.

[0388] Continuing with the example, the quantizer may
either load a new quantization table into its own memory

US 2003/0196078 Al

device or read out its table depending on whether the first
word of the QUANT_TABLE token has its extension bit set
or not.

[0389] The choice of whether to use the extension bit to
signal the first or last token word in a token will, therefore,
depend on the system in which the pipeline will be used.
Both alternatives are possible in accordance with the inven-
tion.

[0390] Another alternative to the preferred extension bit
scheme is to include a length count at the start of the token.
Such an arrangement may, for example, be efficient if a
token is very long. For example, assume that a typical token
in a given application is 1000 words long. Using the
illustrated extension bit scheme (with the bit attached to
each token word), the token would require 1000 additional
bits to contain all the extension bits. However, only ten bits
would be required to encode the token length in binary form.

[0391] Although there are, therefore, uses for long tokens,
experience has shown that there are many uses for short
tokens. Here the preferred extension bit scheme is advanta-
geous. If a token is only one word long, then only one bit is
required to signal this. However, a counting scheme would
typically require the same ten bits as before.

[0392] Disadvantages of a length count scheme include
the following: 1) it is inefficient for short tokens; 2) it places
a maximum length restriction on a token (with only ten bits,
no more than 1023 words can be counted); 3) the length of
a token must be known in advance of generating the count
(which is presumably at the start of the token); 4) every
block of circuitry that deals with tokens would need to be
provided with hardware to count words; and 5) if the count
should get corrupted (due to a data transmission error) it is
not clear whether recovery can be achieved.

[0393] The advantages of the extension bit scheme in
accordance with the present invention include: 1) pipeline
stages need not include a block of circuitry that decodes
every token since unrecognized tokens can be passed on
correctly by considering only the extension bit; 2) the coding
of the extension bit is identical for all tokens; 3) there is no
limit placed on the length of a token; 4) the scheme is
efficient (in terms of overhead to represent the length of the
token) for short tokens; and 5) error recovery is naturally
achieved. If an extension bit is corrupted then one random
token will be generated (for an extension bit corrupted from
“1” to “0”) or a token will be lost (extension bit corrupted
“0” to “1”). Furthermore, the problem is localized to the
tokens concerned. After that token, correct operation is
resumed automatically.

[0394] In addition, the length of the address field may be
varied. This is highly advantageous since it allows the most
common tokens to be squeezed into the minimum number of
words. This, in turn, is of great importance in video data
pipeline systems since it ensures that all processing stages
can be continuously running at full bandwidth.

[0395] In accordance to the present invention, in order to
allow variable length address fields, the addresses are chosen
so that a short address followed by random data can never
be confused with a longer address. The preferred technique
for encoding the address field (which also serves as the
“code” for activating an intended pipeline stage) is the
well-known technique first described by Huffman, hence the

Oct. 16, 2003

common name “Huffman Code”. Nevertheless, it will be
appreciated by one of ordinary skill in the art, that other
coding schemes may also be successfully employed.

[0396] Although Huffman encoding is well understood in
the field of digital design, the following example provides a
general background:

[0397] Huffman codes consist of words made up of a
string of symbols (in the context of digital systems, such as
the present invention, the symbols are usually binary digits).
The code words may have variable length and the special
property of Huffman code words is that a code word is
chosen so that none of the longer code words start with the
symbols that form a shorter code word. In accordance with
the invention, token address fields are preferably (although
not necessarily) chosen using known Huffman encoding
techniques.

[0398] Also in the present invention, the address field
preferably starts in the most significant bit (MSB) of the first
word token. (Note that the designation of the MSB is
arbitrary and that this scheme can be modified to accom-
modate various designations of the MSB.) The address field
continues through contiguous bits of lesser significance. If,
in a given application, a token address requires more than
one token word, the least significant bit in an given word the
address field will continue in the most significant bit of the
next word. The minimum length of the address field is one
bit.

[0399] Any of several known hardware structures can be
used to generate the tokens used in the present invention.
One such structure is a microprogrammed state machine.
However, known microprocessors or other devices may also
be used.

[0400] The principle advantage of the token scheme in
accordance with the present invention, is its adaptability to
unanticipated needs. For example, if a new token is intro-
duced, it is most likely that this will affect only a small
number of pipeline stages. The most likely case is that only
two stages or blocks of circuitry are affected, i.e., the one
block that generates the tokens in the first place and the
block or stage that has been newly designed or modified to
deal with this new token. Note that it is not necessary to
modify any other pipeline stages. Rather, these will be able
to deal with the new token without modification to their
designs because they will not recognize it and will, accord-
ingly, pass that token on unmodified.

[0401] This ability of the present invention to leave sub-
stantially existing designed devices unaffected has clear
advantages. It may be possible to leave some semiconductor
chips in a chip set completely unaffected by a design
improvement in some other chips in the set. This is advan-
tageous both from the perspective of a customer and from
that of a chip manufacturer. Even if modifications mean that
all chips are affected by the design change (a situation that
becomes increasingly likely as levels of integration progress
so that the number of chips in a system drops) there will still
be the considerable advantage of better time-to-market than
can be achieved, since the same design can be reused.

[0402] In particular, note the situation that occurs when it
becomes necessary to extend the token set to include two
word addresses. Even in this case, it is still not necessary to
modify an existing design. Token decoders in the pipeline

US 2003/0196078 Al

stages will attempt to decode the first word of such a token
and will conclude that it does not recognize the token. It will
then pass on the token unmodified using the extension bit to
perform this operation correctly. It will not attempt to
decode the second word of the token (even though this
contains address bits) because it will “assume” that the
second word is part of the data field of a token that it does
not recognize.

[0403] In many cases, a pipeline stage or a connected
block of circuitry will modify a token. This usually, but not
necessarily, takes the form of modifying the data field of a
token. In addition, it is common for the number of data
words in the token to be modified, either by removing
certain data words or by adding new ones. In some cases,
tokens are removed entirely from the token stream.

[0404] In most applications, pipeline stages will typically
only decode (be activated by) a few tokens; the stage does
not recognize other tokens and passes them on unaltered. In
a large number of cases, only one token is decoded, the
DATA Token word itself.

[0405] In many applications, the operation of a particular
stage will depend upon the results of its own past operations.
The “state” of the stage, thus, depends on its previous states.
In other words, the stage depends upon stored state infor-
mation, which is another way of saying it must retain some
information about its own history one or more clock cycles
ago. The present invention is well-suited for use in pipelines
that include such “state machine” stages, as well as for use
in applications in which the latches in the data path are
simple pipeline latches.

[0406] The suitability of the two-wire interface, in accor-
dance with the present invention, for such “state machine”
circuits is a significant advantage of the invention. This is
especially true where a data path is being controlled by a
state machine. In this case, the two-wire interface technique
above-described may be used to ensure that the “current
state” of the machine stays in step with the data which it is
controlling in the pipeline.

[0407] FIG. 6 shows a simplified block diagram of one
example of circuitry included in a pipeline stage for decod-
ing a token address field. This illustrates a pipeline stage that
has the characteristics of a “state machine”. Each word of a
token includes an “extension bit” which is HIGH if there are
more words in the token or LOW if this is the last word of
the token. If this is the last word of a token, the next valid
data word is the start of a new token and, therefore, its
address must be decoded. The decision as to whether or not
to decode the token address in any given word, thus, depends
upon knowing the value of the previous extension bit.

[0408] For the sake of simplicity only, the two-wire inter-
face (with the acceptance and validation signals and latches)
is not illustrated and all details dealing with resetting the
circuit are omitted. As before, an 8-bit data word is assumed
by way of example only and not by way of limitation.

[0409] This exemplifying pipeline stage delays the data
bits and the extension bit by one pipeline stage. It also
decodes the DATA Token. At the point when the first word
of the DATA Token is presented at the output of the circuit,
the signal “DATA_ADDR?” is created and set HIGH. The
data bits are delayed by the latches LDIN and LDOUT, each
of which is repeated eight times for the eight data bits used

Oct. 16, 2003

in this example (corresponding to an 8-input, 8-output
latch). Similarly, the extension bit is delayed by extension
bit latches LEIN and LEOUT.

[0410] In this example, the latch LEPREV is provided to
store the most recent state of the extension bit. The value of
the extension bit is loaded into LEIN and is then loaded into
LEOUT on the next rising edge of the non-overlapping clock
phase signal PH1. Latch LEOUT, thus, contains the value of
the current extension bit, but only during the second half of
the non-overlapping, two-phase clock. Latch LEPREYV,
however, loads this extension bit value on the next rising
edge of the clock signal PHO, that is, the same signal that
enables the extension bit input latch LEIN. The output
QEPREY of the latch LEPREYV, thus, will hold the value of
the extension bit during the previous PHO clock phase.

[0411] The five bits of the data word output from the
inverting Q output, plus the non-inverted MD[2], of the latch
LDIN are combined with the previous extension bit value
QEPREV 1in a series of logic gates NAND1, NAND2, and
NOR1, whose operations are well known in the art of digital
design. The designation “N_MD[m] indicates the logical
inverse of bit m of the mid-data word MD[7:0]. Using
known techniques of Boolean algebra, it can be shown that
the output signal SA from this logic block (the output from
NOR1) is HIGH (a “1”) only when the previous extension
bit is a “O” (QPREV=“0") and the data word at the output
of the non-inverting Q latch (the original input word) LDIN
has the structure “000001xx”, that is, the five high-order bits
MD[7]-MDJ[3] bits are all “0” and the bit MD[2]is a “1” and
the bits in the Zero-one positions have any arbitrary value.

[0412] There are, thus, four possible data words (there are
four permutations of “xx”) that will cause SA and, therefore,
the output of the address signal latch LADDR to whose input
SA is connected, to become HIGH. In other words, this stage
provides an activation signal (DATA_ADDR=“1") only
when one of the four possible proper tokens is presented and
only when the previous extension bit was a zero, that is, the
previous data word was the last word in the previous series
of token words, which means that the current token word is
the first one in the current token.

[0413] When the signal QPREV from latch LEPREV is
LOW, the value at the output of the latch LDIN is therefore
the first word of a new token. The gates NAND1, NAND2
and NOR1 decode the DATA token (000001xx). This
address decoding signal SA is, however, delayed in latch
LADDR so that the signal DATA_ADDR has the same
timing as the output data OUT_DATA and OUT_EXTN.

[0414] FIG. 7 is another simple example of a state-
dependent pipeline stage in accordance with the present
invention, which generates the signal LAST_OUT_EXTN
to indicate the value of the previous output extension bit
OUT_EXTN. One of the two enabling signals (at the CK
inputs) to the present and last extension bit latches, LEOUT
and LEPREY, respectively, is derived from the gate AND1
such that these latches only load a new value for them when
the data is valid and is being accepted (the Q outputs are
HIGH from the output validation and acceptance latches
LVOUT and LAOUT, respectively). In this way, they only
hold valid extension bits and are not loaded with spurious
values associated with data that is not valid. In the embodi-
ment shown in FIG. 7, the two-wire valid/accept logic
includes the OR1 and OR2 gates with input signals consist-

US 2003/0196078 Al

ing of the downstream acceptance signals and the inverting
output of the validation latches LVIN and LVOUT, respec-
tively. This illustrates one way in which the gates NAND1/2
and INV1/2 in FIG. 4 can be replaced if the latches have
inverting outputs.

[0415] Although this is an extremely simple example of a
“state-dependent” pipeline stage, i.e., since it depends on the
state of only a single bit, it is generally true that all latches
holding state information will be updated only when data is
actually transferred between pipeline stages. In other words,
only when the data is both valid and being accepted by the
next stage. Accordingly, care must be taken to ensure that
such latches are properly reset.

[0416] The generation and use of tokens in accordance
with the present invention, thus, provides several advantages
over known encoding techniques for data transfer through a
pipeline.

[0417] First, the tokens, as described above, allow for
variable length address fields (and can utilize Huffman
coding for example) to provide efficient representation of
common tokens.

[0418] Second, consistent encoding of the length of a
token allows the end of a token (and hence the start of the
next token) to be processed correctly (including simple
non-manipulative transfer), even if the token is not recog-
nized by the token decoder circuitry in a given pipeline
stage.

[0419] Third, rules and hardware structures for the han-
dling of unrecognized tokens (that is, for passing them on
unmodified, allow communication between one stage and a
downstream stage that is not its nearest neighbor in the
pipeline. This also increases the expandability and efficient
adaptability of the pipeline since it allows for future changes
in the token set without requiring large scale redesigning of
existing pipeline stages. The tokens of the present invention
are particularly useful when used in conjunction with the
two-wire interface that is described above and below.

[0420] As an example of the above, FIGS. 8a and 8b,
taken together (and referred to collectively below as FIG.
8), depict a block diagram of a pipeline stage whose function
is as follows. If the stage is processing a predetermined
token (known in this example as the DATA token) , then it
will duplicate every word in this token with the exception of
the first one, which includes the address field of the DATA
token. If, on the other hand, the stage is processing any other
kind of token, it will delete every word. The overall effect is
that, at the output, only DATA Tokens appear and each word
within these tokens is repeated twice.

[0421] Many of the components of this illustrated system
may be the same as those described in the much simpler
structures shown in FIGS. 4, 6, and 7. This illustrates a
significant advantage. More complicated pipeline stages will
still enjoy the same benefits of flexibility and elasticity, since
the same two-wire interface may be used with little or no
adaptation.

[0422] The data duplication stage shown in FIG. 8 is
merely one example of the endless number of different types
of operations that a pipeline stage could perform in any
given application. This “duplication stage” illustrates, how-

Oct. 16, 2003

ever, a stage that can form a “bottleneck”, so that the
pipeline according to this embodiment will “pack together”.

[0423] A “bottleneck” can be any stage that either takes a
relatively long time to perform its operations, or that creates
more data in the pipeline than it receives. This example also
illustrates that the two-wire accept/valid interface according
to this embodiment can be adapted very easily to different
applications.

[0424] The duplication stage shown in FIG. 8 also has two
latches LEIN and LEOUT that, as in the example shown in
FIG. 6, latch the state of the extension bit at the input and
at the output of the stage, respectively. As FIG. 8a shows,
the input extension latch LEIN is clocked synchronously
with the input data latch LDIN and the validation signal
IN_VALID.

[0425] For ease of reference, the various latches included
in the duplication stage are paired below with their respec-
tive output signals:

[0426] In the duplication stage, the output from the data
latch LDIN forms intermediate data referred to as MID-
_DATA. This intermediate data word is loaded into the data
output latch LDOUT only when an intermediate acceptance
signal (labeled “MID_ACCEPT” in FIG. 8a) is set HIGH.

[0427] The portion of the circuitry shown in FIG. 8 below
the acceptance latches LAIN, LAOUT, shows the circuits
that are added to the basic pipeline structure to generate the
various internal control signals used to duplicate data. These
include a “DATA_TOKEN” signal that indicates that the
circuitry is currently processing a valid DATA Token, and a
NOT_DUPLICATE signal which is used to control dupli-
cation of data. When the circuitry is processing a DATA
Token, the NOT_DUPLICATE signal toggles between a
HIGH and a LOW state and this causes each word in the
token to be duplicated once (but no more times). When the
circuitry is not processing a valid DATA Token then the
NOT_DUPLICATE signal is held in a HIGH state. Accord-
ingly, this means that the token words that are being pro-
cessed are not duplicated.

[0428] As FIG. 8a illustrates, the upper six bits of 8-bit
intermediate data word and the output signal QI1 from the
latch LI1 form inputs to a group of logic gates NORI,
NOR2, NAND18. The output signal from the gate NAND18
is labeled S1. Using well-known Boolean algebra, it can be
shown that the signal S1 is a “0” only when the output signal
QI1 is a “1” and the MID_DATA word has the following
structure: “000001xx”, that is, the upper five bits are all “0”,
the bit MID_DATA[2] is a “1” and the bits in the MID-
_DATA-[1] and MID_DATA[0] positions have any arbitrary
value. Signal S1, therefore, acts as a “token identification
signal” which is low only when the MID_DATA signal has
a predetermined structure and the output from the latch LI1
is a “1”. The nature of the latch LI1 and its output QI1 is
explained further below.

[0429] TLatch LO1 performs the function of latching the
last value of the intermediate extension bit (labeled
“MID_EXTN” and as signal S4), and it loads this value on
the next rising edge of the clock phase PHO into the latch
LI1, whose output is the bit QI1 and is one of the inputs to
the token decoding logic group that forms signal S1. Signal
S1, as is explained above, may only drop to a “0” if the
signal QI1 is a “1” (and the MID_DATA signal has the

US 2003/0196078 Al

predetermined structure) . Signal S1 may, therefore, only
drop to a “0” whenever the last extension bit was “07,
indicating that the previous token has ended. Therefore, the
MID_DATA word is the first data word in a new token.

[0430] The latches LO2 and LI2 together with the NAND
gates NAND20 and NAND22 form storage for the signal,
DATA_TOKEN. In the normal situation, the signal QI1 at
the input to NAND20 and the signal S1 at the input to
NAND22 will both be at logic “1”. It can be shown, again
by the techniques of Boolean algebra, that in this situation
these NAND gates operate in the same manner as inverters,
that is, the signal QI2 from the output of latch LI2 is inverted
in NAND20 and then this signal is inverted again by
NAND?22 to form the signal S2. In this case, since there are
two logical inversions in this path, the signal S2 will have
the same value as QI2.

[0431] It can also be seen that the signal DATA_TOKEN
at the output of latch LO2 forms the input to latch LI2. As
a result, as long as the situation remains in which both QI1
and S1 are HIGH, the signal DATA_TOKEN will retain its
state (whether “0” or “17). This is true even though the clock
signals PHO and PH1 are clocking the latches (LI2 and LO2
respectively). The value of DATA_TOKEN can only change
when one or both of the signals QI1 and S1 are “0”.

[0432] As explained earlier, the signal QI1 will be “0”
when the previous extension bit was “0”. Thus, it will be “0”
whenever the MID_DATA value is the first word of a token
(and, thus, includes the address field for the token). In this
situation, the signal S1 may be either “0” or “1”. As
explained earlier, signal S1 will be “0” if the MID_DATA
word has the predetermined structure that in this example
indicates a “DATA” Token. If the MID_DATA word has any
other structure, (indicating that the token is some other
token, not a DATA Token), S1 will be “17.

[0433] If QI1 is “0” and S1 is “17, this indicates there is
some token other than a DATA Token. As is well known in
the field of digital electronics, the output of NAND20 will
be “1”. The NAND gate NAND22 will invert this (as
previously explained) and the signal S2 will thus be a “0”.
As a result, this “0” value will be loaded into latch LO2 at
the start of the next PH1 clock phase and the DATA_TO-
KEN signal will become “0”, indicating that the circuitry is
not processing a DATA token.

[0434] If QI1 is “0” and SO is “0”, thereby indicating a
DATA token, then the signal S2 will be “1” (regardless of the
other input to NAND22 from the output of NAND20). As a
result, this “1” value will be loaded into latch LO2 at the
start of the next PH1 clock phase and the DATA_TOKEN
signal will become “1”, indicating that the circuitry is
processing a DATA token.

[0435] The NOT_DUPLICATE signal (the output signal
QO3) is similarly loaded into the latch LI3 on the next rising
edge of the clock PHO. The output signal QI3 from the latch
LI3 is combined with the output signal QI2 in a gate
NAND24 to form the signal S3. As before, Boolean algebra
can be used to show that the signal S3 is a “0” only when
both of the signals QI2 and QI3 have the value “1”. If the
signal QI2 becomes a “0”, that is, the DATA TOKEN signal
is a “0”, then the signal S3 becomes a “1”. In other words,
if there is not a valid DATA TOKEN (QI2=0) or the data
word is not a duplicate (QI3=0), then the signal S3 goes
high.

Oct. 16, 2003

[0436] Assume now, that the DATA TOKEN signal
remains HIGH for more than one clock signal. Since the
NOT_DUPLICATE signal (QO3) is “fed back™ to the latch
LI3 and will be inverted by the gate NAND 24 (since its
other input QI2 is held HIGH), the output signal QO3 will
toggle between “0” and “1”. If there is no valid DATA
Token, however, the signal QI2 will be a “0”, and the signal
S3 and the output QO3, will be forced HIGH until the
DATE_TOKEN signal once again goes to a “1”.

[0437] The output QO3 (the NOT_DUPLICATE signal) is
also fed back and is combined with the output QA1 from the
acceptance latch LAIN in a series of logic gates (NAND16
and INV16, which together form an AND gate) that have as
their output a “1”, only when the signals QA1 and QO3 both
have the value “1”. As FIG. 8a shows, the output from the
AND gate (the gate NAND16 followed by the gate INV16)
also forms the acceptance signal, IN_ACCEPT, which is
used as described above in the two-wire interface structure.

[0438] The acceptance signal IN_ACCEPT is also used as
an enabling signal to the latches LDIN, LEIN, and LVIN. As
a result, if the NOT_DUPLICATE signal is low, the accep-
tance signal IN_ACCEPT will also be low, and all three of
these latches will be disabled and will hold the values stored
at their outputs. the stage will not accept new data until the
NOT_DUPLICATE signal becomes HIGH. This is in addi-
tion to the requirements described above for forcing the
output from the acceptance latch LAIN high.

[0439] As long as there is a valid DATA_TOKEN (the
DATA_TOKEN signal Q02 is a “17), the signal QO3 will
toggle between the HIGH and LOW states, so that the input
latches will be enabled and will be able to accept data, at
most, during every other complete cycle of both clock
phases PHO, PH1. The additional condition that the follow-
ing stage be prepared to accept data, as indicated by a
“HIGH” OUT_ACCEPT signal, must, of course, still be
satisfied. The output latch LDOUT will, therefore, place the
same data word onto the output bus OUT_DATA for at least
two full clock cycles. The OUT_VALID signal will be a “1”
only when there is both a valid DATA_TOKEN (QO2
HIGH) and the validation signal QVOUT is HIGH.

[0440] The signal QEIN, which is the extension bit cor-
responding to MID_DATA, is combined with the signal S3
in a series of logic gates (INV10 and NAND10) to form a
signal S4. During presentation of a DATA Token, each data
word MID_DATA will be repeated by loading it into the
output latch LDOUT twice. During the first of these, S4 will
be forced to a “1” by the action of NAND10. The signal S4
is loaded in the latch LEOUT to form OUTEXTN at the
same time as MID_DATA is loaded into LDOUT to form
OUT_DATA[7:0].

[0441] Thus, the first time a given MID DATA is loaded
into LEOUT, the associated OUTEXTN will be forced high,
whereas, on the second occasion, OUTEXTN will be the
same as the signal QEIN. Now consider the situation during
the very last word of a token in which QEIN is known to be
low. During the first time MID_DATA is loaded into
LDOUT, OUTEXTN will be “1”, and during the second
time, OUTEXTN will be “0”, indicating the true end of the
token.

[0442] The output signal QVIN from the validation latch
LVIN is combined with the signal QI3 in a similar gate

US 2003/0196078 Al

combination (INV12 and NAND12) to form a signal S5.
Using known Boolean techniques, it can be shown that the
signal S5 is HIGH either when the validation signal QVIN
is HIGH, or when the signal QI3 is low (indicating that the
data is a duplicate). The signal S5 is loaded into the
validation output latch LVOUT at the same time that MID-
_DATA is loaded into LDOUT and the intermediate exten-
sion bit (signal S4) is loaded into LEOUT. Signal S5 is also
combined with the signal QO2 (the data token signal) in the
logic gates NAND30 and INV30 to form the output valida-
tion signal OUT_VALID. As was mentioned earlier, OUT-
_VALID is HIGH only when there is a valid token and the
validation signal QVOUT is high.

[0443] In the present invention, the MID_ACCEPT signal
is combined with the signal S5 in a series of logic gates
(NAND26 and INV26) that perform the well-known AND
function to form a signal S6 that is used as one of the two
enabling signals to the latches L.O1, LO2 and LO3. The
signal S6 rises to a “1” when the MID_ACCEPT signal is
HIGH and when either the validation signal QVIN is high,
or when the token is a duplicate (QI3 is a “O”) . If the signal
MID_ACCEPT is HIGH, the latches LO1-L.O3 will, there-
fore, be enabled when the clock signal PH1 is high whenever
valid input data is loaded at the input of the stage, or when
the latched data is a duplicate.

[0444] From the discussion above, one can see that the
stage shown in FIGS. 8a and 86 will receive and transfer
data is between stages under the control of the validation and
acceptance signals, as in previous embodiments, with the
exception that the output signal from the acceptance latch
LAIN at the input side is combined with the toggling
duplication signal so that a data word will be output twice
before a new word will be accepted.

[0445] The various logic gates such as NAND16 and
INV16 may, of course, be replaced by equivalent logic
circuitry (in this case, a single AND gate). Similarly, if the
latches LEIN and LVIN, for example, have inverting out-
puts, the inverters INV10 and INV12 will not be necessary.
Rather, the corresponding input to the gates NAND10 and
NANDI12 can be tied directly to the inverting outputs of
these latches. As long as the proper logical operation is
performed, the stage will operate in the same manner. Data
words and extension bits will still be duplicated.

[0446] One should note that the duplication function that
the illustrated stage performs will not be performed unless
the first data word of the token has a “1” in the third position
of the word and “O’s” in the five high-order bits. (Of course,
the required pattern can easily be changed and set by
selecting other logic gates and interconnections other than
the NOR1, NOR2, NND18 gates shown.)

[0447] In addition, as FIG. 8 shows, the OUT_VALID
signal will be forced low during the entire token unless the
first data word has the structure described above. This has
the effect that all tokens except the one that causes the
duplication process will be deleted from the token stream,
since a device connected to the output terminals (OUT-
DATA, OUTEXTN and OUTVALID) will not recognize
these token words as valid data.

[0448] As before, both validation latches LVIN, LVOUT
in the stage can be reset by a single conductor NOT_RE-
SETO, and a single resetting input R on the downstream

Oct. 16, 2003

latch LVOUT, with the reset signal being propagated back-
wards to cause the upstream validation latch to be forced low
on the next clock cycle.

[0449] 1t should be noted that in the example shown in
FIG. 8, the duplication of data contained in DATA tokens
serves only as an example of the way in which circuitry may
manipulate the ACCEPT and VALID signals so that more
data is leaving the pipeline stage than that which is arriving
at the input. Similarly, the example in FIG. 8 removes all
non-DATA tokens purely as an illustration of the way in
which circuitry may manipulate the VALID signal to remove
data from the stream. In most typical applications, however,
a pipeline stage will simply pass on any tokens that it does
not recognize, unmodified, so that other stages further down
the pipeline may act upon them if required.

[0450] FIGS. 9a¢ and 9b taken together illustrate an
example of a timing diagram for the data duplication circuit
shown in FIGS. 8a and 8b. As before, the timing diagram
shows the relationship between the two-phase clock signals,
the various internal and external control signals, and the
manner in which data is clocked between the input and
output sides of the stage and is duplicated.

[0451] Referring now more particularly to FIG. 10, there
is shown a reconfigurable process stage in accordance with
one aspect of the present invention.

[0452] Input latches 34 receive an input over a first bus 31.
A first output from the input latches 34 is passed over line
32 to a token decode subsystem 33. A second output from the
input latches 34 is passed as a first input over line 35 to a
processing unit 36. A first output from the token decode
subsystem 33 is passed over line 37 as a second input to the
processing unit 36. A second output from the token decode
33 is passed over line 40 to an action identification unit 39.
The action identification unit 39 also receives input from
registers 43 and 44 over line 46. The registers 43 and 44 hold
the state of the machine as a whole. This state is determined
by the history of tokens previously received. The output
from the action identification unit 39 is passed over line 38
as a third input to the processing unit 36. The output from the
processing unit 36 is passed to output latches 41. The output
from the output latches 41 is passed over a second bus 42.

[0453] Referring now to FIG. 11, a Start Code Detector
(SCD) 51 receives input over a two-wire interface 52. This
input can be either in the form of DATA tokens or as data bits
in a data stream. A first output from the Start Code Detector
51 is passed over line 53 to a first logical first-in first-out
buffer (FIFO) 54. The output from the first FIFO 54 is
logically passed over line 55 as a first input to a Huffman
decoder 56. A second output from the Start Code Detector 51
is passed over line 57 as a first input to a DRAM interface
58. The DRAM interface 58 also receives input from a buffer
manager 59 over line 60. Signals are transmitted to and
received from external DRAM (not shown) by the DRAM
interface 58 over line 61. A first output from the DRAM
interface 58 is passed over line 62 as a first physical input to
the Huffman decoder 56.

[0454] The output from the Huffman decoder 56 is passed
over line 63 as an input to an Index to Data Unit (ITOD) 64.
The Huffman decoder 56 and the ITOD 64 work together as
a single logical unit. The output from the ITOD 64 is passed
over line 65 to an arithmetic logic unit (ALU) 66. A first

US 2003/0196078 Al

output from the ALU 66 is passed over line 67 to a read-only
memory (ROM) state machine 68. The output from the
ROM state machine 68 is passed over line 69 as a second
physical input to the Huffman decoder 56. A second-output
from the ALU 66 is passed over line 70 to a Token Formatter
(T/F) 71.

[0455] A first output 72 from the T/F 71 of the present
invention is passed over line 72 to a second FIFO 73. The
output from the second FIFO 73 is passed over line 74 as a
first input to an inverse modeller 75. A second output from
the T/F 71 is passed over line 76 as a third input to the
DRAM interface 58. A third output from the DRAM inter-
face 58 is passed over line 77 as a second input to the inverse
modeller 75. The output from the inverse modeller 75 is
passed over line 78 as an input to an inverse quantizer 79
The output from the inverse quantizer 79 is passed over line
80 as an input to an inverse zig-zag (IZZ) 81. The output
from the IZZ 81 is passed over line 82 as an input to an
inverse discrete cosine transform (IDCT) 83. The output
from the IDCT 83 is passed over line 84 to a temporal
decoder (not shown).

[0456] Referring now more particularly to FIG. 12, a
temporal decoder in accordance with the present invention is
shown. A fork 91 receives as input over line 92 the output
from the IDCT 83 (shown in FIG. 11). As a first output from
the fork 91, the control tokens, e.g., motion vectors and the
like, are passed over line 93 to an address generator 94. Data
tokens are also passed to the address generator 94 for
counting purposes. As a second output from the fork 91, the
data is passed over line 95 to a FIFO 96. The output from the
FIFO 96 is then passed over line 97 as a first input to a
summer 98. The output from the address generator 94 is
passed over line 99 as a first input to a DRAM interface 100.
Signals are transmitted to and received from external
DRAM (not shown) by the DRAM interface 100 over line
101. A first output from the DRAM interface 100 is passed
over line 102 to a prediction filter 103. The output from the
prediction filter 103 is passed over line 104 as a second input
to the summer 98. A first output from the summer 98 is
passed over line 105 to output selector 106. A second output
from the summer 98 is passed over line 107 as a second input
to the DRAM interface 100. A second output from the
DRAM interface 100 is passed over line 108 as a second
input to the output selector 106. The output from the output
selector 106 is passed over line 109 to a Video Formatter
(not shown in FIG. 12).

[0457] Referring now to FIG. 13, a fork 111 receives input
from the output selector 106 (shown in FIG. 12) over line
112. As a first output from the fork 111, the control tokens
are passed over line 113 to an address generator 114. The
output from the address generator 114 is passed over line 115
as a first input to a DRAM interface 116. As a second output
from the fork 111 the data is passed over line 117 as a second
input to the DRAM interface 116. Signals are transmitted to
and received from external DRAM (not shown) by the
DRAM interface 116 over line 118. The output from the
DRAM interface 116 is passed over line 119 to a display
pipe 120.

[0458] 1t will be apparent from the above descriptions that
each line may comprise a plurality of lines, as necessary.

[0459] Referring now to FIG. 144, in the MPEG standard
a picture 131 is encoded as one or more slices 132. Each

Oct. 16, 2003

slice 132 is, in turn, comprised of a plurality of blocks 133,
and is encoded row-by-row, left-to-right in each row. As is
shown, each slice 132 may span exactly one full line of
blocks 133, less than one line B or D of blocks 133 or
multiple lines C of blocks 133.

[0460] Referring to FIG. 14b, in the JPEG and H.261
standards, the Common Intermediate Format (CIF) is used,
wherein a picture 141 is encoded as 6 rows each containing
2 groups of blocks (GOBs) 142. Each GOB 142 is, in turn,
composed of either 3 rows or 6 rows of an indeterminate
number of blocks 143. Each GOB 142 is encoded in a zigzag
direction indicated by the arrow 144. The GOBs 142 are, in
turn, processed row-by-row, left-to-right in each row.,

[0461] Referring now to FIG. 14c, it can be seen that, for
both MPEG and CIF, the output of the encoder is in the form
of a data stream 151. The decoder receives this data stream
151. The decoder can then reconstruct the image according
to the format used to encode it. In order to allow the decoder
to recognize start and end points for each standard, the data
stream 151 is segmented into lengths of 33 blocks 152.

[0462] Referring to FIG. 15, a Venn diagram is shown,
representing the range of values possible for the table
selection from the Huffman decoder 56 (shown in FIG. 11)
of the present invention. The values possible for an MPEG
decoder and an H.261 decoder overlap, indicating that a
single table selection will decode both certain MPEG and
certain H.261 formats. Likewise, the values possible for an
MPEG decoder and a JPEG decoder overlap, indicating that
a single table selection will decode both certain MPEG and
certain JPEG formats. Additionally, it is shown that the
H.261 values and the JPEG values do not overlap, indicating
that no single table selection exists that will decode both
formats.

[0463] Referring now more particularly to FIG. 16, there
is shown a schematic representation of variable length
picture data in accordance with the practice of the present
invention. A first picture 161 to be processed contains a first
PICTURE_START token 162, first picture information of
indeterminate length 163, and a first PICTURE_END token
164. A second picture 165 to be processed contains a second
PICTURE_START token 166, second picture information of
indeterminate length 167, and a second PICTURE_END
token 168. The PICTURE_START tokens 162 and 166
indicate the start of the pictures 161 and 165 to the processor.
Likewise, the PICTURE_END tokens 164 and 168 signify
the end of the pictures 161 and 165 to the processor. This
allows the processor to process picture information 163 and
167 of variable lengths.

[0464] Referring to FIG. 17, a split 171 receives input
over line 172. A first output from the split 171 is passed over
line 173 to an address generator 174. The address generated
by the address generator 174 is passed over line 175 to a
DRAM interface 176. Signals are transmitted to and
received from external DRAM (not shown) by the DRAM
interface 176 over line 177. A first output from the DRAM
interface 176 is passed over line 178 to a prediction filter
179. The output from the prediction filter 179 is passed over
line 180 as a first input to a summer 181. A second output
from the split 171 is passed over line 182 as an input to a
first-in first-out buffer (FIFO) 183. The output from the
FIFO 183 is passed over line 184 as a second input to the
summer 181. The output from the summer 181 is passed

US 2003/0196078 Al

over line 185 to a write signal generator 186. A first output
from the write signal generator 186 is passed over line 187
to the DRAM interface 176. A second output from the write
signal generator 186 is passed over line 188 as a first input
to a read signal generator 189. A second output from the
DRAM interface 176 is passed over line 190 as a second
input to the read signal generator 189. The output from the
read signal generator 189 is passed over line 191 to a Video
Formatter (not shown in FIG. 17).

[0465] Referring now to FIG. 18, the prediction filtering
process is illustrated. A forward picture 201 is passed over
line 202 as a first input to a summer 203. A backward picture
204 is passed over line 205 as a second input to the summer
203. The output from the summer 203 is passed over line
206.

[0466] Referring to FIG. 19, a slice 211 comprises one or
more macroblocks 212. In turn, each macroblock 212 com-
prises four luminance blocks 213 and two chrominance
blocks 214, and contains the information for an original
16x16 block of pixels. Each of the four luminance blocks
213 and two chrominance blocks 214 is 8x8 pixels in size.
The four luminance blocks 213 contain a 1 pixel to 1 pixel
mapping of the luminance (Y) information from the original
16x16 block of pixels. One chrominance block 214 contains
a representation of the chrominance level of the blue color
signal (Cu/b), and the other chrominance block 214 contains
a representation of the chrominance level of the red color
signal (Cv/r). Each chrominance level is subsampled such
that each 8x8 chrominance block 214 contains the chromi-
nance level of its color signal for the entire original 16x16
block of pixels.

[0467] Referring now to FIG. 20, the structure and func-
tion of the Start Code Detector will become apparent. A
value register 221 receives image data over a line 222. The
line 222 is eight bits wide, allowing for parallel transmission
of eight bits at a time. The output from the value register 221
is passed serially over line 223 to a decode register 224. A
first output from the decode register 224 is passed to a
detector 225 over a line 226. The line 226 is twenty-four bits
wide, allowing for parallel transmission of twenty-four bits
at a time. The detector 225 detects the presence or absence
of an image which corresponds to a standard-independent
start code of 23“zero” values followed by a single “one”
value. An 8-bit data value image follows a valid start code
image. On detecting the presence of a start code image, the
detector 225 transmits a start image over a line 227 to a value
decoder 228.

[0468] A second output from the decode register 224 is
passed serially over line 229 to a value decode shift register
230. The value decode shift register 230 can hold a data
value image fifteen bits long. The 8-bit data value following
the start code image is shifted to the right of the value decode
shift register 230, as indicated by area 231. This process
eliminates overlapping start code images, as discussed
below. A first output from the value decode shift register 230
is passed to the value decoder 228 over a line 232. The line
232 is fifteen bits wide, allowing for parallel transmission of
fifteen bits at a time. The value decoder 228 decodes the
value image using a first look-up table (not shown). A
second output from the value decode shift register 230 is
passed to the value decoder 228 which passes a flag to an
index-to-tokens converter 234 over a line 235. The value

Oct. 16, 2003

decoder 228 also passes information to the index-to-tokens
converter 234 over a line 236. The information is either the
data value image or start code index image obtained from the
first look-up table. The flag indicates which form of infor-
mation is passed. The line 236 is fifteen bits wide, allowing
for parallel transmission of fifteen bits at a time. While 15
bits has been chosen here as the width in the present
invention it will be appreciated that bits of other lengths may
also be used. The index-to-tokens converter 234 converts the
information to token images using a second look-up table
(not shown) similar to that given in Table 12-3 of the Users
Manual. The token images generated by the index-to-tokens
converter 234 are then output over a line 237. The line 237
is fifteen bits wide, allowing for parallel transmission of
fifteen bits at a time.

[0469] Referring to FIG. 21, a data stream 241 consisting
of individual bits 242 is input to a Start Code Detector (not
shown in FIG. 21). A first start code image 243 is detected
by the Start Code Detector. The Start Code Detector then
receives a first data value image 244. Before processing the
first data value image 244, the Start Code Detector may
detect a second start code image 245, which overlaps the
first data value image 244 at a length 246. If this occurs, the
Start Code Detector does not process the first data value
image 244, and instead receives and processes a second data
value image 247.

[0470] Referring now to FIG. 22, a flag generator 251
receives data as a first input over a line 252. The line 252 is
fifteen bits wide, allowing for parallel transmission of fifteen
bits at a time. The flag generator 251 also receives a flag as
a second input over a line 253, and receives an input valid
image over a first two-wire interface 254. A first output from
the flag generator 251 is passed over a line 255 to an input
valid register (not shown). A second output from the flag
generator 251 is passed over a line 256 to a decode index
257. The decode index 257 generates four outputs; a picture
start image is passed over a line 258, a picture number image
is passed over a line 259, an insert image is passed over a
line 260, and a replace image is passed over a line 261. The
data from the flag generator 251 is passed over a line 262a.
A header generator 263 uses a look-up table to generate a
replace image, which is passed over a line 262b. An extra
word generator 264 uses the MPU to generate an insert
image, which is passed over a line 262¢. Line 2624, and line
262b combine to form a line 262, which is first input to
output latches 265. The output latches 265 pass data over a
line 266. The line 266 is fifteen bits wide, allowing for
parallel transmission of fifteen bits at a time.

[0471] The input valid register (not shown) passes. an
image as a first input to a first OR gate 267 over a line 268.
An insert image is passed over a line 269 as a second input
to the first OR gate 267. The output from the first OR gate
267 is passed as a first input to a first AND gate 270 over a
line 271. The logical negation of a remove image is passed
over a line 272 as a second input to the first AND gate 270
is passed as a second input to the output latches 265 over a
line 273. The output latches 265 pass an output valid image
over a second two-wire interface 274. An output accept
image is received over the second two-wire interface 274 by
an output accept latch 275. The output from the output
accept latch 275 is passed to an output accept register (not
shown) over a line 276.

US 2003/0196078 Al

[0472] The output accept register (not shown) passes an
image as a first input to a second OR gate 277 over a line
278. The logical negation of the output from the input valid
register is passed as a second input to the second OR gate
277 over a line 279. The remove image is passed over a line
280 as a third input to the second OR gate 277. The output
from the second OR gate 277 is passed as a first input to a
second AND gate 281 over a line 282. The logical negation
of an insert image is passed as a second input to the second
AND gate 281 over a line 283. The output from the second
AND gate 281 is passed over a line 284 to an input accept
latch 285. The output from the input accept latch 285 is
passed over the first two-wire interface 254.

TABLE 600

Format Image Received Tokens Generated

1. H.261 SEQUENCE START SEQUENCE START
MPEG PICTURE START GROUP START
JPEG (None) PICTURE START

PICTURE DATA

2. H.261 (None) PICTURE END
MPEG (None) PADDING
JPEG (None) FLUSH

STOP AFTER PICTURE

[0473] As set forth in Table 600 which shows a relation-
ship between the absence or presence of standard signals in
the certain machine independent control tokens, the detec-
tion of an image by the Start Code Detector 51 generates a
sequence of machine independent Control Tokens. Each
image listed in the “Image Received” column starts the
generation of all machine independent control tokens listed
in the group in the “Tokens Generated” column. Therefore,
as shown in line 1 of Table 600, whenever a “sequence start”
image is received during H.261 processing or a “picture
start” image is received during MPEG processing, the entire
group of four control tokens is generated, each followed by
its corresponding data value or values. In addition, as set
forth at line 2 of Table 600, the second group of four control
tokens is generated at the proper time irrespective of images
received by the Start Code Detector 51.

TABLE 601

B2 B3 P4 B5 B6 P7 B8 B9 I10
P4 B2 B3 P7 B5 B6 I10 B8 B9

DISPLAY ORDER: I1
TRANSMIT ORDER: I1

[0474] As shown in line 1 of Table 601 which shows the
timing relationship between transmitted pictures and dis-
played pictures, the picture frames are displayed in numeri-
cal order. However, in order to reduce the number of frames
that must be stored in memory, the frames are transmitted in
a different order. It is useful to begin the analysis from an
intraframe (I frame). The I1 frame is transmitted in the order
it is to be displayed. The next predicted frame (P frame), P4,
is then transmitted. Then, any bi-directionally interpolated
frames (B frames) to be displayed between the I1 frame and
P4 frame are transmitted, represented by frames B2 and B3.
This allows the transmitted B frames to reference a previous
frame (forward prediction) or a future frame (backward
prediction). After transmitting all the B frames to be dis-
played between the I1 frame and the P4 frame, the next P
frame, P7, is transmitted. Next, all the B frames to be
displayed between the P4 and P7 frames are transmitted,

Oct. 16, 2003

corresponding to B5 and B6. Then, the next I frame, 110, is
transmitted. Finally, all the B frames to be displayed
between the P7 and 110 frames are transmitted, correspond-
ing to frames B8 and B9. This ordering of transmitted frames
requires only two frames to be kept in memory at any one
time, and does not require the decoder to wait for the
transmission of the next P frame or I frame to display an
interjacent B frame.

[0475] Further information regarding the structure and
operation, as well as the features, objects and advantages, of
he invention will become more readily apparent to one of
ordinary skill in the art from the ensuing additional detailed
description of illustrative embodiment of the invention
which, for purposes of clarity and convenience of explana-
tion are grouped and set forth in the following sections:

Multi-Standard Configurations

JPEG Still Picture Decoding

Motion Picture Decompression

RAM Memory Map

Bitstream Characteristics

Reconfigurable Processing Stage

Multi-Standard Coding

Multi-Standard Processing Circuit-2nd Mode of Operation
9. Start Code Detector

10. Tokens

11. DRAM Interface

12. Prediction Filter

13. Accessing Registers

14. Microprocessor Interface (MPI)

15. MPI Read Timing

16. MPI Write Timing

17. Key Hole Address Locations

18. Picture End

19. Flushing Operation

20. Flush Function

21. Stop-After-Picture

22. Multi-Standard Search Mode

23. Inverse Modeler

0N R W

24. Inverse Quantizer
25. Huffman Decoder and Parser
26. Diverse Discrete Cosine Transformer

27. Buffer Manager

[0476] 1. Multi-Standard Configurations

[0477] Since the various compression standards, i.e.,
JPEG, MPEG and H.261, are well known, as for example as
described in the aforementioned U.S. Pat. No. 5,212,742, the
detailed specifications of those standards are not repeated
here.

[0478] As previously mentioned, the present invention is
capable of decompressing a variety of differently encoded,
picture data bitstreams. In each of the different standards of
encoding, some form of output formatter is required to take
the data presented at the output of the spatial decoder
operating alone, or the serial output of a spatial decoder and
temporal decoder operating in combination, (as subse-
quently described herein in greater detail) and reformatting
this output for use, including display in a computer or other
display systems, including a video display system. Imple-
mentation of this formatting varies significantly between
encoding standards and/or the type of display selected.

[0479] In a first embodiment, in accordance with the
present invention, as previously described with reference to
FIGS. 10-12 an address generator is employed to store a

US 2003/0196078 Al

block of formatted data, output from either the first decoder
(Spatial Decoder) or the combination of the first decoder
(Spatial Decoder) and the second decoder (the Temporal
Decoder), and to write the decoded information into and/or
from a memory in a raster order. The video formatter
described hereinafter provides a wide range of output signal
combinations.

[0480] In the preferred multi-standard video decoder
embodiment of the present invention, the Spatial Decoder
and the Temporal Decoder are required to implement both an
MPEG encoded signal and an H.261 video decoding system.
The DRAM interfaces on both devices are configurable to
allow the quantity of DRAM required to be reduced when
working with small picture formats and at low coded data
rates. The reconfiguration of these DRAMSs will be further
described hereinafter with reference to the DRAM interface.
Typically, a single 4 megabyte DRAM is required by each of
the Temporal Decoder and the Spatial Decoder circuits.

[0481] The Spatial Decoder of the present invention per-
forms all the required processing within a single picture.
This reduces the redundancy within one picture.

[0482] The Temporal Decoder reduces the redundancy
between the subject picture with relationship to a picture
which arrives prior to the arrival of the subject picture, as
well as a picture which arrives after the arrival of the subject
picture. One aspect of the Temporal Decoder is to provide an
address decode network which handles the complex address-
ing needs to read out the data associated with all of these
pictures with the least number of circuits and with high
speed and improved accuracy.

[0483] As previously described with reference to FIG. 11,
the data arrives through the Start Code Detector, a FIFO
register which precedes a Huffman decoder and parser,
through a second FIFO register, an inverse modeller, an
inverse quantizer, inverse zigzag and inverse DCT. The two
FIFOs need not be on the chip. In one embodiment, the data
does not flow through a FIFO that is on the chip. The data
is applied to the DRAM interface, and the FIFO-IN storage
register and the FIFO-OUT register is off the chip in both
cases. These registers, whose operation is entirely indepen-
dent of the standards, will subsequently be described herein
in further detail.

[0484] The majority of the subsystems and stages shown
in FIG. 11 are actually independent of the particular stan-
dard used and include the DRAM interface 58, the buffer
manager 59 which is generating addresses for the DRAM
interface, the inverse modeller 75, the inverse zig-zag 81 and
the inverse DCT 83. The standard independent units within
the Huffman decoder and parser include the ALU 66 and the
token formatter 71.

[0485] Referring now to FIG. 12, the standard-indepen-
dent units include the DRAM interface 100, the fork 91, the
FIFO register 96, the summer 98 and the output selector 106.
The standard dependent units are the address generator 94,
which is different in H.261 and in MPEG, and the prediction
filter 103, which is reconfigurable to have the ability to do
both H.261 and MPEG. The JPEG data will flow through the
entire machine completely unaltered.

[0486] FIG. 13 depicts a high level block diagram of the
video formatter chip. The vast majority of this chip is
independent of the standard. The only items that are affected

Oct. 16, 2003

by the standard is the way the data is written into the DRAM
in the case of H.261, which differs from MPEG or JPEG;
and that in H.261, it is not necessary to code every single
picture. There is some timing information referred to as a
temporal reference which provides some information
regarding when the pictures are intended to be displayed,
and that is also handled by the address generation type of
logic in the video formatter.

[0487] The remainder of the circuitry embodied in the
video formatter, including all of the color space conversion,
the up-sampling filters and all of the gamma correction
RAMs, is entirely independent of the particular compression
standard utilized.

[0488] The Start Code Detector of the present invention is
dependent on the compression standard in that it has to
recognize different start code patterns in the bitstream for
each of the standards. For example, H.261 has a 16 bit start
code, MPEG has a 24 bit start code and JPEG uses marker
codes which are fairly different from the other start codes.
Once the Start Code Detector has recognized those different
start codes, its operation is essentially independent of the
compression standard. For instance, during searching, apart
from the circuitry that recognizes the different category of
markers, much of the operation is very similar between the
three different compression standards.

[0489] The next unit is the state machine 68 (FIG. 11)
located within the Huffman decoder and parser. Here, the
actual circuitry is almost identical for each of the three
compression standards. In fact, the only element that is
affected by the standard in operation is the reset address of
the machine. If just the parser is reset, then it jumps to a
different address for each standard. There are, in fact, four
standards that are recognized. These standards are H.261,
JPEG, MPEG and one other, where the parser enters a piece
of code that is used for testing. This illustrates that the
circuitry is identical in almost every aspect, but the differ-
ence is the program in the microcode for each of the
standards. Thus, when operating in H.261, one program is
running, and when a different program is running, there is no
overlap between them. The same holds true for JPEG, which
is a third, completely independent program.

[0490] The next unit is the Huffman decoder 56 which
functions with the index to data unit 64. Those two units
cooperate together to perform the Huffman decoding. Here,
the algorithm that is used for Huffman decoding is the same,
irrespective of the compression standard. The changes are in
which tables are used and whether or not the data coming
into the Huffman decoder is inverted. Also, the Huffman
decoder itself includes a state machine that understands
some aspects of the coding standards. These different opera-
tions are selected in response to an instruction coming from
the parser state machine. The parser state machine operates
with a different program for each of the three compression
standards and issues the correct command to the Huffman
decoder at different times consistent with the standard in
operation.

[0491] The last unit on the chip that is dependent on the
compression standard is the inverse quantizer 79, where the
mathematics that the inverse quantizer performs are different
for each of the different standards. In this regard, a COD-
ING_STANDARD token is decoded and the inverse quan-
tizer 79 remembers which standard it is operating in. Then,

US 2003/0196078 Al

any subsequent DATA tokens that happen after that event,
but before another CODING_STANDARD may come
along, are dealt with in the way indicated by the CODING-
_STANDARD that has been remembered inside the inverse
quantizer. In the detailed description, there is a table illus-
trating different parameters in the different standards and
what circuitry is responding to those different parameters or
mathematics.

[0492] The address generation, with reference to H.261,
differs for each of the subsystems shown in FIG. 12 and
FIG. 13. The address generation in FIG. 11, which gener-
ates addresses for the two FIFOs before and after the
Huffman decoder, does not change depending on the coding
standards. Even in H.261, the address generation that hap-
pens on that chip is unaltered. Essentially, the difference
between these standards is that in MPEG and JPEG, there is
an organization of macroblocks that are in linear lines going
horizontally across pictures. As best observed in FIG. 144,
a first macroblock A covers one full line. A macroblock B
covers less than a line. A macroblock C covers multiple
lines. The division in MPEG is into slices 132, and a slice
may be one horizontal line, A, or it may be part of a
horizontal line B, or it may extend from one line into the
next line, C. Each of these slices 132 is made up of a row of
macroblocks.

[0493] In H.261, the organization is rather different
because the picture is divided into groups of blocks (GOB).
A group of blocks is three rows of macroblocks high by
eleven macroblocks wide. In the case of a CIF picture, there
are twelve such groups of blocks. However, they are not
organized one above the other. Rather, there are two groups
of blocks next to each other and then six high, i.c., there are
6 GOB’s vertically, and 2 GOB’s horizontally.

[0494] 1In all other standards, when performing the
addressing, the macroblocks are addressed in order as
described above. More specifically, addressing proceeds
along the lines and at the end of the line, the next line is
started. In H.261, the order of the blocks is the same as
described within a group of blocks, but in moving onto the
next group of blocks, it is almost a zig-zag.

[0495] The present invention provides circuitry to deal
with the latter affect. That is the way in which the address
generation in the spatial decoder and the video formatter
varies for H.261. This is accomplished whenever informa-
tion is written into the DRAM. It is written with the
knowledge of the aforementioned address generation
sequence so the place where it is physically located in the
RAM is exactly the same as if this had been an MPEG
picture of the same size. Hence, all of the address generation
circuitry for reading from the DRAM, for instance, when
forming predictions, does not have to comprehend that it is
H.261 standard because the physical placement of the infor-
mation in the memory is the same as it would have been if
it had been in MPEG sequence. Thus, in all cases, only
writing of data is affected.

[0496] In the Temporal Decoder, there is an abstraction for
H.261 where the circuitry pretends something is different
from what is actually occurring. That is, each group of
blocks is conceptually stretched out so that instead of having
a rectangle which is 11x3 macroblocks, the macroblocks are
stretched out into a length of 33 blocks (see FIG. 14¢) group
of blocks which is one macroblock high. By doing that,

Oct. 16, 2003

exactly the same counting mechanisms used on the Tempo-
ral Decoder for counting through the groups of blocks are
also used for MPEG.

[0497] There is a correspondence in the way that the
circuitry is designed between an H.261 group of blocks and
an MPEG slice. When H.261 data is processed after the Start
Code Detector, each group of blocks is preceded by a
slice_start_code. The next group of blocks is preceded by
the next slice_start code. The counting that goes on inside
the Temporal Decoder for counting through this structure
pretends that it is a 33 macroblock-long group that is one
macroblock high. This is sufficient, although the circuitry
also counts every 11th interval. When it counts to the 11th
macroblock or the 22nd macroblock, it resets some counters.
This is accomplished by simple circuitry with another
counter that counts up each macroblock, and when it gets to
11, it resets to zero. The microcode interrogates that and
does that work. All the circuitry in the temporal decoder of
the present invention is essentially independent of the com-
pression standard with respect to the physical placement of
the macroblocks.

[0498] In terms of multi-standard adaptability, there are a
number of different tables and the circuitry selects the
appropriate table for the appropriate standard at the appro-
priate time. Each standard has multiple tables; the circuitry
selects from the set at any given time. Within any one
standard, the circuitry selects one table at one time and
another table another time. In a different standard, the
circuitry selects a different set of tables. There is some
intersection between those tables as indicated previously in
the discussion of FIG. 15. For example, one of the tables
used in MPEG is also used in JPEG. The tables are not a
completely isolated set. FIG. 15 illustrates an H.261 set, an
MPEG set and a JPEG set. Note that there is a much greater
overlap between the H.261 set and the MPEG set. They are
quite common in the tables they utilize. There is a stall
overlap between MPEG and JPEG, and there is no overlap
at all between H.261 and JPEG so that these standards have
totally different sets of tables.

[0499] As previously indicated, most of the system units
are compression standard independent. If a unit is standard
independent, and such units need not remember what COD-
ING_STANDARD is being processed. All of the units that
are standard dependent remember the compression standard
as the CODING_STANDARD token flows by them. When
information encoded/decoded in a first coding standard is
distributed through the machine, and a machine is changing
standards, prior machines under microprocessor control
would normally choose to perform in accordance with the
H.261 compression standard. The MPU in such prior
machines generates signals stating in multiple different
places within the machine that the compression standard is
changing. The MPU makes changes at different times and,
in addition, may flush the pipeline through.

[0500] In accordance with the invention, by issuing a
change of CODING_STANDARD tokens at the Start Code
Detector that is positioned as the first unit in the pipeline,
this change of compression standard is readily handled. The
token says a certain coding standard is beginning and that
control information flows down the machine and configures
all the other registers at the appropriate time. The MPU need
not program each register.

US 2003/0196078 Al

[0501] The prediction token signals how to form predic-
tions using the bits in the bitstream. Depending on which
compression standard is operating, the circuitry translates
the information that is found in the standard, i.e. from the
bitstream into a prediction mode token. This processing is
performed by the Huffman decoder and parser state
machine, where it is easy to manipulate bits based on certain
conditions. The Start Code Detector generates this predic-
tion mode token. The token then flows down the machine to
the circuitry of the Temporal Decoder, which is the device
responsible for forming predictions. The circuitry of the
spatial decoder interprets the token without having to know
what standard it is operating in because the bits in it are
invariant in the three different standards. The Spatial
Decoder just does what it is told in response to that token.
By having these tokens and using them appropriately, the
design of other units in the machine is simplified. Although
there may be some complications in the program, benefits
are received in that some of the hard wired logic which
would be difficult to design for multi-standards can be used
here.

[0502] 2. JPEG Still Picture Decoding

[0503] As previously indicated, the present invention
relates to signal decompression and, more particularly, to the
decompression of an encoded video signal, irrespective of
the compression standard employed.

[0504] One aspect of the present invention is to provide a
first decoder circuit (the Spatial Decoder) to decode a first
encoded signal (the JPEG encoded video signal) in combi-
nation with a second decoder circuit (the Temporal Decoder)
to decode a first encoded signal (the MPEG or H.261
encoded video signal) in a pipeline processing system. The
Temporal Decoder is not needed for JPEG decoding.

[0505] In this regard, the invention facilitates the decom-
pression of a plurality of differently encoded signals through
the use of a single pipeline decoder and decompression
system. The decoding and decompression pipeline processor
is organized on a unique and special configuration which
allows the handling of the multi-standard encoded video
signals through the use of techniques all compatible with the
single pipeline decoder and processing system The Spatial
Decoder is combined with the Temporal Decoder, and the
Video Formatter is used in driving a video display.

[0506] Another aspect of the invention is the use of the
combination of the Spatial Decoder and the Video Formatter
for use with only still pictures. The compression standard
independent Spatial Decoder performs all of the data pro-
cessing within the boundaries of a single picture. Such a
decoder handles the spatial decompression of the internal
picture data which is passing through the pipeline and is
distributed within associated random access memories, stan-
dard independent address generation circuits for handling
the storage and retrieval of information into the memories.
Still picture data is decoded at the output of the Spatial
Decoder, and this output is employed as input to the multi-
standard, configurable Video Formatter, which then provides
an output to the display terminal. In a first sequence of
similar pictures, each decompressed picture at the output of
the Spatial Decoder is of the same length in bits by the time
the picture reaches the output of the Spatial Decoder. A
second sequence of pictures may have a totally different
picture size and, hence, have a different length when com-

Oct. 16, 2003

pared to the first length. Again, all such second sequence of
similar pictures are of the same length in bits by the time
such pictures reach the output of the Spatial Decoder.

[0507] Another aspect of the invention is to internally
organize the incoming standard dependent bitstream into a
sequence of control tokens and DATA tokens, in combina-
tion with a plurality of sequentially-positioned reconfig-
urable processing stages selected and organized to act as a
standard-independent, reconfigurable-pipeline-processor.

[0508] With regard to JPEG decoding, a single Spatial
Decoder with no off chip DRAM can rapidly decode base-
line JPEG images. The Spatial Decoder supports all features
of baseline JPEG encoding standards. However, the image
size that can be decoded may be limited by the size of the
output buffer provided. The Spatial Decoder circuit also
includes a random access memory circuit, having machine-
dependent, standard independent address generation circuits
for handling the storage of information into the memories.

[0509] As previously, indicated the Temporal Decoder is
not required to decode JPEG-encoded video. Accordingly,
signals carried by DATA tokens pass directly through the
Temporal Decoder without further processing when the
Temporal Decoder is configured for a JPEG operation.

[0510] Another aspect of the present invention is to pro-
vide in the Spatial Decoder a pair of memory circuits, such
as buffer memory circuits, for operating in combination with
the Huffman decoder/video demultiplexor circuit (HD &
VDM). A first buffer memory is positioned before the HD &
VDM, and a second buffer memory is positioned after the
HD & VDM. The HD & VDM decodes the bitstream from
the binary ones and zeros that are in the standard encoded
bitstream and turns such stream into numbers that are used
downstream. The advantage of the two buffer system is for
implementing a multi-standard decompression system.
These two buffers, in combination with the identified imple-
mentation of the Huffman decoder, are described hereinafter
in greater detail.

[0511] A still further aspect of the present multi-standard,
decompression circuit is the combination of a Start Code
Detector circuit positioned upstream of the first forward
buffer operating in combination with the Huffman decoder.
One advantage of this combination is increased flexibility in
dealing with the input bitstream, particularly padding, which
has to be added to the bitstream. The placement of these
identified components, Start Code Detector, memory buff-
ers, and Huffman decoder enhances the handling of certain
sequences in the input bitstream.

[0512] In addition, off chip DRAMSs are used for decoding
JPEG-encoded video pictures in real time. The size and
speed of the buffers used with the DRAMSs will depend on
the video encoded data rates.

[0513] The coding standards identify all of the standard
dependent types of information that is necessary for storage
in the DRAMs associated with the Spatial Decoder using
standard independent circuitry.

[0514] 3. Motion Picture Decompression

[0515] In the present invention, if motion pictures are
being decompressed through the steps of decoding, a further
Temporal Decoder is necessary. The Temporal Decoder
combines the data decoded in the Spatial Decoder with

US 2003/0196078 Al

pictures, previously decoded, that are intended for display
either before or after the picture being currently decoded.
The Temporal Decoder receives, in the picture coded datas-
tream, information to identify this temporally-displaced
information. The Temporal Decoder is organized to address
temporally and spatially displaced information, retrieve it,
and combine it in such a way as to decode the information
located in one picture with the picture currently being
decoded and ending with a resultant picture that is complete
and is suitable for transmission to the video formatter for
driving the display screen. Alternatively, the resultant pic-
ture can be stored for subsequent use in temporal decoding
of subsequent pictures.

[0516] Generally, the Temporal Decoder performs the
processing between pictures either earlier and/or later in
time with reference to the picture currently being decoded.
The Temporal Decoder reintroduces information that is not
encoded within the coded representation of the picture,
because it is redundant and is already available at the
decoder. More specifically, it is probable that any given
picture will contain similar information as pictures tempo-
rally surrounding it, both before and after. This similarity
can be made greater if motion compensation is applied. The
Temporal Decoder and decompression circuit also reduces
the redundancy between related pictures.

[0517] In another aspect of the present invention, the
Temporal Decoder is employed for handling the standard-
dependent output information from the Spatial Decoder.
This standard dependent information for a single picture is
distributed among several areas of DRAM in the sense that
the decompressed output information, processed by the
Spatial Decoder, is stored in other DRAM registers by other
random access memories having still other machine-depen-
dent, standard-independent address generation circuits for
combining one picture of spatially decoded information
packet of spatially decoded picture information, temporally
displaced relative to the temporal position of the first picture.

[0518] In multi-standard circuits capable of decoding
MPEG-encoded signals, larger logic DRAM buffers may be
required to support the larger picture formats possible with
MPEG.

[0519] The picture information is moving through the
serial pipeline in 8 pel by 8 pel blocks. In one form of the
invention, the address decoding circuitry handles these pel
blocks (storing and retrieving) along such block boundaries.
The address decoding circuitry also handles the storing and
retrieving of such 8 by 8 pel blocks across such boundaries.
This versatility is more completely described hereinafter.

[0520] A second Temporal Decoder may also be provided
which passes the output of the first decoder circuit (the
Spatial Decoder) directly to the Video Formatter for han-
dling without signal processing delay.

[0521] The Temporal Decoder also reorders the blocks of
picture data for display by a display circuit. The address
decode circuitry, described hereinafter, provides handling of
this reordering.

[0522] As previously mentioned, one important feature of
the Temporal Decoder is to add picture information together
from a selection of pictures which have arrived earlier or
later than the picture under processing. When a picture is
described in this context, it may mean any one of the
following:

Oct. 16, 2003

[0523] 1. The coded data representation of the pic-
ture;

[0524] 2. The result, i.e., the final decoded picture
resulting from the addition of a process step per-
formed by the decoder;

[0525] 3. Previously decoded pictures read from the
DRAM; and

[0526] 4. The result of the spatial decoding, i.c., the
extent of data between a PICTURE_START token
and a subsequent PICTURE_END token.

[0527] After the picture data information is processed by
the Temporal Decoder, it is either displayed or written back
into a picture memory location. This information is then kept
for further reference to be used in processing another dif-
ferent coded data picture.

[0528] Re-ordering of the MPEG encoded pictures for
visual display involves the possibility that a desired
scrambled picture can be achieved by varying the re-order-
ing feature of the Temporal Decoder.

[0529] 4. RAM Memory Map

[0530] The Spatial Decoder, Temporal Decoder and Video
Formatter all use external DRAM. Preferably, the same
DRAM is used for all three devices. While all three devices
use DRAM, and all three devices use a DRAM interface in
conjunction with an address generator, what each imple-
ments in DRAM is different. That is, each chip, e.g. Spatial
Decoder and Temporal Decoder, have a different DRAM
interface and address generation circuitry even through they
use a similar physical, external DRAM.

[0531] In brief, the Spatial Decoder implements two
FIFOs in the common DRAM. Referring again to FIG. 11,
one FIFO 54 is positioned before the Huffman decoder 56
and parser, and the other is positioned after the Huffman
decoder and parser. The FIFOs are implemented in a rela-
tively straightforward manner. For each FIFO, a particular
portion of DRAM is set aside as the physical memory in
which the FIFO will be implemented.

[0532] The address generator associated with the Spatial
Decoder DRAM interface 58 keeps track of FIFO addresses
using two pointers. One pointer points to the first word
stored in the FIFO, the other pointer points to the last word
stored in the FIFO, thus allowing read/write operation on the
appropriate word. When, in the course of a read or write
operation, the end of the physical memory is reached, the
address generator “wraps around” to the start of the physical
memory.

[0533] In brief, the Temporal Decoder of the present
invention must be able to store two full pictures or frames of
whatever encoding standard (MPEG or H.261) is specified.
For simplicity, the physical memory in the DRAM into
which the two frames are stored is split into two halves, with
each half being dedicated (using appropriate pointers) to a
particular one of the two pictures.

[0534] MPEG uses three different picture types: Intra (I),
Predicted (P) and Bidirectionally interpolated (B). As pre-
viously mentioned, B pictures are based on predictions from
two pictures. One picture is from the future and one from the
past. I pictures require no further decoding by the Temporal
Decoder, but must be stored in one of the two picture buffers

US 2003/0196078 Al

for later use in decoding P and B pictures. Decoding P
pictures requires forming predictions from a previously
decoded P or I picture. The decoded P picture is stored in a
picture buffer for use decoding P and B pictures. B pictures
can require predictions form both of the picture buffers.
However, B pictures are not stored in the external DRAM.

[0535] Note that I and P pictures are not output from the
Temporal Decoder as they are decoded. Instead, I and P
pictures are written into one of the picture buffers, and are
read out only when a subsequent I or P picture arrives for
decoding. In other words, the Temporal Decoder relies on
subsequent P or I pictures to flush previous pictures out of
the two picture buffers, as further discussed hereinafter in
the section on flushing. In brief, the Spatial Decoder can
provide a fake I or P picture at the end of a video sequence
to flush out the last P or I picture. In turn, this fake picture
is flushed when a subsequent video sequence starts.

[0536] The peak memory band width load occurs when
decoding B pictures. The worst case is the B frame may be
formed from predictions from both the picture buffers, with
all predictions being made to half-pixel accuracy.

[0537] As previously described, the Temporal Decoder
can be configured to provide MPEG picture reordering. With
this picture reordering, the output of P and I pictures is
delayed until the next P or I picture in the data stream starts
to be decoded by the Temporal Decoder.

[0538] As the P or I pictures are reordered, certain tokens
are stored temporarily on chip as the picture is written into
the picture buffers. When the picture is read out for display,
these stored tokens are retrieved. At the output of the
Temporal Decoder, the DATA Tokens of the newly decoded
P or I picture are replaced with DATA Tokens for the older
P or I picture.

[0539] Incontrast, H.261 makes predictions only from the
picture just decoded. As each picture is decoded, it is written
into one of the to picture buffers so it can be used in
decoding the next picture. The only DRAM memory opera-
tions required are writing 8x8 blocks, and forming predic-
tions with integer accuracy motion vectors.

[0540] In brief, the Video Formatter stores three frames or
pictures. Three pictures need to be stored to accommodate
such features as repeating or skipping pictures.

[0541] 5. Bitstream Characteristics

[0542] Referring now particularly to the Spatial Decoder
of the present invention, it is helpful to review the bitstream
characteristics of the encoded datastream as these charac-
teristics must be handled by the circuitry of the Spatial
Decoder and the Temporal Decoder. For example, under one
or more compression standards, the compression ratio of the
standard is achieved by varying the number of bits that it
uses to code the pictures of a picture. The number of bits can
vary by a wide margin. Specifically, this means that the
length of a bitstream used to encode a referenced picture of
a picture might be identified as being one unit long, another
picture might be a number of units long, while still a third
picture could be a fraction of that unit.

[0543] None of the existing standards (MPEG 1.2, JPEG,
H.261) define a way of ending a picture, the implication
being that when the next picture starts, the current one has

Oct. 16, 2003

finished. Additionally, the standards (H.261 specifically)
allow incomplete pictures to be generated by the encoder.

[0544] In accordance with the present invention, there is
provided a way of indicating the end of a picture by using
one of its tokens: PICTURE_END. The still encoded picture
data leaving the Start Code Detector consists of pictures
starting with a PICTURE_START token and ending with a
PICTURE_END token, but still of widely varying length.
There may be other information transmitted here (between
the first and second picture), but it is known that the first
picture has finished.

[0545] The data stream at the output of the Spatial
Decoder consists of pictures, still with picture-starts and
picture-ends, of the same length (number of bits) for a given
sequence. The length of time between a picture-start and a
picture-end may vary.

[0546] The Video Formatter takes these pictures of non-
uniform time and displays them on a screen at a fixed picture
rate determined by the type of display being driven. Differ-
ent display rates are used throughout the world, e¢.g. PAL-
NTSC television standards. This is accomplished by selec-
tively dropping or repeating pictures in a manner which is
unique. Ordinary “frame rate converters,” e.g. 2-3 pulldown,
operate with a fixed input picture rate, whereas the Video
Formatter can handle a variable input picture rate.

[0547] 6. Reconfigurable Processing Stage

[0548] Referring again to FIG. 10, the reconfigurable
processing stage (RPS) comprises a token decode circuit 33
which is employed to receive the tokens coming from a two
wire interface 37 and input latches 34. The output of the
token decode circuit 33 is applied to a processing unit 36
over the two-wire interface 37 and an action identification
circuit 39. The processing unit 36 is suitable for processing
data under the control of the action identification circuit 39.
After the processing is completed, the processing unit 36
connects such completed signals to the output, two-wire
interface bus 40 through output latches 41.

[0549] The action identification decode circuit 39 has an
input from the token decode circuit 33 over the two-wire
interface bus 40 and/or from memory circuits 43 and 44 over
two-wire interface bus 46. The tokens from the token decode
circuit 33 are applied simultaneously to the action identifi-
cation circuit 39 and the processing unit 36. The action
identification function as well as the RPS is described in
further detail by tables and figures in a subsequent portion of
this specification.

[0550] The functional block diagram in FIG. 10 illustrates
those stages shown in FIGS. 11, 12 and 13 which are not
standard independent circuits. The data flows through the
token decode circuit 33, through the processing unit 36 and
onto the two-wire interface circuit 42 through the output
latches 41. If the Control Token is recognized by the RPS,
it is decoded in the token decode circuit 33 and appropriate
action will be taken. If it is not recognized, it will be passed
unchanged to the output two-wire interface 42 through the
output circuit 41. The present invention operates as a pipe-
line processor having a two-wire interface for controlling the
movement of control tokens through the pipeline. This
feature of the invention is described in greater detail in the
previously filed EPO patent application number
92306038.8.

US 2003/0196078 Al

[0551] In the present invention, the token decode circuit
33 is employed for identifying whether the token presently
entering through the two-wire interface 42 is a DATA token
or control token. In the event that the token being examined
by the token decode circuit 33 is recognized, it is exited to
the action identification circuit 39 with a proper index signal
or flag signal indicating that action is to be taken. At the
same-time, the token decode circuit 33 provides a proper
flag or index signal to the processing unit 36 to alert it to the
presence of the token being handled by the action identifi-
cation circuit 39.

[0552] Control tokens may also be processed.

[0553] A more detailed description of the various types of
tokens usable in the present invention will be subsequently
described hereinafter. For the purpose of this portion of the
specification, it is sufficient to note that the address carried
by the control token is decoded in the decoder 33 and is used
to access registers contained within the action identification
circuit 39. When the token being examined is a recognized
control token, the action identification circuit 39 uses its
reconfiguration state circuit for distributing the control sig-
nals throughout the state machine. As previously mentioned,
this activates the state machine of the action identification
decoder 39, which then reconfigures itself. For example, it
may change coding standards. In this way, the action iden-
tification circuit 39 decodes the required action for handling
the particular standard now passing through the state
machine shown with reference to FIG. 10.

[0554] Similarly, the processing unit 36 which is under the
control of the action identification circuit 39 is now ready to
process the information contained in the data fields of the
DATA token when it is appropriate for this to occur. On
many occasions, a control token arrives first, reconfigures
the action identification circuit 39 and is immediately fol-
lowed by a DATA token which is then processed by the
processing unit 36. The control token exits the output latches
circuit 41 over the output two-wire interface 42 immediately
preceding the DATA token which has been processed within
the processing unit 36.

[0555] In the present invention, the action identification
circuit, 39, is a state machine holding history state. The
registers, 43 and 44 hold information that has been decoded
from the token decoder 33 and stored in these registers. Such
registers can be either on-chip or-off chip as needed. These
plurality of state registers contain action information con-
nected to the action identification currently being identified
in the action identification circuit 39. This action informa-
tion has been stored from previously decoded tokens and can
affect the action that is selected. The connection 40 is going
straight from the token decode 33 to the action identification
block 39. This is intended to show that the action can also
be affected by the token that is currently being processed by
the token decode circuit 33.

[0556] In general, there is shown token decoding and data
processing in accordance with the present invention. The
data processing is performed as configured by the action
identification circuit 39. The action is affected by a number
of conditions and is affected by information generally
derived from a previously decoded token or, more specifi-
cally, information stored from previously decoded tokens in
registers 43 and 44, the current token under processing, and
the state and history information that the action identifica-

Oct. 16, 2003

tion unit 39 has itself acquired. A distinction is thereby
shown between Control tokens and DATA tokens.

[0557] In any RPS, some tokens are viewed by that RPS
unit as being Control tokens in that they affect the operation
of the RPS presumably at some subsequent time. Another set
of tokens are viewed by the RPS as DATA tokens. Such
DATA tokens contain information which is processed by the
RPS in a way that is determined by the design of the
particular circuitry, the tokens that have been previously
decoded and the state of the action identification circuit 39.
Although a particular RPS identifies a certain set of tokens
for that particular RPS control and another set of tokens as
data, that is the view of that particular RPS. Another RPS
can have a different view of the same token. Some of the
tokens might be viewed by one RPS unit as DATA Tokens
while another RPS unit might decide that it is actually a
Control Token. For example, the quantization table infor-
mation, as far as the Huffman decoder and state machine is
concerned, is data, because it arrives on its input as coded
data, it gets formatted up into a series of 8 bit words, and
they get formed into a token called a quantization table token
(QUANT_TABLE) which goes down the processing pipe-
line. As far as that machine is concerned, all of that was data;
it was handling data, transforming one sort of data into
another sort of data, which is clearly a function of the
processing performed by that portion of the machine. How-
ever, when that information gets to the inverse quantizer, it
stores the information in that token a plurality of registers.
In fact, because there are 64 8-bit numbers and there are
many registers, in general, many registers may be present.
This information is viewed as control information, and then
that control information affects the processing that is done
on subsequent DATA tokens because it affects the number
that you multiply each data word. There is an example where
one stage viewed that token as being data and another stage
viewed it as being control.

[0558] Token data, in accordance with the invention is
almost universally viewed as being data through the
machine. One of the important aspects is that, in general,
each stage of circuitry that has a token decoder will be
looking for a certain set of tokens, and any tokens that it does
not recognize will be passed unaltered through the stage and
down the pipeline, so that subsequent stages downstream of
the current stage have the benefit of seeing those tokens and
may respond to them. This is an important feature, namely
there can be communication between blocks that are not
adjacent to one another using the token mechanism.

[0559] Another important feature of the invention is that
each of the stages of circuitry has the processing capability
within it to be able to perform the necessary operations for
each of the standards, and the control, as to which operations
are to be performed at a given time, come as tokens. There
is one processing element that differs between the different
stages to provide this capability. In the state machine ROM
of the parser, there are three separate entirely different
programs, one for each of the standards that are dealt with.
Which program is executed depends upon a CODING-
_STANDARD token. In otherwords, each of these three
programs has within it the ability to handle both decoding
and the CODING_STANDARD standard token. When each
of these programs sees which coding standard, is to be
decoded next, they literally jump to the start address in the

US 2003/0196078 Al

microcode ROM for that particular program. This is how
stages deal with multi-standardness.

[0560] Two things are affected by the different standards.
First, it affects what pattern of bits in the bitstream are
recognized as a start-code or a marker code in order to
reconfigure the shift register to detect the length of the start
marker code. Second, there is a piece of information in the
microcode that denotes what that start or marker code
means. Recall that the coding of bits differs between the
three standards. Accordingly, the microcode looks up in a
table, specific to that compressor standard, something that is
independent of the standard, ie., a type of token that
represents the incoming codes. This token is typically inde-
pendent of the standard since in most cases, each of the
various standards provide a certain code that will produce it.

[0561] The inverse quantizer 79 has a mathematical capa-
bility. The quantizer multiplies and adds, and has the ability
to do all three compression standards which are configured
by parameters. For example, a flag bit in the ROM in control
tells the inverse quantizer whether or not to add a constant,
K. Another flag tells the inverse quantizer whether to add
another constant. The inverse quantizer remembers in a
register the CODING_STANDARD token as it flows by the
quantizer. When DATA tokens pass thereafter, the inverse
quantizer remembers what the standard is and it looks up the
parameters that it needs to apply to the processing elements
in order to perform a proper operation. For example, the
inverse quantizer will look up whether K is set to 0, or
whether it is set to 1 for a particular compression standard,
and will apply that to its processing circuitry.

[0562] In a similar sense the Huffman decoder 56 has a
number of tables within it, some for JPEG, some for MPEG
and some for H.261. The majority of those tables, in fact,
will service more than one of those compression standards.
Which tables are used depends on the syntax of the standard.
The Huffman decoder works by receiving a command from
the state machine which tells it which of the tables to use.
Accordingly, the Huffman decoder does not itself directly
have a piece of state going into it, which is remembered and
which says what coding it is performing. Rather, it is the
combination of the parser state machine and Huffman
decoder together that contain information within them.

[0563] Regarding the Spatial Decoder of the present
invention, the address generation is modified and is similar
to that shown in FIG. 10, in that a number of pieces of
information are decoded from tokens, such as the coding
standard. The coding standard and additional information as
well, is recorded in the registers and that affects the progress
of the address generator state machine as it steps through and
counts the macroblocks in the system, one after the other.
The last stage would be the prediction filter 179 (FIG. 17)
which operates in one of two modes, either H.261 or MPEG
and are easily identified.

[0564] 7. Multi-Standard Coding

[0565] The system of the present invention also provides
a combination of the standard-independent indices genera-
tion circuits, which are strategically placed throughout the
system in combination with the token decode circuits. For
example, the system is employed for specifically decoding
either the H.261 video standard, or the MPEG video stan-
dard or the JPEG video standard. These three compression

Oct. 16, 2003

coding standards specify similar processes to be done on the
arriving data, but the structure of the datastreams is different.
As previously discussed, it is one of the functions of the Start
Code Detector to detect MPEG start-codes, H.261 start-
codes, and JPEG marker codes, and convert them all into a
form, i.e., a control token which includes a token stream
embodying the current coding standard. The control tokens
are passed through the pipeline processor, and are used, i.e.,
decoded, in the state machines to which they are relevant,
and are passed through other state machines to which the
tokens are not relevant. In this regard, the DATA Tokens are
treated in the same fashion, insofar as they are processed
only in the state machines that are configurable by the
control tokens into processing such DATA Tokens. In the
remaining state machines, they pass through unchanged.

[0566] More specifically, a control token in accordance
with the present invention, can consist of more than one
word in the token. In that case, a bit known as the extension
bit is set specifying the use of additional words in the token
for carrying additional information. Certain of these addi-
tional control bits contain indices indicating information for
use in corresponding state machines to create a set of
standard-independent indices signals. The remaining por-
tions of the token are used to indicate and identify the
internal processing control function which is standard for all
of the datastreams passing through the pipeline processor. In
one form of the invention, the token extension is used to
carry the current coding standard which is decoded by the
relative token decode circuits distributed throughout the
machine, and is used to reconfigure the action identification
circuit 39 of stages throughout the machine wherever it is
appropriate to operate under a new coding standard. Addi-
tionally, the token decode circuit can indicate whether a
control token is related to one of the selected standards
which the circuit was designed to handle.

[0567] More specifically, an MPEG start code and a JPEG
marker are followed by an 8 bit value. The H.261 start code
is followed by a 4 bit value. In this context, the Start Code
Detector 51, by detecting either an MPEG start-code or a
JPEG marker, indicates that the following 8 bits contain the
value associated with the start-code. Independently, it can
then create a signal which indicates that it is either an MPEG
start code or a JPEG marker and not an H.261 start code. In
this first instance, the 8 bit value is entered into a decode
circuit, part of which creates a signal indicating the index
and flag which is used within the current circuit for handling
the tokens passing through the circuit. This is also used to
insert portions of the control token which will be looked at
thereafter to determine which standard is being handled. In
this sense, the control token contains a portion indicating
that it is related to an MPEG standard, as well as a portion
which indicates what type of operation should be performed
on the accompanying data. As previously discussed, this
information is utilized in the system to reconfigure the
processing stage used to perform the function required by
the various standards created for that purpose.

[0568] For example, with reference to the H.261 start
code, it is associated with a 4 bit value which follows
immediately after the start code. The Start Code Detector
passes this value into the token generator state machine. The
value is applied to an 8 bit decoder which produces a 3 bit
start number. The start number is employed to identify the
picture-start of a picture number as indicated by the value.

US 2003/0196078 Al

[0569] The system also includes a multi-stage parallel
processing pipeline operating under the principles of the
two-wire interface previously described. Each of the stages
comprises a machine generally taking the form illustrated in
FIG. 10. The token decode circuit 33 is employed to direct
the token presently entering the state machine into the action
identification circuit 39 or the processing unit 36, as appro-
priate. The processing unit has been previously reconfigured
by the next previous control token into the form needed for
handling the current coding standard, which is now entering
the processing stage and carried by the next DATA token.
Further, in accordance with this aspect of the invention, the
succeeding state machines in the processing pipeline can be
functioning under one coding standard, i.e., H.261, while a
previous stage can be operating under a separate standard,
such as MPEG. The same two-wire interface is used for
carrying both the control tokens and the DATA Tokens.

[0570] The system of the present invention also utilizes
control tokens required to decode a number of coding
standards with a fixed number of reconfigurable processing
stages. More specifically, the PICTURE_END control token
is employed because it is important to have an indication of
when a picture actually ends. Accordingly, in designing a
multi-standard machine, it is necessary to create additional
control tokens within the multi-standard pipeline processing
machine which will then indicate which one of the standard
decoding techniques to use. Such a control token is the
PICTURE_END token. This PICTURE_END token is used
to indicate that the current picture has finished, to force the
buffers to be flushed, and to push the current picture through
the decoder to the display.

[0571] 8. Multi-Standard Processing Circuit—Second
Mode of Operation

[0572] A compression standard-dependent circuit, in the
form of the previously described Start Code Detector, is
suitably interconnected to a compression standard-indepen-
dent circuit over an appropriate bus. The standard-dependent
circuit is connected to a combination dependent-indepen-
dent circuit over the same bus and an additional bus. The
standard-independent circuit applies additional input to the
standard dependent-independent circuit, while the latter
provides information back to the standard-independent cir-
cuit. Information from the standard-independent circuit is
applied to the output over another suitable bus. Table 600
illustrates that the multiple standards applied as the input to
the standard-dependent Start Code Detector 51 include
certain bit streams which have standard-dependent mean-
ings within each encoded bit stream.

[0573] 9. Start-Code Detector

[0574] As previously indicated the Start Code Detector, in
accordance with the present invention, is capable of taking
MPEG, JPEG and H.261 bit streams and generating from
them a sequence of proprietary tokens which are meaningful
to the rest of the decoder. As an example of how multi-
standard decoding is achieved, the MPEG (1 and 2) pictur-
e_start_code, the H.261 picture_start_code and the JPEG
start_of_scan (SOS) marker are treated as equivalent by the
Start Code Detector, and all will generate an internal PIC-
TURE_START token. In a similar way, the MPEG
sequence_start_code and the JPEG SOI (start_of_image)
marker both generate a machine sequence_start_token. The
H.261 standard, however, has no equivalent start code.

Oct. 16, 2003

Accordingly, the Start Code Detector, in response to the first
H.261 picture_start_code, will generate a sequence_start
token.

[0575] None of the above described images are directly
used other than in the SCD. Rather, a machine PICTUR-
E_START token, for example, has been deemed to be
equivalent to the PICTURE_START images contained in the
bit stream. Furthermore, it must be borne in mind that the
machine PICTURE_START by itself, is not a direct image
of the PICTURE_START in the standard. Rather, it is a
control token which is used in combination with other
control tokens to provide standard-independent decoding
which emulates the operation of the images in each of the
compression coding standards. The combination of control
tokens in combination with the reconfiguration of circuits, in
accordance with the information carried by control tokens,
is unique in and of itself, as well as in further combination
with indices and/or flags generated by the token decode
circuit portion of a respective state machine. A typical
reconfigurable state machine will be described subsequently.

[0576] Referring again to Table 600, there are shown the
names of a group of standard images in the left column. In
the right column there are shown the machine dependent
control tokens used in the emulation of the standard encoded
signal which is present or not used in the standard image.

[0577] With reference to Table 600, it can be seen that a
machine sequence start signal is generated by the Start Code
Detector, as previously described, when it decodes any one
of the standard signals indicated in Table 600. The Start
Code Detector creates sequence_start, group_start, sequen-
ce_end, slice_start, user-data, extra-data and PICTUR-
E_START tokens for application to the two-wire interface
which is used throughout the system. Each of the stages
which operate in conjunction with these control tokens are
configured by the contents of the tokens, or are configured
by indices created by contents of the tokens, and are
prepared to handle data which is expected to be received
when the picture DATA Token arrives at that station.

[0578] As previously described, one of the compression
standards, such as H.261, does not have a sequence_start
image in its data stream, nor does it have a PICTURE_END
image in its data stream. The Start Code Detector indicates
the PICTURE_END point in the incoming bit stream and
creates a PICTURE_END token. In this regard, the system
of the present invention is intended to carry data words that
are fully packed to contain a bit of information in each of the
register positions selected for use in the practice of the
present invention. To this end, 15 bits have been selected as
the number of bits which are passed between two start codes.
Of course, it will be appreciated by one of ordinary skill in
the art, that a selection can be made to include either greater
or fewer than 15 bits. In other words, all 15 bits of a data
word being passed from the Start Code Detector into the
DRAM interface are required for proper operation. Accord-
ingly, the Start Code Detector creates extra bits, called
padding, which it inserts into the last word of a DATA
Token. For purposes of illustration 15 data bits has been
selected.

[0579] To perform the Padding operation, in accordance
with the present invention, binary O followed by a number
of binary 1°s are automatically inserted to complete the 15
bit data word. This data is then passed through the coded

US 2003/0196078 Al

data buffer and presented to the Huffman decoder, which
removes the padding. Thus, an arbitrary number of bits can
be passed through a buffer of fixed size and width.

[0580] In one embodiment, a slice_start control token is
used to identify a slice of the picture. A slice start control
token is employed to segment the picture into smaller
regions. The size of the region is chosen by the encoder, and
the Start Code Detector identifies this unique pattern of the
slice_start code in order for the machine-dependent state
stages, located downstream from the Start Code Detector, to
segment the picture being received into smaller regions. The
size of the region is chosen by the encoder, recognized by
the Start Code Detector and used by the recombination
circuitry and control tokens to decompress the encoded
picture. The slice_start_codes are principally used for error
recovery.

[0581] The start codes provide a unique method of starting
up the decoder, and this will subsequently be described in
further detail. There are a number of advantages in placing
the Start Code Detector before the coded data buffer, as
opposed to placing the Start Code Detector after the coded
data buffer and before the Huffman decoder and video
demultiplexor. Locating the Start Code Detector before the
first buffer allows it to 1) assemble the tokens, 2) decode the
standard control signals, such as start codes, 3) pad the
bitstream. before the data goes into the buffer, and 4) create
the proper sequence of control tokens to empty the buffers,
pushing the available data from the buffers into the Huffman
Decoder.

[0582] Most of the control token output by the Start Code
Detector directly reflect syntactic elements of the various
picture and video coding standards. The Start Code Detector
converts the syntactic elements into control tokens. In addi-
tion to these natural tokens, some unique and/or machine-
dependent tokens are generated. The unique tokens include
those tokens which have been specifically designed for use
with the system of the present invention which are unique in
and of themselves, and are employed for aiding in the
multi-standard nature of the present invention. Examples of
such unique tokens include PICTURE_END and CODING-
_STANDARD.

[0583] Tokens are also introduced to remove some of the
syntactic differences between the coding standards and to
function in co-operation with the error conditions. The
automatic token generation is done after the serial analysis
of the standard-dependent data. Therefore, the Spatial
Decoder responds equally to tokens that have been supplied
directly to the input of the Spatial Decoder, i.e. the SCD, as
well as to tokens that have been generated following the
detection of the start-codes in the coded data. A sequence of
extra tokens is inserted into the two- wire interface in order
to control the multi-standard nature of the present invention.

[0584] The MPEG and H.261 coded video streams contain
standard dependent, non-data, identifiable bit patterns, one
of which is hereinafter called a start image and/or standard-
dependent code. A similar function is served in JPEG, by
marker codes. These start/marker codes identify significant
parts of the syntax of the coded datastream. The analysis of
start/marker codes performed by the Start Code Detector is
the first stage in parsing the coded data.

[0585] The start/marker code patterns are designed so that
they can be identified without decoding the entire bit stream.

Oct. 16, 2003

Thus, they can be used, in accordance with the present
invention, to assist with error recovery and decoder start-up.
The Start Code Detector provides facilities to detect errors
in the coded data construction and to assist the start-up of the
decoder. The error detection capability of the Start Code
Detector will subsequently be discussed in further detail, as
will the process of starting up of the decoder.

[0586] The aforementioned description has been con-
cerned primarilty with the characteristics of the machine-
dependent bit stream and its relationship with the addressing
characteristics of the present invention. The following
description is of the bit stream characteristics of the stan-
dard-dependent coded data with reference to the Start Code
Detector.

[0587] Each of the standard compression encoding sys-
tems employs a unique start code configuration or image
which has been selected to identify that particular compres-
sion specification. Each of the start codes also carries with
it a start code value. The start code value is employed to
identify within the language of the standard the type of
operation that the start code is associated with. In the
multi-standard decoder of the present invention, the com-
patibility is based upon the control token and DATA token
configuration as previously described. Index signals, includ-
ing flag signals, are circuit-generated within each state
machine, and are described hereinafter as appropriate.

[0588] The start and/or marker codes contained in the
standards, as well as other standard words as opposed to data
words, are sometimes identified as images to avoid confu-
sion with the use of code and/or machine-dependent codes
to refer to the contents of control and/or DATA tokens used
in the machine. Also, the term start code is often used as a
generic term to refer to JPEG marker codes as well as MPEG
and H.261 start codes. Marker codes and start codes serve
the same purpose. Also, the term “flush” is used both to refer
to the FLUSH token, and as a verb, for example when
referring to flushing the Start Code Detector shift registers
(including the signal “flushed”). To avoid confusion, the
FLUSH token is always written in upper case. All other uses
of the term (verb or noun) are in lower case.

[0589] The standard-dependent coded input picture input
stream comprises data and start images of varying lengths.
The start images carry with them a value telling the user
what operation is to be performed on the data which imme-
diately follows according to the standard. However, in the
multi-standard pipeline processing system of the present
invention, where compatibility is required for multiple stan-
dards, the system has been optimized for handling all
functions in all standards. Accordingly, in many situations,
unique start control tokens must be created which are
compatible not only with the values contained in the values
of the encoded signal standard image, but which are also
capable of controlling the various stages to emulate the
operation of the standard as represented by specified param-
eters for each standard which are well known in the art. All
such standards are incorporated by reference into this speci-
fication.

[0590] It is important to understand the relationship
between tokens which, alone or in combination with other
control tokens, emulate the nondata information contained
in the standard bit stream. A separate set of index signals,
including flag signals, are generated by each state machine

US 2003/0196078 Al

to handle some of the processing within that state machine.
Values carried in the standards can be used to access
machine dependent control signals to emulate the handling
of the standard data and non-data signals. For example, the
slice_start token is a two word token, and it is then entered
onto the two wire interface as previously described.

[0591] The data input to the system of the present inven-
tion may be a data source from any suitable data source such
as disk, tape, etc., the data source providing & bit data to the
first functional stage in the Spatial Decoder, the Start Code
Detector 51 (FIG. 11). The Start Code Detector includes
three shift registers; the first shift register is 8 bits wide, the
next is 24 bits wide, and the next is 15 bits wide. Each of the
registers is part of the two-wire interface. The data from the
data source is loaded into the first register as a single & bit
byte during one timing cycle. Thereafter, the contents of the
first shift register is shifted one bit at a time into the decode
(second) shift register. After 24 cycles, the 24 bit register is
full.

[0592] Every 8 cycles, the 8 bit bytes are loaded into the
first shift register. Each byte is loaded into the value shift
register 221 (FIG. 20), and 8 additional cycles are used to
empty it and load the shift register 231. Eight cycles are used
to empty it, so after three of those operations or 24 cycles,
there are still three bytes in the 24 bit register. The value
decode shift register 230 is still empty.

[0593] Assuming that there is now a PICTURE_START
word in the 24 bit shift register, the detect cycle recognizes
the PICTURE_START code pattern and provides a start
signal as its output. Once the detector has detected a start,
the byte following it is the value associated with that start
code, and this is currently sitting in the value register 221.

[0594] Since the contents of the detect shift register has
been identified as a start code, its contents must be removed
from the two wire interface to ensure that no further pro-
cessing takes place using these 3 bytes. The decode register
is emptied, and the value decode shift register 230 waits for
the value to be shifted all the way over to such register.

[0595] The contents now of the low order bit positions of
the value decode shift register contains a value associated
with the PICTURE_START. The Spatial Decoder equivalent
to the standard PICTURE_START signal is referred to as the
SD PICTURE_START signal. The SD PICTURE_START
signal itself is going to now be contained in the token header,
and the value is going to be contained in the extension word
to the token header.

[0596] 10. Tokens

[0597] In the practice of the present invention, a token is
a universal adaptation unit in the form of an interactive
interfacing messenger package for control and/or data func-
tions and is adapted for use with a reconfigurable processing
stage (RPS) which is a stage, which in response to a
recognized token, reconfigures itself to perform various
operations.

[0598] Tokens may be either position dependent or posi-
tion independent upon the processing stages for performance
of various functions. Tokens may also be metamorphic in
that they can be altered by a processing stage and then
passed down the pipeline for performance of further func-
tions. Tokens may interact with all or less than all of the

Oct. 16, 2003

stages and in this regard may interact with adjacent and/or
non-adjacent stages. Tokens may be position dependent for
some functions and position independent for other functions,
and the specific interaction with a stage may be conditioned
by the previous processing history of a stage.

[0599] APICTURE_END token is a way of signalling the
end of a picture in a multi-standard decoder.

[0600] A multi-standard token is a way of mapping
MPEG, JPEG and H.261 data streams onto a single decoder
using a mixture of standard dependent and standard inde-
pendent hardware and Jo control tokens.

[0601] A SEARCH_MODE token is a technique for
searching MPEG, JPEG and H.261 data streams which
allows random access and enhanced error recovery.

[0602] A STOP_AFTER_PICTURE token is a method of
achieving a clear end to decoding which signals the end of
a picture and clears the decoder pipeline, i.e., channel
change.

[0603] Furthermore, padding a token is a way of passing
an arbitrary number of bits through a fixed size, fixed width
buffer.

[0604] The present invention is directed to a pipeline
processing system which has a variable configuration which
uses tokens and a two-wire system. The use of control tokens
and DATA Tokens in combination with a two-wire system
facilitates a multi-standard system capable of having
extended operating capabilities as compared with those
systems which do not use control tokens.

[0605] The control tokens are generated by circuitry
within the decoder processor and emulate the operation of a
number of different type standard-dependent signals passing
into the serial pipeline processor for handling. The technique
used is to study all the parameters of the multi-standards that
are selected for processing by the serial processor and noting
1) their, similarities, 2) their dissimilarities, 3) their needs
and requirements and 4) selecting the correct token function
to effectively process all of the standard signals sent into the
serial processor. The functions of the tokens are to emulate
the standards. A control token function is used partially as an
emulation/translation between the standard dependent sig-
nals and as an element to transmit control information
through the pipeline processor.

[0606] In prior art system; a dedicated machine is
designed according to well-known techniques to identify the
standard and then set up dedicated circuitry by way of
microprocessor interfaces. Signals from the microprocessor
are used to control the flow of data through the dedicated
downstream components. The selection, timing and organi-
zation of this decompression function is under the control of
fixed logic circuitry as assisted by signals coming from the
MICTOProcessor.

[0607] In contrast, the system of the present invention
configures the downstream functional stages under the con-
trol of the control tokens. An option is provided for obtain-
ing needed and/or alternative control from the MPU.

[0608] The tokens provide and make a sensible format for
communicating information through the decompression cir-
cuit pipeline processor. In the design selected hereinafter and
used in the preferred embodiment, each word of a token is

US 2003/0196078 Al

a minimum of 8 bits wide, and a single token can extend
over one or more words. The width of the token is change-
able and can be selected as any number of bits. An extension
bit indicates whether a token is extended beyond the current
word, i.e., if it is set to binary one in all words of a token,
except the last word of a token. If the first word of a token
has an extension bit of zero, this indicates that the token is
only one word long.

[0609] Each token is identified by an address field that
starts at bit 7 of the first word of the token. The address field
is variable in length and can potentially extend over multiple
words. In a preferred embodiment, the address is no longer
than 8 bits long. However, this is not a limitation on the
invention, but on the magnitude of the processing steps
elected to be accomplished by use of these tokens. It is to be
noted under the extension bit identification label that the
extension bit in words 1 and 2 is a 1, signifying that
additional words will be coming thereafter. The extension bit
in word 3 is a zero, therefore indicating the end of that token.

[0610] The token is also capable of variable bit length. For
example, there are 9 bits in the token word plus the extension
bit for a total of 10 bits. In the design of the present
invention, output buses are of variable width. The output
from the Spatial Decoder is 9 bits wide, or 10 bits wide when
the extension bit is included. In a preferred embodiment, the
only token that takes advantage of these extra bits is the
DATA token; all other tokens ignore this extra bit. It should
be understood that this is not a limitation, but only an
implementation.

[0611] Through the use of the DATA token and control
token configuration, it is possible to vary the length of the
data being carried by these DATA tokens in the sense of the
number of bits in one word. For example, it has been
discussed that data bits in word of a DATA Token can be
combined with the data bits in another word of the same
DATA token to form an 11 bit or 10 bit address for use in
accessing the random access memories used throughout this
serial decompression processor. This provides an additional
degree of variability that facilitates a broad range of versa-
tility.

[0612] As previously described, the DATA token carries
data from one processing stage to the next. Consequently,
the characteristics of this token change as it passes through
the decoder. For example, at the input to the Spatial Decoder,
DATA Tokens carry bit serial coded video data packed into
8 bit words. Here, there is no limit to the length of each
token. However, to illustrate the versatility of this aspect of
the invention (at the output of the Spatial Decoder circuit),
each DATA Token carries exactly 64 words and each word
is 9 bits wide. More specifically, the standard encoding
signal allows for different length messages to encode dif-
ferent intensities and details of pictures. The first picture of
a group normally carries the longest number of data bits
because it needs to provide the most information to the
processing unit so that it can start the decompression with as
much information as possible. Words which follow later are
typically shorter in length because they contain the differ-
ence signals comparing the first word with reference to the
second position on the scan information field.

[0613] The words are interspersed with each other, as
required by the standard encoding system, so that variable
amounts of data are provided into the input of the Spatial

Oct. 16, 2003

Decoder. However, after the Spatial Decoder has functioned,
the information is provided at its output at a picture format
rate suitable for display on a screen. The output rate in terms
of time of the spatial decoder may vary in order interface
with various display systems throughout the wore, such as ,
NTSC, PAL and SECAM. The video formatter converts this
variable picture rate to a constant picture rate suitable for
display. However, the picture data is still carried by DATA
tokens consisting of 64 words.

[0614] 11. DRAM INTERFACE

[0615] A single high performance, configurable DRAM
interface is used on each of the 3 decoder chips. In general,
the DRAM interface on each chip is substantially the same;
however, the interfaces differ from one to another in how
they handle channel priorities. This interface is designed to
directly drive the external DRAMs used by the Spatial
Decoder, the Temporal Decoder and the Video Formatter.
Typically, no external logic, buffers or components will be
required to connect the DRAM interface to the DRAMs in
those systems.

[0616] In accordance with the present invention, the inter-
face is configurable in two ways:

[0617] 1. The detailed timing of the interface can be
configured to accommodate a variety of different DRAM

types.

[0618] 2. The width of the data interface to the DRAM can
be configured to provide a cost/performance trade off for
different applications.

[0619] In general, the DRAM interface is a standard-
independent block implemented on each of the three chips in
the system. Again, these are the Spatial Decoder, Temporal
Decoder and video formatter. Referring again to FIGS. 11,
12 and 13, these figures show block diagrams that depict the
relationship between the DRAM interface, and the remain-
ing blocks of the Spatial Decoder, Temporal Decoder and
video formatter, respectively. On each chip, the DRAM
interface connects the chip to an external DRAM. External
DRAM is used because, at present, it is not practical to
fabricate on chip the relatively large amount of DRAM
needed. Note: each chip has its own external DRAM and its
own DRAM interface.

[0620] Furthermore, while the DRAM interface is com-
pression standard-independent, it still must be configured to
implement each of the multiple standards, H.261, JPEG and
MPEC. How the DRAM interface is reconfigured for multi-
standard operation will be subsequently further described
herein.

[0621] Accordingly, to understand the operation of the
DRAM interface requires an understanding of the relation-
ship between the DRAM interface and the address generator,
and how lo the two communicate using the two wire
interface.

[0622] 1In general, as its name implies, the address gen-
erator generates the addresses the DRAM interface needs in
order to address the DRAM (e g., to read from or to write to
a particular address in DRAM). With a two-wire interface,
reading and writing only occurs when the DRAM interface
has both data (from preceding stages in the pipeline) and a
valid address (from address generator). The use of a separate

US 2003/0196078 Al

address generator simplifies the construction .f both the
address generator and the DRAM interface, as discussed
further below.

[0623] In the present invention, the DRAM interface can
operate from a clock which is asynchronous to both the
address generator and to the clocks of the stages through
which data is passed. Special techniques have been used to
handle this asynchronous nature of the operation.

[0624] Data is typically transferred between the DRAM
interface and the rest of the chip in blocks of 64 bytes (the
only exception being prediction data in the Temporal
Decoder). Transfers take place by means of a device known
as a “swing Buffer”. This is essentially a pair of RAMs
operated in a double-buffered configuration, with the
DRAM interface filling or emptying one RAM while
another part of the chip empties or fills the other RAM. A
separate bus which carries an address from an address
generator is associated with each swing buffer.

[0625] In the present invention, each of the chips has four
swing buffers, but the function of these swing buffers is
different in each case. In the spatial decoder, one swing
buffer is used to transfer coded data to the DRAM, another
to read coded data from the DRAM, the third to transfer
tokenized data to the DRAM and the fourth to read token-
ized data from the DRAM. In the Temporal Decoder, how-
ever, one swing buffer is used to write intra or predicted
picture data to the DRAM, the second to read intra or
predicted data from the DRAM and the other two are used
to read forward and backward prediction data. In the video
formatter, one swing buffer is used to transfer data to the
DRAM and the other three are used to read data from the
DRAM, one for each of luminance (Y) and the red and blue
color difference data (Cr and Cb, respectively).

[0626] The following section describes the operation of a
hypothetical DRAM interface which has one write swing
buffer and one read swing buffer. Essentially, this is the same
as the operation of the Spatial Decoder’s DRAM interface.
The operation is illustrated in FIG. 23.

[0627] FIG. 23 illustrates that the control interfaces
between the address generator 301, the DRAM interface
302, and the remaining stages of the chip which pass data are
all two wire interfaces. The address generator 301 may
either generate addresses as the result of receiving control
tokens, or it may merely generate a fixed sequence of
addresses (e.g., for the FIFO buffers of the Spatial Decoder).
The DRAM interface treats the two wire interfaces associ-
ated with the address generator 301 in a special way. Instead
of keeping the accept line high when it is ready to receive an
address, it waits for the address generator to supply a valid
address, processes that address and then sets the accept line
high for one clock period. Thus, it implements a request/
acknowledge (REQ/ACK) protocol.

[0628] A unique feature of the DRAM interface 302 is its
ability to communicate independently with the address gen-
erator 301 and with the stages that provide or accept the data.
For example, the address generator may generate an address
associated with the data in the write swing buffer (FIG. 24),
but no action will be taken until the write swing buffer
signals that there is a block of data ready to be written to the
external DRAM. Similarly, the write swing buffer may
contain a block of data which is ready to be written to the

Oct. 16, 2003

external DRAM, but no action is taken until an address is
supplied on the appropriate bus from the address generator
301. Further, once one of the RAMs in the write swing buffer
has been filled with data, the other may be completely filled
and “swung” to the DRAM interface side before the data
input is stalled (the two-wire interface accept signal set low).

[0629] In understanding the operation of the DRAM inter-
face 302 of the present invention, it is important to note that
in a properly configured system, the DRAM interface will be
able to transfer data between the swing buffers and the
external DRAM 303 at least as fast as the sum of all the
average data rates between the swing buffers and the rest of
the chip.

[0630] Each DRAM interface 302 determines which
swing buffer it will service next. In general, this will either
be a “round robin”(i.e., the next serviced swing buffer is the
next available swing buffer which has least recently had a
turn), or a priority encoder, (i.e., in which some swing
buffers have a higher priority than others). In both cases, an
additional request will come from a refresh request genera-
tor which has a higher priority than all the other requests.
The refresh request is generated from a refresh counter
which can be programmed via the microprocessor interface.

[0631] Referring now to FIG. 24, there is shown a block
diagram of a write swing buffer. The write swing buffer
interface includes two blocks of RAM, RAM1 311 and
RAM2 312. As discussed further herein, data is written into
RAMI 311 and RAM2 312 from the previous stage, under
the control of the write address 313 and control 314. From
RAMI1 311 and RAM?2 312, the data is written into DRAM
515. When writing data into DRAM 315, the DRAM row
address is provided by the address generator, and the column
address is provided by the write address and control, as
described further herein. In operation, valid data is presented
at the input 316 (data in). Typically, the data is received from
the previous stage. As each piece of data is accepted by the
DRAM interface, it is written into RAM1 311 and the write
address control increments the RAM1 address to allow the
next piece of data to be written into RAM1. Data continues
to be written into RAM311 until either there is no more data,
or RAM1 is full. When RAMI 311 is full, the input side
gives up control and sends a signal to the read side to
indicate that RAM1 is now ready to be read. This signal
passes between two asynchronous clock regimes and, there-
fore, passes through three synchronizing flip flops.

[0632] Provided RAM?2 312 is empty, the next item of data
to arrive on the input side is written into RAM2. Otherwise,
this occurs when RAM?2 312 has emptied. When the round
robin or priority encoder (depending on which is used by the
particular chip) indicates that it is now the turn of this swing
buffer to be read, the DRAM interface reads the contents of
RAMI 311 and writes them to the external DRAM 315. A
signal is then sent back across the asynchronous interface, to
indicate that RAM1 311 is now ready to be filled again.

[0633] If the DRAM interface empties RAM1 311 and
“swings” it before the input side has filled RAM?2 312 , then
data can be accepted by the swing buffer continually. Oth-
erwise, when RAM?2 is filled, the swing buffer will set its
accept single low until RAM1 has been “swung” back for
use by the input side.

[0634] The operation of a read swing buffer, in accordance
with the present invention, is similar, but with the input and
output data busses reversed.

US 2003/0196078 Al

[0635] The DRAM interface of the present invention is
designed to maximize the available memory bandwidth.
Each 8x8 block of data is stored in the same DRAM page.
In this way, full use can be made of DRAM fast page access
modes, where one row address is supplied followed by many
column addresses. In particular, row addresses are supplied
by the address generator, while column addresses are sup-
plied by the DRAM interface, as discussed further below.

[0636] In addition, the facility is provided to allow the data
bus to the external DRAM to be 8, 16 or 32 bits wide.
Accordingly, the amount of DRAM used can be matched to
the size and bandwidth requirements of the particular appli-
cation.

[0637] In this example (which is exactly how the DRAM
interface on the Spatial Decoder works) the address genera-
tor provides the DRAM interface with block addresses for
each of the read and write swing buffers. This address is used
as the row address for the DRAM. The six bits of column
address are supplied by the DRAM interface itself, and these
bits are also used as the address for the swing buffer RAM.
The data bus to the swing buffers is 32 bits wide. Hence, if
the bus width to the external DRAM is less than 32 bits, two
or four external DRAM accesses must be made before the
next word is read from a write swing buffer or the next word
is written to a read swing buffer (read and write refer to the
direction of transfer relative to the external DRAM).

[0638] The situation is sore complex in the case of the
Temporal Decoder and the Video Formatter. The Temporal
Decoder’s addressing is more complex because of its pre-
dictive aspects as discussed further in this section. The video
formatter’s addressing is more complex because of multiple
video output standard aspects, as discussed further in the
sections relating to the video formatter.

[0639] As mentioned previously, the Temporal Decoder
has four swing buffers: two are used to read and write
decoded intra and predicted (I and P) picture data. These
operate as described above. The other two are used to
receive prediction data. These buffers are more interesting.

[0640] In general, prediction data will be offset from the
position of the block being processed as specified in the
motion vectors in X and y. Thus, the block of data to be
retrieved will not generally correspond to the block bound-
aries of the data as it was encoded (and written into the
DRAM). This is illustrated in FIG. 25, where the shaded
area represents the block that is being formed whereas the
dotted outline represents the block from which it is being
predicted. The address generator converts the address speci-
fied by the motion vectors to a block offset (a whole number
of blocks), as shown by the big arrow, and a pixel offset, as
shown by the little arrow.

[0641] In the address generator, the frame pointer, base
block address and vector offset are added to form the address
of the block to be retrieved from the DRAM. If the pixel
offset is zero, only one request is generated. If there is an
offset in either the x or y dimension then two requests are
generated, i.e., the original block address and the one
immediately below. With an offset in both x and vy, four
requests are generated. For each block which is to be
retrieved, the address generator calculates start and stop
addresses which is best illustrated by an example.

[0642] Consider a pixel offset of (1,1), as illustrated by the
shaded area in FIG. 26. The address generator makes four

Oct. 16, 2003

requests, labelled A through D in the Figure. The problem to
be solved is how to provide the required sequence of row
addresses quickly. The solution is to use “start/stop™ tech-
nology, and this is described below.

[0643] Consider block A in FIG. 26. Reading must start at
position (1,1) and end at position (7,7). Assume for the
moment that one byte is being read at a time (i.c., an 8 bit
DRAM interface). The x value in the co-ordinate pair forms
the three LSBs of the address, the y value the three MSB.
The x and y start values are both 1, providing the address,
9. Data is read from this address and the x value is incre-
mented. The process is repeated until the x value reaches its
stop value, at which point, the y value is incremented by 1
and the x start value is reloaded, giving an address of 17. As
each byte of data is read, the x value is again incremented
until it reaches its stop value. The process is repeated until
both x and y values have reached their stop values. Thus, the
address sequence of 9, 10, 11,12, 13, 14, 15,17 . . ., 23, 25,
.. 531,33 .., 57, .. .,63 is generated.

[0644] In a similar manner, the start and stop co-ordinates
for block B are: (1,0) and (7,0), for block C: (0,1) and (0,7),
and for block D: (0,0) and (0,0).

[0645] The next issue is where this data should be written.
Clearly, looking at block A, the data read from address 9
should be written to address 0 in the swing buffer, while the
data from address 10 should be written to address 1 in the
swing buffer, and so on. Similarly, the data read from
address 8 in block B should be written to address 15 in the
swing buffer and the data from address 16 should be written
to address 15 in the swing buffer. This function turns out to
have a very simple implementation, as outlined below.

[0646] Consider block A. At the start of reading, the swing
buffer address register is loaded with the inverse of the stop
value. The y inverse stop value forms the 3 MSBs and the
x inverse stop value forms the 3 LSB. In this case, while the
DRAM interface is reading address 9 in the external DRAM,
the swing buffer address is zero. The swing buffer address
register is then incremented as the external DRAM address
register is incremented, as consistent with proper prediction
addressing.

[0647] The discussion so far has centered on an 8 bit
DRAM interface. In the case of a 16 or 32 bit interface, a few
minor modifications must be made. First, the pixel offset
vector must be “clipped” so that it points to a 16 or 32 bit
boundary. In the example we have been using, for block A,
the first DRAM read will point to address 0, and data in
addresses O through 3 will be read. Second, the unwanted
data must be discarded. This is performed by writing all the
data into the swing buffer (which must now be physically
larger than was necessary in the 8 bit case) and reading with
an offset. When performing MPEG half-pel interpolation, 9
bytes in x and/or y must be read from the DRAM interface.
In this case, the address generator provides the appropriate
start and stop addresses. Some additional logic in the DRAM
interface is used, but there is no fundamental change in the
way the DRAM interface operates.

[0648] The final point to note about the Temporal Decoder
DRAM interface of the present invention, is that additional
information must be provided to the prediction filters to
indicate what processing is required on the data. This
consists of the following:

US 2003/0196078 Al

[0649] a “last byte” signal indicating the last byte of
a transfer (of 64,72 or 81 bytes);

[0650] an H.261 flag;

[0651] a bidirectional prediction flag;

[0652] two bits to indicate the block’s dimensions (8
or 9 bytes in x and y); and

[0653] a two bit number to indicate the order of the
blocks.

[0654] The last byte flag can be generated as the data is
read out of the swing buffer. The other signals are derived
from the address generator and are piped through the DRAM
interface so that they are associated with the correct block of
data as it is read out of the swing buffer by the prediction
filter block.

[0655] In the Video Formatter, data is written into the
external DRAM in blocks, but is read out in raster order.
writing is exactly the same as already described for the
Spatial Decoder, but reading is a little more complex.

[0656] The data in the Video Formatter, external DRAM is
organized so that at least 8 blocks of data fit into a single
page. These 8 blocks are 8 consecutive horizontal blocks.
When rasterizing, 8 bytes need to be read out of each of a
consecutive blocks and written into the swing buffer (i.e., the
same row in each of the 8 blocks).

[0657] Considering the top row (and assuming a byte-wide
interface) , the x address (the three LSBS) is set to zero, as
is the y address (3 MSBS) . The x address is then incre-
mented as each of the first 8 bytes are read out. At this point,
the top part of the address (bit 6 and above - LSB =bit 0) is
incremented and the x address (3 LSBS) is reset to zero. This
process is repeated until 64 bytes have been read. With a 16
or 32 bit wide interface to the external DRAM the x address
is merely incremented by two or four, respectively, instead
of by one.

[0658] In the present invention, the address generator can
signal to the DRAM interface that less than 64 bytes should
be read (this may be required at the beginning or end of a
raster line), although a multiple of 8 bytes is always read.
This is achieved by using start and stop values. The start
value is used for the top part of the address (bit 6 and above),
and the stop value is compared with the start value to
generate the signal which indicates when reading should
stop.

[0659] The DRAM interface timing block in the present
invention uses timing chains to place the edges of the
DRAM signals to a precision of a quarter of the system clock
period. Two quadrature clocks from the phase locked loop
are used. These are combined to form a notional 2x clock.
Any one chain is then made from two shift registers in
parallel, on opposite phases of the 2x clock.

[0660] First of all, there is one chain for the page start
cycle and another for the read/write/refresh cycles. The
length of each cycle is programmable via the microprocessor
interface, after which the page start chain has a fixed length,
and the cycle chain’s length changes as appropriate during
a page start.

[0661] On reset, the chains are cleared and a pulse is
created. The pulse travels along the chains and is directed by

42

Oct. 16, 2003

the state information from the DRAM interface. The pulse
generates the DRAM interface clock. Each DRAM interface
clock period corresponds to one cycle of the DRAM, con-
sequently, as the DRAM cycles have different lengths, the
DRAM interface clock is not at a constant rate.

[0662] Moreover, additional timing chains combine the
pulse from the above chains with the information from the
DRAM interface to generate the output strobes and enables
such as notcas, notras, notwe, notbe.

[0663] 12. PREDICTION FILTERS

[0664] Referring again to FIGS. 12, 17, 18, and more
particularly to FIG. 12, there is shown a block diagram of
the Temporal Decoder. This includes the prediction filter.
The relationship between the prediction filter and the rest of
the elements of the temporal decoder is shown in greater
detail in FIG. 17. The essence of the structure of the
prediction filter is shown in FIGS. 18 and 28. A detailed
description of the operation of the prediction filter can be
found in the section, “More Detailed Description of the
Invention.”

[0665] In general, the prediction filter in accordance with
the present invention, is used in the MPEG and H.261
modes, but not in the JPEG mode. Recall that in the JPEG
mode, the Temporal Decoder just passes the data through to
the Video Formatter, without performing any substantive
decoding beyond that accomplished by the Spatial Decoder.
Referring again to FIG. 18, in the MPEG mode the forward
and backward prediction filters are identical and they filter
the respective MPEG forward and backward prediction
blocks. In the H.261 mode, however, only the forward
prediction filter is used, since H.261 does not use backward
prediction.

[0666] Each of the two prediction filters of the present
invention is substantially the same. Referring again to FIGS.
18 and 28 and more particularly to FIG. 28, there is shown
a block diagram of the structure of a prediction filter. Each
prediction filter consists of four stages in series. Data enters
the format stage 331 and is placed in a format that can be
readily filtered. In the next stage 332 an I-D prediction is
performed on the X-coordinate. After the necessary trans-
position is performed by a dimension buffer stage 333, an
I-D prediction is performed on the Y-coordinate in stage 334.
How the stage perform the filtering is further described in
greater detail subsequently. Which filtering operations are
required, are defined by the compression standard. In the
case of H.261, the actual filtering performed is similar to that
of a low pass filter.

[0667] Referring again to FIG. 17, multi-standard opera-
tion requires that the prediction filters be reconfigurable to
perform either MPEG or H.261 filtering, or to perform no
filtering at all in JPEG mode. As with many other reconfig-
urable aspects of the three chip system, the prediction filter
is reconfigured by means of tokens. Tokens are also used to
inform the address generator of the particular mode of
operation. In this way, the address generator can supply the
prediction filter with the addresses of the needed data, which
varies significantly between MPEG and JPEG.

[0668] 13. ACCESSING REGISTER

[0669] Most registers in the microprocessor interface
(MPI) can only be modified if the stage with which they are

US 2003/0196078 Al

associated is stopped. Accordingly, groups of registers will
typically be associated with an access register. The value
zero in an access register indicates that the group of registers
associated with that particular access register should not be
modified. Writing 1 to an access register requests that a stage
be stopped. The stage may not stop immediately, however,
so the stages access register will hold the value, zero, until
it is stopped.

[0670] Any user software associated with the MPI and
used to perform functions by way of the MPI should wait
“after writing a 1 to a request access register” until 1 is read
from the access register. If a user writes a value to a
configuration register while its access register is set to zero,
the results are undefined.

[0671] 14. MICRO-PROCESSOR INTERFACE

[0672] A standard byte wide micro-processor interface
(MPT) is used on all circuits with in the Spatial Decoder and
Temporal Decoder. The MPI operates asynchronously with
various Spatial and Temporal Decoder clocks. Referring to
Table A.6.1 of the subsequent further detailed description,
there is shown the various MPI signals that are used on this
interface. The character of the signal is shown on the
input/output column, the signal name is shown on the signal
name column and a description of the function of the signal
is shown in the description column. The MPI electrical
specification are shown with reference to Table A.6.2. All
the specifications are classified according to type and there
types are shown in the column entitled symbol. The descrip-
tion of what these symbols represent is shown in the
parameter column. The actual specifications are shown in
the respective columns min, max and units.

[0673] The DC operating conditions can be seen with
reference to Table A.6.3. Here the column headings are the
same as with reference to Table A.6.2. The DC electrical
characteristics are shown with reference to Table A.6.4 and
carry the same column headings as depicted in Tables A.6.2
and A.6.3.

[0674] 15. MPI READ TIMING

[0675] The AC characteristics of the MPI read timing
diagrams are shown with reference to FIG. 54. Each line of
the Figure is labelled with a corresponding signal name and
the timing is given in nano-seconds. The full microprocessor
interface read timing characteristics are shown with refer-
ence to Table A.6.5. The column entitled Number is used to
indicate the signal corresponding to the name of that signal
as set forth in the characteristic column. The columns
identified by MIN and MAX provide the minimum length of
time that the signal is present the maximum amount of time
that this signal is available. The Units column gives the units
of measurement used to describe the signals.

[0676] 16. MPI WRITE TIMING

[0677] The general description of the MPI write timing
diagrams are shown with reference to FIG. 54. This Figure
shows each individual signal name as associated with the
MPI write timing. The name, the characteristic of the signal,
and other various physical characteristics are shown with
reference to Table 6.6.

[0678] 17. KEYHOLE ADDRESS LOCATIONS

[0679] In the present invention, certain less frequently
accessed memory map locations have been placed behind

Oct. 16, 2003

keyhole registers. A keyhole register has two registers asso-
ciated with it. The first register is a keyhole address register
and the second register is a keyhole data register. The
keyhole address specifies a location within a extended
address space. A read or a write operation to a keyhole data
register accesses the locations specified by the keyhole
address register. After accessing a keyhole data register, the
associated keyhole address register increments. Random
access within the extended address space is only possible by
writing in a new value to the keyhole address register for
each access. A circuit within the present invention may have
more than one keyhole memory maps. Nonetheless, there is
no interaction between the different keyholes.

[0680] 18. PICTURE-END

[0681] Referring again to FIG. 11, there is shown a
general block diagram of the Spatial Decoder used in the
present invention. It is through the use of this block diagram
that the function of PICTURE_END will be described. The
PICTURE_END function has the multi-standard advantage
of being able to handle H.261 encoded picture information,
MPEG and JPEG signals.

[0682] As previously described, the system of FIG. 11 is
interconnected by the two wire interface previously
described. Each of the functional blocks is arranged to
operate according to the state machine configuration shown
with reference to FIG. 10.

[0683] In general, the PICTURE_END function in accor-
dance with the invention begins at the Start Code Detector
which generates a PICTURE_END control token. The PIC-
TURE_END control token is passed unaltered through the
start-up control circuit to the DRAM interface. Here it is
used to flush out the write swing buffers inthe DRAM
interface. Recall, that the contents of a swing buffer are only
written to RAM when the buffer is full. However, a picture
may end at a point where the buffer is not full, therefore,
causing the picture data to become stuck. The PICTU-
REEND token forces the data out of the swing buffer.

[0684] Since the present invention is a multi-standard
machine, the machine operates differently for each compres-
sion standard. More particularly, the machine is fully
described as operating pursuant to machine-dependent
action cycles. For each compression standard, a certain
number of the total available action cycles can be selected by
a combination of control tokens and/or output signals from
the MPU or they can be selected by the design of the control
tokens themselves. In this regard, the present invention is
organized so as to delay the information from going into
subsequent blocks until all of the information has been
collected in an upstream block. The system waits until the
data has been prepared for passing to the next stage. In this
way, the PICTURE_END signal is applied to the coded data
buffer, and the control portion of the PICTURE_END signal
causes the contents of the data buffers to be read and applied
to the Huffman decoder and video demultiplexor circuit.

[0685] Another advantage of the PICTURE_END control
token is to identify, for the use by the Huffman decoder
demultiplexor, the end of picture even though it has not had
the typically expected full range and/or number of signals
applied to the Huffman decoder and video demultiplexor
circuit. In this situation, the information held in the coded
data buffer is applied to the Huffman decoder and video

US 2003/0196078 Al

demultiplexor as a total picture. In this way, the state
machine of the Huffman decoder and video demultiplexor
can still handle the data according to system design.

[0686] Another advantage of the PICTURE_END control
token is its ability to completely empty the coded data buffer
so that no stray information will inadvertently remain in the
off chip DRAM or in the swing buffers.

[0687] Yet another advantage of the PICTURE_END
function is its use in error recovery. For example, assume the
amount of data being held in the coded data buffer is less
than is typically used for describing the spatial information
with reference to a single picture. Accordingly, the last
picture will be held in the data buffer until a full swing
buffer, but, by definition, the buffer will never fill. At some
point, the machine will determine that an error condition
exits. Hence, to the extent that a PICTURE END token is
decoded and forces the data in the coded data buffers to be
applied to the Huffman decoder and video demultiplexor, the
final picture can be decoded and the information emptied
from the buffers. Consequently, the machine will not go into
error recovery mode and will successfully continue to pro-
cess the coded data.

[0688] A still further advantage of the use of a PICTU-
RE_END token is that the serial pipeline processor will
continue the processing of uninterrupted data. Through the
use of a PICTURE_END token, the serial pipeline processor
is configured to handle less than the expected amount of data
and, therefore, continues processing. Typically, a prior art
machine would stop itself because of an error condition. As
previously described, the coded data buffer counts macrob-
locks as they come into its storage area. In addition, the
Huffman Decoder and Video Demultiplexor generally know
the amount of information expected for decoding each
picture, i.e., the state machine portion of the Huffman
decode and Video Demultiplexor know the number of
blocks that it will process during each picture recovery
cycle. When the correct number of blocks do not arrive from
the coded data buffer, typically an error recovery routine
would result. However, with the PICTURE_END control
token having reconfigured the Huffman Decoder and Video
Demultiplexor, it can continue to function because the
reconfiguration tells the Huffman Decoder and Video
Demultiplexor that it is, indeed, handling the proper amount
of information.

[0689] Referring again to FIG. 10, the Token Decoder
portion of the Buffer Manager detects the PICTURE_END
control token generated by the Start Code Detector. Under
normal operations, the buffer registers fill up and are emp-
tied, as previously described with reference to the normal
operation of the swing buffers. Again, a swing buffer which
is partially full of data will not empty until it is totally filled
and/or it knows that it is time to empty. The PICTURE END
control token is decoded in the Token Decoder portion of the
Buffer Manager, and it forces the partially full swing buffer
to empty itself into the coded data buffer. This is ultimately
passed to the Huffman Decoder and Video Demultiplexor
either directly or through the DRAM interface.

[0690] 19. FLUSHING OPERATION

[0691] Another advantage of the PICTURE_END control
token is its function in connection with a FLUSH token. The
FLUSH token is not associated with either controlling the

Oct. 16, 2003

reconfiguration of the state machine or in providing data for
the system. Rather, it completes prior partial signals for
handling by the machine-dependent state machines. Each of
the state machines recognizes a FLUSH control token as
information not to be processed. Accordingly, the FLUSH
token is used to fill up all of the remaining empty parts of the
coded data buffers and to allow a full set of information to
be sent to the Huffman Decoder and Video Demultiplexor. In
this way, the FLUSH token is like padding for buffers.

[0692] The Token Decoder in the Huffman circuit recog-
nizes the FLUSH token and ignores the pseudo data that the
FLUSH token has forced into it. The Huffman Decoder then
operates only on the data contents of the last picture buffer
as it existed prior to the arrival of the PICTURE_END token
and FLUSH token. A further advantage of the use of the
PICTURE_END token alone or in combination with a
FLUSH token is the reconfiguration and/or reorganization of
the Huffman Decoder circuit. With the arrival of the PIC-
TURE_END token, the Huffman Decoder circuit knows that
it will have less information than normally expected to
decode the last picture. The Huffman decode circuit finishes
processing the information contained in the last picture, and
outputs this information through the DRAM interface into
the Inverse Modeller. Upon the identification of the last
picture, the Huffman Decoder goes into its cleanup mode
and readjusts for the arrival of the next picture information.

[0693] 20. FLUSH FUNCTION

[0694] The FLUSH token, in accordance with the present
invention, is used to pass through the entire pipeline pro-
cessor and to ensure that the buffers are emptied and that
other circuits are reconfigured to await the arrival of new
data. More specifically, the present invention comprises a
combination of a PICTURE_END token, a padding word
and a FLUSH token indicating to the serial pipeline proces-
sor that the picture processing for the current picture form is
completed. Thereafter, the various state machines need
reconfiguring to await the arrival of new data for new
handling. Note also that the FLUSH Token acts as a special
reset for the system. The FLUSH token resets each stage as
it passes through, but allows subsequent stages to continue
processing. This prevents a loss of data. In other words, the
FLUSH token is a variable reset, as opposed to, an absolute
reset.

[0695] 21. STOP-AFTER PICTURE

[0696] The STOP_AFTER_PICTURE function is
employed to shut down the processing of the serial pipeline
decompressing circuit at a logical point in its operation. At
this point, a PICTURE END token is generated indicating
that data is finished coming in from the data input line, and
the padding operation has been completed. The padding
function fills partially empty DATA tokens. A FLUSH token
is then generated which passes through the serial pipeline
system and pushes all the information out of the registers
and forces the registers back into their neutral stand-by
condition. The STOP_AFTER_PICTURE event is then gen-
erated and no more input is accepted until either the user or
the system clears this state. In other words, while a PIC-
TURE_END token signals the end of a picture, the STO-
P_AFTER_PICTURE operation signals the end of all cur-
rent processing.

US 2003/0196078 Al

[0697] 22. MULTI-STANDARD—SEARCH MODE

[0698] Another feature of the present invention is the use
of a SEARCH_MODE control token which is used to
reconfigure the input to the serial pipeline processor to look
at the incoming bit stream. When the search mode is set, the
Start Code Detector searches only for a specific start code or
marker used in any one of the compression standards. It will
be appreciated, however, that, other images from other data
bitstreams can be used for this purpose. Accordingly, these
images can be used throughout this present invention to
change it to another embodiment which is capable of using
the combination of control tokens, and DATA tokens along
with the reconfiguration circuits, to provide similar process-
ing.

[0699] The use of search mode in the present invention is
convenient in many situations including 1) if a break in. the
data bit stream occurs; 2) when the user breaks the data bit
stream by purposely changing channels, e.g., data arriving,
by a cable carrying compressed digital video; or 3) by user
activation of fast forward or reverse from a controllable data
source such as an optical disc or video disc. In general, a
search mode is convenient when the user interrupts the
normal processing of the serial pipeline at a point where the
machine does not expect such an interruption.

[0700] When any of the search modes are set, the Start
Code Detector looks for incoming start images which are
suitable for creating the machine independent tokens. All
data coming into the Start Code Detector prior to the
identification of standard-dependent start images is dis-
carded as meaningless and the machine stands in an idling
condition as it waits this information.

[0701] The Start Code Detector can assume any one of a
number of configurations. For example, one of these con-
figurations allows a search for a group of pictures or higher
start codes. This pattern causes the Start Code Detector to
discard all its input and look for the group_start standard
image. When such an image is identified, the Start Code
Detector generates a GROUP START token and the search
mode is reset automatically.

[0702] 1t is important to note that a single circuit, the
Huffman Decoder and Video Demultiplex circuit, is oper-
ating with a combination of input signals including the
standard-independent set-up signals, as well as, the COD-
ING_STANDARD signals. The CODING_STANDARD
signals are conveying information directly from the incom-
ing bit stream as required by the Huffman Decoder and
Video Demultiplex circuit. Nevertheless, while the function-
ing of the Huffman Decoder and Video Demultiplex circuit
is under the operation of the standard independent sequence
of signals.

[0703] This mode of operation has been selected because
it is the most efficient and could have been designed wherein
special control tokens are employed for conveying the
standard-dependent input to the Huffman Decoder and
Video Demultiplexer instead of conveying the actual signals
themselves.

[0704] 23. INVERSE MODELLER

[0705] Inverse modeling is a feature of all three standards,
and is the same for all three standards. In general, DATA
tokens in the token buffer contain information about the

Oct. 16, 2003

values of the quantized coefficients, and about the number of
zeros between the coefficients that are represented (a form of
run length coding). The Inverse Modeller of the present
invention has been adapted for use with tokens and simply
expands the information about runs of zeros so that each
DATA Token contains the requisite 64 values. Thereafter, the
values in the DATA Tokens are quantized coefficients which
can be used by the Inverse Quantizer.

[0706] 24. INVERSE QUANTIZER

[0707] The Inverse Quantizer of the present invention is a
required element in the decoding sequence, but has been
implemented in such away to allow the entire IC set to
handle multi-standard data. In addition, the Inverse Quan-
tizer has been adapted for use with tokens. The Inverse
Quantizer lies between the Inverse modeller and inverse
DCT (IDCT).

[0708] For example, in the present invention, an adder in
the Inverse Quantizer is used to add a constant to the pel
decode number before the data moves on to the IDCT.

[0709] The IDCT uses the pel decode number, which will
vary according to each standard used to encode the infor-
mation. In order for the information to be properly decoded,
avalue of 1024 is added to the decode number by the Inverse
Quantizer before the data continues on to the IDCT.

[0710] Using adders, already present in the Inverse Quan-
tizer, to standardize the data prior to it reaching the IDCT,
eliminates the need for additional circuitry or software in the
IC, for handling data compressed by the various standards.
Other operations allowing for multi-standard operation are
performed during a “post quantization function” and are
discussed below.

[0711] The control tokens accompanying the data are
decoded and the various standardization routines that need
to be performed by the Inverse Quantizer are identified in
detail below. These “post quantization” functions are all
implemented to avoid duplicate circuitry and to allow the IC
to handle multi-standard encoded data.

[0712] 25. HUFFMAN DECODER AND PARSER

[0713] Referring again to FIGS. 11 and 27, the Spatial
Decoder includes a Huffman Decoder for decoding the data
that the various compression standards have Huffman-en-
coded. While each of the standards, JPEG, MPEG and
H.261, require certain data to be Huffman encoded, the
Huffman decoding required by each standard differs in some
significant ways. In the Spatial Decoder of the present
invention, rather than design and fabricate three separate
Huffman decoders, one for each standard, the present inven-
tion saves valuable die space by identifying common aspects
of each Huffman Decoder, and fabricating these common
aspects only once. Moreover, a clever multi-part algorithm
is used that makes common more aspects of each Huffman
Decoder common to the other standards as well than would
otherwise be the case.

[0714] In brief, the Huffman Decoder 321 works in con-
junction with the other units shown in FIG. 27. These other
units are the Parser State Machine 322, the inshifter 323, the
Index to Data unit 324, the ALU 325, and the Token
Formatter 326. As described previously, connection between
these blocks is governed by a two wire interface. A more
detailed description of how these units function is subse-
quently described herein in greater detail, the focus here is

US 2003/0196078 Al

on particular aspects of the Huffman Decoder, in accordance
with the present invention, that support multi-standard
operation.

[0715] The Parser State Machine of the present invention,
is a programmable state machine that acts to coordinate the
operation of the other blocks of the Video Parser. In response
to data, the Parser State Machine controls the other system
blocks by generating a control word which is passed to the
other blocks, side by side with the data, upon which this
control word acts. Passing the control word alongside the
associated data is not only useful, it is essential, since these
blocks are connected via a two-wire interface. In this way,
both data and control arrive at the same time. The passing of
the control word is indicated in FIG. 27 by a control line 327
that runs beneath the data line 328 that connects the blocks.
Among other things, this code word identifies the particular
standard that is being decoded.

[0716] The Huffman decoder 321 also performs certain
control functions. In particular, the Huffman Decoder 321
contains a state machine that can control certain functions of
the Index to Data 324 and ALU 325. Control of these units
by the Huffman Decoder is necessary for proper decoding of
block-level information. Having the Parser State Machine
322 make these decisions would take too much time.

[0717] An important aspect of the Huffman Decoder of the
present invention, is the ability to invert the coded data bits
as they are read into the Huffman Decoder. This is needed to
decode H.261 style Huffman codes, since the particular type
of Huffman code used by H.261 (and substantially by
MPEG) has the opposite polarity then the codes used by
JPEG. The use of an inverter, thereby, allows substantially
the same table to be used by the Huffman Decoder for all
three standards. Other aspects of how the Huffman Decoder
implements all three standards are discussed in further detail
in the “More Detailed Description of the Invention” section.

[0718] The Index to Data unit 324 performs the second
part of the multi-part algorithm. This unit contains a look up
table that provides the actual Huffman decoded data. Entries
in the table are organized based on the index numbers
generated by the Huffman Decoder.

[0719] The ALU 325 implements the remaining parts of
the multi-part algorithm. In particular, the ALLU handles
sign-extension. The ALU also includes a register file which
holds vector predictions and DC predictions, the use of
which is described in the sections related to prediction
filters. The ALU, further, includes counters that count
through the structure of the picture being decoded by the
Spatial Decoder. In particular, the dimensions of the picture
are programmed into registers associated with the counters,
which facilitates detection of “start of picture,” and start of
macroblock codes.

[0720] In accordance with the present invention, the Token
Formatter 326 (TF) assembles decoded data into DATA
tokens that are then passed onto the remaining stages or
blocks in the Spatial Decoder.

[0721] In the present invention, the in shifter 323 receives
data from a FIFO that buffers the data passing through the
Start Code Detector. The data received by the inshifter is
generally of two types: DATA tokens, and start codes which
the Start Code Detector has replaced with their respective

Oct. 16, 2003

tokens, as discussed further in the token section. Note that
most of the data will be DATA tokens that require decoding.

[0722] The in shifter 323 serially passes data to the
Huffman Decoder 321. On the other hand, it passes control
tokens in parallel. In the Huffman decoder, the Huffman
encoded data is decoded in accordance with the first part of
the multi-part algorithm. In particular, the particular Huff-
man code is identified, and then replaced with an index
number.

[0723] The Huffman Decoder 321 also identifies certain
data that requires special handling by the other blocks shown
in FIG. 27. This data includes end of block and escape. In
the present invention, time is saved by detecting these in the
Huffman Decoder 321, rather than in the Index to Data unit
324.

[0724] This index number is then passed to the Index to
Data unit 324. In essence, the Index to Data unit is a look-up
table. In accordance with one aspect of the algorithm, the
look-up table is little more than the Huffman code table
specified by JPEG. Generally, it is in the condensed data
format that JPEG specifies for transferring an alternate JPEG
table.

[0725] From the Index to Data unit 324, the decoded index
number or other data is passed, together with the accompa-
nying control word, to the ALU 325, which performs the
operations previously described.

[0726] From the ALU 325, the data and control word is
passed to the Token Formatter 326 (TF). In the Token
Formatter, the data is combined as needed with the control
word to form tokens. The tokens are then conveyed to the
next stages of the Spatial Decoder. Note that at this point,
there are as many tokens as will be used by the system.

[0727] 26. INVERSE DISCRETE COSINE TRANS-
FORU

[0728] The Inverse Discrete Cosine Transform (IDCT), in
accordance with the present invention, decompresses data
related to the frequency of the DC component of the picture.
When a particular picture is being compressed, the fre-
quency of the light in the picture is quantized, reducing the
overall amount of information needed to be stored. The
IDCT takes this quantized data and decompresses it back
into frequency information.

[0729] The IDCT operates on a portion of the picture
which is 8x8 pixels in size. The math which performed on
this data is largely governed by the particular standard used
to encode the data. However, in the present invention,
significant use is made of common mathematical functions
between the standards to avoid unnecessary duplication of
circuitry.

[0730] Using a particular scaling order, the symmetry
between the upper and lower portions of the algorithms is
increased, thus common mathematical functions can be
reused which eliminates the need for additional circuitry.

[0731] The IDCT responds to a number of multi-standard
tokens. The first portion of the IDCT checks the entering
data to ensure that the DATA tokens are of the correct size
for processing. In fact, the token stream can be corrected in
some situations if the error is-not too large.

US 2003/0196078 Al

[0732] 27. BUFFER MANAGER

[0733] The Buffer Manager of the present invention,
receives incoming video information and supplies the
address generators with information on the timing of the
datas arrival, display and frame rate. Multiple buffers are
used to allow changes in both the presentation and display
rates. Presentation and display rates will typically vary in
accordance with the data that was encoded and the monitor
on which the information is being displayed. Data arrival
rates will generally vary according to errors in encoding,
decoding or the source material used to create the data.
When information arrives at the Buffer Manager, it is
decompressed. However, the data is in an order that is useful
for the decompression circuits, but not for the particular
display unit being used. When a block of data enters the
Buffer Manager, the Buffer Manager supplies information to
the address generator so that the block of data can be placed
in the order that the display device can use. In doing this, the
Buffer Manager takes into account the frame rate conversion
necessary to adjust the incoming data blocks so they are
presentable on the particular display device being used.

[0734] In the present invention, the Buffer Mnager prima-
rily supplies information to the address generators. Never-
theless, it is also required to interface with other elements of
the system. For example, there is an interface with an input
FIFO which transfers tokens to the Buffer Manager which,
in turn, passes these tokens on to the write address genera-
tors.

[0735] The Buffer Manager also interfaces with the dis-
play address generators, receiving information on whether
the display device is ready to display new data. The Buffer
Manager also confirms that the display address generators
have cleared information from a buffer for display.

[0736] The Buffer Manager of the present invention keeps
track of whether a particular buffer is empty, full, ready for
use or in use. It also keeps track of the presentation number
associated with the particular data in each buffer. In this way,
the Buffer Manager determines the states of the buffers, in
part, by making only one buffer at a time ready for display.
Once a buffer is displayed, the buffer is in a “vacant™ state.
When the Buffer Manager receives a PICTURE_START,
FLUSH, valid or access token, it determines the status of
each buffer and its readiness to accept new data. For
example, the PICTURE_START token causes the Buffer
Manager to cycle through each buffer to find one which is
capable of accepting the new data.

[0737] The Buffer Manager can also be configured to
handle the multi-standard requirements dictated by the
tokens it receives. For example, in the H.261 standard, data
maybe skipped during display. If such a token arrives at the
Buffer Mnager, the data to be skipped will be flushed from
the buffer in which it is stored.

[0738] Thus, by managing the buffers, data can be effec-
tively displayed according to the compression standard used
to encode the data, the rate at which the data is decoded and
the particular type of display device being used.

[0739] The foregoing description is believed to adequately
describe the overall concepts, system implementation and
operation of the various aspects of the invention in sufficient
detail to enable one of ordinary skill in the art to make and
practice the invention with all of its attendant features,

Oct. 16, 2003

objects and advantages. However, in order to facilitate a
further, more detailed in depth understanding of the inven-
tion, and additional details in connection with even more
specific, commercial implementation of various embodi-
ments of the invention, the following further description and
explanation is proferred.

[0740] This is a more detailed description for a multi-
standard video decoder chip-set. It is divided into three main
sections: A, B and C.

[0741] Again, for purposes of organization, clarity and
convenience of explanation, this additional disclosure is set
forth in the following sections.

[0742] Description of features common to chips in the
chip-set:

[0743] Tokens

[0744] Two wire interfaces

[0745] DRAM interface

[0746] Microprocessor interface

[0747] Clocks

[0748] Description of the Spatial Decoder chip
[0749] Description of the Temporal Decoder chip

[0750] SECTION A.1

[0751] The first description section covers the majority of
the electrical design issues associated with using the chip-
set.

[0752] A.1.1 Typographic conventions

[0753] A small set of typographic conventions is used to
emphasize some classes of information: NAKES _OF_TO-
KENS Wire_name active high signal Wire_name active low
signal Register_name

SECTION A.2 Video Decoder Family

[0754] 30 MHz operation

[0755] Decodes MPEG, JPEG & H.261

[0756] Coded data rates to 25 Mb/s

[0757] Video data rates to 21 MB/s

[0758] MPEG resolutions up to 704x480, 30 Hz,
4:2:0

[0759] Flexible chroma sampling formats

[0760] Full JPEG baseline decoding

[0761] Glue-less page mode DRAM interface

[0762] 208 pin PQFP package

[0763] Independent coded data and decoder clocks

[0764] Re-orders MPEG picture sequence

[0765] The Video decoder family provides a low chip
count solution for implementing high resolution digital
video decoders. The chip-set is currently configurable to
support three different video and picture coding systems:
JPEG, MPEG and H.261.

[0766] Full JPEG baseline picture decoding is supported.
720%x460, 30 Hz, 4:2:2 JPEG encoded video can be decoded
in real-time.

US 2003/0196078 Al

[0767] CIF (Common Interchange Format) and QCIF
H.261 video can be decoded. Full feature MPEG video with
formats up to 740x480, 30 Hz, 4:2:0 can be decoded.

[0768] Note: The above values are merely illustrative, by
way of example and not necessarily by way of limitation, of
one embodiment of the present invention. Accordingly, it
will be appreciated that other values and/or ranges may be
used.

[0769] A.2.1 System configurations
[0770] A.2.1.1 output formatting

[0771] Ineach of the examples given below, some form of
output formatter will be required to take the data presented
at the output of the Spatial Decoder or Temporal Decoder
and re-format it for a computer or display system. The
details of this formatting will vary between applications. In
a simple case, all that is required is an address generator to
take the block formatted data output by the decoder chip and
write it into memory in a raster order.

[0772] The Image Formatter is a single chip VLSI device
providing a wide range of output formatting functions.

[0773] A.2.1.2 JPEG still picture decoding

[0774] Asingle Spatial Decoder, with no-off-chip DRAM,
can rapidly decode baseline JPEG images. The Spatial
Decoder will support all features of baseline JPEG. How-
ever, the image size that can be decoded may be limited by
the size of the output buffer provided by the user. The
characteristics of the output formatter may limit the chroma
sampling formats and color spaces that can be supported.

[0775] A.2.1.3 JPEG video decoding

[0776] Adding off-chip DRAMs to the Spatial Decoder
allows it to decode JPEG encoded video pictures in real-
time. The size and speed of the required buffers will depend
on the video and coded data rates. The Temporal Decoder is
not required to decode JPEG encoded video. However, if a
Temporal Decoder is present in a multi-standard decoder
chip-set, it will merely pass the data through the Temporal
Decoder without alteration or modification when the system
is configured for JPEG operation.

[0777] A.2.1.4 H.261 decoding

[0778] The Spatial Decoder and the Temporal Decoder are
both required to implement an H.261 video decoder. The
DRAM interfaces on both devices are configurable to allow
the quantity of DRAM required for proper operation to be
reduced when working with small picture formats and at low
coded data rates. Typically, a single 4Mb (e.g. 512kx8)
DRAM will be required by each of the Spatial Decoder and
the Temporal Decoder.

[0779] A.2.1.5 MPEG decoding

[0780] The configuration required for MPEG operation is
the same as for H.261. However, as will be appreciated by
one of ordinary skill in the art, larger DRAM buffers may be
required to support the larger picture formats possible with
MPEG.

SECTION A.3 Tokens
[0781] A.3.1 Token format

[0782] In accordance with the present invention, tokens
provide an extensible format for communicating informa-

Oct. 16, 2003

tion through the decoder chip-set. While in the present
invention, each word of a Token is a minimum of 8 bits
wide, one of ordinary skill in the art will appreciate that
tokens can be of any width. Furthermore, a single Token can
be spread over one or more words; this is accomplished
using an extension bit in each word. The formats for the
tokens are summarized in Table A.3.1.

[0783] The extension bit indicates whether a Token con-
tinues into another word. It is set to 1 in all words of a Token
except the last one. If the first word of a Token has an
extension bit of 0, this indicates that the Token is only one
word long.

[0784] Each Token is identified by an Address Field that
starts in bit 7 of the first word of the Token. The Address
Field is of variable length and can potentially extend over
multiple words (in the current chips no address is more than
8 bits long, however, one of ordinary skill in the art will
again appreciate that addresses can be of any length).

[0785] Some interfaces transfer more than 8 bits of data.
For example, the output of the Spatial Decoder is 9 bits wide
(10 bits including the extension bit). The only Token that
takes advantage of these extra bits is the DATA Token. The
DATA Token can have as many bits as are necessary for
carrying out processing at a particular place in the system.
All other Tokens ignore the extra bits.

A3.2 S DATA Token

[0786] The DATA Token carries data from one processing
stage to the next. Consequently, the characteristics of this
Token change as it passes through the decoder. Furthermore,
the meaning of the data carried by the DATA Token varies
depending on where the DATA Token is within the system,
i.e., the data is position dependent. In this regard, the data
may be either frequency domain or Pel domain data depend-
ing on where the DATA Token is within the Spatial Decoder.
For example, at the input of the Spatial Decoder, DATA
Tokens carry bit serial coded video data packed into a bit
words. At this point, there is no limit to the length of each
Token. In contrast, however, at the output of the Spatial
Decoder each DATA Token carries exactly 64 words and
each word is 9 bits wide.

[0787] A.3.3 Using Token formatted data

[0788] In some applications, it may be necessary for the
circuitry that connect directly to the input or output of the
Decoder or chip set. In most cases it will be sufficient to
collect DATA Tokens and to detect a few Tokens that
provide synchronization information (such as PICTUR-
E_START). In this regard, see subsequent sections A.16,
“Connecting to the output of Spatial Decoder”, and .19,
“Connecting to the output of the Temporal Decoder”.

[0789] As discussed above, it is sufficient to observe
activity on the extension bit to identify when each new
Token starts. Again, the extension bit signals the last word
of the current token. In addition, the Address field can be
tested to identify the Token. Unwanted or unrecognized n0
Tokens can be consumed (and discarded) without knowl-
edge of their content. However, a recognized token causes
an appropriate action to occur.

US 2003/0196078 Al Oct. 16, 2003
49

[0790] Furthermore, the data input to the Spatial Decoder interface allows many of the features of the decoder chip set
can either be supplied as bytes of coded data, or in DATA to be configured from the data stream. This provides an
Tokens (see Section A.10, “coded data input”). Supplying alternative to doing the configuration via the micro proces-
Tokens via the coded data port or via the microprocessor sor interface.

TABLE A3.1

Summary of Tokens

-3
o
wn
IS
W
S

1 0 Token Name Reference

QUANT_SCALE
PREDICTION_MODE
(reserved)
MVD_FORWARDS
MVD_BACKWARDS
QUANT_TABLE

DATA
COMPONENT_NAME
DEFINE__SAMPLING
JPEG_TABLE_SELECT
MPEG__TABLE_ SELECT
TEMPORAL__REFERENCE
MPEG_DCH_TABLE
(reserved)

(reserved)

(reserved) SAVE__STATE
(reserved) RESTORE__STATE
TIME_CODE

(reserved)

NULL

(reserved)

(reserved)

(reserved)
SEQUENCE__START
GROUP__START
PICTURE_START
SLICE__START
SEQUENCE__END
CODING__STANDARD
PICTURE_END

FLUSH

FIELD__INFO
MAX__COMP_ID
EXTENSION__DATA
USER__DATA
DHT_MARKER
DQT_MARKER
(reserved) DNL_ MARKER
(reserved) DRI_MARKER
(reserved)

(reserved)

(reserved)

(reserved)

BIT_RATE
VBV_BUFFER__SIZE
VBV_DELAY
PICTURE_TYPE
PICTURE_RATE
PEL__ASPECT
HORIZONTAL_ SIZE
VERTICAL__SIZE
BROKEN__ CLOSED
CONSTRAINED

(reserved) SPECTRAL__LIMIT
DEFINE__MAX_ SAMPLING
(reserved)

(reserved)

(reserved)

(reserved)
HORIZONTAL__ MBS
VERTICAL__ MBS
(reserved)

(reserved)

H R R R RE R R R R R R R R R R R R R R, 0000000000000 0000000RREREREPREEEEEREL,EOOREL,OOO
H R R R RE R R R R R R R R R R R R R R, 0000000000000 0000000RRREREREPREEEELEERPL,EODODODORREFLO
o R R R R R R R R R R R R R RSO0 0000000000000 000RHREEEODODODODODODODOOOROREOR
H R R R RE R R R R R R R R R R R 00000000 EREEEPEHEEEREEEREREEREREREE,EOO0000000RRERRP,OO0OO0O0
HHE R PR R P00 000000ORRPLPHREEREEEREEHEREEHELEELEOODODODODODODODODODOOOOOORRLROOREFLOO O

H R R R, OOOORKREREHEREHEHOOOORRLEELEEHOODODORHHEHOODODORKREREFEFOODODOODODOORLROOROHOROROR

H R, OO+ HOORKFLR OO EFHFOORFLROOHKHOORHOOREFEFOORFLOORRLRODORRLODORORO

HOROHOHORORLRORLROHHOROFROHOROROHORRORORORORORORORO

US 2003/0196078 Al
50

[0791] A.3.4 Description of Tokens

[0792] This section documents the Tokens which are
implemented in the Spatial Decoder and the Temporal
Decoder chips in accordance with the present invention; see
Table A.3.2. Note:

Oct. 16, 2003

[0793] “r” signifies bits that are currently reserved
and carry the value 0

[0794] wunless indicated all integers are unsigned

TABLE A32

Tokens implemented in the Spatial Decoder and Temporal Decoder

o]
-3
o
IS
W
S
Ju

(o)

Description

OO e
H = OO R e
H = OO R e
[
H R g o RO
= O T o = =
H = OO R e
0o oo o oo

—
—
—
—
—
(o)
—
(o)

—
oo
o oo

—
-
-
-
-
-
50

oo o T o

BIT_RATE test info only

Carries the MPEG bit rate parameter P Generated by the Huffman
decoder when decoding an MPEG bitstream.

b - an 18 bit integer as defined by MPEG

BROKEN_ CLOSED

Carries two MPEG flags bits:

¢ - closed__gop

b - broken_link

CODING__STANDARD

s - an 8 bit integer indicating the current coding standard. The
values currently assigned are:

0- H.261

1- JPEG

2 - MPEG

COMPONENT_NAME

n Communicates the relationship between a component ID and the

=l o o0

50

component name. See also . . .

¢ - 2 bit component ID

n - 8 bit component “name”

CONSTRAINED

¢ - carries the constrained_ parameters_ flag decoded from an
MPEG bitstream.

DATA

Carries data through the decoder chip-set.

¢ - a 2 bit integer component ID (see A.3.5.1) This field

is not defined for Tokens that carry coded data (rather than pixel
information).

DEFINE_MAX_ SAMPLING

Max. Horizontal and Vertical sampling numbers. These describe
the maximum number of blocks horizontally/vertically in any
component of a macroblock. See A.3.5.2

h - 2 bit horizontal sampling number.

v - 2 bit vertical sampling number.

DEFINE__SAMPLING

Horizontal and Vertical sampling numbers for a particular colour
component. See A.3.5.2

¢ - 2 bit component ID.

h - 2 bit horizontal sampling number.

v - 2 bit vertical sampling number.

DHT__MARKER

This Token informs the Video Demux that the DATA Token that
follows contains the specification of a Huffman table described
using the JPEG “define Huffman table segment” syntax. This Token
is only valid when the coding standard is configured as JPEG.
This Token is generated by the start code detector during JPEG
decoding when a DHT marker has been encountered in the data
stream.

DNL_MARKER

This Token informs the Video Demux that the DATA Token that
follows contains the JPEG parameter NL which specifies the
number of lines in a frame.

This Token is generated by the start code detector during JPEG
decoding when a DNL marker has been encountered in the data
stream.

DQT_MARKER

This Token informs the Video Demux that the DATA Token that
follows contains the specification of a quantisation table described
using the JPEG “define quantisation table segment” syntax. This
Token is only valid when the coding standard is configured as
JPEG. The Video Demux generates a QUANT_TABLE Token
containing the new quantisation table information.

This Token is generated by the start code detector during JPEG
decoding when a DQT marker has been encountered in the data
stream.

US 2003/0196078 Al Oct. 16, 2003
51

TABLE A.3.2-continued

Tokens implemented in the Spatial Decoder and Temporal Decoder

E 7 6 5 4 3 2 1 0 Description

0 0 0 0 1 1 1 1 1 DRI_MARKER
This Token informs the Video Demux that the DATA Token that
follows contains the JPEG parameter Ri which specifies the
number of minimum coding units between restart markers.
This Token is generated by the start code detector during JPEG
decoding when a DRI marker has been encountered in the data
stream.
EXTENSION_DATA jprq
0 v v v v v v v v This Token informs the Video Demux that the DATA Token that
follows contains extension data. See A.11.3. “Conversion of start
codes to Tokens”, and A.14.6. “Receiving User and
Extension data™.
During JPEG operation the 8 bit field “V” carries the JPEG marker
value. This allows the class of extension data to be identified.
0 0 0 0 1 1 0 1 0 EXTENSION_DATA ;¢
This Token informs the Video Demux that the DATA Token that
follows contains extension data. See A.11.3, “Conversion at start
codes to Tokens”, and A.14.6. “Receiving User and
Extension data™.
FIELD_ INFO
0 r r r t p f £ f Carries information about the picture following to aid its display
This function is not signalled by any existing coding standard.
t - if the picture is an interlaced frame this bit indicates if the upper
field is first (t = 0) or second.
p - if pictures are fields this indicates if the next picture is upper
(p = 0) or lower in the frame.
t - a 3 bit number indicating position of the field in the 8 field PAL
sequence.
00 0 0 1 0 1 1 1 FLUSH
Used to indicate the end of the current coded data and to push the
end of the data stream through the decoder.
0 0 0 0 1 0 0 0 1 GROUP_START
Generated when the group of pictures start code is found when
decoding MPEG or the frame marker is found when decoding
JPEG.
HORIZONTAL_ MBS
h - a 13 bit number integer indicating the horizontal width of the
picture in macroblocks.
HORIZONTAL_SIZE
h - 16 bit number integer indicating the horizontal width of the
picture in pixels. This can be any integer value.
JPEG_TABLE_SELECT
Informs the inverse quantiser which quantisation table to use on
the specified colour component.
¢ - 2 bit component ID (See A.3.5.1
t - 2 bit integer table number.
10 0 0 1 1 0 0 1 MAX COMP_ID
0 r r r r r r m m m-2bitinteger indicating the maximum value of component ID
(see A.3.5.1) that will be used in the next picture.
0 11 0 1 0 1 ¢ ¢ MPEG_DCH _TABLE
Configures which DC coefficient Huffman table should be used for
colour component cc.
¢ - 2 bit component ID (see A.3.5.1
t - 2 bit integer table number.
01 1 0 0 1 1 d =n MPEG_TABLE_SELECT
Informs the inverse quantiser whether to use the default or user
defined quantisation table for intra or non-intra information.
n - 0 indicates intra information, 1 non-intra.
d - 0 indicates default table, 1 user defined.
11 0 1 d v v v v MVD_BACKWARDS
0 v v v v v v v v Carries one component (either vertical or horizontal) of the
backwards motion vector.
d - 0 indicates x component, 1 the y component
v - 12 bit two’s complement number. The LSB provides half pixel
resolution.
MVD__ FORWARDS
0 v v v v v v v v Carries one component (either vertical or horizontal) of the
forwards motion vector.
d - 0 indicates x component. 1 the y component
v - 12 bit two’s complement number. The LSB provides half pixel
resolution.
0 0 0 0O 0O O 0 0 0 NULL

—
(o)
(o)
(o)
—
—
(o)
—
(o)

—
(o)
(o)
(o)
—
—
(o)
(o)
(o)

O R ORR O
R =l = =
R =l = =
= OB B =D =
= OB BB
- - el
H OB B OB B =
- 0 55 RB 50
- 0 5o s 0

(o)
-
-
-
-
-

—
—
(o)
(o)
[=N
<
<
<
<

US 2003/0196078 Al Oct. 16, 2003
52

TABLE A.3.2-continued

Tokens implemented in the Spatial Decoder and Temporal Decoder

E 7 6 5 4 3 2 1 0 Description

Does nothing.
11 1 1 1 0 0 0 1 PEL_ASPECT
p - a 4 bit integer as defined by MPEG.
PICTURE_END
Inserted by the start code detector to indicate the end of the current
picture.
PICTURE__RATE
p - a 4 bit integer as defined by MPEG.
PICTURE__START
Indicates the start of a new picture.
n - a 4 bit picture index allocated to the picture by the start code
detector.
PICTURE_TYPE;prc
0 r r r r r r p p p-a?2bitinteger indicating the picture coding type of the picture
that follows:
0 - Intra
1 - Predicted
2 - Bidirectionally Predicted
3 - DC intra
11 1 1 0 1 1 1 1 PICTURE_TYPEy,s
1 r r r r 1 r 0 1 Indicates various H.261 options are on (1) or off (0). These options
0 r r s d f q 1 1 arealways off for MPEG and JPEG:
s - Split Screen Indicator
d - Document Camera
f - Freeze Picture Release
Source picture format:
q=0- OCIF
q=1-CIF
0 01 0 h y x b f PREDICTION_MODE
A set of flag bits that indicate the prediction mode for the
macroblocks that follow:
f - forward prediction
b - backward prediction
x - reset forward vector predictor
y - reset backward vector predictor
h - enable H.261 loop filter
0 0 0 1 s s s s s QUANT_SCALE
Informs the inverse quantiser of a new scale factor
s - 5 bit integer in range 1 . .. 31. The value O is reserved.
1 0 0 0 0 1 r 1 1 QUANT_TABLE
q q9 9 9q q q q q Loads the specified inverse quantiser table with 64 8 bit unsigned
0 g 9 q 9q q q q q integers. The values are in zig-zag order.
t - 2 bit integer specifying the inverse quantiser table to be loaded
0 0 0 0 1 0 1 0 0 SEQUENCE_END
The MPEG sequence__end__code and the JPEG ECI marker cause
this Token to be generated.
0 0 0 0 1 0 0 0 0 SEQUENCE_START
Generated by the MPEG sequence__start start code.
1 0 0 0 1 0 0 1 1 SLICE _START
0 s s s s s s s s Corresponds to the MPEG slice_start, the H.261 GOB and the
JPEG resync interval. The interpretation of 8 bit integer “s” differs
between coding standards:
MPEG - Slice Vertical Position - 1.
H.261 - Group of Blocks Number - 1.
JPEG - resychronisation interval identification (4 LSBs only)

(o)
—
—
—
—
oo
=g
=g
oo

[RS
H O R
H O R
s O R
o
B OT O
B OT O
B =g O
B OT O

—
—
—
—
(o)
—
—
—
—

1 1 t TEMPORAL_REFERENCE

0 t t t t t 't t t t-carres the temporal reference. For MPEG this is a 10 bit integer
For H.261 only the 5 LSBs are used. the MSBs will always be zero.

11 1 1 0 0 1 0 d TIME_CODE

1 r r r h h h h h The MPEG time code:

1 r r m m m m m md-Dropframe flag

1 r r s s s s s s h-5bitinteger specifying hours

0 r r p p p Pp Pp p m-o6bitinteger specifying minutes

s - 6 bit integer specifying seconds

p - 6 bit integer specifying pictures

USER_DATA_JPEG

0 v v v v v v v v This Token informs the Video Demux that the DATA Token that
follows contains user data. See A.11.3. “Conversion of start codes
to Tokens”, and A.14.6. “Receiving User and
Extension data”.
During JPEG operation the 8 bit field “V” carries the JPEG marker
value. This allows the class of user data to be identified.

—
(o)
(o)
(o)
—
—
(o)
—
—

US 2003/0196078 Al

TABLE A.3.2-continued

Oct. 16, 2003
53

Tokens implemented in the Spatial Decoder and Temporal Decoder

E 7 6 5 4 3 2 1 0 Description

0 0 0 0 1 1 0 1 1 USER_DATA MPEG

This Token informs the Video Demux that the DATA Token that
follows contains user data. See A.11.3. “Conversion of start codes
to Tokens”, and A.14.6. “Receiving User and

Extension data”.

TABLE A.3.4

Sampling numbers for 4:2:0/MPEG

11 1 1 0 1 1 0 1 VBV_BUFFER_SIZE
1 r r r r r r s s s-al0 integer as defined by MPEG.
0 s s s s s s s s
11 1 1 0 1 1 1 0 VBV_DELAY
1 b b b b b b b b b-al6bitinteger as defined by MPEG.
0 b b b b b b b b
11 1 1 1 1 1 0 1 VERTICAL_MBS
1 r r r Vv v v v v v-al3bitinteger indicating the vertical size of the picture in
0 v v v v v v v v macroblocks.
11 1 1 1 0 0 1 1 VERTICAL_SIZE
1 v v v v v v v v v-al6bitinteger indicating the vertical size of the picture in pixels
0 v v v v v v v v This can be any integer value.
[0795] A.3.5 Nuabera signalled in Tokens
[0796] A.3.5.1 Component Identification nu ber
[0797] In accordance with the present invention, the Com-

ponent ID number is a 2 bit integer specifying a color
component. This 2 bit field is typically located as part of the
Header in the DATA Token. With MPEG and H.261 the
relationship is set forth in Table A.3.3.

TABLE A33

Component ID for MPEG and H.261

Component ID MPEG or H.261 colour component

Luminance (Y)
Blue difference signal (Cb/U)
Red difference signal (Cr/V)

W D = O

Never used

[0798] With JPEG the situation is more complex as JPEG
does not limit the color components that can be used. The
decoder chips permit up to 4 different color components in
each scan. The IDs are allocated sequentially as the speci-

fication of color components arrive at the decoder.

[0799] A.3.5.2 Horizontal and Vertical sampling numbers

[0800] For each of the 4 color components, there is a
specification for the number of blocks arranged horizontally
and vertically in a macroblock. This specification comprises
a two bit integer which is one less than the number of blocks.

[0801] For example, in MPEG (or H.261) with 4:2:0
chroma sampling (FIG. 36) and component IDs allocated as
per Table A.3.4.

Horizontal Vertical
sampling sampling Height in
Component ID number Width in blocks ~ number blocks
0 1 2 1 2
1 0 1 0 1
2 0 1 0 1
3 Not used Not used Not used Not used

[0802] With JPEG and 4:2:2 chroma sampling (allocation
of component to component ID will vary between applica-
tions. See A.3.5.1. Note: JPEG requires a 2:1:1 structure for
its macroblocks when processing 4:2:2 data. See Table
A35.

TABLE A.3.5

Sampling numbers for 4:2:2 JPEG

Horizontal Vertical
sampling sampling Height in
Component ID number Width in blocks ~ number blocks
Y 1 2 0 1
U 0 1 0 1
\% 0 1 0 1

[0803] A.3.6 Special Token formats

[0804] In accordance with the present invention, tokens
such as the DATA Token and the QUANT,; TABLE Token
are used in their “extended form” within the decoder chip-
set. In the extended form the Token includes some data. In
the case of DATA Tokens, they can contain coded data or
pixel data. In the case of QUANT_TABLE tokens, they
contain quantizer table information.

[0805] Furthermore, “non-extended form” of these Tokens
is defined in the present invention as “empty”. This Token

US 2003/0196078 Al

format provides a place in the Token stream that can be
subsequently filled by an extended version of the same
Token. This format is mainly applicable to encoders and,
therefore, it is not documented further here.

TABLE A3.6

Tokens for different standards

Token Name MPEG JPEG H251

BIT_RATE

BROKEN__ CLOSED
CODING__STANDARD
COMPONENT_NAME
CONSTRAINED

DATA
DEFINE__MAX_SAMPLING
DEFINE_SAMPLING
DHT_MARKER
DNL__MARKER
DQT_MARKER
DRI_MARKER
EXTENSION__DATA
FIELD__INFO

FLUSH
GROUP__START
HORIZONTAL__ MBS
HORIZONTAL_SIZE
JPEG_TABLE__SELECT
MAX__COMP_ID
MPEG__DCH_TABLE
MPEG__TABLE_ SELECT
MVD_BACKWARDS
MVD_FORWARDS
NULL

PEL__ASPECT
PICTURE_END
PICTURE_RATE
PICTURE_START
PICTURE_TYPE
PREDICTION_MODE
QUANT_SCALE
QUANT_TABLE
SEQUENCE__END
SEQUENCE__START
SLICE__START
TEMPORAL__REFERENCE
TIME_CODE
USER_DATA
VBV_BUFFER_SIZE
VBV_DELAY
VERTICAL__MBS
VERTICAL__SIZE

NNNSN NN
NSNS

NERNRNENNN T ANANANSNSNNSN AN

NSNS N

ANATANRNRNRRNRRRNRNRNNNNNNNSNN . SNSNASN SN
N NNNSN NSNS SN N
NN NNNSN NSNS

NN
NN

[0806] A.3.7 Use of Tokens for different standards

[0807] Each standard uses a different sub-set of the
defined Tokens in accordance with the present invention; ss
Table A.3.6.
SECTION A.4 The two wire interface

[0808] A.4.1 Two-wire interfaces and the Token Part
[0809] A simple two-wire valid/accept protocol is used at
all levels in the chip-set to control the flow of information.
Data is only transferred between blocks when both the

sender and receiver are observed to be ready when the clock
rises.

[0810] 1)Data transfer
[0811] 2)Receiver not ready
[0812] 3)Sender not ready

[0813] If the sender is not ready (as in 3 Sender not ready
above) the input of the receiver must wait. If the receiver is

54

Oct. 16, 2003

not ready (as in 2 Receiver not ready above) the sender will
continue to present the same data on its output until it is
accepted by the receiver.

[0814] When Token information is transferred between
blocks-the two-wire interface between the blocks is referred
to as a Token Port.

[0815] A.4.2 Where used

[0816] The decoder chip-set, in accordance with the
present invention, uses two-wire interfaces to connect the
three chips. In addition, the coded data input to the Spatial
Decoder is also a two-wire interface.

[0817] A.4.3 Bus signals

[0818] The width of the data word transferred by the
two-wire interface varies depending upon the needs of the
interface concerned (See FIG. 35, “Tokens on interfaces
wider than 8 bits”. For example, 12 bit coefficients are input
to the Inverse Discrete Cosine Transform (IDCT), but only
9 bits are output.

TABLE A4.1

Two wire interface data width

Interface Data Width (bits)

Coded data input to Spatial Decoder
Output port of Spatial Decoder
Input port of Temporal Decoder
Output port of Temporal Decoder
Input port of Image Formatter

o 00 WO O 0

[0819] In addition to the data signals there are three other
signals transmitted via the two-wire interface:

[0820] valid
[0821]
[0822]

accept
extension
[0823] A.4.3.1 The extension signal

[0824] The extension signal corresponds to the Token
extension bit previously described.

[0825] A.4.4 Design considerations

[0826] The two wire interface is intended for short range,
point to point communication between chips.

[0827] The decoder chips should be placed adjacent to
each other, so as to minimize the length of the PCB tracks
between chips. Where possible, track lengths should be kept
below 25 mm. The PCB track capacitance should be kept to
a minimum.

[0828] The clock distribution should be designed to mini-
mize the clock slew between chips. If there is any clock
slew, it should be arranged so that “receiving chips” see the
clock before “sending chips”.

[0829] All chips communicating via two wire interfaces
should operate from the same digital power supply.

US 2003/0196078 Al

[0830] A.4.5 Interface timing

TABLE A4.2

Two wire interface timing

30 MHz
Num. Characteristic Min. Max. Unit Note?®
1 Input signal set-up time 5 ns
2 Input signal hold time 0 ns
3 Output signal drive time 23 ns
4 Output signal hold time 2 ns

Figures in Table A.4.2 may vary in accordance with design variations

®Maximum signal loading is approximately 20 oF

[0831] A.4.6 a Signal levels

[0832] The two-wire interface uses CMOS inputs and
output.

[0833] Vi, is approx. 70% of Vi, Vi .. 1S approx.
30% of V. The values shown in Table A.4.3 are those for
Vg and V,, at their respective worst case Vpp , Vpp=
5.00.25V.

TABLE A4.3

DC electrical characteristics

Symbol Parameter Min. Max. Units
VoM Input logic ‘1’ voltage 3.68 Vpo +0.5 V
\%3 Input logic ‘0’ voltage GND - 0.5 1.43 \%
Vou Output logic ‘1" voltage Vpo + 0.1 \'%A
Vpo + 0.4 v
Voo Output logic ‘0" voltage 0.1 ve

Oct. 16, 2003

TABLE A.4.3-continued

DC electrical characteristics

Symbol Parameter Min. Max. Units
04 V¢
Iy Input leakage current 10 @A

log =1 mA
®log £ 4 mA
1@ £ 1mA
Y13 = 4mA
@ indicates text missing or illegible when filed

[0834] a. lgg=1mA
[0835] b. 1gu=4mA
[0836] c.1lou=1mA
[0837] d. 1ou=4mA
[0838] A.4.7 Control clock
[0839] In general, the clock controlling the transfers

across the two wire interface is the chip’s decoder_clock.
The exception is the coded data port input to the Spatial
Decoder. This is controlled by coded_clock. The clock
signals are further described herein.

SECTION A.5 DRAI Interface
[0840] A.5.1 The DRAM interface

[0841] A single high performance, configurable, DRAM
interface is used on each of the video decoder chips. In
general, the DRAM interface on each chip is substantially
the same; however, the interfaces differ from one another in
how they handle channel priorities. The interface is designed
to directly drive the DRAM used by each of the decoder
chips. Typically, no external logic, buffers or components
will be necessary to connect the DRAM interface to the
DRAMSs in most systems.

[0842] A.5.2 Interface signals

TABLE A5.1

Signal Name

DRAM interface signals

Input/

Output Description

DRAM_ data[31:0] /O

DRAM_ addi{10:0] O

RAS
CAS[3:0]

WE
OE

DRAM__enable

The 32 bit wide DRAM data bus. Optionally this bus
can be configured to be 16 ot 8 bits wide. See
section A.5.8

The 22 bit wide DRAM interface address is time
multiplkexed over this 11 bit wide bus.

(0] The DRAM Row Address Strobe signal

(0] The DRAM Column Address Strobe signal. One
signal is provided per byte of the interface’s data
bus. All the CAS signals are driven simultaneously.

(0] The DRAM Write Enable signal

(0] The DRAM Output Enable signal

—

This input signal, when low, makes all the output
signals on the interface go high impedance.

Not: on-chip data processing is not stopped when

the DRAM interface is high impedance. So, errors
will occur if the chip attempts to access DRAM write
DRAM_ enable is low.

US 2003/0196078 Al

Oct. 16, 2003

56

[0843] In accordance with the present invention, the inter-
face is configurable in two ways:

[0844] The detail timing of the interface can be
configured to accommodate a variety of different
DRAM types

[0845] The “width” of the DRAM interface can be
configured to provide a cost/performance trade-off in
different applications.

[0846] A.5.3 Configuring the DRAM interface

[0847] Generally, there are three groups of registers asso-
ciated with the DRAM interface: interface timing configu-
ration registers, interface bus configuration registers and
refresh configuration registers. The refresh configuration
registers (registers in Table A.5.1) should be configured last.

[0848] A.5.3.1 Conditions after reset

[0849] After reset, the DRAM interface, in accordance
with the present invention, starts operation with a set of
default timing parameters (that correspond to the slowest
mode of operation). Initially, the DRAM interface will
continually execute refresh cycles (excluding all other trans-
fers). This will continue until a value is written into
Refresh_interval. The DRAM interface will then be able to
perform other types of transfer between refresh cycles.

[0850] A.5.3.2 Bus configuration

[0851] Bus configuration (registers in Table A.5.3) should
only be done when no data transfers are being attempted by
the interface. The interface is placed in this condition
immediately after reset, and before a value is written into
refresh_interval. The interface can be re-configured later, if
required, only when no transfers are being attempted. See
the Temporal Decoder chip_access register (A.18.3.1) and
the Spatial Decoder buffer_manager access register
(A13.1.1).

[0852] A.5.3.3 Interface Timing Configuration

[0853] In accordance with the present invention, modifi-
cations to the interface timing configuration information are
controlled by the interface_timing_access register. Writing 1
to this register allows the interface timing registers (in Table
A.5.2) to be modified. While interface, 5 timing, 5 access=1,
the DRAM interface continues operation with its previous
configuration. After writing 1, the user should wait until 1
can be read back from the interface timing access before
writing to any of the interface timing registers.

[0854] When configuration is compete, 0 should be writ-
ten to the interface_timing_access. The new configuration
will then be transferred to the DRAM interface.

[0855] A.5.3.4 Refresh Configuration

[0856] The refresh interval of the DRAM interface of the
present invention can only be configured once following
reset. Until refresh_interval is configured., the interface
continually executes refresh cycles. This prevents any other
data transfers. Data transfers can start after a value is written
to refresh_interval.

[0857] As is well known in the art, DRAMs typically
require a “pause” of between 100 us and 500 uAs after
power is first applied, followed by a number of refresh
cycles before normal operation is possible. Accordingly,
these DRAM start-up requirements should be satisfied
before writing a value to refresh_interval.

[0858] A.5.3.5 Read Access to Configuration Registers

[0859] All the DRAM interface registers of the present
invention can be read at any time.

[0860] A.5.4 Interface Timing (ticks)

[0861] The DRAM interface timing is derived from a
Clock which is running at four times the input Clock rate of

the device (decoder_clock). This clock is generated by an
on-chip PLL.

[0862] For brevity, periods of this high speed clock are
referred to as ticks.

TABLE A5.2

Register name

Interface timing configuration registers

Size/Dir. Reset State Description

interface__timing access

page_start_ length

transfer_ cycle_ length

refresh__cycle_length

RAS_ falling

1 0
bit

This function enable register allows access to
the DRAM interface timing configuration
registers. The configuration registers should not
be modified while this register holds the value
0. Writing a one to this register requests access
to modify the configuration registers. After a 3
has been written to this register the DRAM
interface will start to use the new values in the
timing configuration registers.

Specifies the length of the access start in ticks.
The minimum value that can be used is 4
(meaning 4 ticks). O selects the maximum
length of 32 ticks.

Specifies the length of the last page read or
while cycle in ticks. The minimum value that can
be used is 4 (meaining 4 ticks). O selects the
maximum length of 16 ticks.

Specifies the length of the refresh cycle in ticks.
The minimum value that can be used is 4

be used is 4 (meaining 4 ticks). O selects the
maximum length of 16 ticks.

Specifies the number of ticks after the start of
the access start that RAS falls. The minimum

™

US 2003/0196078 Al
57

TABLE A.5.2-continued

Interface timing configuration registers

Register name Size/Dir. Reset State Description
value that can be used is 4 (meaining 4 ticks). 0
™w selects the maximum length of 16 ticks.
RAS_ falling 4 0 Specifies the number of ticks after the start of
bit the access start that RAS falls. The minimum
value that can be used is 4 (meaning 4 ticks). 0
™w selects the maximum length of 16 ticks.
CAS__falling 4 8 Specifies the number of ticks after the start of a
bit read cycle, write cycle or access start that CAS
falls. The minimum value that can be used is 1
W (meaning 1 tick). 0 selects the maximum length
of 16 ticks
[0863]
TABLE A.5.3

Interface bus configuration registers

Register name Size/Dev. Reset State Description
DRAM__data__width 2 0 Specifies the number of bits used on the DRAM
bit interface data bus DRAM_ data[31:0]. See
A5.6
™w
row__address__bits 2 0 Specifies the number of bits used for the row

bit address portion of the DRAM interface address
bus. See A.5.10

™w
DRAM, abie 1 1 Writing the value 0 in to this register forces the
bit DRAM interface into a high impedance state.
0 will be read from this register if either the
™w DRAM__enable signal is low or O has been
written to the register.
CAS_ strength 3 6 These three bit registers configure the output
RAS_ strength bit drive strength of DRAM interface signals.
addr__strength This allows the interface to be configured for
OEWE__strength ™w various different loads.

See A.5.13

[0864] A.5.6 Interface Operation

[0865] The DRAM interface uses fast page mode. Three
different types of access are supported:

[0866] Read
[0867] Write

[0868] Refresh DRAM page.

Oct. 16, 2003

[0869] Each read or write access transfers a burst of 1 to
64 bytes to a single DRAM page address. Read and write
transfers are not mixed within a single access and each

successive access is treated as a random access to a new

TABLE A5.4

Refresh configuration registers

Description

Register name Size/Dev. Reset State
refresh_interval 8 0

bit

™w

This value specifies the interval between
refresh cycles in periods of 16 decoder__clock
cycles. Values in the range 1..255 can be
configured. The value 0 is automatically loaded
after reset and forces the DRAM interface to
continuously execute refresh cycles until a val-
id refresh interval is configured. It is
recommended that refresh interval should be

configured only once after each reset.

US 2003/0196078 Al

TABLE A.5.4-continued

Oct. 16, 2003

Refresh configuration registers

Register name Size/Dev. Reset State Description

no_ refresh 1 0

™

Writing the value 1 to this register prevents
bit execution of any refresh cycles.

[0870] A.5.7 Access Structure

[0871] Each access is composed of two parts:
[0872] Access start
[0873] Data transfer

[0874] Inthe present invention, each access begins with an
access start and is followed by one or more data transfer-
cycles. In addition, there is a read, write and refresh variant
of both the access start and the data transfer cycle.

[0875] Upon completion of the last data transfer for a
particular access, the interface enters its default state (see
A.5.7.3) and remains in this state until a new access is ready
to begin. If a new access is ready to begin when the last
access has finished, then the new access will begin imme-
diately.

[0876] A.5.7.1 Access Start

[0877] The access start provides the page address for the
read or write transfers and establishes some initial signal
conditions. In accordance with the present invention, there
are three different access starts:

[0878] Start of read
[0879] Start of write
[0880] Start of refresh

TABLE A5.5

DRAM Interface timing parameters

Num. Characteristic Min. Max. Unit Notes

5 RAS precharge period set by register 4 16 DCK
RAS_ falling

6 Access start duration set by register 4 32
page__start_length

7 CAS precharge length set by register 1
CAS__falling.

8 Fast page read or write cycle length 4 16
set by the register
transfer_ cycle_ length.

9 Refresh cycle length set by the 4 16
register refresh__cycle.

16 2

This value must be less than RAS_ falling to ensure CAS before RAS
refresh occurs.

[0881] In each case, the timing of RAS and the row
address is controlled by the registers RAS falling and
page_start_length. The state of OE and DRAM_data[31:0]
is held from the end of the previous data transfer until
**RAS falls. The three different access start types only vary
in how they drive OE and DRAM_data[31:0] when RAS
falls. See FIG. 43.

[0882] A.5.7.2 Data Transfer

[0883] In the present invention, there are different types of
data transfer cycles:

[0884] Fast page read cycle
[0885] Fast page late write cycle
[0886] Refresh cycle

[0887] A start of refresh can only be followed by a single
refresh cycle. A start of read (or write) can be followed by
one or more fast page read (or write) cycles. At the start of
the read cycle CAS is driven high and the new column
address is driven.

[0888] Furthermore, an early write cycle is used. WE is
driven low at the start of the first write transfer and remains
low until the end of the last write transfer. The output data
is driven with the address.

[0889] As a CAS before RAS refresh cycle is initiated by
the start of refresh cycle, there is no interface signal activity
during the refresh cycle. The purpose of the refresh cycle is
to meet the minimum RAS low period required by the
DRAM.

[0890] A.5.7.3 Interface Default State

[0891] The interface signals in the present invention enter
a default state at the end of an access:

[0892] RAS, CAS and WE high
[0893] data and OE remain in their previous state
[0894]
[0895] A.5.8 Data Bus Width

[0896] The two bit register, DRAM_data_width, allows
the width of the DRAM interface’s data path to be config-
ured. This allows the DRAM cost to be minimized when
working with small picture formats.

addr remains stable

TABLE A.5.6

Configuring DRAM__data_ width

DRAM_ data_ width

0? 8 bit wide data bus on DRAM__data[31:24]
1 16 bit wide data bus on DRAM__data[31:16]°
2 32 bit wide data bus on DRAM__data[31:0].

“Default after reset.
®Unused signals are held high impedance.

US 2003/0196078 Al

[0897] A.5.9 Row Address Width

[0898] The number of bits that are taken from the middle
section of the 24 bit internal address in order to provide the
row address is configured by the register, row_address_bits.

[0899] A.5.10 Address Bits

[0900] On-chip, a 24 bit address is generated. How this
address is used to form the row and column addresses
depends on the width of the data bus and the number of bits
selected for the row address. Some configurations do not
permit all the internal address bits to be used and, therefore,
produce “hidden bits)”.

[0901] Similarly, the row address is extracted from the
middle portion of the address. Accordingly, this maximizes
the rate at which the DRAM is naturally refreshed.

TABLE A5.8

Mapping between internal and external addresses

row row address data
address translation bus
width internal = external width

column address translation
internal = external

9 [14:6] =[8:0] 8 [19:15] = [10:6] [5:0] =>+0 [5:0™
16 [20:15] =[10:5] [5:1] =>+0 "4:0]
32 [21:15] = [10:4] [5:2] = [3:0]
10 [15:6] = [9:0] 8 119:16] =[10:6] [5:0] =+0 “5:0]
16 [20:16] =[10:5] [5:1] =>+0 "4:0]
32 [21:16] =[10:4] [5:2] = [3:0]
11 [15:6] = [10:0] 8 [19:17] =[10:5] [5:0] =+0 [5:0]
16 [20:17] = [10:5] [5:1] =-+0 [4:0]
32 [21:17] =[10:4] [5:2] =+0 [3:0]

[0902] A.5.10.1 Low Order Column Address Bits

[0903] The least significant 4 to 6 bits of the column
address are used to provide addresses for fast page mode
transfers of up to 64 bytes. The number of address bits
required to control these transfers will depend on the width
of the data bus (see A.5.8).

[0904] A.5.10.2 Decoding Row Address to Access More
DRAM Banks

[0905] Where only a single bank of DRAM is used, the
width of the row address used will depend on the type of
DRAM used. Applications that require more memory than
can be typically provided by a single DRAM bank, can
configure a wider row address and then decode some row
address bits to select a single DRAM bank.

[0906] NOTE: The row address is extracted from the
middle of the internal address. If some bits of the row
address are decoded to select banks of DRAM, then all
possible values of these “bank select bits” must select a bank
of DRAM. Otherwise, holes will be left in the address space.

[0907] A.5.11 DRAM Interface Enable

[0908] In the present invention, there are two ways to
make all the output signals on the DRAM interface become
high impedance, i.e., by setting the DRAM_enable register
and the DRAM-enable signal. Both the register and the
signal must be at a logic 1 in order for the drivers on the
DRAM interface to operate. If either is low then the inter-
face is taken to high impedance.

[0909] Note: on-chip data processing is not terminated
when the DRAM interface is at high impedance. Therefore,

Oct. 16, 2003

errors will occur if the chip attempts to access DRAM while
the interface is at high impedance.

[0910] In accordance with the present invention, the abil-
ity to take the DRAM interface to high impedance is
provided to allow other devices to test or use the DRAM
controlled by the Spatial Decoder (or the Temporal Decoder)
when the Spatial decoder (or the Temporal Decoder) is not
in use. It is not intended to allow other devices to share the
memory during normal operation.

[0911] A.5.12 Refresh

[0912] Unless disabled by writing to the register, no_re-
fresh, the DRAM interface will automatically refresh the
DRAM using a CAS before RA refresh cycle at an interval
determined by the register, refresh_interval.

[0913] The value in refresh_interval specifies the interval
between refresh cycles in periods of 16 decoder_clock
cycles. Values in the range 1.255 can be configured. The
value O is automatically loaded after reset and forces the
DRAM interface to continuously execute refresh cycles
(once enabled) until a valid refresh interval is configured. It
is recommended that refresh_interval should be configured
only once after each reset.

[0914] While reset is asserted, the DRAM interface is
unable to refresh the DRAM. However, the reset time
required by the decoder chips is sufficiently short, so that it
should be possible to reset them and then to re-configure the
DRAM interface before the DRAM contents decay.

[0915] A.13 Signal Strengths

[0916] The drive strength of the outputs of the DRAM
interface can be configured by the user using the 3 bit
registers, CAS_strength, RAS strength, addr_strength,
DRAM_data_strength, and OEWE_strength. The MSB of
this 3 bit value selects either a fast or slow edge rate. The two
less significant bits configure the output for different load
capacitances.

[0917] The default strength after reset is 6 and this con-
figures the outputs to take approximately 10 ns to drive a
signal between GND and Vp, if loaded with 24, F.

TABLE A.5.9

Output strength configurations

strength value Drive characteristics

Approx. 4 ns/V into 6 pf load

Approx. 4 ns/V into 12 pf load
Approx. 4 ns/V into 24 pf load
Approx. 4 ns/V into 48 pf load
Approx. 2 ns/V into 6 pf load

Approx. 2 ns/V into 12 pf load
Approx. 2 ns/V into 24 pf load
Approx. 2 ns/V into 48 pf load

®

~ R W= O

Default after reset

[0918] Table A.5.9 output strength configurations

[0919] a. Default after reset

[0920] When an output is configured appropriately for the
load it is driving, it will meet the AC electrical character-
istics specified in Tables A.5.13 to A.5.16. When appropri-

US 2003/0196078 Al

ately configured, each output is approximately matched to
its load and, therefore, minimal overshoot will occur after a
signal transition.

[0921] A.5.14 Electrical Specifications

[0922] All information provided in this section is merely
illustrative of one embodiment of the present invention and
is included by example and not necessarily by way of
limitation.

TABLE A.5.10

Maximum Ratings?

Symbol Parameter Min. Max. Units

Vb Supply voltage relative to -0.5 6.5 \%
GND

Vin Input voltage on any pin GND + 0.5 Vpg +0.5V

Tx Operating temperature -40 -85 °C.

Ty Stroage temperature -55 -150 °C.

[0923] Table A.5.10 sets forth maximum ratings for the
illustrative embodiment only. For this particular embodi-
ment stresses below those listed in this table should be used
to ensure reliability of operation.

TABLE A5.11

DC Operating conditions

Symbol Parameter Min. Max. Units

Vop Supply voltage relative to 4.75 5.25 \%
GND

GND Ground 0 0 v

Vi Input logic ‘1’ voltage 2.0 Voo — 0.5 v

Vi Input logic ‘0’ voltage GND - 0.5 0.8 \%

Ta Operating temperature 0 70 *C?

*With TBA linear ft/min transverse airflow

Oct. 16, 2003

[0925] A.5.14.1 AC Characteristics

TABLE A5.13

Differences from nominal values for a strobe

[0924]
TABLE A.5.12

DC Flectrical characteristics
Symbol Parameter Min. Max. Units
Voo Output logic ‘0" voltage 04 Vv°
Vou Output logic ‘1 voltage 2.8 v
Io Output current +100 ,uAb
Ioz Output off state leakage current =20 UA
I, Input leakage current =10 UA
Ino RMS power supply current 500 mA
Cw Input capacitance 5 pF
Cout Output/IO capacitance 5 pF

#AC parameters are specified using Vo . = 0.8 V as the measurement
level.

This is the steady state drive capability of the interface. Transient currents
may be much greater.

Num. Parameter Min. Max. Unit Note®
10 Cycle time -2 +2 ns
11 Cycle time -2 +2 ns
12 High pulse -5 +2 ns
13 Low pulse -1 +2 ns
14 Cycle time -8 +2 ns

2As will be appreciated by one of ordinary skill in the art, the driver
strength of the signal must be configured appropriately for its load.

[0926]
TABLE A5.14
Differences from nominal values between two strobes
Num. Parameter Min. Max. Unit Note®
15 Strobe to strobe delay -3 +3 ns
16 Low hold time -13 +3 ns

17 Strobe to strobe precharge e.g. tCRP, -9 +3 ns
tRCS, tRCH, tRRH, tRPC
CAS precharge pulse between any -5 +2 ns
two CAS signals on wide DRAMS
e.g. tCP, or between RAS rising
and CAS falling e.g. tRPC

18 Precharge before disable -12 +3 ns

The driver strength of the two signals must be configured appropriately
for their loads.

[0927]
TABLE A.5.15
Differences from nominal between a bus and a strobe
Num. Parameter Min. Max. Unit Note?
19 Set up time -12 +3 ns
20 Hold time -12 +3 ns
21 Address -12 +3 ns
access time
22 Next valid -12 +3 ns

after strobe

*The driver strength of the bus and the strobe must be configured appro-
priately for their loads.

[0928]
TABLE A.5.16
Differences from nominal between a bus and a strobe
Num. Parameter Min. Max. Unit Note
23 Read data set-up time before 0 ns
CAS signal starts to rise
24 Read data hold time after 0 ns

CAS signal starts to go high

[0929] When reading from DRAM, t he DRAM interface
samples DRAM_data[31:0] as the CAS signals rise.

US 2003/0196078 Al

TABLE A.5.17

Cross-reference between “standard” DRAM
parameter names and timing parameter numbers

parameter parameter parameter
name number name number name number
tPC 10 tRSH 16 tRHCP 18

tCPRH

tRC 11 tCSH tASR 19
tRP 12 tRWL tASC
tCP tCWL tDS
tCPN tRAC tRAH 20
tRAS 13 tOAC/tOE tCAH
tCAS tCHR tDH
tCAC tCRP 17 tAR
tWP tRCS tAA 21
tRASP tRCH tRAL
tRASC tRRH tRAD 22
tACP/tCPA 14 tRPC
tRCD 15 tCP
tCSR tRPC

[0930] SECTION A.6 Microprocessor Interface (MPI)

[0931] A standard byte wide microprocessor interface
(MPI) is used on all chips in the video decoder chip-set.
However, one of ordinary skill in the art will appreciate that
microprocessor interfaces of other widths may also be used.
The MPI operates synchronously to various decoder chip
clocks.

[0932] A.6.1 MPI Signals

TABLE A6.1

MPT interface signals

Input/

Signal Name Output Description

enable[1:0] Input Two active low chip enables. Both must be low to
enable accesses via the MPL

™w Input High indicates that a device wishes to read values
from the video chip.
This signal should be stable while the chip is
enabled.

addr[n:0] Input Address specifies one of 2” locations in chips
memory map.
This signal should be stable while the chip is
enabled.

data[7:0] Output 8 bit wide data I/O port. These pins are high
impedance if either enable signal is high

irq Output An active low, open collector, interrupt request

signal.

[0933] A.6.2 MPI electrical Specifications

TABLE A6.2

Absolute Maximum Ratings?

Symbol Parameter Min. Max. Units

Voo Supply voltage relative to -0.05 65 V
GND

Vin Input logic on any pin GND-05 Vp,+05 V

Tx Operating temperature -0 +85 *C

Ty Storage temperature -55 +150 *C

61

Oct. 16, 2003

[0934]
TABLE A.6.2
Absolute Maximum Ratings®
Symbol Parameter Min. Max. Units
Vop Supply voltage relative to 4.75 5.25 \%
GND
GND Ground 0 0 v
Viu Input logic ‘1" voltage 2.0 Vpp + 0.5 V@
Vi Input logic ‘0’ voltage GND - 0.5 0.8 V@
T, Operating temperature 0 70 *CP
2AC input parameters are measured at a 1.4 V measurement level.
bWith TBA linear ft/min transverse airflow.
[0935]
TABLE A.6.4
DC Electrical characteristics
Symbol Parameter Min. Max. Units
VoL Output logic “0” voltage 04 V
\ Open collector output logic ‘0’ 04 V¢
voltage
Vou Output logic “1” voltage 2.4 \%
Iy Output current +100 HAP
Ioo Open collector output current 4.0 8.0 mA®
Ioz Output off state leakage current =20 uA
I Input leakage current =10 uA
Inp RMS power supply current 500 mA
C Input capacitance 5 pF
Cour Output/IO capacitance 5 pF
15 = 1onum

This is the steady state drive capability of the interface. Transient currents
may be much greater.

“When asserted the open collector irq output pulls down with an imped-
ance of 100 Q or less.

[0936]

TABLE A.6.5

Microprocessor interface read timing

Num. Characteristic Min. Max. Unit Notes®
25 Enable low period 100 ns
26 Enable high period 50 ns
27 Address or rw set-up to 0 ns
chip enable
28 Address or tw hold from chip 0 ns
disable
29 Output turn-on time 20 ns
30 Read data access time 70 ns b
31 Read data hold time 5 ns
32 Read data turn-off time 20

*The choice, in this example, of enable[0] to start the cycle and enable[1]
to end it is arbitrary. These signal are of equal status.
"The access time is specified for a maximum load of 50 pF on each of the
data[7.0]. Larger loads may increase the access time.

US 2003/0196078 Al

[0937]

TABLE A.6.6

Microprocessor interface write timing

Num. Characteristic Min. Max. Unit Notes
33 Write data set-up time 15 ns 2
34 Write data hold time 0 ns

The choice, in this example, of enable [0] to start the cycle and enable
[1] to end it is arbitrary. These signal are of equal status.

[0938] A.6.3 Interrupts

[0939] In accordance with the present invention, “event”
is the term used to describe an on-chip condition that a user
might want to observe. An event can indicate an error or it
can be informative to the user’s software.

[0940] There are two single bit registers associated with
each interrupt or. “event”. These are the condition event
resister and the condition mask register.

[0941] A.6.3.1 Condition Event Register

[0942] The condition event register is a one bit read/write
register whose value is set to one by a condition occurring
within the circuit. The register is set to one even if the
condition was merely transient and has now gone away. The
register is then guaranteed to remain set to one until the
user’s software resets it (or the entire chip is reset).

[0943] The register is set to zero by writing the value
one

[0944] writing zero to the register leaves the register
unaltered.

[0945] The register must be set to zero by user
software before another occurrence of this condition
can be observed.

[0946] The register will be reset to zero on reset.

[0947] A.6.3.2 Condition Mask Register

[0948] The condition mask register is one bit read/write
register which enables the generation of an interrupt request
if the corresponding condition event register(s) is(are) set. If
the condition event is already set when 1 is written to the
condition mask register, an interrupt request will be issued
immediately.

[0949] The value 1 enables interrupts.
[0950] The register clears to zero on reset.

[0951] Unless stated otherwise a block will stop operation
after generating an interrupt request and will re-start opera-
tion after either the condition event or the condition mask
register is cleared.

[0952] A.6.3.3 Event and Mask Bits

[0953] Event bits and mask bits are always grouped into
corresponding bit positions in consecutive bytes in the
memory map (see Table A.9.6 and Table A.17.6). This
allows interrupt service software to use the value read from
the mask registers as a mask for the value in the event
registers to identify which event generated the interrupt.

62

Oct. 16, 2003

[0954] A.6.3.4 The Chip Event and Mask

[0955] Each chip has a single “global” event bit that
summarizes the event activity on the chip. The chip event
register presents the OR of all the on-chip events that have
1 in their mask bit.

[0956] A1 in the chip mask bit allows the chip to generate
interrupts. A O in the chip mask bit prevents any on-chip
events from generating interrupt requests.

[0957] Writing 1 to O to the chip event has no effect. It will
only clear when all the events (enabled by a 1 in their mask
bit) have been cleared.

[0958] A.6.3.5 The Irq Signal

[0959] The irq signal is asserted if both the chip event bit
and the chip event mask are set.

[0960] The irq signal is an active low, “open collector”
output which requires an off-chip pull-up resistor. When
active the irq output is pulled down by an impedance of 100
€ or less.

[0961] T will be appreciated that pull-up resistor of
approximately 4k€2 should be suitable for most applications.

[0962] A.6.4 Accessing Registers
[0963] A.6.4.1 Stopping Circuits to Enable Access

[0964] In the present invention, most registers can only
modified if the block with which they are associated is
stopped. Therefore, groups of registers will normally be
associated with an access register.

[0965] The value O in an access register indicates that the
group of registers associated with that access register should
not be modified. Writing 1 to an access register requests that
a block be stopped. However, the block may not stop
immediately and block’s access register will hold the value
0 until it is stopped.

[0966] Accordingly, user software should wait (after writ-
ing 1 to request access) until 1 is read from the access
register. If the user writes a value to a configuration register
while its access register is set to 0, the results are undefined.

[0967] A.6.4.2 Registers Holding Integers

[0968] The least significant bit of any byte in the memory
map is that associated with the signal data[0].

[0969] Registers that hold integers values greater than 8
bits are split over either 2 or 4 consecutive byte locations in
the memory map. The byte ordering is “big endian” as
shown in FIG. 55. However, no assumptions are made about
the order in which bytes are written into multi-byte registers.

[0970] Unused bits in the memory map will return a 0
when read except for unused bits in registers holding signed
integers. In this case, the most significant bit of the register
will be sign extended. For example, a 12 bit signed register
will be sign extended to fill a 16 bit memory map location
(two bytes). A 16 bit memory map location holding a 12 bit
unsigned integer will return a O from its most significant bits.

[0971] A.6.4.3 Keyholed Address Locations

[0972] 1In the present invention, certain less frequently
accessed memory map locations have been placed behind
“keyholes”. A “keyhole” has two-registers associated with it,
a keyhole address register and a keyhole data register.

US 2003/0196078 Al

[0973] The keyhole address specifies a location within an
extended address space. A read or a write operation to the
keyhole data register accesses the-location specified by the
keyhole address register.

[0974] After accessing a keyhole data register the associ-
ated keyhole address register increments. Random access
within the extended address space is only possible by
writing a new value to the keyhole address register for each
access. A chip in accordance with the present invention, may
have more than one “keyholed” memory map. There is no
interaction between the different keyholes.

[0975] A.6.5 Special Registers
[0976] A.6.5.1 Unused Registers

[0977] Registers or bits described as “not used” are loca-
tions in the memory map that have not been used in the
current implementation of the device. In general, the value
0 can be read from these locations. Writing O to these
locations will have no effect.

[0978] As will be appreciated by one of ordinary skill in
the art, in order to maintain compatibility with future vari-
ants of these products, it is recommended that the user’s
software should not depend upon values read from the
unused locations. Similarly, when configuring the device,
these locations should either be avoided or set to the value
0.

[0979] A.6.5.2 Reserved Registers

[0980] Similarly, registers or bits described as “reserved”
in the present invention have un-documented effects on the
behavior of the device and should not be accessed.

[0981] A.6.5.3 Test Registers

[0982] Furthermore, registers or bits described as “test
registers” control various aspects of the device’s testability.
Therefore, these registers have no application in the normal
use of the devices and need not be accessed by normal
device configuration and control software.

[0983] Section A.7 Clocks

[0984] In accordance with the present inventions, many
different clocks can be identified in the video decoder
system. Examples of clocks are illustrated in FIG. 56.

[0985] As data passes between different clock regimes
within the video decoder chip-set, it is resynchronized
(on-chip) to each new clock. In the present invention, the
maximum frequency of any input clock is 30 MH,. How-
ever, one of ordinary skill in the art will appreciate that other
frequencies, including those greater than 30 MHz, may also
be used. On each chip, the microprocessor interface (MPI)
operates asynchronously to the chip clocks. In addition, the
Image Formatter can generate a low frequency audio clock
which is synchronous to the decoded video’s picture rate.
Accordingly, this clock can be used to provide audio/video
synchronization.

Oct. 16, 2003

[0986] A.7.1 Spatial Decoder Clock Signals

[0987] The Spatial Decoder has two different (and poten-
tially asynchronous) clock inputs:

TABLE A.7.1

Spatial Decoder clocks

Input/

Signal Name Output Description

This clock controls data transfer in to the coded
data port of the Spatial Decoder.

On-chip this clock controls the processing of
the coded data until it reaches the coded data
buffer.

The decoder clock controls the majority of the
processing functions on the Spatial Decoder.
The decoder clock also controls the transfer of
data out of the Spatial Decoder through

its output port.

coded__clock Input

decoder__clock Input

[0988] A.7.2 Temporal Decoder Clock Signals
[0989] Temporal Decoder has only one clock input:

TABLE A.7.2

Temporal Decoder clocks

Input/

Signal Name Output Description

decoder__clock Input The decoder clock controls all of the processing
functions on the Temporal Decoder.

The decoder clock also controls transfer of data
in to the Temporal Decoder through its input

port and out via its output port.

[0990] A.7.3 Electrical Specifications

TABLE A.7.3

Input clock requirements

30 MHz
Num. Characteristic Min. Max. Unit Note
35 Clock period 33 ns
36 Clock high period 13 ns
37 Clock low period 13 ns
[0991]
TABLE A.7.4
Clock input conditions
Symbol Parameter Min. Max. Units
Vi Input logic ‘1’ voltage 3.68 Vop+0.5V
\'%3 Input logic ‘0’ voltage GND - 0.5 143V
Ioz Input leakage current 10 HA
[0992] A.7.3.1 CMOS Levels
[0993] The clock input signals are CMOS inputs. Vg, .0

is approx. 70% of V, and Vi ... is approx. 30% of V.
The values shown in Table A.7.4 are those for Vi and V.
at their respective worst case Vpp. Vpp=5.020.25V

US 2003/0196078 Al

[0994] A.7.3.2 Stability of Clocks

[0995] In the present invention, clocks used to drive the
DRAM interface and the chip-to-chip interfaces are derived
from the input clock signals. The timing specifications for
these interfaces assume that the input clock timing is stable
to within 100 ps.

[0996] Section A.8 JTAG

[0997] As circuit boards become more densely populated,
it is increasingly difficult to verify the connections between
components by traditional means, such as in-circuit testing
using a bed-of-nails approach. In an attempt to resolve the
access problem and standardize on a methodology, the Joint
Test Action Group (JTAG) was formed. The work of this
group culminated in the “Standard Test Access Port and
Boundary Scan Architecture”, now adopted by the IEEE as
standard 1149.1. The Spatial Decoder and Temporal
Decoder comply with this standard.

[0998] The standard utilizes a boundary scan chain which
serially connects each digital signal pin on the device. The
test circuitry is transparent in normal operation, but in test
mode the boundary scan chain allows test patterns to be
shifted in, and applied to the pins of the device. The resultant
signals appearing on the circuit board at the inputs to the
JTAG device, may be scanned out and checked by relatively
simple test equipment. By this means, the inter-component
connections can be tested, as can areas of logic on the circuit
board.

[0999] All JTAG operations are performed via the Test
Access Port (TAP), which consists of five pins. The frst (Test
Reset) pin resets the JTAG circuitry, to ensure that the device
doesn’t power-up in test mode. The tck (Test Clock) pin is
used to clock serial test patterns into the tdi (Test Data Input)
pin, and out of the tdo (Test Data Output) pin. Lastly, the
operational mode of the JTAG circuitry is set by clocking the
appropriate sequence of bits into the tms (Test Mode Select)
pin.

[1000] The JTAG standard is extensible to provide for
additional features at the discretion of the chip manufacturer.
On the Spatial Decoder and Temporal Decoder, there are 9
user instructions, including three JTAG mandatory instruc-
tions. The extra instructions allow a degree of internal
device testing to be performed, and provide additional
external test flexibility. For example, all device outputs may
be made to float by a simple JTAG sequence.

[1001] For full details of the facilities available and
instructions on how to use the JTAG port, refer to the
following JTAG Applications Notes.

[1002] A.8.1 Connection of JTAG Pins in Non-JTAG
Systems

TABLE A8.1

How to connect JTAG inputs

Signal Direction Description

trst Input This pin has an internal pull-up, but must be taken
low at power-up even if the JTAG features are not
being used. This may be achieved by connecting
trst in common with the chip reset pin teset.

tdi Input These pins have internal pull-ups. and may be left

tms disconnected if the JTAG circuitry is not being used.
tck Input This pin does not have a pull-up, and should be tied
to ground if the JTAG circuitry is not used

Oct. 16, 2003

TABLE A.8.1-continued

How to connect JTAG inputs

Signal Direction Description

tdo Output High impedance except during JTAG scan
operations. If JTAG is not being used, this pin may

be left disconnected.

[1003] A.8.2 Level of Conformance to IEEE 1149.1
[1004] A.8.2.1 Rules

[1005] All rules are adhered to, although the following
should be noted:

TABLE A.8.2
JTAG Rules

Rules Description

3.1.1(b) The trst pin is provided.

3.5.1() Guaranteed for all public instructions. (see)EEE 1149.1
5.2.1(c)).

5.2.1(c) Guaranteed for all public instructions. For some private
instructions, the TDO pin may be active during any of the
states Capture-DR, Exit1-DR, Exit-2-DR & Pause-DR.

5.3.1(a) Power on-reset is achieved by use of the trst pin.

6.2.1(e,) A code for the BYPASS instruction is loaded in the
Test-Logic-Reset state.

7.1.1(d) Un-allocated instruction codes are equivalent to BYPASS.

7.2.1(c) There is no device ID register.

7.8.1(b) Single-step operation requires external control of the system
clock.

7.9.1(..) There is no RUNBIST facility.

7.11.1(...) There is no IDCODE instruction.

7.12.1(...) There is no USERCODE instruction.

8.1.1(b) There is no device indentification register.

8.2.1(c) Guaranteed for all public instructions. The apparent
length of the path from tdi to tdo may
change under certain
circumstances while private instruction codes are loaded.

8.3.1(d, e) Guaranteed for all public instructions. Data may be
loaded at times other than on the rising
edge of tck while private
instructions codes are loaded.

10.4.1(e) During INTEST, the system clock pin must be controlled
externally.

10.5.1(c) During INTEST, output pins are controlled by data shifted
in via tdi.

[1006] A.8.2.2 Recommendations

TABLE A.8.3

Recommendations met

Recommendation Descritption

3.2.1(b) tck is a high-impedance CMOS input.
3.3.1(c) tms has a high-impedance pull-up.
3.6.1(d) (Applies to use of chip).
3.7.1(a) (Applies to use of chip).
6.1.1(e) The SAMPLE/PRELOAD instruction code is loaded
during Capture-IR.
7.2.1() The INTEST instruction is supported.
7.7.1(g) Zeros are loaded at system output pins
during EXTEST.
7.7.2(h) All system outputs may be set high-impedance.
7.8.1(f) Zeros are loaded at system input pins during INTEST.
8.11(d, e) Design-specific test data registers are not publicly

accessible.

US 2003/0196078 Al

[1007]

TABLE A8.4

Recommendations not implemented

Recommendation Descritption

10.4.1(5) During EXTEST, the signal driven into the on-chip
logic from the system clock pin is that supplied

externally.

65

Oct. 16, 2003

[1008] A.8.2.3 Permissions

TABLE A.8.5

Permissions met

Permissions Description

3.2.1(c) Guaranteed for all public instructions.

6.1.1(f) The instruction register is not used to capture design-
specific information.

7.2.1(g) Several additional public instructions are provided.

7.3.1(a) Several private instruction codes are allocated.

7.3.1(c) (Rule?) Such instructions codes are documented.

7.4.1(f) Additional codes perform identically to BYPASS.

10.1.1(1) Fach output pin has its own 3-state control.

10.3.1(h) A parallel latch is provided.

10.3.1(i,j) During EXTEST, input pins are controlled by data
shifted in via tdi.

10.5.1(d, e) 3-state cells are not forced inactive in the Test-Logic-Reset

state.

[1009] A.9.1 Spatial Decoder Signals

TABLE A9.1

Spatial Decoder Signals

Signal Name I/O Pin Number Description
coded__clock I 182 Coded Data Port Used to supply
coded__data[7:0] I 172, 171, 169, 168, 167, 166, 164, coded data or Tokens to the Spatial
163 Decoder.
coded__extn I 174 See sections A.10.1 and
coded__valid 1 162 A4l
coded__accept O 161
byte__mode 1 176
enable[1:0] I 126,127 Micro Processor Interface (MPI).
™w I 125 See section A.6.1
addi 6:0] I 136, 135, 133, 132,
131, 130, 128
data[7:0] O 152, 151, 149, 147,
145, 143, 141, 140
irq o 154
DRAM_ data[31:0] /O 15,17, 19, 20, 22, 25, 27, 30, 31, DRAM Interface.
33, 35, 38, 39, 42, 44, 47, 49, 57, See section A.5.2
59, 61, 63, 66, 68, 70, 72, 74, 76,
79, 81, 83, 84, 85
DRAM__addi 10:0] O 184, 186, 188, 189, 192, 193, 195,
197, 199, 200, 203
RAS o 11
CAS[3:0] O 2,4,6,8
WE o 12
OE O 204
DRAM__enable 1 112
out_ data[8:0] O 88,89,90,92,93,94,95,97,98 Output Port.
out__extn O 87 See section A.4.1
out_ valid o 99
out__accept I 100
tex I 115 JTAG port.
tei I 116 See section A.8
tco O 120
tms I 117
frst I 121
decoder__clock 1 177 The main decoder clock. See section
AT
Tesel I 160 Reset.

US 2003/0196078 Al Oct. 16, 2003

66
[1010]
TABLE A.9.2-continued
TABLE A9.2
Spatial Decoder Test signals
Spatial Decoder Test signals
Signal Name [/O Pin Number Description Signal Name I/O Pin Number Description
tphO%sh I 122 If ox.lerride =1 then tphpish and tphlish loops are disabled.
tphlish I 123 are inputs for the on-chip two phase
clock. Set pliselect = 1 for normal operation.
override I 110 For normal operation set override = 0. ti I 180 Two clocks required by the DRAM
tphOish and tphlish are ignored (so tq I 179 interface during test operation.
i connec.t to GND or Vpp,). i Connect to GND or V1, during normal
chiptest I 11 Set chiptest = 0 for normal operation. .
tloop I 114 Connect to GND or Vp,, during normal operation.
operation. pdout O 207 These two pins are connections for an
ramtest I 109 If ramtest = 1 test of the on-chip pdin I 206 external filter for the phase lock loop.
RAMs is enabled.
Set ramtest = 0 for normal operation.
pliselect I 178 If pllselect = O the on-chip phase locked
[1011]
TABLE A9.3
Spatial Decoder Pin Assignment;
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
nc 208 nc 156 nc 104 nc 52
test pin 207 nc 155 nc 103 nc 51
test pin 206 irq 154 nc 102 nc 50
GND 205 nc 153 VDD 101 DRAM_ data[15] 49
OE 204 data[7] 152 out_accept 100 nc 48
DRAM_ addi0] 203 data[6] 151 out_valid 99 DRAM__data[16] 47
VDD 202 nc 150 out_data[0] 98 nc 46
nc 201 data[5] 149 out_data[1] 97 GND 45
DRAM_addf1] 200 nc 148 GND 96 DRAM_date[17] 44
DRAM_ addi2] 199 data[4] 147 out_data[2] 95 nc 43
GND 198 GND 146 out_data[3] 94 DRAM_date[18] 42
DRAM_ addi] 3] 197 data[3] 145 out_data[4] 93 VDD 41
nc 196 nc 144 out_data[5] 92 nc 40
DRAM_addf4] 195 date[2] 143 VDD 91 DRAM_data[19] 39
VDD 194 nc 142 out_data[6] 90 DRAM__data[20] 38
DRAM_ addi5] 193 data[1] 141 out_ data[7] 89 nc 37
DRAM_ addi 6] 192 data[0] 140 out_data[8] 88 GND 36
nc 191 nc 139 out_extn 87 DRAM__data[21] 35
GND 190 VDD 138 GND 86 nc 34
DRAM_addf7] 189 nc 137 DRAM_ data[0] 85 DRAM data[22] 33
DRAM_addf8] 188 addi6] 136 DRAM_ data[1] 84 VDD 32
VDD 187 addi5] 135 DRAM_ data[2] 83 DRAM_data[23] 31
DRAM_addf9] 186 GND 134 VDD 82 DRAM_data[24] 30
nc 185 addi[4] 133 DRAM_ data[3] 81 nc 29
DRAM_addf10] 184 addi[3] 132 ne 80 GND 28
GND 183 addf2] 131 DRAM_ data[4] 79 DRAM_date[25] 27
coded__clock 182 addf1] 130 GND 78 nc 26
VDD 181 VDD 129 nc 77 DRAM_ data[26] 25
test pin 180 addf0] 128 DRAM_ data[5] 76 nc 24
test pin 179 enable[0] 127 nc 75 VDD 23
test pin 178 enable[1] 126 DRAM_ data[6] 74 DRAM__data[27] 22
decoder__clock 177 w 125 VDD 73 nc 21
byte__mode 176 GND 124 DRAM_ data[7] 72 DRAM__data[28] 20
GND 175 test pin 123 nc 71 DRAM__data[29] 19
coded__extn 174 test pin 122 DRAM_ data[8] 70 GND 18
nc 208 nc 156 nc 104 nc 52
test pin 207 nc 155 nc 103 nc 51
test pin 206 irq 154 nc 102 nc 50
GND 205 nc 153 VDD 101 DRAM_ data[15] 49
OE 204 data[7] 152 out_accept 100 nc 48
DRAM_ addi0] 203 data[6] 151 out_valid 99 DRAM__data[16] 47
VDD 202 nc 150 out_ data[0] 98 nc 46
nc 201 data[5] 149 out_data[1] 97 GND 45
DRAM_addf1] 200 nc 148 GND 96 DRAM_date[17] 44
DRAM_ addi2] 199 data[4] 147 out_ data[2] 95 nc 43
GND 198 GND 146 out_data[3] 94 DRAM_date[18] 42

DRAM_ addi] 3] 197 data[3] 145 out_data[4] 93 VDD 41

US 2003/0196078 Al

Oct. 16, 2003

67
TABLE A.9.3-continued
Spatial Decoder Pin Assignments
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
ne 196 nc 144 out_ data[5] 92 nc 40
DRAM_addi4] 195 data[2] 143 VDD 91 DRAM_data[19] 39
VDD 194 nc 142 out_ data[6] 90 DRAM_ data[20] 38
DRAM.__addi[5] 193 data[1] 141 out_data[7] 89 nc 37
DRAM__addi[6] 192 data[0] 140 out_ data[8] 88 GND 36
ne 191 ne 139 out_extn 87 DRAM_ data[21] 35
GND 190 VDD 138 GND 86 nc 34
DRAM_addf7] 189 nc 137 DRAM_data[0] 85 DRAM_ data[22] 33
DRAM_addi[8] 188 addi[6] 136 DRAM_data[1] 84 VDD 32
VDD 187 addi[5] 135 DRAM_data[2] 83 DRAM data[23] 31
DRAM.__addi[9] 186 GND 134 VDD 82 DRAM_ data[24] 30
ne 185 addi[4] 133 DRAM_ data[3] 81 nc 29
DRAM_addi10] 184 addi[3] 132 ne 80 GND 28
GND 183 addi[2] 131 DRAM_data[4] 79 DRAM_data[25] 27
coded__clock 182 addi[1] 130 GND 78 nc 26
VDD 181 VDD 129 nc 77 DRAM_ data[26] 25
test pin 180 addi[0] 128 DRAM_ data[5] 76 nc 24
test pin 179 enable[0] 127 nc 75 VDD 23
test pin 178 enable[1] 126 DRAM_ data[6] 74 DRAM_ data[27] 22
decoder_clock 177 1w 125 VDD 73 nc 21
byte__mode 176 GND 124 DRAM_data[7] 72 DRAM_data[28] 20
GND 175 test pin 123 nc 71 DRAM_ data[29] 19
coded__extn 174 test pin 122 DRAM_ data[8] 70 GND 18
nc 173 trst 121 GND 69 DRAM_ data[30] 17
coded__data[7] 172 tdo 120 DRAM_ data[9] 68 nc 16
coded__data[6] 171 nc 119 nc 67 DRAM_ data[31] 15
VDD 170 VDD 118 DRAM_ data[10] 66 VDD 14
coded__data[5] 169 tms 117 VDD 65 nc 13
coded_ data[4] 168 tdi 116 nc 64 WE 12
coded__data[3] 167 tck 115 DRAM_data[11] 63 RAS 11
coded__data[2] 166 test pin 114 nc 62 nc 10
GND 165 GND 113 DRAM_ data[12] 61 GND 9
coded_ data[1] 164 DRAM_enable 112 GND 60 CAS[0] 8
coded__data[0] 163 test pin 111 DRAM_ data[13] 59 nc 7
coded__valid 162 test pin 110 nc 58 CAS[1] 6
coded__accept 161 test pin 109 DRAM_ data[14] 57 VDD 5
reset 160 nc 108 VDD 56 CAS[2] 4
VDD 159 nc 107 nc 55 nc 3
nc 158 nc 106 nc 54 CAS[3] 2
nc 157 nc 105 nc 53 nc 1

[1012] A.9.1.1 “nc” no Connect Pins

[1013] The pins labeled nc in Table A.9.3 are not currently
used these pins should be left unconnected.

[1014] A.9.1.2 V and GND Pins

[1015] As will be appreciated by one of ordinary skill in
the art, all the V5 and GND pins provided should be
connected to the appropriate power supply. Correct device
operation cannot be ensured unless all the V, and GND
pins are correctly used.

[1016] A.9.1.3 Test Pin Connections for Normal Opera-
tion Nine pins on the Spatial Decoder are reserved for
internal test use.

TABLE A9.4

Default test pin connections

Pin number Connection

Connect to GND for normal operation
Connect to Vg, for normal operation
Leave Open Circuit for normal operation

[1017] A.9.1.4 JTAG Pins for Normal Operation

[1018] See section A.8.1.

[1019] A.9.2 Spatial Decoder Memory Map

TABLE A.9.5

Overview of Spatial Decoder memory map

Addr. (hex) Register Name See table
0x00 ... 0x03 Interrupt service area A9.6
0x04 ... 0x07 Input circuit regiters A9.7
0x08 ... 0xOF Start code detector registers

0x10 ... 0x15 Buffer start-up control registers A9.8
0x16...0x17 Not used

0x18 ... 0x23 DRAM interface configuration registers A9.9
0x24 ...0x26 Buffer manager access and keyhole registers A.9.10
0x27 Not used

0x28 ... 0x2F Huffman decoder registers A9.13
0x30...0x39 Inverse quantiser registers A9.14
0x3A ... 0x3B Not used

0x3C Reserved

0x3D . .. 0x3F Not used

0x40 ... 0x7F Test registers

US 2003/0196078 Al

[1020]

TABLE A9.6

Addr.
(hex)

Bit
num.

Interrupt service area registers

Page
Register Name

references

0x00 7

0x01

0x02

[

0x03

O =N WA U 3O =

chip__event CED_EVENT_0

not used

illegal_length_count_event
SCD_ILLEGAL_LENGTH__COUNT
reserved may read 1 or 0

SCD__JPEG_ OVERLAPPING _START
overlapping__start__event
SCD__NON_JPEG__OVERLAPPING__
START

unrecognised__start__event
SCD__UNRECOGNISED_ START
stop__after_ picture__event
SCD__STOP__AFTER _PICTURE
non__aligned__start__event
SCD__NON__ALIGNED_ START
chip__mask CED_MASK_0

not used

illegal_length_count__mask

reserved write O to this location
SCD__JPEG_OVERLAPPING__START
non__jpeg_overlapping start__mask
unrecognised__start__mask
stop__after__picture__mask
non__aligned_ start_ mask
idct__too__few__event IDCT_DEFF_NUM
idct__too__many__event IDCT_SUPER__NUM
accept__enable__event BS_ STREAM__END__
EVENT

target__met__event BS_ TARGET_MET__
EVENT
counter__flushed__too__early__event
BS_FLUSH_BEFORE_TARGET_ MET
EVENT

counter__flushed__event BS_ FLUSH__
EVENT

parser__event DEMUX_ EVENT
huffman__event HUFFMAN__EVENT
idct__too__few__mask
idct__too__many__mask
accept__enable__mask

target__met__mask

counter_ flushed_ too__early__mask
counter__flushed__mask

parser__mask

huffman_ mask

[1021]

TABLE A.9.7

Addr.
(hex)

Bit

num.

Start code detector and input circuit registers

Register Name Page references

0x04

0x05
0x06
0x07
0x08

coded__busy
enable__mpi__input
coded__extn

not used

coded__data

not used

not used

not used

start__code_ detector__access
also input__circuit__access
CED__SCD__ACCESS

Oct. 16, 2003

TABLE A.9.7-continued

Start code detector and input circuit registers

Addr. Bit
(hex) num. Register Name Page references
0x09 7:4 not used CED__SCD_ CONTROL
3 stop__after__picture
2 discard__extension_ data
1 discard__user_ data
0 Ignore_non__aligned
0x0A 7:5 not used CED__SCD__STATUS
4 insert__sequence__start
3 discard__all_ data
2:0 start_code__search
0x0B 7:0 Test register length_ count
0x0C 7:0
0x0D 7.2 not used
1:0 start__code__detector__coding ,ndarg
0x0E 7:0 start_ value
0x0F 7:4 not used
3:0 picture__number
[1022]
TABLE A.9.8
Buffer start-up registers
Addr. Bit Page
(hex) num. Register Name references
0x10 71 not used
0 startup__access CED__BS_ ACCESS
0x11 7.3 not used
2:0 bit_count_prescale CED_BS__PRESCALE
0x12 7:0 bit_count_target CED_BS_TARGET
0x13 7.0 bit_count CED_BS_COUNT
0x14 7:1 not used
0 offchip__queue CED_BS__QUEUE
0x15 71 not used
0 enable_ stream
CED_BS_ENABLE_NXT_STM
[1023]
TABLE A.9.9
DRAM interface configuration registers
Addr. Bit Page
(hex) num. Register Name references
0x18 7:5 not used
4:0 page_start_length
CED_IT_PAGE_START_LENGTH
0x19 7:4 not used
3.0 read_cycle_length
0x1A 7:4 not used
3:0 write_cycle_length
0x1B 7:4 not used
3:0 refresh_ cycle_ length
0x1C 7:4 not used
3.0 CAS_falling
0x1D 7:4 not used
3:0 RAS_ falling
0x1E 71 not used
0 Interface__timing_access
0x1F 7:0 refresh_interval
0x20 7 not used
6.4 DRAM_ addr_strength[2:0]
3:1 CAS_strength[2:0]
0 RAS_ stength[2]

US 2003/0196078 Al Oct. 16, 2003
69
TABLE A.9.9-continued TABLE A.9.11-continued
DRAM interface configuration registers Buffer manager extended address space
Addr. Bit Page Addr. Bit
(hex) num. Register Name references (hex) num. Register Name Page references
0x21 7:6 RAS_ strength[1:0] 0x1C 7.0 not used
5:3 DEWE_ stength[2:0] 0x1D 7:0 tb__number
2:0 DRAM_ data_ strengthf[2:0] 0x1E 7:0
0x22 7 ACCESS bit for pad strength etc.?not 0x1F 7:0
used CED__DRAM_ CONFIGURE 0x20 7.0 not used
6 zero__buffers 0x21 7.0 buffer_limit
5 DRAM__enable 0x22 7.0
4 no_ refresh 0x23 7.0
3:2 row_address_bits[1:0] 0x24 T:4 not used
1:0 DRAM_ data_ width[1:0] 3 cdb_ full
0x23 7:0 Test registers CED__PLL__RES__ CONFIG 2 cdb__empty
1 tb__full
0 tb__empty
[1024]
TABLE A.9.10 [1026]
Buffer manager access and keyhole registers TABLE A.9.12
Addr. Bit Page Video demux registers
(hex) num. Register Name references
Addr. Bit Page
0x24 7:1 not used (hex) num. Register Name references
0 buffer__manager__access
0x25 7:6 not used 0x28 7 demux__access CED_H__CTRL[7]
5:0 buffer__manager_keyhole_ address 6:4 huffman__error__code_[2:0]CED_H_ CTRL
0x26 7:0 buffer__manager_keyhole_data [6:4]
3:0 private huffman control bits [3] selects special
CBP, [2] selects ¥& bit fixed length CBP
0x29 7:0 parser__error__code CED__H_ DMUX_ ERR
[1025] 0x2A 74 not used
3:0 demux_keyhole_address
0x2B 7:0 CED_H_ keyhole_ ADDR
TABLE A.9.11 0x2C 7:0 dmux_ keyhole__data CED__H_KEYHOLE
0x2D 7 dummy__last__picture CED__H__ALU_REGO,
Buffer manager extended address space r_dummy last frame_bit
] 6 field_info CED_H_ ALU_REGO,
Addr. Bit] r_field_, . bit
(hex) num. Register Name Page references 5:1 not used e
0 continue CED__H_ ALU_ REGO__continue_ ;
0x00 0 not used 0x2E 70 rom_revision CED_H_ALU_REG1 .
0x01 72 . .
1:0 odb_ base 0x2F 7:0 private register]]
0x02 7.0 - 0x2F 7 CED_H_TRACE__EVENT write 1 to single
) step, one will be read when the step has
0x03 7:0
0x04 7:0 not used been completed
005 7.2 6 CED?H?ITRACEiMASK set to one
1:0 cdb_length to enter single step mode
) — 5 CED_H__TRACE__RST partial reset
0x06 7:0
) when sequenced 1, 0
0x07 7:0 4:0 not used
0x08 7:0 not used i
0x09 7:0 cdb__read
0x0A 7:0
0x0B 7:0
0x0C 7:0 not used [1027]
0x0D 7:0 cdb__number
0x0E 7:0 TABLE A.9.13
0x0F 7:0
0x10 7:0 not used Video demux extended address space
0x11 7:0 tb__base
0x12 7:0 Addr. Bit Page
0x13 7:0 (hex) num. Register Name references
0x14 7:0 not used
0x15 7:0 tb__length 0x00 7:0 not used
0x16 7:0 Ox0F
0x17 7:0 0x10 7:0 horiz_pels r_horiz_ pels
0x18 7:0 not used 0x11 7:0
0x19 7:0 tb__read 0x12 7:0 vert_pels r_vert_pels
Ox1A 7:0 0x13 7:0
0x1B 7:0 0x14 7:2 not used

US 2003/0196078 Al Oct. 16, 2003

70
TABLE A.9.13-continued TABLE A.9.13-continued
Video demux extended address space Video demux extended address space
Addr. Bit Page Addr. Bit Page
(hex) num. Register Name references (hex) num. Register Name references
1:0 buffer_ size r_buffer_size 0x63
0x15 7:0 0x40 7:0 r_dc_pred_0
0x16 7:4 not used 0x41 7:0
3:0 pel_aspect r_pel_aspect 0x42 7:0 r_dc_pred_1
0x17 7:2 not used 0x43 7:0
1:0 bit_rate r_bit_rate 0x44 7:0 r_dc_pred_2
0x18 7.0 0x45 7:0
0x19 7:0 0x46 7:0 r_dc_pred_3
Ox1A 7:4 not used 0x47 7:0
3:0 pic__rate r__pic_ rate 0x48 7:0 not used
0x1B 71 not used 0x4F
0 constrained r__constrained 0x50 7:0 r_prev_mhf
0x1C 7:0 picture_type 0x51 7:0
0x1D 7:0 h261_ pic_ type 0x52 7:0 r_prev_mvf
0x1E 7:2 not used 0x53 7:0
1:0 broken_closed 0x54 7:0 r_prev_mhb
0x1F 75 not used 0x55 7:0
4:0 prediction_ mode 0x56 7:0 r_prev__mvb
0x20 7:0 vbv_delay 0x57 7:0
0x21 7.0 0x58 7:0 not used
0x22 7:0 private register MPEG full__pel__fwd, JPEG 0xSF
pending frame_ change 0x60 7:0 r_horiz__mbent
0x23 7:0 private register MPEG full_pel_bwd, JPEG 0x61 7:0
restart__index 0x62 7:0 r_vert__mbent
0x24 7:0 private register horiz__mb__copy 0x63 7:0
0x25 7:0 pic__number 0x64 7:0 horiz_ macroblocks r__horiz_ mbs
0x26 71 not used 0x65 7:0
1:0 max_h 0x66 7:0 vert__macroblocks r__vert__mbs
0x27 71 not used 0x67 7:0
1:0 max_ v 0x68 7:0 private register r_restart_ cnt
0x28 7:0 private revtster scratchl 0x69 7:0
0x29 7:0 private register scratch2 0x6A 7:0 restart_interval r_restart_int
0x2A 7:0 private register scratch3 0x6B 7:0
0x2B 7:0 Nf MPEG unused 1, H261 ingob 0x6C 7:0 private register r_blk_h_cnt
0x2C 7:0 private register MPEG first__group, JPEG 0x6D 7:0 private register r_blk_v_cnt
first__scan 0x6E 7:0 private register r__compid
0x2D 7:0 private register MPEG in_ picture 0x6F 7:0 max_ component_id r__max_ compid
0x2E 7 dummy__last__picture r__rom__control 0x70 7:0 coding_standard r__coding_std
6 field__info 0x71 7:0 private register r__pattern
5:1 not used 0x72 7:0 private register r__fwd_r_ size
0 continue 0x73 7:0 private register r_bwd_r_ size
0x2F 7.0 rom__revision 0x74 7:0 not used
0x30 7:2 not used 0x77
1:0 dc_huff 0 0x78 7.2 not used
0x31 7:2 not used 1:0 blocks_h Or blk h 0
1:0 dc_huff 1 0x79 7:2 not used
0x32 7:2 not used 1:0 blocks_h 1r blk h 1
1:0 dc_huff 2 0x7A 7.2 not used
0x33 7:2 not used 1:0 blocks_h 2r blk h 2
1:0 dc_huff. 3 0x7B 7:2 not used
0x34 7:2 not used 1:0 blocks_h 3r blk h 3
1:0 ac_huff 0 0x7C 7:2 not used
0x35 7:2 not used 1:0 blocks_ v.0r blk v_0
1:0 ac_huff 1 0x7D 7:2 not used
0x36 7:2 not used 1:0 blocks_v_1r blk v 1
1:0 ac_huff 2 0x7E 7:2 not used
0x37 7:2 not used 1:0 blocks_ v_2r blk v 2
1:0 ac_huff 3 0x7F 7:2 not used
0x38 7:2 not used 1:0 blocks_ v_3r blk v 3
1:0 to_0_r tq_0 0x7F 7:0 not used
0x39 7:2 not used OxFF
1:0 tq_1 1 tq_1 0x100 7.0 de_bits_ 0[15.0] CED_H_KEY_DC_ ppq
0x3A 7:2 not used 0x10F
1:0 tq 2 1 tq 2 0x110 7.0 de_bits 1[15.0] CED_H_KEY_DC_ (pp,
0x3B 7:2 not used 0x11F
1:0 tq_3_r tq_3 0x120 7:0 not used
0x3C 7.0 component_name_0Or_c_0 0x13F
0x3D 7:0 component_name_ 11 ¢ 1 0x140 7:0 ac_bits_ 0[15.0] CED_H_KEY_AC_ cpp,
0x3E 7.0 component_name_2r_c_2 O0x14F
0x3F 7:0 component_name 31 ¢ 3 0x150 7:0 ac_bits_ 1[15.0] CED_H_KEY_AC_ cpp;

0x40 7:0 private registers 0x15F

US 2003/0196078 Al

Oct. 16, 2003

71
TABLE A.9.13-continued TABLE A.9.13-continued
Video demux extended address space Video demux extended address space
Addr. Bit Page Addr. Bit Page
(hex) num. Register Name references (hex) num. Register Name references
0x160 7:0 not used 0xAC 70 CED_KEY_DMX_WORD_S5
0x17F 5
0x180 7.0 dc__zssss_0 0xAC 70 CED_KEY_DMX_ WORD_ 6
CED_H_KEY_ZSSSS_ nprxo 6
0x181 7.0 dc__zssss_1 0xAC 70 CED_KEY_DMX_ WORD_7
CED_H_KEY_ZSSSS_ pnpext 7
0x182 7.0 not used 0xAC 70 CED_KEY_DMX_ WORD_8
0x187 8
0x188 7.0 ac_eob_0 CED_H_KEY_EOB_INDEX0 0xAC 70 CED_KEY_DMX_WORD_9
0x189 7.0 ac_eob_1 CED_H_KEY_EOB_INDEX1 9
0x18A 70 not used 0xAC 70 not used
0x18B A
0x18C 7.0 ac_zrl_0 CED_H_KEY_ ZRL._INDEXO0 0xAC
0x18D 7:0 ac_zrl_1 CED_H_KEY_ZRIL_INDEX1 B
0x18E 7.0 not used 0xAC 70 CED_KEY_DMX__AINCR
0x1FF C
0x200 7:0 ac_huffval_0[161:0] 0xAC 70
CED_H_KEY_AC_ 100 0 D
0x2AF 0xAC 70 CED_KEY_DMX_CC
0x2B0 7:0 dc_huffval_0[11:0] E
CED_H_KEY_DC_ 1000 0XAC 70
0x2BF F
0x2C0 70 not used
0x2FF
0x300 7:0 ac_huffval_1[161:0] [1028]
CED_H_KEY_AC_ oo 1
0x3AF TABLE A.9.14
0x3B0 7:0 dc_huffval_1[11:0]
CED_H_KEY_DC_ 101 Inverse quantiser registers
0x3BF
0x3C0 7:0 not used Addr. Bit Page
0x7FF (hex) num. Register Name references
0x800 7:0 private registers
0XAC 7:1 not used
F 0x30 7:1 not used
0x800 7.0 CED_KEY_TCOEFF_CPB 0 lo_aceess
0xSOF 0x31 7:2 notused
0x810 70 CED_KEY_CBP_CPB 1:0 lo_coding_standard
0x81F 0x32 7:5 not used
0x820 7:0 CED_KEY_ MBA_CPB 4:0 test register io__scale
0x82F 0x33 7:2 notused
0x830 70 CED_KEY_ MVD_CPB 1:0 test register io__component
0x83F B B B 0x34 7:2 notused
0x840 7:0 CED_KEY MTYPE I _CPB 1:0 test register inverse__quantiser_prediction__
0x84F mode
0x850 70 CED_KFEY_ MTYPE_ P CPB 0x35 7:0 test register jpeg_indirection
0xS5F 0x36 7:2 notused
0x860 7:0 CED_KEY MTYPE_B_CPB 1:0 test register mpeg indirection
0xS6F 0x37 7:0 not used
0x870 7:0 CED._ KEY MTYPE_H.261 CPB 0x38 7:0 io_table_ keyhole_ address
0xS7F 0x39 7:0 io_table_keyhole_data
0x880 7:0 not used
0x900
0x901 7.0 CED_KEY_HDSTROM_0 [1029]
0x902 7.0 CED_KEY_HDSTROM_ 1
0x903 7.0 CED_KEY_HDSTROM_ 2 TABLE A.9.15
0x90F
0x910 7:0 not used Iq table extended address space
0xAB
E Addr.
0xAC 7.0 CED_KEY_DMX_WORD_0 (hex) Register Name Page references
0
0xAC 7.0 CED_KEY_DMX_WORD_1 0x00:0x3F JPEG Inverse quantisation table 0
1 MPEG default intra table
0xAC 7:0 CED KEY DMX WORD 2 0x40:0x7F JPEG Inverse quantisation table 1
2 o o - o MPEG default non-intra table
0xAC 7:0 CED_KEY DMX_ WORD. 3 0x80:0xBF JPEG Inverse quantisation table 2
3 MPEG down-loaded intra table
0xAC 7.0 CED KEY DMX WORD 4 0xC0.0xFF JPEG Inverse quantisation table 3

MPEG down-loaded non-intra table

US 2003/0196078 Al

[1030] Section A.10 Coded Data Input

[1031] The system in accordance with the present inven-
tion, must know what video standard is being input for
processing. Thereafter, the system can accept either pre-
existing Tokens or raw byte data which is then placed into
Tokens by the Start Code Detector.

[1032] Consequently, coded data and configuration
Tokens can be supplied to the Spatial Decoder via two
routes:

[1033] The coded data input port
[1034] The microprocessor interface (MPI)

[1035] The choice over which route(s) to use will depend
upon the application and system environment. For example,
at low data rates it might be possible to use a single
microprocessor to both control the decoder chip-set and to
do the system bitstream de-multiplexing. In this case, it may
be possible to do the coded data input via the MPI. Alter-
natively, a high coded data rate might require that coded data
be supplied via the coded data port.

[1036] In some applications it may be appropriate to
employee a mixture of MPI and coded data port input.

[1037] A.10.1 The Coded Data Port

TABLE A.10.1

Coded data port signal

Input/
Signal Name Output Description
coded__clock Input A clock operator at up to 30 MHZ controll-

ing the operation of the input circuit.
The standard 11 wires required to
implement a

coded_data[7:0] Input

coded__extn Input Token Port transferring 8 bit data values.
See section

coded_ valid Input A.4 for an electrical description of this

coded__accept Output interface.
Circuits off-chip must package the coded
data into Tokens.

byte__mode Input When high this signal indicates trial

information is to be transferred
across the coded data port in byte
mode rather than Token mode.

[1038] The coded data port in accordance with the present
invention, can be operated in two modes: Token node and
byte mode.

[1039] A.10.1.1 Token Mode

[1040] In the present invention, if byte_mode is low, then
the coded data port operates as a Token Port in the normal

Oct. 16, 2003

way and accepts Tokens under the control of coded_valid
and coded_accept. See section A.4 for details of the elec-
trical operation of this interface.

[1041] The signal byte_mode is sampled at the same time
as data [7:0], coded_extn and coded_valid, i.e., on the rising
edge of coded_clock.

[1042] A.10.1.2 Byte Mode

[1043] If, however, byte_mode is high, then a byte of data
is transferred on data[7:0] under the control of the two wire
interface control signals coded valid and coded_accept. In
this case, coded_extn is ignored. The bytes are subsequently
assembled on-chip into DATA Tokens until the input mode
is changed.

[1044] 1)First word (“Head”) of Token supplied in
token mode.

[1045] 2)Last word of Token supplied (coded_extn
goes low).

[1046] 3)First byte of data supplied in byte mode. A
new

[1047] DATA Token is automatically created on-chip.
[1048] A.10.2 Supplying Data Via the MPI

[1049] Tokens can be supplied to the Spatial decoder via
the MPI by accessing the coded data input registers.

[1050] A.10.2.1 Writing Tokens Via the MPI

[1051] The coded data registers of the present invention
are grouped into two bytes in the memory map to allow for
efficient data transfer. The 8 data bits, coded_data[7:0], are
in one location and the control registers, coded_busy,
enable_mpl_input and coded_extn are in a second location.

[1052] (See Table A.9.7).

[1053] When configured for Token input via the MPIL, the
current Token is extended with the current value of cod-
ed_extn each time a value is written into coded_data[7:0].
Software is responsible for setting coded_extn to 0 before
the last word of any Token is written to coded_data[7:0].

[1054] For example, a DATA Token is started by writing
1 into coded_extn and then Ox04 into coded_data[7:0]. The
start of this new DATA Token then passes into the Spatial
Decoder for processing.

[1055] Each time a new 8 bit value is written to coded-
_data[7:0], the current Token is extended. Coded_extn need
only be accessed again when terminating the current Token,
e.g. to introduce another Token. The last word of the current
Token is indicated by writing 0 to coded_extn followed by
writing the last word of the current Token into coded_data
[7:0].

TABLE A10.2

Coded data input registers

Size/ Reset

Register name Dir. State Description

coded__extn 1 x Tokens can be supplied to the Spatial Decoder
™w via the MPI by writing to these registers.

coded__data[7:0] 8 x

US 2003/0196078 Al

TABLE A.10.2-continued

Oct. 16, 2003

Coded data input registers

Size/ Reset
Register name Dir. State Description

coded__busy 1 1

The state of this registers indicates if the

r Spatial Decoder is able to accept Tokens

written into coded_data[7:0].

The value 1 indicates that the interface is busy
and unable to accept data. Behaviour is

undefined if the user tries to write to

coded__data[7:0] when coded_busy =1

enable__mpl__input 1 0

The value in this function enable registers

™w controls whether coded data input to the Spatial
Decoder is via the coded data port (0) or via the

MPI (1).

[1056] Each time before writing to coded data[7:0], cod-
ed_busy should be inspected to see if the interface is ready
to accept more data.

[1057] A.10.3 Switching Between Input Modes

[1058] Provided suitable precautions are observed, it is
possible to dynamically change the data input mode. In
general, the transfer of a Token via any one route should be
completed before switching modes.

TABLE A.10.3

Start code Detector analyses data in the DATA Tokens bit
serially. The Detector’s normal rate of processing is one bit
per clock cycle (of coded_clock). Accordingly, it will typi-
cally decode a byte of coded data every 8 cycles of coded-
_clock. However, extra processing cycles are occasionally
required, e.g., when a non-DATA Token is supplied or when
a start code is encountered in the coded data. When such an
event occurs, the Start Code Detector will, for a short time,
be unable to accept more information.

Switching data input modes

Previous mode Next Mode Behaviour

Byte Token
MPI input

The on-chip circuitry will use the last byte supplied in @
byte mode as the last byte of the DATA Token that

it was constructing (i.e. the extn bit will be set to 0) @

Before accepting the next Token.
Token Byte

The off-chip circuitry supplying the Token in Token

mode is responsible for completing the Token i.e.
with the extn bit of the last byte of information set to

0) before selecting byte mode.
MPI input

Access to input via the MPI will not be granted i.e.

coded__busy will remain set to 1) until the off-chip
circuitry supplying the Token in Token mode has
completed the Token (i.e. with the extn bit of the last

byte of information set to 0).
MPI input Byte
MPI input

The control software must have completed the
Token (i.e. with the extn bit of the last byte of

information set to 0) before enable__mpi_ input is set

to 0.

@ indicates text missing or illegible when filed

[1059] The first byte supplied in byte mode causes a DATA
Token header to be generated on-chip. Any further bytes
transferred in byte mode are thereafter appended to this
DATA Token until the input mode changes. Recall, DATA
Tokens can contain as many bits as are necessary. The MPI
register bit, coded busy, and the signal, coded_accept, indi-
cate on which interface the Spatial decoder is willing to
accept data. Correct observation of these signals ensures that
no data is lost.

[1060] A.10.4 Rate of Accepting Coded Data

[1061] In the present invention, the input circuit passes
Tokens to the Start Code Detector (see section A.11). The

[1062] After the Start Code Detector, data passes into a
first logical coded data buffer. If this buffer fills, then the
Start Code Detector will be unable to accept more informa-
tion.

[1063] Consequently, no more coded data (or other
Tokens) will be accepted on either the coded data port, or via
the MPI, while the Start Code Detector is unable to accept
more information. This will be indicated by the state of the
signal coded accept and the register coded_busy.

[1064] By using coded_accept and/or coded busy,the user
is a guaranteed that no coded information will be lost.
However, as will be appreciated by one of ordinary skill in
the art, the system must either be able to buffer newly

US 2003/0196078 Al

arriving coded data (or stop new data for arriving) if the
Spatial decoder is unable to accept data.

[1065] A.10.5 Coded Data Clock

[1066] In accordance with the present invention, the coded
data port, the input circuit and other functions in the Spatial
Decoder are controlled by coded_clock. Furthermore, this
clock can be asynchronous to the main decoder_clock. Data
transfer is synchronized to decoder_clock on-chip. process-
ing is one bit per clock cycle (of coded_clock). Accordingly,
it will typically decode a byte of coded data every 8 cycles
of coded clock. However, extra processing cycles are occa-
sionally required, e.g., when a non-DATA Token is supplied
or when a start code is encountered in the coded data. When
such an event occurs, the Start Code Detector will, for a
short time, be unable to accept more information.

[1067] After the Start Code Detector, data passes into a
first logical coded data buffer. If this buffer fills, then the
Start Code Detector will be unable to accept more informa-
tion.

[1068] Consequently, no more coded data (or other
Tokens) will be accepted on either the coded data port, or via
the MPI, while the Start Code Detector is unable to accept
more information. This will be indicated by the state of the
signal coded_accept and the register coded busy.

[1069] By using coded_accept and/or coded_busy, the
user is guaranteed that no coded information will be lost.
However, as will be appreciated by one of ordinary skill in
the art, the system must either be able to buffer newly
arriving coded data (or stop new data for arriving) if the
Spatial decoder is unable to accept data.

[1070] A.10.5 Coded data clock

[1071] Inaccordance with the present invention, the coded
data port, the input circuit and other functions in the Spatial
Decoder are controlled by coded_clock. Furthermore, this

Oct. 16, 2003

clock can be asynchronous to the main decoder_clock. Data
transfer is synchronized to decoderclock on-chip.

[1072] SECTION A.11Start code detector
[1073] A.11.1 Start codes

[1074] As is well known in the art, MPEG and H.261
coded video streams contain identifiable bit patterns called
start codes. A similar function is served in JPEG by marker
codes. Start/marker codes identify significant parts of the
syntax of the coded data stream. The analysis of start/marker
codes performed by the Start Code Detector is the first stage
in parsing the coded data. The Start Code Detector is the first
block on the Spatial Decoder following the input circuit.

[1075] The start/marker code patterns are designed so that
they can be identified without decoding the entire bitstream.
Thus, they can be used in accordance with the present
invention, to help with error recovery and decoder start-up.
The Start Code Detector provides facilities to detect errors
in the coded data construction and to assist the start-up of the
decoder,

[1076] A.11.2 Start code detector registers

[1077] As previously discussed, many of the Start Code
Detector registers are in constant use by the Start Code
Detector. So, accessing these registers will be unreliable if
the Start Code Detector is processing data. The user is
responsible for ensuring that the Start Code Detector is
halted before accessing its registers.

[1078] The register start_code_detector access is used to
halt the Start Code Detector and so allow access to its
registers. The Start Code Detector will halt after it generates
an interrupt.

[1079] There are further constraints on when the start code
search and discard all data modes can be initiated. These are
described in A.11.8 and A.11.5.1.

TABLE A.11.1

Register name

Start code detector registers

Size/ Reset
Dir. State Description

start__code__detector__access

illegal__length__count__event

illegal_length_ count mask

jpeg_overlapping start__event

jpeg_overlapping start__mask

1 0 Writing 1 to this register requests that the start

™w code detector stop to allow access to its()
registers. The user should wait until the value®
can be read from this register indicating that
operation has stopped and access is possible

1 0 An illegal length count event will occur if while®

™w decoding JPEG data, a length count field is

1 0 found carrying a value less than 2. This should

™w only occur as the result of an error in the JPEG
data.
If the mask register is set to 1 then an interrupt
can be generated and the start code detector
will stop. Behaviour following an error is not
predictable if this error is suppressed (mask
register set to 0). see A.11.4.1

1 0 If the coding standard is JPEG and the

™w sequence OxFF OxFF is found while looking for

1 0 a marker code this event will occur.

™w This sequence is a legal stuffing sequence.

If the mask register is set to 1 then an interrupt
can be generated and the start code detector
will stop. See A.11.4.2

US 2003/0196078 Al

Oct. 16, 2003
75

TABLE A.11.1-continued

Register name

Start code detector registers

Size/ Reset
Dir. State Description

overlapping _start__event

overlapping start _mask

unrecognised__start__event
unrecognised__start__mask

start_ value

stop__after__picture__event
stop__after__picture__mask

stop__after__picture

non__aligned__start__event
non__aligned__start__mask

ignore_non__aligned

discard__extension_ data
discard__user__data

discard__all_ data

insertﬁsequenceistart

start__code__search

start__code__detector__coding_standard

1 0 If the coding standard is MPEG or H.261 and

™w an overlapping start code is found while looking

1 0 for a start code this event will occur. If the mask

™w register is set to 1 then an interrupt can be
generated and the start code detector will stop.
See A.11.4.2

1 0 If an unrecognised start code is encountered

™w this event will occur If the mask register is set

1 0 to 1 then an interrupt can be generated and the

™w start code detector will stop.

8 x The start code value read from the bitstream is

o available in the register start_value while the

start code detector is halted See A.11.4.3
During normal operation start_ value contains
the value of the most recently decoded start/
marker code.

Only the 4 LSBs of start__value are used during
H.261 operation. The 4 MSBs will be zero

1 0 If the register stop__after_picture is set to 1

™w then a stop after picture event will be generated
1 0 after the end of a picture has passed through
W the start code detector.

1 0 If the mask register is set to 1 then an interrupt
™w can be generated and the start code detector

will stop. See A.11.5.1

stop__after_ picture does not reset to O after
the end of a picture has been detected so
should be cleared directly.

1 0 When ignore_non_ aligned is set to 1 start
™w codes that are not byte aligned are ignored

1 0 (treated as normal data).

™w When ignore__non__aligned is set to 0 H.261
1 0 and MPEG start codes will be detected

™w regardless of byte alignment and the non-

aligned start event will be generated.

If the mask register is set to 1 then the event
will cause an interrupt and the start code
detector will stop. See A.11.6

If the coding standard is configured as JPEG
ignore__non_aligned is ignored and the non-
aligned start event will never be generated.

1 1 When these registers are set to 1 extension or
™w user data that cannot be decoded by the

1 1 Spatial Decoder is discarded by the start code
W detector. See A.11.3.3

1 0 When set to 1 all data and Tokens are

™w discarded by the start code detector. This

continues until a FLUSH Token is supplied or
the register is set to O directly.

The FLUSH Token that resets this register is
discarded and not output by the start code
detector. See A.11.5.1

1 1 See A11.7

™w

3 5 When this register is set to 0 the start code
™w detector operates normally When set to a

higher value the start code detector discards
data until the specified type of start code is
detected. When the specified start code is
detected the register is set to 0 and normal
operation follows. See A.11.3
2 0 This register configures the coding standard
™w used by the start code detector. The register
can be loaded directly or by using a
CODING_ STANDARD Token.
Whenever the start code detector generates a
CODING_STANDARD Token (see
A.11.7.4 (it carries its current
coding standard configuration. This Token will
then configure the coding standard used by all
other parts of the decoder chip-set. See A.21.1

US 2003/0196078 Al

TABLE A.11.1-continued

Oct. 16, 2003

Start code detector registers

Size/ Reset
Register name Dir. State Description
and A.11.7
picture__number 4 0 Each time the start coded detector detects a
™w picture start code in the data stream (or the

H.261 or JPEG equivalent) a
PICTURE__START Token is generated
which carries the current value of
picture__number. This register then

increments.

® indicates text missing or illegible when filed

[1080]
TABLE A.11.2
Start code detector test registers
Size/ Reset
Register name Dir. State Description

length_ count 16 0
0 the JPEG length count. This register is

This register contains the current value of

modified under the control of the coded
data clock and should only be read via

the MPI when the start code detector is
stopped.

[1081] A.11.3 Conversion of start codes to Tokens

[1082] In normal operation the function of the Start Code
Detector is to identify start codes in the data stream and to
then convert them to the appropriate start code Token. In the
simplest case, data is supplied to the Start code Detector in
a single long DATA Token. The output of the Start Code
Detector is a number of shorter DATA Tokens interleaved
with start code Tokens.

[1083] Alternatively, in accordance with the present
invention, the input data to the Start Code Detector could be
divided up into a number of shorter DATA Tokens. There is
no restriction on how the coded data is divided into DATA
Tokens other than that each DATA Token must contain 8xn
bits where n is an integer.

[1084] Other Tokens can be supplied directly to the input
of the Start Code Detector. In this case, the Tokens are
passed through the Start Code Detector with no processing
to other stages of the Spatial Decoder. These Tokens can
only be inserted just before the location of a start code in the
coded data.

[1085] A.11.3.1 Start code formats

[1086] Three different start code formats are recognized
by the Start Code Detector of the present invention. This is
configured via the register, start_code_detector_coding-
_standard.

TABLE A.11.3

Start code formats

Coding Standard ~ Start Code Pattern (hex) Size of start code value

MPEG 0x00 0x00 0x01 <value> 8 bit
JPEG OxFF <value> 8 bit
H.261 0x00 0x01 <value> 4 bit

[1087] A.11.3.2 Start code Tokcen equivalents

[1088] Having detected a start code, the Start Code Detec-
tor studies the value associated with the start code and
generates an appropriate Token. In general, the Tokens are
named after the relevant MPEG syntax. However, one of
ordinary skill in the art will appreciate that the Tokens can
follow additional naming formats. The coding standard
currently selected configures the relationship between start
code value and the Token generated. This relationship is
shown in Table A.11.4.

TABLE A.11.4

Tokens from start code values

Start Code Value

MPEG H.261 JPEG JPEG

Start code Token generated (hex) (hex) (hex) (name)
PICTURE__START 0x00 0x00 0xDA SCS
SLICE__START* 0x01 to 0x01 to 0xDO to RSTg to
OxAF 0x0C 0xD7 RST,
SEQUENCE__START 0xB3 0xD8 SOI
SEQUENCE__END 0xB7 0xD9 EOI
GROUP__START 0xB8 0xC0 SCF,°
USER_DATA 0xB2 OxEO to APP to
OxEF APP,
OxFE COM
EXTENSION__DATA 0xBS 0xC8 JPG
0xFO to JPGg to
OxFD JPGp
0xC2 to RES
OxBF
0xC1 to SCF; to
0xCB SCF,,
0xCC DAC
DHT_MARKER 0xC4 DHT
DNL_MARKER 0xDC DNL
DQT_MARKER 0xDB DQT
DRI_MARKER 0xDD DRI

2This Token contains an 8 bit data field which is loaded with a value

determined by the start code value.
Indicates start of baseline DCT encoded data.

US 2003/0196078 Al

[1089] a. This Token contains an 8 bit data field
which is loaded with a value determined by the start
code value.

[1090] b. Indicates start of baseline DCT encoded
data.

[1091] A.11.3.3 Extended features of the coding standards

[1092] The coding standards provide a number of mecha-
nisms to allow data to be embedded in the data stream whose
use is not currently defined by the coding standard. This
might be application specific “user data” that provides extra
facilities for a particular manufacturer. Alternatively, it
might be “extension data”. The coding standards authorities
reserved the right to use the extension data to add features
to the coding standard in the future.

[1093] Two distinct mechanisms are employed. JPEG pre-
cedes blocks of user and extension data with marker codes.
However, H.261 inserts “extra information” indicated by an
extra information bit in the coded data. MPEG can use both
these techniques.

[1094] In accordance with the present invention, MPEG/
JPEG blocks of user and extension data preceded by start/
marker codes can be detected by the Start Code Detector.
H.261/MPEG “extra information” is detected by the Huff-
man decoder of the present invention. See A.14.7, “Receiv-
ing Extra Information”.

[1095] The registers, discard extension data and discard
user data, allow the Start Code Detector to be configured to
discard user data and extension data. If this data is not
discarded at the Start Code Detector it can be accessed when
it reaches the Video Demux see A.14.6, “Receiving User and
Extension data”.

[1096] The Spatial Decoder of the present invention sup-
ports the baseline features of JPEG. The non-baseline fea-
tures of JPEG are viewed as extension data by the Spatial
Decoder. So, all JPEG marker codes that precede data for
non-baseline JPEG are treated as extension data.

[1097] A.b 11.3.4 JPEG Table definitions

[1098] JPEG supports down loaded Huffman and quan-
tizer tables. In JPEG data, the definition of these tables is
preceded by the marker codes DNL and DQT. The Start
Code Detector generates the Tokens DHT _MARKER and
DQT_MARKER when these marker codes are detected.
These Tokens indicate to the Video Demux that the DATA
Token which follows contains coded data describing Huff-
man or quantizer table (using the formats described in
JPEG).

[1099] A.11.4 Error detection

[1100] The Start Code Detector can detect certain errors in
the coded data and provides some facilities to allow the
decoder to recover after an error is detected (see A.11.8,
“Start code searching”).

[1101] A.11.4.1 llegal JPEG length count

[1102] Most JPEG marker codes have a 16 bit length count
field associated with them. This field indicates how much
data is associated with this marker code. Length counts of O
and 1 are illegal. An illegal length should only occur
following a data error. In the present invention, this will
generate an interrupt if illegal length count mask is set to 1.

Oct. 16, 2003

[1103] Recovery from errors in JPEG data is likely to
require additional application specific data due to the diffi-
culty of searching for start codes in JPEG data (see
A11.8.1).

[1104] A.11.4.2 Overlapping start/marker codes

[1105] In the present invention, overlapping start codes
should only occur following a data error. An MPEG, byte
aligned, overlapping start code is illustrated in FIG. 64.
Here, the Start Code Detector first sees a pattern that looks
like a picture start code. Next the Start Code Detector sees
that this picture start code is overlapped with a group start.
Accordingly, the Start Code Detector generates a overlap-
ping start event. Furthermore, the Start Code Detector will
generate an interrupt and stop if overlapping_start_mask is
set to 1.

[1106] Tt is impossible to tell which of the two start codes
is the correct one and which was caused by a data error.
However, the Start Code Detector in accordance with the
present invention, discards the first start code and will
proceed decoding the second start code “as if it is correct”
after the overlapping start-code event has been serviced. If
there are a series of overlapped start codes, the Start Code
Detector will discard all but the last (generating an event for
each overlapping start code).

[1107] Similar errors are possible in non byte-aligned
systems (H.261 or possibly MPEG). In this case, the state of
ignore_non_aligned must also be considered. FIG. 65 illus-
trates an example where the first start code found is byte
aligned, but it overlaps a non-aligned start code. If
ignore_non_aligned is set to 1, then the second overlapping
start code will be treated as data by the Start Code Detector
and, therefore no overlapping start code event will occur.
This conceals a possible data communications error. If
ignore_non_aligned is set to 0, however the Start Code
Detector will see the second, non aligned, start code and will
see that it overlaps the first start code.

[1108] A.11.4.3 Unrecognized start codes

[1109] The Start Code Detector can generate an interrupt
when an unrecognized start code is detected (if unrecog-
nized_start_mask=1). The value of the start code that caused
this interrupt can be read from the register start™ value.

[1110] The start code value 0xB4 (sequence error) is used
in MPEG decoder systems to indicate a channel or media
error. For example, this start code may be inserted into the
data by an ECC circuit if it detects an error that it was unable
to correct.

[1111] A.11.4.4 Sequence of event generation

[1112] In the present invention, certain coded data patterns
(probably indicating an error condition) will cause more
than one of the above error conditions to occur within a short
space of time. Consequently, the sequence in which the Start
Code Detector examines the coded data for error conditions
is:

[1113] 1)Non-aligned start codes

[1114] 2)Overlapping start codes

[1115] 3)Unrecognized start codes

[1116] Thus, if a non-aligned start code overlaps another,
later, start code, the first event generated will be associated

US 2003/0196078 Al

with the non-aligned start code. After this event has been
serviced, the Start Code Detector’s operation will proceed,
detecting the overlapped start code a short time later.

[1117] The Start Code Detector only attempts to recognize
the start code after all tests for non-aligned and overlapping
start codes are complete.

[1118] A.11.5 Decoder start-up and shutdown

[1119] The Start Code Detector provides facilities to allow
the current decoding task to be completed cleanly and for a
new task to be started.

[1120] There are limitations on using these techniques
with JPEG coded video as data segments can contain values
that emulate marker codes (see A.11.8.1).

[1121] A.11.5.1 Clean end to decoding

[1122] The Start Code Detector can be configured to
generate an interrupt and stop once the data for the current
picture is complete. This is done by setting stop_after pic-
ture=1 and stop_after_picture_mask=1.

[1123] Once the end of a picture passes through the Start
Code Detector, a FLUSH Token is generated (A.11.7.2), an
intrgupt is generated, and the Start Code Detector stops.
Note that the picture just completed will be decoded in the
normal way. In some applications, however, it may be
appropriate to detect the FLUSH arriving at the output of the
decoder chip-set as this will indicate the end of the current
video sequence. For example, the display could freeze on the
last picture output.

[1124] When the Start Code Detector stops, there may be
data from the “old” video sequence “trapped” in user
implemented buffers between the media and the decode
chips. Setting the register, discard_all_data, will cause the
Spatial Decoder to consume and discard this data. This will
continue until a FLUSH Token reaches the Start Code
Detector or discard_all_data is reset via the microprocessor
interface.

[1125] Having discarded any data from the “old” sequence
the decoder is now ready to start work on a new sequence.

[1126] A.11.5.2 When to start discard all mode

[1127] The discard all mode will start immediately after a
1 is written into the discard_all_data register. The result will
be unpredictable if this is done when the Start Code Detector
is actively processing data.

[1128] Discard all mode can be safely initiated after any of
the Start Code Detector events (non-aligned start event etc.)
has generated an interrupt.

[1129] A.11.5.3 Starting a new sequence

[1130] If it is not known where the start of a new coded
video sequence is within some coded data, then the start
code search mechanism can be used. This discards any
unwanted data that precedes the-start of the sequence. See
A118.

Oct. 16, 2003

[1131] A.11.5.4 Jumping between sequences

[1132] This section illustrates an application of some of
the techniques described above. The objective is to “jump”
from one part of one coded video sequence to another. In this
example, the filing system only allows access to “blocks” of
data. This block structure might be derived from the sector
size of a disc or a block error correction system. So, the
position of entry and exit points in the coded video data may
not be related to the filing system block structure.

[1133] The stop_after picture and discard_all data
mechanisms allow unwanted data from the old video
sequence to be discarded. Inserting a FLUSH Token after the
end of the last filing system data block resets the discard_all-
_data mode. The start code search mode can then be used to
discard any data in the next data block that precedes a
suitable entry point.

[1134] A.11.6 Byte alignment

[1135] As is well known in the art, the different coding
schemes have quite different views about byte alignment of
start/marker codes in the data stream.

[1136] For example, H.261 views communications as
being bit serial. Thus, there is no concept of byte alignment
of start codes. By setting ignore_non_aligned=0 the Start
Code Detector is able to detect start codes with any bit
alignment. By setting non-aligned_start_mask=0, the start
code non-alignment interrupt is suppressed.

[1137] In contrast, however, JPEG was designed for a
computer environment where byte alignment is guaranteed.
Therefore, marker codes should only be detected when byte
aligned. When the coding standard is configured as JPEG,
the register ignore_non_aligned is ignored and the non-
aligned start event will never be generated. However, setting
ignore_non_aligned=1 and non_aligned_start_mask=0 is
recommended to ensure compatibility with future products.

[1138] MPEC, on the other hand, was designed to meet the
needs of both communications (bit serial) and computer
(byte oriented) systems. Start codes in MPEG data should
normally be byte aligned. However, the standard is designed
to be allow bit serial searching for start codes (no MPEC bit
pattern, with any bit alignment, will look like a start code,
unless it is astart code). So, an MPEG decoder can be
designed that will tolerate loss of byte alignment in serial
data communications.

[1139] If a non-aligned start code is found, it will normally
indicate that a communication error has previously occurred.
If the error is a “bit-slip” in a bit-serial communications
system, then data containing this error will have already
been passed to the decoder. This error is likely to cause other
errors within the decoder. However, new data arriving at the
Start Code Detector can continue to be decoded after this
loss of byte alignment.

[1140] By setting ignore_non_aligned=0 and non-
_aligned_start_mask=1, an interrupt can be generated if a
non-aligned start code is detected. The response will depend
upon the application. All subsequent start codes will be
non-aligned (until byte alignment is restored). Accordingly,
setting non_aligned_start_mask=0 after byte alignment has
been lost may be appropriate.

US 2003/0196078 Al

TABLE A.11.5

Configuring for byte alignment

MPEG JPEG H.261
ignore__non__aligned 0 1 0
non__aligned__start__mask 1 0 0

[1141] A.11.7 Automatic Token generation

[1142] In the present invention, most of the Tokens output
by the Start Code Detector directly reflect syntactic elements
of the various picture and video coding standards. In addi-
tion to these “natural” Tokens,some useful “invented”
Tokens are generated. Examples of these proprietary tokens
are PICTURE_END and CODING_STANDARD. Tokens
are also introduced to remove some of the syntactic differ-
ences between the coding standards and to “tidy up” under
error conditions.

[1143] This automatic Token generation is done after the
serial analysis of the coded data (see FIG. 61, “The Start
Code Detector”). Therefore the system responds equally to
Tokens that have been supplied directly to the input of the
Spatial Decoder via the Start Code Detector and to Tokens
that have been generated by the Start Code Detector fol-
lowing the detection of start codes in the coded data.

[1144] A.11.7.1 Indicating the and of a picture

[1145] 1In general, the coding standards don’t explicitly
signal the end of a picture. However, the Start Code Detector
of the present invention generates a PICTURE_END Token
when it detects information that indicates that the current
picture has been completed.

[1146] The Tokens that cause PICTURE_END to be gen-
erated are: SEQUENCE_START, GROUP_START, PIC-
TURE_START, SEQUENCE_END and FLUSH.

[1147] A.11.7.2 Stop after picture end option

[1148] If the register stop_after_picture is set, then the
Start Code Detector will stop after a PICTURE_END Token
has passed through. However, a FLUSH Token is inserted
after the PICTURE_END to “push” the tail end of the coded
data through the decoder and to reset the system. See
Al1l15.1.

[1149] A11.13Introducing sequence start for H.261

[1150] H.261 does not have a syntactic element equivalent
to sequence start (see Table A.11.4). If the register insert-
_sequence_start is set, then the Start Code Detector will
ensure that there is one SEQUENCE_START Token before
the next PICTURE_START, i.e., if the Start Code Detector
does not see a SEQUENCE_START before a PICTUR-
E_START, one will be introduced. No SEQUENCE_START
will be introduced if one is already present.

[1151] This function should not be used with MAPG or
JPEG.

[1152] A.11.7.4 Setting coding standard for each sequence

[1153] All SEQUENCE_START Tokens leaving the Start
Code Detector are always preceded by a CODING_STAN-
DARD Token. This Token is loaded with the Start Code

79

Oct. 16, 2003

Detector’s current coding standard. This sets the coding
standard for the entire decoder chip set for each new video
sequence.

[1154] A.11.8 Start code searching

[1155] The Start Code Detector in accordance with the
invention, can be used to search through a coded data stream
for a specified type of start code. This allows the decoder to
re-commence decoding from a specified level within the
syntax of some coded data (after discarding any data that
precedes it). Applications for this include:

[1156] start-up of a decoder after jumping into a
coded data file at an unknown position (e.g., random
accessing).

[1157] to seek to a known point in the data to assist
recovery after a data error.

[1158] For example, Table A.11.6 shows the MPEG start
codes searched, for different configurations of start-
_code_search. The equivalent H.261 and JPEG start/marker
codes can be seen in Table A.11.4.

TABLE A.11.6

Start code search modes

start__code__search Start codes searched for

®

Normal operation
Reserved (will behave as discard data)

sequence start

group or sequence start

picture, group or sequence start
slice, picture, group or sequence start
the next start or marker code

\IG\UU\‘-ble\Jb—kO

A FLUSH Token places the Start Code Detector in this search mode.
This is the default mode after reset.

[1159] a. A FLUSH Token places the Start Code
Detector in this search mode.

[1160] b. This is the default mode after reset.

[1161] When a non-zero value is written into the start-
_code_search register, the Start Code Detector will start to
discard all incoming data until the specified start code is
detected. The start_code_search register will then reset to 0
and normal operation will continue.

[1162] The start code search will start immediately after a
non-zero value is written into the start_code_search register.
The result will be unpredictable if this is done when the start
Code Detector is actively processing data. So, before initi-
ating a start code search, the Start Code Detector should be
stopped so no data is being processed. The Start Code
Detector is always in this condition if any of the Start Code
Detector events (non-aligned start event etc.) has just gen-
erated an interrupt.

[1163] A.11.8.1 Limitations on using start code search
with JPEG

[1164] Most JPEG marker codes have a 16 bit length count
field associated with them. This field indicates the length of
a data segment associated with the marker code. This
segment may contain values that emulate marker codes. In

US 2003/0196078 Al

normal operation, the Start Code Detector doesn’t look for
start codes in these segments of data.

[1165] If a random access into some JPEG coded data
“lands” in such a segment, the start code search mechanism
cannot be used reliably. In general, JPEG coded video will
require additional external information to identify entry
points for random access.

[1166] SECTION A.12 Decoder start-up control
[1167] A.12.1 Overview of decoder start-up

[1168] In a decoder, video display will normally be
delayed a short time after coded data is first available.
During this delay, coded data accumulates in the buffers in
the decoder. This pre-filling of the buffers ensures that the
buffers never empty during decoding and, this, therefore
ensures that the decoder is able to decode new pictures at
regular intervals.

[1169] Generally, two facilities are required to correctly
start-up a decoder. First, there must be a mechanism to
measure how much data has been provided to the decoder.
Second, there must be a mechanism to prevent the display of
a new video stream. The Spatial Decoder of the invention
provides a bit counter near its input to measure how much
data has arrived and an output gate near its output to prevent
the start of new video stream being output.

[1170] There are three levels of complexity for the control
of these facilities:

[1171] Output gate always open
[1172] Basic control
[1173] Advanced control

[1174] With the output gate always open, picture output
will start as soon as possible after coded data starts to arrive
at the decoder. This is appropriate for still picture decoding
or where display is being delayed by some other mechanism.

Oct. 16, 2003

[1175] The difference between basic and advanced control
relates to how many short video streams can be accommo-
dated in the decoder’s buffers at any time. Basic control is
sufficient for most applications. However, advanced control
allows user software to help the decoder manage the start-up
of several very short video streams.

[1176] A.12.2 MPEG video buffer verifier

[1177] MPEG describes a “video buffer verifier” (VBV)
for constant data rate systems. Using the VBV information
allows the decoder to pre-fill its buffers before it starts to
display pictures. Again, this pre-filling ensures that the
decoder’s buffers never empty during decoding.

[1178] Insummary, each MPEG picture carries a vbv_de-
lay parameter. This parameter specifies how long the coded
data buffer of an “ideal decoder” should fill with coded data
before the first picture is decoded. Having observed the
start-up delay for the first picture, the requirements of all
subsequent pictures will be met automatically.

[1179] MPEG, therefore, specifies the start-up require-
ments as a delay. However, in a constant bit rate system this
delay can readily be converted to a bit count. This is the
basis on which the start-up control of the Spatial Decoder of
the present invention operates.

[1180] A.12.3 Definition of a stream

[1181] In this application, the term stream is used to avoid
confusion with the MPEG term sequence. Stream therefore
means a quantity of video data that is “interesting” to an
application. Hence, a stream could be many MPEG
sequences or it could be a single picture.

[1182] The decoder start-up facilities described in this
chapter relate to meeting the VBV requirements of the first
picture in a stream. The requirements of subsequent pictures
in that stream are met automatically.

[1183] A.12.4 Start-up Control Registers

TABLE A.12.1

Register name

Decoder start-up registers

Size/ Reset
Dir. State Description

start__access
CED__BS__ACCESS

bit__count
CED_BS__COUNT
bit__count__prescale
CED_BS_PRESCALE

bit__count__target
CED_BS_TARGET

target _met event
BS_TARGET_MET__EVENT
target__met__mask

1 0 Writing 1 to this register requests that the bit
™w counter and gate opening logic stop to allow
access to their configuration registers

8 0 This bit counter is incremented as coded data
W leaves the start code detector. The number of
3 0 Dbits required to increment bit__count once is
W approx. Z(biticcumjrescale—l) x 512
The bit counter starts counting bits after a
FLUSH Token passes through the bit counter
It is reset to zero and then stops incrementing
after the bit count target has been met.
8 x This register specifies the bit count target A

™w target met event is generated where so the
following condition becomes true
bit__count »= bit__count__target

1 0 When the bit count target is met this event will
™w be generated. If the mask register is set to 1

1 0 then an interrupt can be generated, however
™w the bit counter will NOT stop processing data

This event will occur when the bit counter
increments to its target. It will also occur if a
target value is written which is less than or

US 2003/0196078 Al

Oct. 16, 2003

81

TABLE A.12.1-continued

Decoder start-up registers

Size/ Reset
Register name Dir.

State Description

equal to the current value of the bit counter
Writing O to bit__count__target will always
generate a target met event.

counter_flushed__event
BS_FLUSH_EVENT
counter_ flushed_ mask

counter__flushed__too__early__event
BS_FLUSH_BEFORE_TARGET_MET_EVENT
counter_ flushed_ too__early_mask

dmrggd g

0 When a FLUSH Token passes through the bit
count circuit this event will occur if the mask

0 register is set to 1 then an interrupt can be
generated and the bit counter will stop

0 If a FLUSH Token passes through the bit
count circuit and the bit count target has not

0 been met this event will occur. If the mask
register is set to 1 then an interrupt can be

generated and the bit counter will stop.
See A.12.10
offchip__queue 1 0 Setting this register to 1 configures the gate

CED__BS__QUEUE ™w

opening logic to require microprocessor

support. When this register is set to O the output
gate control logic will automatically control the
operation of the output gate.
See sections A.12.5 and A.12.7.

enable__stream 1 0 When an off-chip queue is in use writing to

CED_BS__ENABLE_NXT_STM ™w

enable_ stream controls the behaviour of the

output gate after the end of a stream passes

through it.

A one in this register enables the output gate to

open.

The register will be reset when an
accept__enable interrupt is generated

—
(o)

accept__enable__event
BS_STREAM__END_EVENT ™w
accept__enable__mask

—
(o)

This event indicates that a FLUSH Token has
passed through the output gate (causing it to
close) and that an enable was available to allow

™w the gate to open.
If the mask register is set to 1 then an interrupt
can be generated and the register
enable stream will be reset. See A.12.7.1

[1184] A.12.9 Output gate always open

[1185] The output gate can be configured to remain open.
This configuration is appropriate where still pictures are
being decoded, or when some other mechanism is available
to manage the start-up of the video decoder.

[1186] The following configurations are required after
reset (having gained access to the start-up control logic by
writing 1 to startup_access):

until an enable is provided by the bit counter circuitry when
a stream has attained its start-up bit count.

[1195] The following configurations are required after
reset (having gained access to the start-up control logic by
writing 1 to startup_access):

[1196] set bit_count_prescale approximately for the
expected range of coded data rates

[1197] set counter_flushed_too_early_mask=1 to
[1187] set offchip_queue=1 enable this error condition to be detected
[1188] set enable_stream =1 [1198] Two interrupt service routines are required:
[1189] ensure that all the decoder start-up event mask [1199] video Demux service to obtain the value of
[1190] registers are set to O disabling their inter- [1200] vdv_delay for the first picture in each new
rupts stream

[1191] (this is the default state after reset).

[1192] (See A.12.7.1 for an explanation of why this
holds the output gate open.)

[1193] A.12.6 Basic operation

[1194] In the present invention, basic control of the start-
up logic is sufficient for the majority of MPEG video
applications. In this mode, the bit counter communicates
directly with the output gate. The output gate will close
automatically as the end of a video stream passes through it
as indicated by a FLUSH Token. The gate will remain closed

[1201] Counter flushed too early service to react to
this condition

[1202] The video demux (also known as the video parser)
can generate an interrupt when it decodes the vbv_delay for
a new video stream (i.e., the first picture to arrive at the
video demux after a FLUSH). The interrupt service routine
should compute an appropriate value for bit_count_target
and write it. When the bit counter reaches this target, it will
insert an enable into a short queue between the bit counter
and the output gate. When the output gate opens it removes
an enable from this queue.

US 2003/0196078 Al

[1203] A.12.6.1 Starting a new stream shortly after
another finishes

[1204] As an example, the MPEG stream which is about
to finish is called A and the MPEG stream about to start is
called B. A FLUSH Token should be inserted after the end
of A. This pushes the last of its coded data through the
decoder and alerts the various sections of the decoder to
expect a new stream.

[1205] Normally, the bit counter will have reset to zero, A
having already met its start-up conditions. After the FLUSH,
the bit counter will start counting the bits in stream B. When
the Video Demux has decoded the vbv_delay from the first
picture in stream B, an interrupt will be generated allowing
the bit counter to be configured.

[1206] As the FLUSH marking the end of stream A passes
through the output gate, the gate will close. The gate will
remain closed until B meets its start-up conditions. Depend-
ing on a number of factors such as: the start-up delay for
stream B and the depth of the buffers, it is possible that B
will have already met its start-up conditions when the output
gate closes. In this case, there will be an enable waiting in
the queue and the output gate will immediately open.
Otherwise, stream B will have to wait until it meets its
start-up requirements.

[1207] A.12.6.2 A succession of short streams

[1208] The capacity of the queue located between the bit
counter and the output gate is sufficient to allow 3 separate
video streams to have met their start-up conditions and to be
waiting for a previous stream to finish being decoded. In the
present invention, this situation will only occur if very short
streams are being decoded or if the off-chip buffers are very
large as compared to the picture format being decoded).

[1209] In FIG. 69 stream A is being decoded and the
outputgate is open). Streams B and C have met their start-up
conditions and are entirely contained within the buffers
managed by the Spatial Decoder. Stream D is still arriving
at the input of the Spatial Decoder.

[1210] Enables for streams B and C are-in the queue. So,
when stream A is completed B will be able to start imme-
diately. Similarly C can follow immediately behind B.

[1211] If Ais still passing through the output gate when D
meets its start-up target an enable will be added to the queue,
filling the queue. If no enables have been removed from the
queue by the time the end of D passes the bit counter (i.e.,
Ais still passing through the output gate) no new stream will
be able to start through the bit counter. Therefore, coded data
will be held up at the input until A completes and an enable
is removed from the queue as the output gate is opened to
allow B to pass through.

[1212] A.12.7 Advanced operation

[1213] In accordance with the present invention, advanced
control of the start-up logic allows user software to infinitely
extend the length of the enable queue described in A.12.6,
“Basic operation”. This level of control will only be required
where the video decoder must accommodate a series of short
video streams longer than that described in A.12.6.2, “A
succession of short streams”.

[1214] In addition to the configuration required for Basic
operation of the system, the following configurations are

Oct. 16, 2003

required after reset (having gained access to the start-up
control logic by writing 1 to start_up access):

[1215]

[1216] set accept_enable_mask=1 to enable inter-
rupts when an enable has been removed from the
queue

[1217] set target_met_mask=1 to enable interrupts
when a stream’s bit count target is met

set offchip_queue=1

[1218] Two additional interrupt service routines are
required:

[1219] accept enable interrupt

[1220] Target met interrupt

[1221] When a target met interrupt occurs, the service
routine should add an enable to its off-chip enable queue.

[1222] A.12.7.1 Output gate logic behavior

[1223] Writing a 1 to the enable stream register loads an
enable into a short queue.

[1224] When a FLUSH (marking the end of a stream)
passes through the output gate the gate will close. If there is
an enable available at the end of the queue, the gate will
open and generate an accept_enable event. If accept-
_enable_mask is set to one, an interrupt can be generated
and an enable is removed from the end of the queue (the
register enable_stream is reset).

[1225] However, if accept_enable_mask is set to zero, no
interrupt is generated following the accept_enable_event
and the enable is NOT removed from the end of the queue.
This mechanism can be used to keep the output gate open as
described in A.12.5.

[1226] A.12.8 Bit counting

[1227] The bit counter starts counting after a FLUSH
Token passes through it. This FLUSH Token indicates the
end of the current video stream. In this regard, the bit
counter continues counting until it meets the bit count target
set in the bit_count_target register. A target met event is then
generated and the bit counter resets to zero and waits for the
next FLUSH Token.

[1228] The bit counter will also stop incrementing when it
reaches it maximum count (255).

[1229] A.12.9 Bit count prescale

[1230] In the present invention, 2Pi—eount-—preseale<lg g pty
512 bits are required to increment the bit counter once.
Furthermore, bit_count_prescale is a 3 bit register than can
hold a value between O and 7.

TABLE A12.2

Example bit counter ranges

n Range (bits) Resolution (bits)
0 0to 262144 1024
1 0 to 524288 2048
7 0 to 31457280 122880

US 2003/0196078 Al

[1231] The bit count is approximate, as some elements of
the video stream will already have been Tokenized (e.g., the
start codes) and, therefore includes non-data Tokens.

[1232] A.12.10 Counter flushed too early

[1233] If a FLUSH token arrives at the bit counter before
the bit count target is attained, an event is generated which
can cause an interrupt (if counter_flushed_too_early_mask=
1). If the interrupt is generated, then the bit counter circuit
will stop, preventing further data input. It is the responsi-
bility of the user’s software to decide when to open the
output gate after this event has occurred. The output gate can
be made to open by writing O as the bit count target. These
circumstances should only arise when trying to decode video
streams that last only a few pictures.

[1234] SECTION A.13 Buffer Management

[1235] The Spatial Decoder manages two logical data
buffers: the coded data buffer (CDB) and the Token buffer
(TB).

33

Oct. 16, 2003

[1238] A.13.1 Buffer manager registers

[1239] The Spatial Decoder buffer manager is intended to
be configured once immediately after the device is reset. In
normal operation, there is no requirement to reconfigure the
buffer manager.

[1240] After reset is removed from the Spatial Decoder,
the buffer manager is halted (with its access register, buff-
er_manager_access, set to 1) awaiting configuration. After
the registers have been configured, buffer_manager_access
can be set to 0 and decoding can commence.

[1241] Most of the registers used in the buffer manager
cannot be accessed reliably while the buffer manager is
operating. Before any of the buffer manager registers are
accessed buffer_manager_access must be set to 1. This
makes it essential to observe the protocol of waiting until the
value 1 can be read from buffer_manager_access. The time
taken to obtain and release access should be taken into
considrion when polling such registers as cdb_full and
cdb_empty to monitor buffer conditions.

TABLE A.13.1

Buffer manager registers

Register name Size/Dir Hosol State Description
buffer__manager__access 1 1 This access bit stops the operation of the buffer manager so that is
™w various/registers can be accessed reliability. See A.54(%
Note: this access register is unusual as its default state after reset is
@ ie. after reset the buffer manager is halted awaiting configuration
via the microprocessor interface.
Register name Size/Dir Reset State Description
buffer__manager_ keyhole_address 6 X Keyhole access to the extended address space used for the buffer
™w manager registers shown below. See A.54® for more
buffer__monanger__keyhole__data 8 X information about accessing registers through a keyhole
™w
buffer_limit 18 X This specifies the overall size of the @ @to the
™w Spatial Decoder. All buffer addresses are the source
size and so will wrap round within the provided.
tdb__base 18 X These registers point to the base of the 3 data (cdb) and Token
th__base W (tb) buffers.
cdb__length 18 X These registers specify the length (i.e. size) of the coded data @
tb_length W and Token (tb) buffers.
cdb__read 18 X These registers hold an offset from the (» and indicate
tb__read 10 where data will be read from next.
cdb__number 18 X These registers show how much data (@ held in the buffers
tb_ number 1o
cdb__full 1 X These registers will be set to (@ if the @data (cdb) of Token
tb__full 10 buffer®
cdb__empty 1 X These registers will be set to 1 if the coded data (cdb) of Token @
tb__empty o buffer empties.

® indicates text missing or illegible when filed

[1236] The CDB buffers coded data between the Start
Code Detector and the input of the Huffman decoder. This
provides buffering for low data rate coded video data. The
TB buffers data between the output of the Huffman decoder
and the input of the spatial video decoding circuits (inverse
modeler, quantizer and DCT). This second logical buffer
allows processing time to include a spread so as to accom-
modate processing pictures having varying amounts of data.

[1237] Both buffers are physically held in a single off-chip
DRAM array. The addresses for these buffers are generated
by the buffer manager.

[1242] A.13.1.1.Buffer manager pointer values

[1243] Typically, data is transferred between the Spatial
Decoder and the off_chip DRAM in 64 byte bursts (using the
DRAM’s fast page mode). All the buffer pointers and length
registers refer to these 64 byte (512 bit) blocks of data. So,
the buffer manager’s 18 bit registers describe a 256 k block
linear address space (i.e., 128 Mb).

[1244] The 64 byte transfer is independent of the width (8,
16 or 32 bits) of the DRAM interface.

[1245] A.13.2 Use of the buffer manager registers

[1246] The Spatial Decoder buffer manager has two sets of
registers that define two similar buffers. The buffer limit

US 2003/0196078 Al

register (buffer_limit) defines the physical upper limit of the
memory space. All addresses are calculated modulo this
number.

[1247] within the limits of the available memory, the
extent of each buffer is defined by two registers: the buffer
base (cdb_base and tb_base) and the buffer length
(cdb_length and tb_length). All the registers described thus
far must be configured before the buffers can be used.

[1248] The current status of each buffer is visible in 4
registers. The buffer read register (cdb_read and tb_read)
indicates an offset from the buffer base from which data will
be read next. The buffer number registers (cdb_number and
tb_number) indicate the amount of data currently held by
buffers. The status bits cdb_full, tb_full, cdb_empty and
tb_empty indicate if the buffers are full or empty.

[1249] As stated in A.13.1.1, the unit for all the above
mentioned registers is a 512 bit block of data. Accordingly,
the value read from cdb_number should be multplied by 512
to obtain the number of bits in the coded data buffer.

[1250] A.13.3 Zero buffers

[1251] Still picture applications (e.g., using JPEG) that do
not have a “real-time” requirement will not need the large
off-chip buffers supported by the buffer manager. In this
case, the DRAM interface can be configured (by writing 1
to the zero_buffers register) to ignore the buffer manager to
provide a 128 bit stream on-chip FIFO for the coded data
buffer and the Token buffers.

[1252] The zero buffers option may also be appropriate for
applications which operate working at low data rates and
with small picture formats.

[1253] Note: the zero buffers register is part of the DRAM
interface and, therefore, should be set only during the
post-reset configuration of the DRAM interface.

84

Oct. 16, 2003

[1254] A.13.4 Buffer operation

[1255] The data transfer through the buffers is controlled
by a handshake Protocol. Hence, it is guaranteed that no data
errors will occur if the buffer fills or empties. If a buffer is
filled, then the circuits trying to send data to the buffer will
be halted until there is space in the buffer. If a buffer
continues to be full, more processing stages “up steam” of
the buffer will halt until the Spatial Decoder is unable to
accept data on its input port. Similarly, if a buffer empties,
then the circuits trying to remove data from the buffer will
halt until data is available.

[1256] As described in A.13.2, the position and size of the
coded data and Token buffer are specified by the buffer base
and length registers. The user is responsible for configuring
these registers and for ensuring that there is no conflict in
memory usage between the two buffers.

[1257] SECTION A.14 Video Demux

[1258] The Video Demux or Video parser as it is also
called, completes the task of converting coded data into
Tokens started by the Start Code Detector. There are four
main processing blocks in the Video Demux: Parser State
Machine, Huffman decoder (including an ITOD), Macrob-
lock counter and ALU.

[1259] The Parser or state machine follows the syntax of
the coded video data and instructs the other units. The
Huffman decoder converts variable length coded (VLC) data
into integers. The Macroblock counter keeps track of which
section of a picture is being decoded. The ALU performs the
necessary arithmetic calculations.

[1260] A.14.1 Video Demux Registers

TABLE A.14.1

Top level Video Demux registers

State Description

Size/ Reset

Register name Dir
demux__access 1 0
CED_H_ CTR1]7] ™w
huffman_ error_ code 3
CED__H_ CTRL]|5.4] 0
parser__error__code 8
CED_H_DMUX_ERR 0
demux__keyhole_ address 12 X
CED_H_KEYHOLE__ADDR ™w
demux__keyhole__data 8 X
CED_H_KEYHOLE ™w
dummy__last__picture 1 0

CED_H_ALU_REGO
r_rom__control
r__dummy_ last_frame_ bit

™

This access bit stops the operation of the Video Demux so that is
various registers can be accessed reliably. See A.6.4.1

When the Video Demux stops following the generation of a
huffman__event interrupt request this 3 bit register holds a value indicating
why the interrupt was generated. See A.14.5.1

When the Video Demux stops following the generation of a parser__event
interrupt request this 8 bit register holds a value indicating why the
interrupt was generated. See A.14.5.2

Keyhole access to the Video Demux’s extended address space. See
A.6.4.3 for more information about accessing registers

through a keyhole.

Tables A.14.2, A.14.3 and A.14.4 describe the registers that can be
accessed via the keyhole.

When this register is set to 1 the Video Demux will generate information
for a “dummy” intra picture as the last picture of an MPEG sequence
This function is useful when the Temporal Decoder is configured for
automatic picture re-ordering (see A.18.3.5. “Picture sequence re-
ordering”. to flush the last P or I picture out of the Temporal

Decoder

No “dummy” picture is required if:

the Temporal Decoder is not configured for re-ordering

another MPEG sequence will be decoded immediately (as this will also
flush out the last picture)

the coding standard is not MPEG

US 2003/0196078 Al

Oct. 16, 2003

85

TABLE A.14.1-continued

Register name

Top level Video Demux registers

Size/ Reset

Dir State Description

field__into
CED_H__ALU_REGO
r_rom__control
r_field_info_ bit
continue
CED_H__ALU_REGO
r__rom_ control
r__continue_ bit
rom__revision
CED_H_ALU_REG1
r__rom_ revision

huffman__event

huffman_ mask

parser__event

parser__mask

1 0 When this register is set to 1 the first byte of any MPEG

™w extra__information_ picture is placed in the FIELD__INFO Token See
A14.7.1

1 0 This register allows user software to control how much extra, user or

™w extension data it wants to receive when is it is detected by the decoder.

See A.14.6 and A.14.7

8 Immediately following reset this holds a copy of the microcode PCM
o revision number.
This register is also used to present to control software data values read
from the coded data. See A.14.6, “Receiving User and Extension data”
and A.14.7, “Receiving Extra Information”.

1 0 A Huffman event is generated if an error is found in the coded data See

™w A.14.5.1 for a description of these events.

1 0 If the mask register is set to 1 then an interrupt can be generated and the

™w Video Demux will stop. If the mask register is set to 0 then no interrupt is
generated and the Video Demux will attempt to recover from the error

1 0 A Parser event can be in responce to errors in the coded data or to the

™w arrival of information at the Video Demux that requires software

1 0 intervention. See A.14.5.2 for a description of these events

™w If the mask register is set to 1 then an interrupt can be generated and the

Video Demux will stop. If the mask register is set to 0 then no interrupt is
generated and the Video Demux will attempt to continue.

[1261]

TABLE A.14.2

Register name

video demux picture construction registers

component_name_ 0
component_name_ 1
component_name_ 2
component__name_ 3
horiz__pels

vert_ pels
horiz__macroblocks
vert_ macroblocks

max_h

max v

max__component__id

Nf

blocks_h 0
blocks_h_ 1
blocks_h_ 2
blocks_h_ 3
blocks_v_0
blocks_v_1
blocks_v_2
blocks_v_3
tq_0
tq_1
tq_2
tq_3

Size/ Reset
Dir. State Description
8 x During JPEG operation the register component__name_ n holds an 8 bit value
™w indicating (to an application) which colour component has
the component ID n.
16 x These registers hold the horizontal and vertical dimensions of the video being
™w decoded in pixels.
16 x See section A.14.2
W
16 x These registers hold the horizontal and vertical dimensions of the video being
W decoded in macroblocks.
16 x See section A.14.2
W
2 x These registers hold the macroblock width and height in blocks (8 x 8 pix-
els
™ Th)e values O to 3 indicate a width/height of 1 to 4 blocks.
2 x See section A.14.2
W
2 x The values O to 3 indicate that 1 to 4 different video components are
™w currently being decoded.
See section A.14.2
8 x During JPEG operation this register holds the parameter Nf
™w (number of image components in frame).
2 x For each of the 4 colour components the registers blocks_h_n and
™w blocks__v__n hold the number of blocks horizontally and vertically in a
macroblock for the colour component with component ID n
See section A.14.2
2 x
W
2 x The two bit value held by the register tq_ n describes which Inverse
™w Quantisation table is to be used when decoding data with component ID n

US 2003/0196078 Al

[1262] A.14.1.1 Register loading and Token generation

[1263] Many of the registers in the Video Demux hold
values that relate directly to parameters normally commu-
nicated in the coded picture/video data. For example, the
horiz_pels register corresponds to the MPEG sequence
header information, horizontal size, and the JPEG frame
header parameter, X. These registers are loaded by the Video

Oct. 16, 2003

86

Demux when the appropriate coded data is decoded. These
registers are also associated with a Token. For example, the
register, horiz_pels, is associated with Token, HORIZON-
TAL_SIZE. The Token is generated by the Video Demux
when (or soon after) the coded data is decoded. The Token
can also be supplied directly to the input of the Spatial
Decoder. In this case, the value carried by the Token will
configure the Video Demux register associated with it.

TABLE A.14.3

Register name

Video demux Huffman table registers

Size/ Reset

Dir.

State Description

dc_huff_0 2 The two bit value held by the register dc__huff_n describes which Huffman
dc_huff 1 ™ decoding table is to be used when decoding the DC coefficients of data with
dc_huff_2 component ID n.
dc_huff_3 Similarly ac__huff_n describes the table to be used when decoding AC
ac_huff 0 2 coefficients.
ac_huff 1 ™w Baseline JPEG requires up to two Huffman tables per scan. The only tables
ac_huff 2 implemented are 0 and 1
ac_huff 3
de_bits_ 0[15:0] 8 Each of these is a table of 16, eight bit values. They provide the BITS
de_bits 1[15:0] W information (see JPEG Huffman table specification) which form part of the
ac_bits__0[15:0] 8 description of two DC and two AC Huffman tables.
ac_bits__1[15:0] ™w See section A.14.3.1
de_huffval_0[11:0] 8 Each of these is a table of 12, eight bit values. They provide the HUFFVAL
de_huffval 1[11:0] W information (see JPEG Huffman table specification) which form part of the
description of two DC Huffman tables.
See section A.14.3.1
ac_ huffval 0[161:0] 8 Each of these is a table of 162, eight bit values They provide the HUFFVAL
ac__huffval 1[161:0] W information (see JPEG Huffman table specification) which form part of the
description of two AC Huffman tables.
See section A.14.3.1
dc_zssss_ 0 8 These 8 bit registers hold values that are “special cased” to accelerate the
dc_zssss_1 ™w decoding of certain frequently used JPEG VLCs.
ac__eob_0 8 dc__ssss - magnitude of DC coefficient is 0
ac_eob 1 W ac_eob - end of block
ac_zrl 0 8 ac_ zrl - run of 16 zeros
ac_zrl 1 W
[1264]
TABLE A.14.4
Other Video Demux registers
Register name Size/Dir. Reset State Description
buffer_ size 10 This register is loaded when decoding MPEG data with a value
™w size of VBV buffer required in an ideal decoder
This value is not used by the decoder chips. However, the value
be useful to user software when configuring the coded data buffer size and to
detemine whether the decoder is capable of decoding a cartcular MPEG data
file.
pel__aspect 4 This register is loaded when decoding MPEG data with a value indicating the
™w pel aspect ratio. The value is a 4 bit integer that is used as an index into a
table defined by MPEG.
See the MPEG standard for a definition of this table.
This value is not used by the decoder chips. However, the value
be useful to user software when configuring a display or output device
bit__rate 18 This register is loaded when decoding MPEG data with a value
W coded data rate.
See the MPEG standard for a definition of this value.
This value is not used by the decoder chips. However, the value it holds may
be useful to user software when configuring the decoder start-up registers.
pic__rate 4 This register is loaded when decoding MPEG data with a value indicationg the
™w picture rate.

See the MPEG standard for a definition of this value.
This value is not used by the decoder chips. However, the value

US 2003/0196078 Al Oct. 16, 2003
87

TABLE A.14.4-continued

Other Video Demux registers

Register name Size/Dir. Reset State Description

be useful to user software when configuring a display or output device
constrained 1 This register is loaded when decoding MPEG data to indicate if the coded data
™w meets MPEG’s constrained parameters.
Set the MPEG standard for a definition of this flag.
This value is not used by the decoder chips. However, the value
be useful to user software to detemine whether the decoder is
decoding a particular MPEG data file.

picture__type 2 During MPEG operation this register holds the picture type of the picture being
W decoded.

h_251_pic_type 8 This register is loaded when decoding H.251 data. It holds information about
™w the picture format.

L7lelsf4]3]2]1] 0]
Lelelsfafefafs]]

Flags:

s - Split Screen Indicator

d - Document Camera

t - Freeze Picture Release

This value is not used by the decoder chips. However, the information should
be used when configuring horiz__pels, vert__pels and the display of output

device.
broken__closed 2 During MPEG operation this register holds the broken_ link and closed__gap
™w information for the group of pictures being decoded.

[7lels]4]3]2]1]0]
LfefeJefefe]e]o]

Flags:
¢ - closed__gap
prediction__mode 5 During MPEG and H.261 operation this register holes the current value of
™w prediction mode.

L7lelsf4]3]2]1] 0]
Lelefe [u]v]x]e]£]

Flags:
h - enable H.261 loop filter
y - reset backward vector prediction
vbv__delay 16 This register is loaded when decoding MPEG data with a value indicating the
™w minimum start-up delay before decoding should start.
Sece the MPEG standard for a definition of this value.
This value is not used by the decoder chips. However, the value it holds may
be useful to user software when configuring the decoder start-up registers
pic__number 8 This register holds the picture number for the pictures that is currently being
™w decoded by the Video Demux. This number was generated by the start code
detector when this picture arrived there.
See Table A.11.2 for a description of the picture number.

dummy_ last_picture 1 0 These registers are also visble at the top level. See Table A.14.1
™w
field Info 1 0
™w
continue 1 0
™w
rom__revision 8
™w
coding__standard 2 This register is loaded by the CODING_STANDARD Token to configure
o the Video Demux’s mode of operation.
See section A.21.1
restart__interval 8 This register is loaded when decoding MPEG data with a value indicating the
™w minimum start-up delay before decoding should start.

See the MPEG standard for a definition of this value.

US 2003/0196078 Al

Oct. 16, 2003

38

[1265]
TABLE A.14.5
Register to Token cross reference
register Token standard comment

componentinamein

horiz__pels
vert__pels

horiz__macroblocks
vert__macroblocks

max_h
max_ v

max_ component__id

blocks_h 1
blocks_h_ 2
blocks_h_ 3
blocks_v_0
blocks_v_1
blocks_v_2
blocks_v_3
dc_huff 0
dc_huff 1
dc_huff_ 2
dc_huff 3
ac_huff 0
ac_huff 1
ac_huff 2
ac_huff 3
dec_bits_ 0[15:0]
dc_bits 1[15:0]
dec__huffval_0[11:0]
dc__huffval_1[11:0]
de_zssss_ 0
de_zssss_ 1
ac_bits_0[15:0]
ac_bits_1[15:0]
ac__huffval 0[161:0]
ac__huffval__1[161:0]
ac_eob_0
ac_eob__1
ac_zrl 0

ac_zrl_1
buffer_size

pel_aspect

bit_ rate

pic__rate

constrained

COMPONENT_NAME

HORIZONTAL__SIZE
VERTICAL_SIZE

HORIZONTAL__ MBS
VERTICAL__ MBS

DEFINE_MAX_SAMPLING

MAX__COMP_ID

JPEG_TABLE__SELECT

DEFINE__SAMPLING

in scan header data
MPEG__DCH_TABLE

in scan header data

in DATA Token following
DHT__MARKER Token

in DATA Token following
DHT_MARKER Token

VBV_BUFFER__SIZE

PEL__ASPECT

BIT_RATE

PICTURE_RATE

CONSTRAINED

JPEG
MPEG
H.261
MPEG
JPEG
H.261

MPEG

JPEG

H.261

MPEG

JPEG

H.261

MPEG

JPEG

H.261

JPEG

MPEG

H.261

MPEG

JPEG
H.261

JPEG
MPEG
H.261

JPEG
MPEG
H.261
JPEG
MPEG
H.261

JPEG

MPEG
H.261

in coded data.
not used in standard.

in coded data.

automatically derived from picture
type.

control software must derive from
horizontal and vertical picture size
automatically derived from picture
type.

control software must configure.
Sampling structure is fixed by
standard.

in coded data.

automatically configured for A 2.3
video

control software must configure
Sampling structure is fixed by
standard

in coded data.

automatically configured for A 2.0
video

in coded data.

not used in standard.

control software must configure.
Sampling structure is fixed by
standard.

in coded data.

automatically configured for A 2.0
video.

in coded data.

control software must configure.
not used in standard.

in coded data.

not used in standard.

in coded data.

control software must configure.
not used in standard

in coded data

not used in standard.

in coded data.
not used in standard

in coded data.
not used in standard

in coded data.
not used in standard

in coded data.
not used in standard

in coded data.

US 2003/0196078 Al

TABLE A.14.5-continued

Oct. 16, 2003

Register to Token cross reference

register Token

standard comment

JPEG not used in standard

H.261

picture__type PICTURE_TYPE MPEG

in coded data.

JPEG not used in standard

H.261

broken_ closed BROKEN_ CLOSED MPEG

in coded data.

JPEG not used in standard

prediction__mode PREDICTION_MODE

in coded data.

JPEG not used in standard

H.261
h_261_pic_type PICTURE_TYPE MPEG
(when standard is H.261) JPEG

not relevant

H.261 in coded data.

in coded data.

JPEG not used in standard

vbv__delay VBV_DELAY MPEG
H.261

pic__number Carried by: MPEG
PICTURE__START JPEG
H.261

coding__standard CODING__STANDARD MPEG

Generated by start code detector

configured in start code by control

JPEG software detector.

[1266] A.14.2 Picture structure

[1267] In the present invention, picture dimensions are
described to the Spatial Decoder in 2 different units: pixels
and macroblocks. JPEG and MPEG both communicate
picture dimensions in pixels. Communicating the dimen-
sions in pixels determine the area of the buffer that contains
the valid data; this may be smaller than the total buffer size.
Communicating dimensions in macroblocks determines the
size of buffer required by the decoder. The macroblock
dimensions must be derived by the user from the pixel
dimensions. The Spatial Decoder registers associated with
this information are: horiz_pels, vert_pels, horiz_macrob-
locks and vert_macroblocks.

[1268] The Spatial Decoder registers, blocks_h_n,
blocks_v_n, max_h, max_v and max_component_id specify
the composition of the macroblocks (minimum coding units
in JPEG). Each is a 2 bit register than can hold values in the
range 0 to 3. All except max_component_id specify a block
count of 1 to 4. For example, if register max_h holds 1, then
a macroblock is two blocks wide. Similarly, max_compo-
nent_id specifies the number of different color components
involved.

TABLE A.14.6

Configuration for various macroblock formats

)
o
o
S
%4
[
S
[
()
—
o
o

max_h 1 1 1 0
max_ v 0 1 1 0
max__component__id 2 2 2 2
blocks_h_0 1 1 1 0
blocks_h 1 0 0 0 0
blocks_h 2 0 0 0 0
blocks_h_ 3 X X X X
blocks_v_0 0 1 1 0
blocks_v_1 0 1 0 0

TABLE A.14.6-continued

Configuration for various macroblock formats

2:1:1 4:2:2 4:2:0 1:1:1

blocks_v_2 0 1 0 0
blocks_v_3 X X X

[1269] A.14.3 Huffman tables
[1270] A.14.3.1 JPEG style Huffman table descriptions

[1271] In the invention, Huffman table descriptions are
provided to the Spatial decoder via the format used by JPEG
to communicate table descriptions between encoders and
decoders. There are two elements to each table description:
BITS and HUFFVAL. For a full description of how tables
are encoded, the user is directed to the JPEG specification.

[1272] A.14.3.1.1 BITS

[1273] BITS is a table of values that describes how many
different symbols are encoded with each length of VLC.
Each entry is an 8 bit value. JPEG permits VL.Cs with up to
16 bits long, so there are 16 entries in each table. The
BITS[0] describes how many different 1 bit VLCs exist
while BITS[1] describes how many different 2 bit VL.Cs
exist and so forth.

[1274] A.14.3.1.2 HUFFVAL

[1275] HUFFVAL is table of 8 bit data values arranged in
order of increasing VLC length. The size of this table will
depend on the number of different symbols that can be
encoded by the VLC.

[1276] The JPEG specification describes in further detail
how Huffman coding tables can be encoded or decoded into
this format.

US 2003/0196078 Al

[1277] A.14.3.1.3 Configuration by Tokens

[1278] 1In a JPEG bitstream, the DHT marker precedes the
description of the Huffman tables used to code AC and DC
coefficients. When the Start Code Detector recognizes a no
DHT marker, it generates a DHT_MARKER Token and
places the Huffman table description in the following DATA
Token (see A.11.3.4).

[1279] Configuration of AC and DC coefficient Huffman
tables within the Spatial Decoder can be achieved by sup-
plying DATA and DHT_MARKER Tokens to the input of
the Spatial Decoder while the Spatial Decoder is configured
for JPEG operation. This mechanism can be used for con-
figuring the DC coefficient Huffman tables required for
MPEG operation, however, the coding standard of the
Spatial Decoder must be set to JPEG while the tables are
down loaded.

Oct. 16, 2003

[1288] A.14.4.1 H.261 Huffman tables

[1289] All the Huffman tables required to decode H.261
are held in ROMs within the Spatial Decoder and more
particular in the parser state machine of the Video demux
and, therefore require no user intervention.

[1290] A.14.4.2 H.261 Picture structure

[1291] H.261 is defined as supporting only two picture
formats: CIF and QCIF. The picture format in use is sig-
nalled in the PTYPE section of the bitstream. When this data
is decoded by the Spatial Decoder, it is placed in the
h_261_pic_type registers and the PICTURE_TYPE Token.
In addition, all the picture and macroblock construction
registers are configured automatically.

[1292] The information in the various registers is also
placed into their related Tokens (see Table A.14.5), and this

TABLE A.14.7

Huffman table configuration via Tokens

Values 0x00 and 0x01 specify DC coefficient coding tables O and 1
Values 0x10 and 0x11 specifies AC coefficient coding tables 0 and 1
L; - 16 words carrying BITS information

E 7 6 5 4 3 2 1 0 Token Name
1 0 0 0 1 0 1 0 1 CODING_STANDARD
0 0 0 0 0 0 0 0 1 1=JPEG
0 0 0 0 1 1 1 0 0 DHT_MARKER
1 0 0 0 0 0 1 X x DATA
1 t t t t t t t t
tables to be downloaded.
t n n n n n n n n
1 n n n n n n n n
1 n n n n n n n n
e n n n n n n n n

symbols).

T, - Value indicating which Huffman table is to be loaded. JPEG allows 4 This sequence can

be repeated to allow
several tables to be
described in a
single Token

Vj; - Words carrying HUFFVAL information (the
number of words depends on the number of different

e - the extension bit will be 0 if this is the endof the DATA Token or 1 if
another table description is contained in the same DATA Token.

[1280] A.14.3.1.4 Configuration by MPI

[1281] The AC and DC coefficient Huffman tables can
also be written directly to registers via the MPI. See Table
Al14.3.

¢ registers dc_baits :0f and dc_bits

1282] The regi dc_bits_0[15:0] and dc_bits 1
[15:0] hold the BITS values for tables 0x00 and
0x01.

[1283] The registers ac_bits_0[15:0] and ac_bits_1
[15:0] hold the BITS values for tables 0x10 and
Ox11.

[1284] The registers dc_huffval 0[1:0] and
dc_huffval 1 [11:0] hold the HUFFVAL values for
tables 0x00 and 0x01.

[1285] The registers ac_huffval 0[161:0] and
ac_huffval_1[161:0] hold the HUFFVAL values for
tables 0x10 and Ox11.

[1286] A.14.4 Configuring for different standards

[1287] The Video Demux supports the requirements of
MPEG, JPEG and H.261. The coding standard is configured
automatically by the CODING_STANDARD Token gener-
ated by the Start Code Detector.

ensures that other decoder chips (such as the Temporal
Decoder) are correctly configured.

[1293] A.14.4.3 MPEG Huffman tables

[1294] The majority of the Huffman coding tables required
to decode MPEG are held in ROMs within the Spatial
Decoder (again, in the parser state machine) and, thus,
require no user intervention. The exceptions are the tables
required for decoding the DC coefficients of Intral macrob-
locks. Two tables are required, one for chroma the other for
luma. These must be configured by user software before
decoding begins.

TABLE A.14.8

Automatic settings for H.261

CIF/

macroblock construction OCIF picture construction CIF OCIF
max_h 1 horiz_pels 352 176
max_v 1 vert_pels 288 144
max__component__id 2 horiz__macroblocks 22 11
blocks_h 0 1 vert__macroblocks 18 9
blocks_h_1 0

blocks_h_2 0

blocks_v_0 1

blocks_v_1 0

blocks_v_2 0

US 2003/0196078 Al Oct. 16, 2003
91

[1295] Table A.14.10 shows the sequence of Tokens
required to configure the DC coefficient Huffman tables TABLE A.14.9

within the Spatial Decoder. Alternatively, the same results

can be obtained by writing this information to registers via MPEG DC Huffman table selection via MPI

the MPIL. de_huff_0 0

. . dc_huff 1 1
[1296] The registers dc_huff_n control which DC coeffi- de huf 2]
cient Huffman tables are used with each color component. de_huff 3 X

Table A.14.9 shows how they should be configured for
MPEG operation. This can be done directly via the MPI or
by using the MPEG_DCH_TABLE Token. [1297]

TABLE A.14.10

MPEG DC Huffman table configuration

el

[7:0] Token Name

0x15 CODING__STANDARD

0x01 1=JPEG

0x1C ~ DHT_MARKER

0x04 DATA (could be any colour component, 0 is used in this example)
0x00 0 indicates that this Huffman table is DC coefficient coding table O
0x00 16 words carrying BITS information describing a total of 9

0x02 different VLCs:

0x03 2.2 bit codes

0x01 3.3 bit codes

0x01 1.4 bit codes

0x01 1.5 bit codes

0x01 1.6 bit codes

0x00 1.7 bit codes

0x00 If configuring via the MPI rather than with Tokens these values would be
0x00 written into the dc_bits_ 0[15:0] registers.

0x00

0x00

0x00

0x00

0x00

0x00

0x01 9 words carrying HUFFVAL information

0x02 If configuring via the MPI rather than with Tokens these values would be
0x00 written into the dec_ huffval 0[11:0] registers.

0x03

0x04

0x05

0x06

0x07

0x08

0x1C ~ DHT_MARKER

0x04 DATA (could be any colour component, 0 is used in this example)
0x01 1 indicates that this Huffman table is DC coefficient coding table 1
0x00 16 words carrying BITS information describing a total of 9

0x03 different VLCs:

0x01 3.2 bit codes

0x01 1.3 bit codes

0x01 1.4 bit codes

0x01 1.5 bit codes

0x01 1.6 bit codes

0x01 1.7 bit codes

0x00 1.8 bit codes

0x00 If configuring via the MPI rather than with Tokens these values would be
0x00 written into the de_bits_ 1[15:0] registers.

0x00

0x00

0x00

0x00

0x00

0x00 9 words carrying HUFFVAL information

0x01 If configuring via the MPI rather than with Tokens these values would be
0x02 written into the de_ huffval 1[11:0] registers.

0x03

0x04

0x05

0x06

0x07

0x08

[T = S R S s e T T T T T S T = S S e S e e B N B S N e T e T e e = T T S S S e g S e S S e S e L ==

US 2003/0196078 Al

TABLE A.14.10-continued

92

Oct. 16, 2003

MPEG DC Huffman table configuration

E [7:0] Token Name

1 0xD4 MPEG_DCH_TABLE

0 0xDO Configure so table O is used for component 0
1 0xD5 MPEG_DCH_TABLE

0 0x01 Configure so table 1 is used for component 1
1 0xD6 MPEG_DCH_TABLE

0 0x01 Configure so table 1 is used for component 2
1 0x15 CODING__STANDARD

0 0x02 2 = JPEG

[1298] A.14.4.4 MPEG Picture structure

[1299] The macroblock construction defined for MPEG is
the same as that used by H.261. The picture dimensions are
encoded in the coded data.

[1300] For standard 4:2:0 operation, the macroblock char-
acteristics should be configured as indicated in Table
A.14.80. This can be done either by writing to the registers
as indicated or by applying the equivalent Tokens (see Table
A.14.5) to the input of the Spatial Decoder.

[1301] The approach taken to configure picture dimen-
sions will depend upon the application. If the picture format
is known before decoding starts, then the picture construc-
tion registers listed in Table A.14.8 can be initialized with
appropriate values. Alternatively, the picture dimensions can
be decoded from the coded data and used to configure the
Spatial Decoder. In this case the user must service the parser
error ERR_MPEG_SEQUENCE, see A.14.8, “Changes at
the MPEG sequence layer”.

[1302] A.14.4.5 JPEG

[1303] Within baseline JPEG, there are a number of
encoder options that significantly alter the complexity of the
control software required to operate the decoder. In general,
the Spatial Decoder has been designed so that the required
support is minimal where the following condition is met:

[1304] Number of color components per frame is less
than 5(N:=4)

[1305] A.14.4.6 JPEG Huffman tables

[1306] Furthermore, JPEG allows Huffman coding tables
to be down loaded to the decoder. These tables are used
when decoding the vL.Cs describing the coefficients. Two
tables are permitted per scan for decoding DC coefficients
and two for the AC coefficients.

[1307] There are three different types of JPEG file: Inter-
change format, an abbreviated format for compressed image
data, and an abbreviated format for table data. In an inter-
change format file there is both compressed image data and
a definition of all the tables (Huffman, Quantization etc.)
required to decode the image data. The abbreviated image
data format file omits the table definitions. The abbreviated
table format file only contains the table definitions.

[1308] The Spatial Decoder will accept all three formats.
However, abbreviated image data files can only be decoded
if all the required tables have been defined. This definition

can be done via either of the other two JPEG file types, or
alternatively, the tables could be set-up by user software.

[1309] If each scan uses a different set of Huffman tables,
then the table definitions are placed (by the encoder) in the
coded data before each scan. These are automatically loaded
by the Spatial Decoder for use during this and any subse-
quent scans.

[1310] To improve the performance of the Huffman
decoding, certain commonly used symbols are specially
cased. These are: DC coefficient with magnitude 0, end of
block AC coefficients and run of 16 zero AC coefficients.
The values for these special cases should be written into the
appropriate registers.

[1311] A.14.4.6.1 Table selection

[1312] The registers dc_huff n and ac_huff n control
which AC and DC coefficient Huffman tables are used with
which color component. During JPEG operation, these rela-
tionships are defined by the TD; and Ta; fields of the scan
header syntax.

[1313] A.14.4.7 JPEG Picture structure

[1314] There are two distinct levels of baseline JPEG
decoding supported by the Spatial Decoder: up to 4 com-
ponents per frame (Ny=4) and greater than 4 components
per frame (Ng>4). If Ng>4 is used, the control software
required becomes more complex.

[1315] A.14.4.7.1 Nf=4

[1316] The frame component specification parameters
contained in the JPEG frame header configure the macrob-
lock construction registers (see Table A.14.8) when they are
decoded. No user intervention is required, as all the speci-
fications required to decode the 4 different color components
as defined.

[1317] For further details of the options provided by JPEG
the reader should study the JPEG specification. Also, there
is a short description of JPEG picture formats in § A.16.1.

[1318] A.14.4.7.2 JPEG with more than 4 components

[1319] The Spatial Decoder can decode JPEG files con-
taining up to 256 different color components (the maximum
permitted by JPEG). However, additional user intervention
is required if more than 4 color component are to be
decoded. JPEG only allows a maximum of 4 components in
any scan. only allows a maximum of 4 components in any
scan.

US 2003/0196078 Al

[1320] A.14.4.8 Non-standard variants

[1321] As stated above, the Spatial Decoder supports
some picture formats beyond those defined by JPEG and
MPEG.

[1322] JPEG limits minimum coding units so that they
contain no more than 10 blocks per scan. This limit does not
apply to the Spatial Decoder since it can process any
minimum coding unit that can be described by blocks_h_n,
blocks_v_n, max_h and max_v.

[1323] MPEG is only defined for 4:2:0 macroblocks (see
Table A.14.8). However, the Spatial Decoder can process
three other component macroblock structures, (e.g., 4:2:2.

[1324] A.14.5 Video events and errors

[1325] The Video Demux can generate two types of
events: parser events and Huffman events. See A.6.3, “Inter-
rupts”, for a description of how to handle events and
interrupts.

[1326] A.14.5.1 Huffman events

[1327] Huffman events are generated by the Huffman
decoder. The event which is indicated in huffman_event and
huffman_mask determines whether an interrupt is generated.
If huffman_mask is set to 1, an interrupt will be generated
and the Huffman decoder will halt. The register huffman-
_error_code[2:0] will hold a value indicating the cause of
the event.

[1328] If1 is written to huffman_event after servicing the
interrupt, the Huffman decoder will attempt to recover from
the error. Also, if huffman_mask was set to 0 (masking the
interrupt and not halting the Huffman decoder) the Huffman
decoder will attempt to recover from the error automatically.

[1329] A.14.5.2 Parser events

[1330] Parser events are gencrated by the Parser. The
event is indicate in parser_event. Thereafter, parser_mask

Oct. 16, 2003

determines whether an interrupt is generated. If parser_mask
is set to 1, an interrupt will be generated and the Parser will
halt. The register parser_error_code[7:0] Will hold a value
indicating the cause of event.

[1331] If 1 is written to huffman event after servicing the
interrupt, the Huffman decoder will attempt to recover from
the error. Also, if huffmanmask was set to 0 (masking the
interrupt and not halting the Huffman decoder) the Huffman
decoder will attempt to recover form the error automatically.

[1332] If 1 is written to parser_event after servicing the
interrupt, the Parser will start operation again. If the event
indicated a bitstream error, the Video Demux will attempt to
recover from the error.

[1333] If parser_mask was set to 0, the Parser will set its
event bit, but will not generate an interrupt or halt. It will
continue operation and attempt to recover from the error
automatically.

Table A.14.11

Huffman error codes

huffman error code

2] [1] [0] Description

0 0 0 No error. This error should not occur during
normal operation.

X 0 1 Failed to find terminal code in VLC within 16
bits.

X 0 Found serial data when Token expected

X 1 1 Found Token when serial data expected

1 X X Information describing more than 64

coefficients for a single block was decoded
indicating a bitstream error. The block output by
the Video Demux will contain only 64
coefficients.

[1334]

Table A.14.12

parser__error__code[7:0] Description

Parser error codes

0x00 ERR_NO_ERROR

No Parser error has occured, this event should not occur during normal operation
0x10 ERR_EXTENSION_ TOKEN

An EXTENSION__DATA Token has been detected by the Parser. The detection of

this Token should preceed a DATA Token that contains the extension data. See A.14.5
0x11 ERR_EXTENSION_ DATA

Following the detection of an EXTENSION__DATA Token, a DATA Token

containing the extension data has been detected. See A.14.6

0x12 ERR__USER_TOKEN

A USER__DATA Token has been detected by the Parser. The detection of this Token
should preceed a DATA Token that contains the user data. See A.14.6

0x13 ERR_USER_ DATA

Following the detection of a USER__DATA Token, a DATA Token containing the user
data has been detected. See A.14.6

0x20 ERR__PSPARE

H.261 PSARE information has been detected see A.14.7

0x21 ERR_GSPARE

H.261 GSARE information has been detected see A.14.7

0x22 ERR_PTYPE

The value of the H.251 picture type has changed. The register h__261_pic

—type

can be inspected to see what the new value is.

0x30 ERR_JPEG_FRAME

0x31 ERR_JPEG_FRAME_LAST

US 2003/0196078 Al Oct. 16, 2003
94

Table A.14.12-continued

Parser _error codes

parser__error_code[7:0] Description

0x32 ERR_JPEG_SCAN
Picture size or Ns changed
0x33 ERR_JPEG__SCAN__COMP
Component Change !
0x34 ERR__DNL_MARKER
0x40 ERR_MPEG_SEQUENCE
One of the parameters communicated in the MPEG sequence layer has changed. See
A.14.8
0x41 ERR_EXTRA_PICTURE
MPEG extra__information__picture has been detected see A.14.7
0x42 ERR_EXTRA__SLICE
MPEG extra_ information_ slice has been detected see A.14.7
0x43 ERR_VBV_DELAY

The VBV_DELAY parameter for the first picture in a new MPEG video sequence has
been detected by the Video Demux. The new value of delay is available in the register
vbv__delay.
The first picture of a new sequence is defined as the first picture after a sequence end.
FLUSH or reset.

0x80 ERR_SHORT_TOKEN
An incorrectly formed Token has been detected. This error should not occur during
normal operation.

0x90 ERR_H261_PIC_END_ UNEXPECTED
During H 261 operation the end of a picture has been encountered at an unexpected
position. This is likely to indicate an error in the coded data.

0x91 ERR_GN__BACKUP
During H.261 operation a group of blocks has been encountered with a group number
less than that expected. This is likely to indicate an error in the coded data

0x92 ERR_GN__SKIP_ GOB
During H.261 operation a group of blocks has been encountered with a group number
greater than that expected. This is likely to indicate an error in the coded data

0xA0 ERR_NBASE_TAB
During JPEG operation there has been an attempt to down load a Huffman table that is
not supported by baseline JPEG (baseline JPEG only supports tables 0 and 1 for
entropy coding).

0xA1 ERR_QUANT_PRECISION
During JPEG operation there has been an attempt to down load a quantisation table that
is not supported by baseline JPEG (baseline JPEG only supports 8 bit precision in
quantisation tables).

0xA2 ERR_SAMPLE_ PRECISION
During JPEG operation there has been an attempt to specify a sample precision greater
than that supported by baseline JPEG (baseline JPEG only supports 8 bit precision).

0xA3 ERR_NBASE_ SCAN
One or more of the JPEG scan header parameters Ss, Se, Ah and Al is set to a value not
supported by baseline JPEG (indicating spectral selection and/or successive
approximation which are not supported in baseline JPEG).

0xA4 ERR_UNEXPECTED_ DNL
During JPEG operation a DNL marker has been encountered in a scan that is not the
first scan in a frame.

0xAS ERR_EOS__ UNEXPECTED
During JPEG operation an EOS marker has been encountered in an unexpected place
0xA6 ERR__RESTART_SKIP

During JPEG operation a restart marker has been encountered either in an
unexpected place or the value of the restart marker is unexpected. If a restart marker is
not found when one is expected the Huffman event “Found serial data when Token
expected” will be generated.

0xBO ERR__SKIP_ INTRA
During MPEG operation, a macro block with a macro block address increment greater
than 1 has been found within an intra (I) picture. This is illegal and probably indicates a
bitstream error

0xB1 ERR__SKIP_ DINTRA
During MPEG operation, a macro block with a macro block address increment greater
than 1 has been found within an DC only (D) picture. This is illegal and probably
indicates a bitstream error.

0xB2 ERR_BAD_ MARKER
During MPEG operation, a marker bit did not have the expected value. This probably
indicates a bitstream error.

0xB3 ERR_D_MBTYPE
During MPEG operation, within a DC only (D) picture, a macroblock was found with a
macroblock type other than 1. This is illegal and probably indicates a bitstream error.

0xB4 ERR_D_MBEND
During MPEG operation, within a DC only (D) picture, a macroblock was found with 0 in
its end of macroblock bit. This is illegal and probably indicates a bitstream error.

US 2003/0196078 Al Oct. 16, 2003
95

Table A.14.12-continued

Parser _error codes

parser__error_code[7:0] Description

0xB5 ERR_SVP_BACKUP
During MPEG operation, a slice has been encountered with a slice vertical position less
than that expected. This is likely to indicate an error in the coded data
0xB6 ERR__SVP__SKIP_ ROWS
During MPEG operation, a slice has been encountered with a slice vertical position
greater than that expected. This is likely to indicate an error in the coded data
0xB7 ERR_FST_MBA_BACKUP
During MPEG operation, a macroblock has been encountered with a macro block
address less than that expected. This is likely to indicate an error in the coded data
0xB8 ERR_FST_MBA_ SKIP
During MPEG operation, a macroblock has been encountered with a macro block
address greater than that expected. This is likely to indicate an error in the coded data
0xB9 ERR__PICTURE__END_UNEXPECTED
During MPEG operation, a PICTURE__END Token has been encountered in an
unexpected place. This is likely to indicate an error in the coded data.

0xEO . . . OXEF Errors reserved for internal test programs
0xE0 ERR_TST PROGRAM

Mysteriously arrived in the test program
0xE1 ERR_NO_PROGRAM

If the test program is not completed in
0xE2 ERR_TST END

End of test
0xFO . . . OxFF Reserved errors
0xF0 ERR_UCODE__ADDR

fell off the end of the world
0xF1 ERR_NOT_IMPLEMENTED

[1335] Each standard uses a different sub-set of the

defined Parser error codes. Table A.14.13-continued
Table A.14.13 Parser _error codes and the different standards
i Token Name MPEG JPEG H.261
Parser error codes and the different standards

ERR_SVP_BACKUP v
Token Name MPEG JPEG H.261 ERR_SVP_SKIP. ROWS 7

ERR_FST_MBA_BACKUP v
ERR_NO_ERROR v v v ERR_FST_MBA__SKIP v
ERR_EXTENSION_TOKEN 4 4 ERR_PICTURE_END_ UNEXPECTED v
ERR__EXTENSION_ DATA v v FRR_TST PROGRAM v v v
ERR_USER_TOKEN v v ERR_NO_PROGRAM v v v
ERR__USER_DATA v v ERR TST END v v v
ERR_PSPARE 4 ERR_UCODE_ADDR v v v
ERR_GSPARE 4 ERR_NOT_IMPLEMENTED v v v
ERR_PTYPE v
ERR_JPEG_FRAME v
ERR_JPEG_FRAME_LAST v
ERR_JPEG_SCAN 4 [1336] A.14.6 Receiving User and Extension data
ERR_JPEG_SCAN_COMP v
ERR_DNL_MARKER v .. .
ERR_MPEG. SEQUENCE Y [1337] MPEG and J.PEG use similar .mechamsms to
ERR_EXTRA_PICTURE s embed user and extension data. The data is preceded by a
ERR_EXTRA_SLICE v start/marker code. The Start Code Detector can be config-
ERR_VBV_DELAY v ured to delete this data (see A.11.3.3) if the application has
ERR__SHORT_TOKEN v v v . . A
ERR_H261_PIC_END_UNEXPECTED v no interest in such data.
ERR_GN_BACKUP v .
ERR__GN_SKIP_GOB v/ [1338] A.14.6.1 Identifying the source of the data
ERR_NBASE_TAB v
ERR_QUANT_PRECISION v [1339] The Parser events, ERR_EXTENSION_TOKEN
ERR_SAMPLE PRECISION j and ERR_USER_TOKEN, indicate the arrival of the
ERR _NBASE_SCAN EXTENSION_DATA or USER_DATA Token at the Video
ERR__UNEXPECTED_DNL v - —
ERR_EOS._ UNEXPECTED v/ Demux. If these Tokens have been .generated by the Start
ERR_RESTART_SKIP v Code Detector, (see A.11.3.3) they will carry the value of the
ERR__SKIP_INTRA j start/marker code that caused the Start Code Detector to
gﬁﬁ’;ﬂ’ﬁi\g& v generate the Token (see Table A.11.4). This value can be
ERR_D._ MBTYPE v/ read by reading the rom_revision register while servicing the
ERR_D_ MBEND v Parser interrupt. The Video Demux will remain halted until

1 is written to parser_event (see A.6.3, “Interrupts”).

US 2003/0196078 Al

[1340] A.14.6.2 Reading the data

[1341] The EXTENSION_DATA and USER_DATA
Tokens are expected to be immediately followed by a DATA
Token carrying the extension or user data. The arrival of this
DATA Token at the Video Demux will generate either an
ERR_EXTENSION_DATA or an ERR_USER_DATA
Parser event. The first byte of the DATA Token can be read
by reading the rom_revision register while servicing the
interrupt.

[1342] The state of the Video Demux register, continue,
determines behavior after the event is cleared. If this register
holds the value O, then any remaining data in the DATA
Token will be consumed by the Video Demux and no events
will be generated. If the continue is set to 1, an event will be
generated as each byte of extension or user data arrives at the
Video Demux. This continues until the DATA Token is
exhausted or continue is set to 0.

[1343] NOTE:

[1344] 1)The first byte of the extension/user data is
always presented via the rom revision register
regardless of the state of continue.

[1345] 2)There is no event indicating that the last
byte of extension/user data has been read.

[1346] A.14.7 Receiving Extra Information

[1347] H.261 and MPEG allow information extending the
coding standard to be embedded within pictures and groups
of blocks (H.261) or slices (MPEG). The mechanism is
different from that used for extension and user data
(described in Section A.14.6). No start code precedes the
data and, thus, it cannot be deleted by the Start Code
Detector.

[1348] During H.261 operation, the Parser events
ERR_PSPARE and ERR_GSPARE indicate the detection of
this information. The corresponding events during MPEG
operation are ER_EXTRA PICTURE and ERR_EX-
TRA_SLICE.

[1349] When the Parser event is generated, the first byte of
the extra information is presented through the register,
rom_revision.

[1350] The state of the Video Demux register, continue,
determines behavior after the event is cleared. If this register
holds the value 0, then any remaining extra information will
be consumed by the Video Demux and no events will be
generated. If the continue is set to 1, an event will be
generated as each byte of extra information arrives at the
Video Demux. This continues until the extra information is
exhausted or continue is set to 0.

[1351] NOTE:

[1352] 1)The first byte of the extension/user data is
always presented via the rom_revision register
regardless of the state of continue.

[1353] 2)There is no event indicating that the last
byte of extension/user data has been read.

[1354] A.14.7.1 Generation of the FIELD_INFO Token

[1355] During MPEG operation, if the register field info is
set to 1, the first byte of any extra_information_picture is
placed in the FIELD_INFO Token. This behavior is not

Oct. 16, 2003

covered by the standardization activities of MPEG. Table
A.3.2 shows the definition of the FIELD_INFO Token.

[1356] 1If field_info is set to 1, no Parser event will be
generated for the first byte of extra_information_picture.

[1357] However, events will be generated for any subse-
quent bytes of extra_information_picture. If there is only a
single byte of extra_information_picture, no Parser event
will occur.

[1358] A.14.8 Changes at the MPEG sequence layer

[1359] The MPEG sequence header describes the follow-
ing characteristic of the video about to be decoded:

[1360] horizontal and vertical size
[1361] pixel aspect ratio
[1362] picture rate
[1363] coded data rate
[1364] wvideo buffer verifier buffer size
[1365] If any of these parameters change when the Spatial

Decoder decodes a sequence header, the Parser event
ERR_MPEG_SEQUENCE will be generated.

[1366] A.14.8.1 Change in picture size

[1367] 1If the picture size has changed, the user’s software
should read the values in horiz_pels and vert_pels and
compute new values to be loaded into the registers horiz-
_macroblocks and vert_macroblocks.

[1368] SECTION A.15 Spatial Decoding

[1369] In accordance with the present invention, the spa-
tial decoding occurs between the output of the Token buffer
and the output of the Spatial Decoder.

[1370] There are three main units responsible for spatial
decoding: the inverse modeler, the inverse quantizer and the
inverse discrete cosine transformer. At the input to this
section (from the Token buffer) DATA Tokens contain a run
and level representation of the quantized coefficients. At the
output (of the inverse DCT) DATA Tokens contain 8x8
blocks of pixel information.

[1371] A.15.1 The Inverse Modeler

[1372] DATA Tokens in the Token buffer contain infor-
mation about the values of quantized coefficients and the
number of zeros between the coefficients that are repre-
sented. The Inverse Modeler expands the information about
runs of zeros so that each DATA Token contains 64 values.
At this point, the values in the DATA Tokens are quantized
coefficients.

[1373] The inverse modelling process is the same regard-
less of the coding standard currently being used. No con-
figuration is required.

[1374] For a better understanding of the modelling and
inverse modelling function all requirements the reader can
examine any of the picture coding standards.

[1375] A.15.2 Inverse Quantizer

[1376] In an encoder, the quantizer divides down the
output of the DCT to reduce the resolution of the DCT
coefficients. In a decoder, the function of the inverse quan-

US 2003/0196078 Al

tizer is to multiply up these quantized DCT coefficients to
restore them to an approximation of their original values.

[1377] A.15.2.1 Overview of the standard quantization
schemes

[1378] There are significant differences in the quantization
scheme used by each of the different coding standards. To
obtain a detailed understanding of the quantization schemes
used by each of the standards the reader should study the
relevant coding standards documents.

[1379] The register iq_coding_standard configures the
operation of the inverse quantizer to meet the requirements
of the different standards. In normal operation, this coding
register is automatically loaded by the CODING_STAN-
DARD Token. See section A.21.1 for more information
about coding standard configuration.

[1380] The main difference between the quantization
schemes is the source of the numbers by which the quantized
coefficients are multiplied. These are outlined below. There
are also detail differences in the arithmetic operations
required (rounding etc.), which are not described here.

[1381] A.15.2.1.1 H.261 10 overview

[1382] 1InH.261, a single “scale factor” is used to scale the
coefficients. The encoder can change this scale factor peri-
odically to regulate the data rate produced. Slightly different
rules apply to the “DC” coefficient in intra coded blocks.

[1383] A.15.2.1.2 JPEG 10 overview

[1384] Baseline JPEG allows for a picture that contains up
to 4 different color components in each scan. For each of
these 4 color components, a 64 entry quantization table can
be specified. Each entry in these tables is used as the “scale”
factor for one of the 64 quantized coefficients.

[1385] The values for the JPEG quantization tables are
contained in the coded JPEG data and will be loaded
automatically into the quantization tables.

[1386] A.15.2.1.3 MPEG 10 overview

[1387] MPEG uses both H.261 and JPEG quantization
techniques. Like JPEG, 4 quantization tables, each with 64
entries, can be use. However, use of the tables is quite
different.

[1388] Two “types” of data are considered: intra and
non-intra. A different table is used for each data type. Two
“default” tables are defined by MPEG. One is for use with
intra data and the other with non-intra data (see Table A.15.2
and Table A.15.3). These default tables must be written into
the quantization table memory of the Spatial Decoder before
MPEG decoding is possible.

[1389] MPEG also allows two “down loaded” quantiza-
tion tables. One is for use with intra data and the other with
non-intra data. The values for these tables are contained in
the MPEG data stream and will be loaded into the quanti-
zation table memory automatically.

[1390] The value output from the tables is modified by a
scale factor.

Oct. 16, 2003

[1391] A.15.2.2 Inverse quantizer registers

Table A.15.1

Inverse quantizer registers

Size/ Reset
Register Name " Dlr. State Description
iq_access 1 0 This access bit stops the operation

™w of the inverse quantiser so that its
various registers can be accessed
reliably See A.6.4.1

iq_coding_ standard 2 0 This register configures the coding

™w standard used by the inverse
quantiser. The register can be
loaded directly or by a
CODING__STANDARD Token.

See A.21.1
iq_keyhole_address 8 X Keyhole access to the which holds
™w the 4 quantiser tables. See A.6.4.3

for more information about
accessing registers through a
keyhole.
iq_keyhole_ data 8 X
™w

[1392] Inth present invention, the iq_access register must
be set before the quantization table memory can be accessed.
The quantization table memory will return the value zero if
an attempt is made to read it while iq_access is set to 0.

[1393] A.15.2.3 Configuring the inverse quantizer

[1394] In normal operation, there is no need to configure
the inverse quantizer’s coding standard as this will be
automatically configured by the CODING_STANDARD
Token.

[1395] For H.261 operation, the quantizer tables are not
used. No special configuration is required. For JPEG opera-
tion, the tables required by the inverse quantizer should be
automatically loaded with information extracted from the
coded data.

[1396] MPEG operation requires that the default quanti-
zation tables are loaded. This should be done while iq_ac-
cess is set to 1. The values in Table A.15.2 should be written
into locations 0x40 to Ox7F of the inverse quantizer’s
extended address space (accessible through the keyhole
registers iq_keyhole_address and iq_keyhole_data). Simi-
larly, the values in Table A.15.3 should be written into
locations 0x40 to Ox7F of the inverse quantizer’s extended
address space.

TABLE A.15.2

Default MPEG table for intra coded blocks

it W; ob 1 Wio 1 Wio 1 Wio
0 8 16 27 32 29 48 35
1 16 17 27 33 29 49 38
2 16 18 26 34 27 50 38
3 19 19 26 35 27 51 40
4 16 20 26 36 29 52 40
5 19 21 26 37 29 53 40
6 22 22 27 38 32 54 48
7 22 23 27 39 32 55 48
8 22 24 27 40 34 56 46
9 22 25 29 41 34 57 46
10 22 26 29 42 37 58 56
1 22 27 29 43 38 59 56
12 26 28 34 44 37 60 58
13 24 29 34 45 35 61 69
14 26 30 34 46 35 62 69

US 2003/0196078 Al

TABLE A.15.2-continued

Oct. 16, 2003
98

[1398] A.15.2.4 configuring tables from Tokens

Default MPEG table for intra coded blocks

[1399] As an alternative to configuring the inverse quan-
tizer tables via the MPI, they can be initialized by Tokens.

- b .
i Wio i

Wio i Wio

These Tokens can be supplied via either the coded data port
or the MPL

15 27 31

29

47 34

o s [1400] The QUANT TABLE Token is described in Table

#Offset from start of quantization table memory

PQuantization table value.

A3.2. 1t has a two bit field tt which specifies which of the
4 (0 to 3) table locations is defined by the Token. For MPEG
operation, the default definitions of tables O and 1 need to be

[1397] loaded.
TABLE A.15.3 [1401] A.15.2.5 quantization table values
Default MPEG table for non-intra coded blocks [1402] For both JPEG and MPEG, the quantization table
® Wi, ; Wi, ; W, ; W, entries are 8 bit numbers. The values 255 to 1 are legal. The
value O is illegal.
0 16 16 16 32 16 48 16
1 16 17 16 33 16 49 16 [1403] A.15.2.6 Number ordering of quantization tables
2 16 18 16 34 16 50 16
i 12 ;g 12 gz 12 2; 12 [1404] The quantization table values are used in “zig-zag”
5 16 21 16 37 16 53 16 scan order (see the coding standards). The tables should be
6 16 2 16 38 16 34 16 viewed as a one dimensional array of 64 values (rather than
7 16 23 16 39 16 55 16 ¥
8 16 24 16 40 16 56 16 a 8x8 array). The table entries at lower addresses correspond
9 16 25 16 41 16 57 16 .
10 16 % 16 o 16 P 16 to the lower frequency DCT coefficients.
11 16 27 16 43 16 59 16 L .
12 16 28 16 44 16 60 16 [1405] When quantization table values are carried by a
13 16 29 16 45 16 61 16 QUANT TABLE Token, the first value after the Token
14 16 30 16 46 16 62 16 .= P .
15 16 31 16 47 16 63 16 header is the table entry for the “DC” coefficient.
@ indicates text missing or illegible when filed [1406] A. 15.2.7 Inverse quantizer test registers
Table A.15.4
Inverse quantiser test registers
Size/ Reset

Register Name

Dlr. State Description

iq__quant__scale

iq__component

iq__prediction__mode

iq_jpeg_indirection

iq__mpeg__indirection

5 This register holds the current value of the quantisation scale factor. It

™ is loaded by the QUANT_SCALE Token. This is not used during
JPEG operation.

2 This register holds the two bit component ID taken from the most recent

™w DATA Token head. This value is involved in the selection of the

quantiser table.
The register will also hold the table ID after a QUANT_TABLE Token
arrives to load the table.

2 This holds the two LSBs of the most recent PREDICTION_MODE

W Token.

8 This register relates the two bit component ID number of a DATA Token
™w to the table number of the quantisation table that should used.

Bits 1:0 specify the table number that will be sued with component 0
Bits 3:2 specify the table number that will be sued with component 1
Bits 5:4 specify the table number that will be sued with component 2
Bits 7:6 specify the table number that will be sued with component 3
This register is loaded by JPEG_TABLE__SELECT Tokens.
2 0 This two bit register records whether to use default or down loaded
™w quantisation tables with the intra and non-intra data.
A 0 in the bit position indicates that the default table should be used. A 1
indicates that a down loaded table should be used.
Bit O refers to intra data. Bit 1 refers to non-intra data. This register is
normally loaded by the Token MPEG_TABLE__SELECT.

US 2003/0196078 Al

[1407] A.15.3 Inverse Discrete Cosine Transform

[1408] The inverse discrete transform processor of the
present invention meets the requirements set out in CCITT
recommendation H.261, the IEEE specification P1180 and
complies with the requirements described in current draft
revision of MPEG.

[1409] The inverse discrete cosine transform process is the
same regardless of which coding standard is used. No,
configuration by the user is required.

[1410] There are two events associated with the inverse
discrete transform processor.

Table A.15.5

Oct. 16, 2003

[1420] How to identify when to display the picture.

ow to 1dentify where 1n the display the
1421] H identify where in the display th
picture data should be placed.

[1422] A.16.1 Structure of JPEG pictures

[1423] This section provides an overview of some features
of the JPEG syntax. Please refer to the coding standard for
full details.

[1424] JPEG provides a variety of mechanisms for encod-
ing individual pictures. JPEG makes no attempt to describe
how a collection of pictures could be encoded together to
provide a mechanism for encoding video.

Inverse DCT event registers

Size/ Reset
Register Name Dlr. State Description
Idct_too_ few_ event 1 0 The Inverse DCT requires that all DATA Tokens contain exactly 64
™w values. If less than 64 values are found then the too-few event will be
Idct__too__few__mask 1 0 generated. If the mask register is set to 1 then an interrupt can be

™w generated and the Inverse DCT will halt.
This event should only occur following an error in the coded data.

Idet_too_many_event 1 0 The Inverse DCT requires that all DATA Tokens contain exactly 64

™w values. If more than 64 values are found then the too-many event will be
Idet_too_many__mask 1 0 generated. If mask register is set to 1 then an interrupt can be

™w generated and the Inverse DCT will halt.

This event should only occur following an error in the coded data.

[1411] For a better understanding of the DCT and inverse
DCT function the reader can examine any of the picture
coding standards.

[1412] SECTION A. 16 Connecting to the output of Spa-
tial Decoder

[1413] The output of the Spatial Decoder is a standard
Token Port with 9 bit wide data words. See Section A.4 for
more information about the electrical behavior of the inter-
face.

[1414] The Tokens present at the output will depend on the
coding standard employed. By way of example, this section
of the disclosure looks at the output of the Spatial Decoder
when configured for JPEG operation. This section also
describes the Token sequence observed at the output of the
Temporal Decoder during JPEG operation as the Temporal
Decoder doesn’t modify the Token sequence that results
from decoding JPEG.

[1415] However, MPEG and H.261 both require the use of
the Temporal Decoder. See section A.19 for information
about connecting to the output of the Temporal Decoder
when configured for MPEG and H.261 operation.

[1416] Furthermore, this section identifies which of the
Tokens are available at the output of the Spatial Decoder and
which are most useful when designing circuits to display
that output. Other Tokens will be present, but are not needed
to display the output and, therefore, are not discussed here.

[1417] This section concentrates on showing:

[1418] How the start and end of sequences can be
identified.

[1419] How the start and end of pictures can be
identified.

[1425] The Spatial Decoder, in accordance-with the
present invention, supports JPEG’s baseline sequential
mode of operation. There are three main levels in the syntax:
Image, Frame and Scan. A sequential image only contains a
single frame. A frame can contain between 1 and 256
different image (color) components. These image compo-
nents can be grouped, in a variety of ways, into scans. Each
scan can contain between 1 and 4 image components (see
FIG. 81“Overview of JPEG baseline sequential structure”).

[1426] If a scan contains a single image component, it is
non-interleaved, if it contains more than one image compo-
nent, it is an interleaved scan. A frame can contain a mixture
of interleaved and non-interleaved scans. The number of
scans that a frame can contain is determined by the 256 limit
on the number of image components that a frame can
contain.

[1427] Within an interleaved scan, data is organized into
minimum coding units (MCUs) which are analogous to the
macroblock used in MPEG and H.261. These MCUs are
raster ordered within a picture. In a non-interleaved scan, the
MCU is a single 8x8 block. Again, these are raster orga-
nized.

[1428] The Spatial Decoder can readily decode JPEG data
containing 1 to 4 different color components. Files describ-
ing greater numbers of components can also be decoded.
However, some reconfiguration between scans may be
required to accommodate the next set of components to be
decoded.

[1429] A.16.2 Token sequence

[1430] The JPEG markers codes are converted to an
analogous MPEG named Token by the Start Code Detector
(see Table A.11.4, see FIG. 82“Tokenized JPEG picture”).

US 2003/0196078 Al

[1431] SECTION A.17 Temporal Decoder
[1432] 30 MH, operation

[1433] Provides temporal decoding for MPEG & H.261
video decoders

Oct. 16, 2003

100

[1444] The Temporal Decoder is not required for Intra
coding schemes (such as JPEG). If included in a multi-
standard decoder, the Temporal Decoder will pass decoded
JPEG pictures through to its output.

[1445] Note: The above values are merely illustrative, by

[1434] H.261 CIF and QCIF formats) e
]] way of example and not necessarily by way of limitation, of
[1435] MPEG video resolutions up to 704x480, 30 Hz, one embodiment of the present invention. It will be appre-
4:2:0 ciated that other values and ranges may also be used without
[1436] Flexible chroma sampling formats departing from the invention.
[1437] Can re-order the MPEG picture sequence [1446] A.17. temporal Decoder Signals
Table A.17.1
Temporal Decoder signals
Signal Name I/O Pin Number Description
in__data[8:0] I 173,172, 171, 169, 168, 167, 166, 164, Input Port. This is a standard two wire
163 interface normally connected to the
in_extn I 174 Output Port of the Spatial Decoder
in_ valid 1 162 See sections A.4 and A.18.1
in__accept O 161
enable[1:0] I 126,127 Micro Processor Interface MPI
™w I 125 See A.6.1 on page 59.
addi[7:0] I 137,136, 135, 133, 132, 131, 130, 128
data[7:0] O 152, 151, 149, 147, 145, 143, 141, 140
irq o 154

DRAM__data[31:0]

3

15, 17, 19, 20, 22, 25, 27, 30, 31, 33, 35,
38, 39, 42, 44, 47, 49, 57, 59, 61, 63, 66,
68, 70, 72, 74, 75, 79, 81, 83, 84, 85

DRAM Interface.
See section A.5.2

DRAM_addi[10:0] O 184, 186, 188, 189, 192, 193, 195, 197,
199, 200, 203
RAS O 1
CAS[3:0] O 2,4,6,8
WE o 12
OE O 204
DRAM__enable 1 112
out_ data[7:0] O 89,90, 92,93, 94, 95, 97, 98 Output Port. This is a standard two wire
out__extn o 87 interface.
out_valid o 99 See sections A.4 and A.19
out__accept I 100
tex I 115 JTAG port.
tdi I 116 See sections A.8
tdo O 120
tms I 117
trst I 121
decoder__clock I 177 The main decoder clock. See
Table A.7 2
reset I 160 Reset.
[1438] Glue-less DRAM interface [1447]
[1439] Single +5V supply 208 pin PQFP package Table A17.2
[1440] Max. power dissipation 2.5W Temporal Decoder Test signal
[1441] Uses standard page mode DRAM Signal Pin
Name I/O Num. Description
[1442] The Temporal Decoder is a companion chip to the

Spatial Decoder. It provides the temporal decoding required
by H.261 and MPEG.

[1443] The Temporal Decoder implements all the predic-
tion forming features required by MPEG and H.261. With a
single 4 Mb DRAM (e.g., 512 k x8) the Temporal Decoder
can decode CIF and QCIF H.261 video. With 8 Mb of
DRAM (e.g., two 256 k x16) the 704 x480, 30Hz, 4:2:0
MPEG video can be decoded.

tphOish I 122 If override = 1 then tphOish and tphlish are inputs
tphlish I 123 for the on-chip two phase clock.
For normal operation set override = 0. tphOish and

overode I 110 tphlish are ignored (so connect to GND or Vpp).
chiptest I 111 Set chiptest = 0 for normal operation.

tloop I 114 Connect to GND or V, during normal operation.
ramtest I 109 If ramtest = 1 test of the on-chip RAMs is enabled.

Set ramtest = 0 for normal operation.
pllselect I 178 If pliselect = O the on-chip phase locked loops

are disabled. Set pllselect = 1 for normal operation.
ti I 180 Two clocks required by the DRAM interface during

US 2003/0196078 Al

101

Table A.17.2-continued

Temporal Decoder Test signals
Signal Pin
Name I/O Num. Description

test operation.
tq I 179 Connect to GND or V, during normal operation.
pdout O 207 These two pins are connections for an
pdin I 206 external filter for the phase lock loop.
[1448]

TABLE A.17.3
Temporal Decoder Pin Assignments

Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
nc 208 nc 156 nc 104 nc 52
test pin 207 nc 155 nc 103 nc 51
test pin 206 irq 154 nc 102 nc 50
GND 205 nc 153 VDD 101 DRAM_ data[15] 49
OE 204 data[7] 152 out_accept 100 nc 48
DRAM__addi[0] 203 data[6] 151 out_valid 99 DRAM_ data[16] 47
VDD 202 nc 150 out_data[0] 98 nc 46
ne 201 data[5] 149 out_ data[1] 97 GND 45
DRAM_addf1] 200 nc 148 GND 96 DRAM_ date[17] 44
DRAM__addi[2] 199 data[4] 147 out_ data[2] 95 nc 43
GND 198 GND 146 out_data[3] 94 DRAM_ date[18] 42
DRAM__addi[3] 197 data[3] 145 out_ data[4] 93 VDD 41
ne 196 nc 144 out_ data[5] 92 nc 40
DRAM_addi4] 195 data[2] 143 VDD 91 DRAM_ data[19] 39
VDD 194 nc 142 out_data[6] 90 DRAM_ data[20] 38
DRAM__addi[5] 193 data[1] 141 out_ data[7] 89 nc 37
DRAM_addif6] 192 data[0] 140 nc 88 GND 36
ne 191 ne 139 out_extn 87 DRAM_ data[21] 35
GND 190 VDD 138 GND 86 nc 34
DRAM_add{7] 189 addi[7] 137 DRAM_ data[0] 85 DRAM_ data[22] 33
DRAM_addi[8] 188 addi[6] 136 DRAM_ data[1] 84 VDD 32
VDD 187 addi[5] 135 DRAM_data[2] 83 DRAM_ data[23] 31
DRAM.__addi[9] 186 GND 134 VDD 82 DRAM_ data[24] 30
ne 185 addi[4] 133 DRAM_ data[3] 81 nc 29
DRAM_addi10] 184 addi[3] 132 ne 80 GND 28
GND 183 addi[2] 131 DRAM_ data[4] 79 DRAM_ date[25] 27
ne 182 addi[1] 130 GND 78 nc 26
VDD 181 VDD 129 nc 77 DRAM_ data[26] 25
test pin 180 addi[0] 128 DRAM_ data[5] 76 nc 24
test pin 179 enable[0] 127 nc 75 VDD 23
test pin 178 enable[1] 126 DRAM_ data[6] 74 DRAM_ data[27] 22
decoder_clock 177 1w 125 VDD 73 nc 21
ne 176 GND 124 DRAM_ data[7] 72 DRAM_ data[28] 20
GND 175 test pin 123 nc 71 DRAM_ data[29] 19
in_extn 174 test pin 122 DRAM_ data[8] 70 GND 18
in_ data[8] 173 trst 121 GND 69 DRAM_ data[30 17
in_ data[7] 172 tdo 120 DRAM_ data[9] 68 nc 16
in__data[6] 171 nc 119 nc 67 DRAM__data[31] 15
VDD 170 VDD 118 DRAM_ data[10] 66 VDD 14
in_ data[5] 169 tms 117 VDD 65 nc 13
in_data[4] 168 tdi 116 nc 64 WE 12
in_data[3] 167 tck 115 DRAM_data[11] 63 RAS 11
in_ data[2] 166 test pin 114 nc 62 nc 10
GND 165 GND 113 DRAM_ data[12] 61 GND 9
in_data[1] 164 DRAM_enable 112 GND 60 TAS[0] 8
in_ data[0] 163 test pin 111 DRAM_ data[13] 59 nc 7
in_ valid 162 test pin 110 nc 58 CAS[1] 6
in_ accept 161 test pin 109 DRAM_ data[14] 57 VDD 5
reset 160 nc 108 VDD 56 CAS[2] 4
VDD 159 nc 107 nc 55 nc 3
nc 158 nc 106 nc 54 CAS[3] 2
nc 157 nc 105 nc 53 nc 1

Oct. 16, 2003

US 2003/0196078 Al

[1449] A.17.1.1 “nc” no connect pins

[1450] The pins labelled nc in Table A.17.3 are not cur-
rently used in the present invention and are reserved for
future products. These pins should be left unconnected. They
should not be connected to Vi, GND, each other or any
other signal.

[1451] A. 17.1.2 Vp and GND pins

[1452] As will be appreciated all the V, and GND pins
provided must be connected to the appropriate power supply.
The device will not operate correctly unless all the V5, and
GND pins are correctly used.

[1453] A.17.1.3 Test pin connections for normal operation

[1454] Nine pins on the Temporal Decoder are reserved
for internal test use.

Table A.17.4

Default test pin connections

Pin number Connection

Connect to GND for normal operation
Connect to Vg, for normal operation
Leave Open Circuit for normal operation

[1455] A17. JTAG pins for normal operation
[1456] See Section A.8.1.

Table A.17.5

Overview of Temporal Decoder memory map

Addr. (hex) Register Name See table
0x00 ... 0x01 Interrupt service area A.17.6
0x02 ... 0x07 Not used

0x08 Chip access A17.7
0x09 . .. OxOF Not used

0x10 Picture sequencing A17.8

0x11 ... Ox1F Not used
0x20...0x2E =~ DRAM interface configuration registers A.17.9
0x2F . . . 0x3F Not used

0x40 ... 0x53 Buffer configuration A17.8
0x54 ... Ox5F Not used
0x60 ... 0xFF Test registers A17.11
[1457]

TABLE A.17.6

Interrupt service area registers

Addr. Bit
(hex) num. Register Name Page references
0x00 7 chip__event
6:2 not used
1 chip__stopped__event
0 count__error__event
0x01 7 chip__mask
6:2 not used
1 chip__stopped__mask
0 count__error__mask

Oct. 16, 2003

[1458]
TABLE A.17.7
Chip access register
Addr. Bit
(hex) num. Register Name Page references
0x08 7:1 not used
chip__access
[1459]
TABLE A.17.8
Picture sequencing
Addr. Bit
(hex) num. Register Name Page references
0x10 7:1 not used
0 MPEG__reordering
[1460]
TABLE A.17.9
DRAM interface configuration registers
Addr. Bit
(hex) num. Register Name Page references
0x20 75 not used
4:0 page_start_length[4:0]
0x21 7:4 not used
3:0 read__cycle_ length[3:0]
0x22 7:4 not used
3:0 write_cycle_length[3:0]
0x23 7:4 not used
3:0 refresh_ cycle_length[3:0]
0x24 7:4 not used
3:0 CAS_ falling[3:0]
0x25 7:4 not used
3:0 RAS_ falling[3:0]
0x26 7:1 not used
0 interface__timing_ access
0x27 7:0 not used
0x28 7:6 RAS_ strength[2:0]
5:3 OEWE_ strength[3:0]
2:0 DRAM__data_ strength[3:0]
0x29 7 not used
6:4 DRAM__addr_ strength[3:0]
3:1 CAS_ strength[3:0]
0 RAS_ strength[3]
0x28 7 not used
6:4 DRAM__addr_ strength[3:0]
3:1 CAS_ strength[3:0]
0 RAS_ strength[3]
0x29 7:6 RAS_ strength[2:0]
5:3 OEWE_ strength[3:0]
2:0 DRAM__data_ strength[3:0]
0x2A 7:0 refresh__interval
0x2B 7:0 not used
0x2C 7:6 not used
5 DRAM__enable
4 no__refresh
3:2 row__address__bits[1:0]
1:0 DRAM_ data_ width[1:0]
0x2D 7:0 not used
0x2E 7:0 Test registers

US 2003/0196078 Al

[1461]

TABLE A.17.10

103

Oct. 16, 2003

TABLE A.17.11-continued

Test registers

Buffer configuration registers Addr. Bit .
(hex) num. Register Name Page references
?}iir) nljrlrtl Register Name Page references 8;:28 ; T 8 width_in_mb
0x40 7:0 not used
0x41 72
1:0 picture_buffer_0[17:0] [1463] SECTION A.18 Temporal Decoder Operation
8§fé ;8 [1464] A.18.1 Data input
0x44 7.0 not used [1465] The input data port of the Temporal Decoder is a
0x45 72] _ standard Token Port with 9 bit wide data words. In most
o6 %jg plcture_buffer _1[17:0] applications, this will be connected directly to the output
Oxd7 70 Token Port of the Spatial Decoder. See Section A.4 for more
0x48 70 not used information about the electrical behavior of this interface.
0x49 71 [1466] A.18.2 Automatic configuration
0 component_offset_ 0[16:0] . . .
OxdA 7:0 [1467] Parameters relating to the coded video’s picture
0x4B 70 format are automatically loaded into registers within the
gxig ;1(13 not used Temporal Decoder by Tokens generated by the Spatial
X H
0 component_offset_ 1[16:0] Decoder.
Ox4E 70 TABLE A.18.1
0x4F 7:0
0x50 70 not used Configuration of Temporal Decoder via Tokens
0x51 71
0 component_offset_2[16:0] Token Configuration performed
8§§§ ;8 CODING__STANDARD The coding standard of the Temporal
Decoder is automatically configured by the
CODING__STANDARD Token. This is
generated by the Spatial Decoder each time a
[1462] new sequence is started. See FIG. 58
DEFINE_SAMPLING The horizontal and vertical chroma
TABLE A.17.11 sampling information for each of the color
components is automatically configured by
Test registers DEFINE_SAMPLING Tokens.
HORIZONTAL_ MBS The horizontal width of pictures in macro
Addr. Bit blocks is automatically configured by
(hex) num. Register Name Page references HORIZONTAL_MBS Token.
Ox2E 7...4 PLL resistors
3...0 [1468] A.18.3 Manual Configuration
0x60 7...6 notused . .
5...4 coding standard[1:0] [1469] The user must configure (via the microprocessor
3...2 picture_type[1:0] interface) application dependent factors.
é gigi:sﬂﬁf [1470] A.18. When to configure
0x61 7...6 component_id [1471] The Temporal Decoder should only be configured
5...4 prediction_mode when no data processing is taking place. This is the default
o2 g e 8 maxfsimphng state after reset is removed. The Temporal Decoder can be
Oi & 7.0 zzgg*\/ stopped to allow re-configuration by writing 1 to the
0x64 7...0 back_h chip_access register. After configuration is complete, 0
Ox65 7...0 should be written to chip_access. See Section A.5.3 for
0x66 7...0 back v details of when to configure the DRAM interface.
e 20 forw [1472] AI83.2 DRAM interface
0x69 7...0 [1473] The DRAM interface timing must be configured
gxgg ; e 8 forw_v before it is possible to decode predictively coded video (e.g.,
X P

H.261 or MPEG). See Section A.5, “DRAM Interface”.

TABLE A18.2

Temporal Decoder registers

Size/ Reset
Register name Dir. State Description
chip_access 1 1 Writing 1 to chip_ access request that the Temporal Decoder has®@)
™w operation to allow re-configuration The Temporal Decoder will
chip__stopped__event 1 0 continue operating normally until it reaches the end of the current

US 2003/0196078 Al

Oct. 16, 2003

TABLE A.18.2-continued
Temporal Decoder registers
Size/ Reset
Register name Dir. State Description
™w video sequence. After reset is removed chip__access (Di.e. the
chip__stopped__mask 1 0 Temporal Decoder is halted.
™w When the chip stops a chip stopped event will occur if

chip_ stopped__mask = 1 an interrupt will be generated.

count__error__event 1 0 The Temporal Decoder has an adder that adds predictions to error
™w data. If there is a difference between the number of error data bytes
count__error__mask 1 0 and the number of prediction data bytes then a count error event is
™w generated.
If count__error__mask = 1 an interrupt will be generated and
prediction forming will stop
This event should only arise following a hardware error
picture_ buffer_ 0 18 x These specify the base addresses for the picture buffers
™w
picture__buffer_ 1 18 X
™w
component_ offset_ 0 17 x These specify the offset from the picture buffer pointer at which
™w each of the colour components is stored. Data with component(®
component__offset_1 17 x ID = n is stored starting at the position indicated by
™w component__offset_n. See A.3.5.1, “Component identification
component_ offset_ 2 17 X number”
™w
MPEG__reordering 1 0 Setting this register to 1 makes the Temporal Decoder arrange the
™w picture order from the non-casual MPEG picture sequence to the

correct display order by the. See A.18.3.5

This register should is ignored during JPEG and H.261 operator®

® indicates text missing or illegible when filed

[1474] A.18.3.3 Numbers in picture buffer registers

[1475] The picture buffer pointers (18 bit) and the com-
ponent offset (17 bit) registers specify a block (8x8 bytes)
address, not a byte address.

[1476] A.18.3.4 Picture buffer allocation

[1477] To decode predictively coded video (either H.261
or MPEG) the Temporal Decoder must manage two picture
buffers. See Section A.18.4 and A.18.4.4 for more informa-
tion about How these buffers are used.

[1478] The user must ensure that there is sufficient
memory above each of the pictures buffer pointers (picture-
buffer 0 and picture_buffer_ 1) to store a single picture of
the required video format (without overlapping with the
other picture buffer). Normally, one of the picture buffer
pointers will be set to 0 (i.e., the bottom of memory) and the
other will be set to point to the middle of the memory space.

[1479] A.183.4.1 Normal configuration for MPEG or
H.261

[1480] H.261 and MPEG both use a 4:1:1 ratio between
the different color components (i.e., there are 4 times as
many luminance pels as there are pels in either of the
chrominance components).

[1481] As documented in Section A.3.5.1, “Component
Identification number”, component 0 will be the luminance
Component and components 1 and 2 will be chrominance.

[1482] An example configuration of the component offset
registers is to set component_offset 0 to 0 so that compo-
nent O starts at the picture buffer pointer. Similarity, com-
ponent_offset_1 could be set to 46 of the picture buffer size
and component_offset 2 could be set to ¥ of the picture
buffer size.

[1483] A.18.3.5 Picture sequence re-ordering

[1484] MPEG uses three different picture types: Intra (I),
Predicted (P) and Bidirectionally interpolated (B). B pic-
tures are based on predictions from two pictures: one from
the future and one from the past. The picture order is
modified at the encoder so that I and P picture can be
decoded from the coded date before they are required to
decode B pictures.

[1485] The picture sequence must be corrected before
these pictures can be displayed. The Temporal Decoder can
provide this picture re-ordering as part of his display inter-
face function. Configuring the Temporal Decoder to provide
picture re-ordering may reduce the video resolution that can
be decoded, see Section A.18.5.

[1486] A.18.4 Prediction forming

[1487] The prediction forming requirements of H.261
decoding and MPEG decoding are quite different. The
CODING_STANDARD Token automatically configures the
Temporal Decoder to Accommodate the prediction require-
ments of the different Standards.

[1488] A.18.4 JPEG Operation

[1489] When configured for JPEG operation no predic-
tions are performed since JPEG requires no temporal decod-
ing.

[1490] A.18.4.2 H.261 Operation

[1491] 1InH.261, predictions are only from the picture just
decoded. Motion vectors are only specified to integer pixel
accuracy. The encoder can specify that a low pass filter be
applied to the result of any prediction.

[1492] As each picture is decoded, it is written in to a
picture buffer in the off-chip DRAM so that it can be used

US 2003/0196078 Al

105

in decoding the next picture. Decoded pictures appear at the
output of the Temporal Decoder as they are written into the
off-chip DRAM.

[1493] For full details of prediction, and the arithmetic
operations involved, the reader is directed to the H.261
standard. The Temporal Decoder of the present invention is
fully compliant with the requirements of H.261.

[1494] A.18.4.3 MPEG operation (without re-ordering)

[1495] The operation of the Temporal Decoder changes
for each of the three different MPEG picture types (I, P and
B).

[1496] “I” pictures require no further decoding by the
Temporal Decoder, but must be stored in a picture buffer
(frame Store) for later use in decoding P and B pictures.

[1497] Decoding P pictures requires forming predictions
from a previously decoded P or I picture. The decoded P
picture is stored in a picture buffer for use in decoding P and
B pictures, MPEG allows motion vectors specified to half
pixel accuracy. On-chip filters provide interpolation to sup-
port this half pixel accuracy.

[1498] B pictures can require predictions from both of the
pictures buffers. As with P pictures, half pixel motion vector
resolution accuracy requires on chip interpolation of the
picture information. B pictures are not stored in the off-chip
buffers. They are merely transient.

[1499] All pictures appear at the output port of the Tem-
poral Decoder as they are decoded. So, the picture sequence
will Be the same as that in the coded MPEG data (see the
upper Part of FIG. 85).

[1500] For full details of prediction, and the arithmetic
operations involved, the reader is directed to the proposed
MPEG standard draft. These requirements are met by the
Temporal Decoder of the present invention.

[1501] A.18.4.4 MPEG Operation (with re-ordering)

[1502] When configured for MPEG operation with picture
re-ordering (MPEG_reordering=1), the prediction forming
operations are as described above in Section A.18.4.3.
However, additional data transfers are performed to re-order
the picture sequence.

[1503] B picture decoding is as described in section
A.18.4.3. However, I and P pictures are not output as they
are decoded. Instead, they are written into the off-chip
buffers (as previously described) and are read out only when
a subsequent I or P picture arrives for decoding.

Oct. 16, 2003

[1504] A.18.4.4.2 Decoder shut-down characteristics

[1505] The Temporal Decoder relies on subsequent P or 1
pictures to flush previous pictures out of its off-chip buffers
(frame stores). This has consequences at the end of video
sequences and when starting new video sequences. The
spatial Decoder provides facilities to create a “fake” I/P
picture at the end of a video sequence to flush out the Last
P (or I) picture. However, this “fake” picture will Be flushed
out when a subsequent video sequence starts.

[1506] The Spatial Decoder provides the option to sup-
press this “fake” picture. This may be useful where it is
known that a new video sequence will be supplied to the
decoder immediately after an old sequence is finished. The
first picture in this new sequence will flush out the last
picture of the previous sequence.

[1507] A.18.5 Video resolution

[1508] The video resolution that the Temporal Decoder
can support when decoding MPEG is limited by the memory
bandwidth of its DRAM interface. For MPEG, two cases
need to be considered: with and without MPEG picture
re-ordering.

[1509] Sections A.18.5.2 and A.18.5.3 discuss the worst
case requirements required by the current draft of the MPEG
specification. Subsets of MPEG can be envisioned that have
lower memory bandwidth requirements. For example, using
only integer resolution motion vectors or, alternatively, not
using B pictures, significantly reduce the memory band-
width requirements. Such subsets are not analyzed here.

[1510] A18.5.1 Characteristics of DRAM interface

[1511] The number of cycles taken to transfer data across
the DRAM interface depends on a number of factors:

[1512] The timing configuration of the DRAM inter-
face to suite the DRAM employed

[1513] The data bus width (8, 16 or 32 bits)
[1514] The type of data transfer:
[1515] 8x8 block read or write
[1516] for prediction to half pixel accuracy
[1517] for prediction to integer pixel accuracy

[1518] Seesection a.5, “DRAM Interface”, for more infor-
mation about the detail configuration of the DRAM inter-
face.

[1519] Table A.18.3 shows how many DRAM interface
“cycles” are required for each type of data transfer.

TABLE A.18.3

Data bus width read or write 8x 8

(bits)

Data transfer times for Temporal Decoder

form prediction (half
pixel accuracy)

form prediction

block (integer pixel accuracy)

8

16

32

1 page address + 64 4 page address + 81 4 page address + 64

transfers transfers transfers
1 page address + 32 4 page address + 45 4 page address + 40
transfers transfers transfers
1 page address + 16 4 page address + 27 4 page address + 24
transfers transfers transfers

US 2003/0196078 Al

106

[1520] Table A.18.4 takes the figures in Table A.18.3 and
evaluates them for a “typical” DRAM. In this example, a 27
MHZ clock is assumed. It will be appreciated that while 27
MHZ is used here, it is not intended as a limitation. The
access start takes 11 ticks (102ns) and the data transfer takes
6 ticks (56 ns).

[1521] A.18.5.2 MPEG resolution without re-ordering

[1522] The peak memory bandwidth load occurs when
decoding B pictures. In a “worst case” scenario, the B frame
may be formed from predictions being to half pixel accu-
racy.

TABLE A.18.4

Illustration with “typical” DRAM

form prediction ~ form prediction

Data bus width read or write (half (integer pixel
(bits) 8 x 8 block pixel accuracy) accuracy)
8 3657 ns 4907 ns 3963 ns
16 1880 ns 2907 ns 2185 ns
32 991 ns 1907 ns 1741 ns

[1523] Using the example figures from Table A.18.4, it can
be seen that it will take the DRAM interface 3815 ns to read
the data required for two accurate half pixel accurate pre-
dictions (via a 32 bit wide interface). The resolution that the
Temporal Decoder can support is determined by the number
of those predictions that can be performed within one picture
time. In this example, the Temporal Decoder can process
8737 8x8 blocks in a single 33 ms picture period (e.g., for
30 Hz video).

[1524] If the required video format is 704x480, then each
picture contains 7920 8x8 blocks (taking into consideration
the 4:2:0 chroma sampling). It can be seen that this video
format consumes approx. 91% of the available DRAM
interface bandwidth (before any other factors such as
DRAM refresh are taken into consideration). Accordingly,
the Temporal Decoder can support this video format.

[1525] A.18.5.3 MPEG resolution with re-ordering

[1526] When MPEG picture re-ordering is employed the
worst case scenario is encountered while P pictures are being
decoded. During this time, there are 3 loads on the DRAM
interface;

[1527] form predictions
[1528] write back the result
[1529]

[1530] Using the example figures from Table A.18.3, we
can find the time it takes for each of these tasks when a 32
bit wide interface is available. Forming the prediction takes
1907 ns/n while the read and the write each take 991 ns, a
total of 3889 ns. This permits the Temporal Decoder to
process 8485 8x8 blocks. The only memory operations
required are the writing of 8x8 blocks and the forming of
predictions with integer accuracy motion vectors.

[1531] Using the example figures from Table A.18.4 for an
8 bit wide memory interface, it can be seen that writing each
block will take 3657 ns while forming the prediction for one
block will take 3963 ns/n, a total of 7620 ns per block.

read out the previous P or I picture

Oct. 16, 2003

Therefore, the processing time for a single CIF picture is
about 18 ms, comfortably less than the 33 ms required to
support 30 Hz video.

[1532] A.185.5 JPEG

[1533] The resolution of JPEG “video” that can be sup-
ported will be determined by the capabilities of the Spatial
Decoder of the invention or the display interface. The
Temporal Decoder does not affect JPEG resolution.

[1534] A.18.6 Events and Errors
[1535] A.18.6.1 Chip Stopped

[1536] In the present invention, writing 1 to chip_access
requested that the Temporal Decoder halt operation to allow
re-configuration. Once received, the Temporal Decoder will
continue operating normally until it reached the end of the
current video sequence. Thereafter, the Temporal Decoder is
halted.

[1537] When the chip halts, a chip stopped event will
occur. If chip_stopped_mask=1, an interrupt will be gener-
ated.

[1538] A.18.6.2 Count Error

[1539] The Temporal Decoder, of the present invention,
contains an adder that adds predictions to error data. If there
is a difference between the number of error data bytes and
the number of predication data bytes, then a count error
event is generated.

[1540] If count_error_mask=1 an interrupt will be gener-
ated and forming prediction will stop.

[1541] Writing 1 to count_error_event clears the event and
allows the Temporal Decoder to proceed. However, the
DATA Token that caused the error will then proceed. How-
ever, the DATA Token that caused the error will not be of the
correct length (64 bytes). This is likely to cause further
problems. Thus, a count error should only arise if a signifi-
cant hardware error has occurred.

[1542] SECTION A.19 Connecting to the output of the
Temporal Decoder

[1543] The output of the temporal Decoder is a standard
Token Port with 8 bit wide data words. See Section A.4 for
more Information about the electrical behavior of the inter-
face.

[1544] The Tokens present at the output of the Temporal
Decoder will depend on the coding standard employed and,
in the case of MPEG, whether the pictures are being
re-ordered. This section identifies which of the Tokens are
available at the output of the Temporal decoder and which
are the most useful when designing circuits to display that
output. Other Tokens will be present, but are not needed to
display The output and, therefore they are not discussed
here.

[1545] This section concentrates on showing:

[1546] How the start and end of sequences can be
identified.

[1547] How the start and end of pictures can be
identified.

US 2003/0196078 Al

[1548] How to identify when to display the picture.

[1549] How to identify where in the display the
picture data should be placed.

[1550] A.19.1 JPEG output

[1551] The Token sequence output by the Temporal
Decoder when decoding JPEG data is identical to that seen
at the output of Spatial Decoder. Recall, JPEG does not
require processing by the Temporal Decoder. However, the
Temporal Decoder tests intra data Tokens for negative
values (resulting from the finite arithmetic precision of the
IDCT in the Spatial Decoder) and replaces them with zero.

[1552] See Section A.16 for further discussion of the
output sequence observed during JPEG operation.

[1553] A.19.2 H.261 Output
[1554] A.19.2.1 Start and end of sessions

[1555] H.261 doesn’t signal the start and end of the video
stream within the video data. Nevertheless, this is implied by
the application. For example, the sequence starts when the
telecommunication connect is made and ends when the line
is dropped. Thus, the highest layer in the video syntax is the
“picture layer”.

[1556] The start Code Detector of the Spatial Decoder in
accordance with the invention, allows SEQUENCE_START
and CODING_STANDARD Tokens to be inserted automati-
cally before the first PICTURE_START. See sections
A11.7.3 and A.11.7 4.

[1557] At the end of an H.261 session (e.g., when the line
is dropped) the user should insert a FLUSH Token after the
end of the coded data. This has a number of effects (see
Appendix A.31.1:

[1558] It ensures that PICTURE_END is generated
to signal the end of the last picture.

[1559] It ensures that the end of the coded data is
pushed through the decoder.

[1560] A.19.2.2 Acquiring pictures

[1561] Each picture is composed of a hierarchy of ele-
ments referred to as layers in the syntax. The sequence of
Tokens at the output of the Temporal Decoder when decod-
ing H.261 reflects this structure.

[1562] A.19.2.1 Picture layer

[1563] Each picture is preceded by a PICTURE_START
Token and each is immediately followed by a PICRTU-
RE_END Token. H.261 doesn’t naturally contain a picture
end. This Token is inserted automatically by the Start Code
Detector of the Spatial Decoder.

[1564] After the PICTURE_START Token, there will be
TEMPORAL_REFERENCE and PICTURE_TYPE Tokens.
The TEMPORAL_REFERENCE Token carries a 10 bit
number (of which only the 5 LSBs are used in H.261) that
indicates when the picture should be displayed. This should
be studied by any display system as H.261 encoders can
omit pictures from the sequence (to achieve lower data
rates). Omission of pictures can be detected by the temporal
reference incrementing by more than one between succes-
sive pictures.

Oct. 16, 2003

107

[1565] Next, the PICTURE_TYPE Token carries informa-
tion about the picture format. A display system may study
this information to detect if CIF or QCIF pictures are being
decoded. However, information about the picture format is
also available by studying registers within the Huffman
decoder. <Iref to Huffman decoder section=

[1566] A.19.2.2.2 Group of Blocks Layer

[1567] Each H.261 Picture is composed of a number of
“groups of blocks”. Each of these is preceded by a SLICE-
_START Token (derived from the H.261 group number and
group start code). This Token carries an 8 bit value that
indicates where in the display the group of blocks should be
placed. This provides an opportunity for the decoder to
resynchronize after data errors. Moreover, it provides the
encoder with a mechanism to skip blocks if there are areas
of a picture that do not require additional information in
order to describe them. By the time SLICE_START reaches
the output of the Temporal Decoder, this information is
effectively redundant as the Spatial Decoder and Temporal
Decoder have already used the information to ensure that
each picture contains the correct number of blocks and that
they are in the correct positions. Hence, it should be possible
to compute where to position a block of data output by the
Temporal Decoder just by counting the number of blocks
that have been output since the start of the picture.

[1568] The number carried by SLICE_START is one less
than the H.261 groups of blocks number (see the H.261
standard for more information). FIG. 94 shows the posi-
tioning of H.261 groups of blocks within CIF and QCIF
pictures. NOTE: in the present invention, the block num-
bering shown is the same as that carried by SLICE_START.
This is different from the H.261 convention for numbering
these groups.

[1569] Between the SLICE_START (which indicates the
start of each group of blocks) and the first macroblock there
may be other Tokens, These can be ignored as they are not
required to display the picture data.

[1570] A.19.2.2.3 Macroblock layer

[1571] The sequence of macroblocks within each group of
blocks is defined by H.261. There is no special Token
information described the position of each macroblock. The
user should count through the macroblock sequence to
determine where to display each piece of information.

[1572] FIG. 96 shows the sequence in which macroblocks
are placed in each group of blocks.

[1573] Each macroblock contains 6 DATA Tokens. The
sequence of DATA Tokens in each group of 6 is defined by
the H.261 macroblock structure. Each DATA Token should
contain exactly 64 data bytes for an 8x8 area of pixels of a
single color component. The color component is carried in
a 2 bit number in the DATA Token (see section A.3.4.1).
However, the sequence of the color components in H.261 is
defined.

[1574] Each group of DATA Tokens is preceded by a
number of Tokens communicating information about motion
vectors, quantizer scale factors and so forth. These Tokens
are not required to allow the pictures to be displayed and,
thus, can be ignored.

[1575] Each Data Token contains 64 data bytes for an 8x8
of a single color component. These are in a raster order.

US 2003/0196078 Al

[1576] A.19.3 MPEG output

[1577] MPEG has more layers in its syntax. These embody
concepts such as a video sequence and the group of pictures.

[1578] A.19.3.1 MPEG Sequence layer

[1579] A sequence can have multiple entry points
(sequence starts) but should have only a single exit point
(sequence end). When an MPEG sequence a CODING-
_STANDARD Token followed by a SEQUENCE_START
Token.

[1580] After the SEQUENCE_START, there will be a
number of Tokens of sequence header information that
describes the video format and the like. See the draft MPEG
standard for the information that is signaled in the sequence
header and Table A.3.2 for information about how this data
is converted into Tokens. This information describing the
video format is also available in registers in the Huffman
decoder.

[1581] This sequence header information may occur sev-
eral times within an MPEG sequence, if that sequence has
several entry points.

[1582] A.19.3.2 Group of pictures layer

[1583] AN MPEG group of pictures provides a different
type of “entry” point to that provided at a sequence start. The
sequence header provides information about the picture/
video format. Accordingly, if the decoder has no knowledge
of the video format used in a sequence, it must start at a
sequence start. However, once the video format is config-
ured into the decoder, it should be possible to start decoding
at any group of pictures.

[1584] MPEG doesn’t limit the number of pictures in a
group. However, in many applications a group will corre-
spond to about 0.5 seconds, as this provides a reasonable
granularity of random access.

[1585] The start of a group of pictures is indicated by a
GROUP_START Token. The header information provided
after GROUP_START includes two useful Tokens: TIME-
_CODE and BROKEN_CLOSED.

[1586] TIME_CODE carries a subset of the SMPTE time
code information. This may be useful in synchronizing the
video decoder to other signals. BROKEN _CLOSED carries
the MPEG closed_gap and broken_link bits. See section
A.19.3.8 for more on the implications of random access and
decoding editing video sequences.

[1587] A.19.3.3 Picture layer

[1588] The start of a new picture is indicated by the
PICTURE_START Token. After this Token, there will be
TEMPORAL_REFERENCE and PICTURE_TYPE Tokens.
The temporary reference information may be useful if the
Temporal Decoder is not configured to provide picture
re-ordering. The picture type information may be useful if a
display system wants to specially process B pictures at the
start of an open GOP (sce section A.19.3.8).

[1589] Each picture is composed of a number of slices.
[1590] A.19.3.4 Slice layer

[1591] Section A.19.2.2.2 discusses the group of blocks
used in H.261. The slice in MPEG serves a similar function.
However, the slice structure is not fixed by the standard. The

Oct. 16, 2003

8 bit value carried by the SLICE*START Token is one less then the
“slice vertical position” communicated by MPEG. See the draft MPEG

standard for a description of the Slice layer.

[1592] By the time SLICE_START reaches the output of
the Temporal Decoder, this information is effectively redun-
dant Since the Spatial Decoder and Temporal Decoder have
already Used the information to ensure that each picture
contains The correct number of blocks in the correct posi-
tions. Hence, it should be possible to compute where to
position a block of data output by the Temporal Decoder just
by counting the number of blocks that have been output
since the start of the picture.

[1593] See section A.19.3.7 for discussion of the effects of
using MPEG picture re-ordering.

[1594] A.19.3.5 Macroblock layer

[1595] Each macroblock contains 6 blocks. These appears
at the output of the Temporal Decoder in raster order (as
specified by the draft MPEG specification).

[1596] A.19.3.6 Block layer

[1597] Each macroblock contains 6 DATA Tokens. The
sequence of DATA Tokens in each group of 6 is defined by
the draft MPEG specification (this is the same as the H.261
macroblock structure). Each DATA token should contain
exactly 64 data bytes for an 8x8 area of pixels of a single
color component. The color component is carried in a 2 bit
number in the DATA Token (see A.3.5.1). However, the
sequence of the color components in MPEG is defined.

[1598] Each group of DATA Tokens is preceded by a
number of Tokens communicating information about motion
vectors, quantizer scale factors, and so fourth. These Tokens
are not required to allow the pictures to be displayed and,
therefore, they can be ignored.

[1599] A.19.3.7 Effect of MPEG picture re-ordering

[1600] As described in A.18.3.5, the Temporal Decoder
can be configured to provide MPEG picture re-ordering
(MPEG_reordering=1). The output of P and I pictures is
delayed until the next P/I picture in the data stream starts to
be decoded by the Temporal Decoder. At the output of the
Temporal Decoder the DATA Token of the newly decoded
P/ pictures are replaced with DATA Tokens from the older
P/1 picture.

[1601] When re_ P/ pictures, the PICTURE_START,
TEMPORAL_REFERENCE and PICTURE_TYPE Tokens
of the picture are stored temporarily on-chip as the picture
is written into the off-chip picture buffers. When the picture
is read out for display, these stored Tokens are retrieved.
Accordingly, re-ordered P/I pictures have the correct Values
for PICTURE_START, TEMPORAL_REFERENCE and
PICTURE_TYPE.

[1602] All other tokens below the picture layer are not
re-ordered. As the re-ordered P/I picture is read-out for
display it picks up the lower level non-DATA tokens of the
picture that has just been decoded. Hence, these sub-picture
layer Tokens should be ignored.

[1603] A.19.3.8 Random access and edited sequences

[1604] The Spatial Decoder provides facilities to help
correct video decoding of edited MPEG video data and after
a random access into MPEG video data.

US 2003/0196078 Al

Oct. 16, 2003

109

[1605] A.19.3.8.1 Open GOPs

[1606] A group of pictures (GOP) can start with B pictures
that are predicted from a P picture in a previous GOP. This
is called an “open GOP”. FIG. 107 illustrates this. Pictures
17 and 18 are B pictures at the start of the second GOP. If
the GOP is “open”, then the encoder may have encoded
these two pictures using predictions from the P pictures 16
and also the I pictures 19. Alternatively, the encoder could
have restricted itself to using predictions from only the I
picture 19. In this case, the second GOP is a “closed GOP”.

[1607] If a decoder starts decoding the video at the first
GOP, it will have no problems when it encounters the second
GOP even if that GOP is open since it will have already
decoded the P picture 16. However, if the decoder makes a
random access and starts decoding at the second GOP it
cannot decode B17 and B18 if they depend of P16 (i.e., if the
GOP is open).

[1608] If the Spatial Decoder of the present invention
encounters an open GOP as the first GOP following a reset
or it receives a FLUSH Token, it will assume that a random
access to an open GOP has occurred. In this case, the
Huffman decoder will consume the data for the B pictures in
the normal way. However, it will output B pictures predicted
with (0,0) motion vectors off the I picture. The results will
be that pictures B17 and B18 (in the example above) will be
identical to I19.

[1609] This behavior ensures correct maintenance of the
MPEG VBY rules. Also, it ensures that B pictures exist in
the output at positions within the output stream expected by
the other data channels. For example, the MPEG system
layer provides presentation time information relating audio
data to video data. The video presentation time stamps refer
to the first displayed picture in a GOP, i.e., the picture with
temporal reference 0. In the example above, the first dis-
played picture after a random access to the second GOP is
B17.

[1610] The BROKEN_CLOSED Token carries the MPEG
closed_gop bit. Hence, at the output of the Temporal
Decoder it is possible To determine if the B pictures output
are genuine or “substitutes” have been introduced by the
Spatial Decoder. Some applications may wish to take special
measures when these “substitute” pictures are present.

[1611] A.19.3.8.2 Edited video

[1612] 1If an application edits an MPEG video sequence, it
may break the relationship between two GOPs. If the GOP
after the edit is an open GOP it will no longer be possible to
correctly decode the B picture at the beginning of the GOP.
The application editing the MPEG data can set the broken-
_link in the GOP after the edit to indicate to the decoder that
it will not be able to decode these B pictures.

[1613] If the Spatial Decoder encounters a GOP with a
broken link, the Huffman decoder will decode the data for
the B pictures in the normal way. However, it will output B
pictures predicted with (0,0) motion vectors off the I picture.
The result will be that pictures B17 and B18 (in the example
above) will be identical to 119.

[1614] The BROKEN_CLOSED Token carries the MPEG
broken_link bit. Hence, at the output of the Temporal
Decoder it is possible to determine if the B pictures output
are genuine or “substitutes™ that have been introduced by the
Spatial Decoder. Some applications may wish to take special
measures when these “substitute” pictures are present.

[1615] SECTION A.20 Late Write DRAM Interface
[1616] The interface is configurable in two ways:

[1617] The detail timing of the interface can be
configured to accommodate a variety of different
DRAM types

[1618] The “width” of the DRAM interface can be
configured to provide a cost/performance trade-off

TABLE A.20.1

Input/

Signal Name

Output

DRAM interface signals

Description

DRAM_ data[31:0] 7o)

DRAM_ addi{10:0] o)

RAS (¢]
CAS[3:0] (¢]
WE o
OE o
DRAM_ enable I

The 32 bit wide DRAM data bus. Optionally this bus can be configured to
be 16 or 8 bits wide.

The 22 bit wide DRAM interface address is time multiplexed over this 11
bit wide bus.

The DRAM Row Address Strobe signal

The DRAM Column Address Strobe signal. One signal is provided per
byte of the interface’s data bus. All the CAS signals are driven
simultaneously.

The DRAM Write Enable signal

The DRAM Output Enable signal

This input signal, when low, makes all the output signals on the interface

go high impedance and stops activity on the DRAM interface.

US 2003/0196078 Al

[1619]

110

TABLE A.20.2

Register Name

Size/ Reset

Dir.

DRAM Interface configuration registers

State Description

modify_ DRAM_ timing 1bit 0 This function enable register allows access to the DRAM interface
™w timing configuration registers. The configuration registers should not
be modified while this register holds the value zero Writing a one to
this register requests access to modify the configuration registers
After a zero has been written to this register the DRAM interfaces
start to use the new values in the timing configuration registers
page__start__length Sbit 0 Specifies the length of the access start in ticks The minimum value
™w that can be used is 4 (meaning 4 ticks) O selects the maximum
length of 32 ticks.
read__cycle__length 4bit 0 Specifies the length of the fast page read cycle in ticks. The
™w minimum value that can be used is 4 (meaning 4 ticks) O selects the
maximum length of 16 ticks.
write_ cycle__length 4bit 0 Specifies the length of the fast page late write cycle in ticks. The
™w minimum value that can be used is 4 (meaning 4 ticks). 0 selects the
maximum length of 16 ticks.
refresh__cycle__length 4bit 0 Specifies the length of the refresh cycle in ticks. The minimum value
™w that can be used is 4 (meaning 4 ticks). O selects the maximum
length of 16 ticks.
RAS_ falling 4bit 0 Specifies the number of ticks after the start of the access start that
™w RAS falls. The minimum value that can be used is 4 (meaning 4
ticks). 0 selects the maximum length of 16 ticks.
CAS__falling 4bit 8 Specifies the number of ticks after the start of a read cycle. write
™w cycle or access start that CAS falls. The minimum value that can be
used is 1 (meaning 1 tick). O selects the maximum length of 16 ticks.
DRAM__data__width 2bit 0 Specifies the number of bits used on the DRAM interface data bus
™w DRAM_ data[31:0]. See A.20.4
row__address__bits 2bit 0 Specifies the number of bits used for the row address portion of the
™w DRAM interface address bus. See A.20.5
DRAM__enable 1 bit 1 Writing the value O in to this register forces the DRAM interface into
™w a high impedance state:
0 will be read from this register if either the DRAM__enable signal is
low or 0 has been written to the register.
refresh__interval 8bit 0 This value specifies the interval between refresh cycles in periods of
™w 16 decoder__clock cycles. Values in the range 1 ... 255 can be
configured. The value 0 is automatically loaded after reset and
forces the DRAM interface to continuously execute refresh cycles
until a valid refresh interval is configured. It is recommended that
refresh__interval should be configured only once after each reset
no__refresh 1bit 0 Writing the value 1 to this register prevents execution of any refresh
™w cycles.
CAS__strength 3 bit 6 These three bit registers configure the output drive strength of
RAS_ strength ™w DRAM interface signals.

addr__strength
DRAM__data_ strength
OEWE__strength

This allows the interface to be configured for various different loads
See A.20.8

Oct. 16, 2003

[1620] A.20.1 Interface timing (ticks)

[1621] In the present invention, the DRAM interface tim-
ing is derived from a clock which is running at four times the
input clock rate of the device (decoder_clock). This clock is
generated by an on-chip PLL.

[1622] For brevity, periods of this high speed clock are
referred to as ticks.

[1623] A.20.2 Interface operation
[1624] The interface uses of the DRAM fast page mode.
Three different types of access are supported:

[1625] Read

[1626] Write

[1627] Refresh

[1628] Each read or write access transfers a burst of
between 1 and 64 bytes at a single DRAM page address.

Read and write transfers are not mixed within a single
access. Each successive access is treated as a random access
to a new DRAM page.

[1629] A.20.3 Access structure

[1630] Each access is composed of two parts:
[1631] Access start
[1632] Data transfer

[1633] Each access starts with an access start and is
followed by one or more data transfer cycles. There is a read,
write and refresh variant of both the access start and the data
transfer cycle.

[1634] At the end of the last data transfer in an access the
interface enters it’s default state and remains in this state
until a new access is ready to start. If a new access is ready
to start when the last access finishes, then the new access
will start immediately.

US 2003/0196078 Al

[1635] A.20.3.1 Access start

[1636] The access start provides the page address for the
read or write transfers and establishes some initial signal
conditions. There are three different access starts:

[1637] Start of read
[1638] Start of write
[1639] Start of refresh

[1640] Ineach case the timing of RAS and the row address
is controlled by the registers RAS falling and pag-
e_start_length. The state of OF and DRAM_data[31:0] is
held from the end of the previous data transfer until RAS
falls. The three different access start types are only different
in how they drive OE and DRAM_data[31:0] when RAS
falls. See FIG. 109.

TABLE A.20.3

Oct. 16, 2003

[1650] A.20.3.3 Interface default state

[1651] The interface signals enter a default state at the end
of an access:

[1652] RAS, CAS and WE high
[1653] data and OE remain in their previous state

[1654] addr remains stable

[1655] A.20.4 Data bus width

[1656] The two bit register DRAM_data_width allows the
width of the DRAM interfaces data path to be configured.
This allows the DRAM cost to be minimized when working
with small picture formats.

Access start parameters

Num. Characteristic Min.

Max. Unit Notes

38 RAS precharge period set by register RAS_ falling 4 15 bck

39 Access start duration set by register page_start_length 4 32

40 CAS precharge length set by register CAS_ falling. 1 15 2

41 Fast page read cycle length set by the register 4 15
read__cycle__length.

42 Fast page write cycle length set by the register 4 15

write__cycle__length.
43 WE falls one bck after CAS.
44 Refresh cycle length set by the register refresh_ cycle. 4 15

@ This is value must be less than RAS_ falling to ensure CAS before RAS refresh occurs.

[1641] A.20.3.2 Data transfer

[1642] There are three different types of data transfer
cycle:

[1643] Fast page read cycle
[1644] Fast page late write cycle
[1645] Refresh cycle

[1646] A start of refresh is only followed by a single
refresh cycle. A start of read (or write) can be followed by
one or more fast page read (or write) cycles.

[1647] At the start of the read cycle CAS is driven high
and the new column address is driven.

[1648] A late write cycle is used. WE is driven low one
tick after CAS. The output data is driven one tick after the
address.

[1649] As a CAS before RAS refresh cycle is initiated by
the start of refresh cycle, there is no interface signal activity
during a refresh cycle. The purpose of the refresh cycle is to
meet the minimum RAS low period required by the DRAM.

TABLE A.20.4

Configuring DRAM__data_ width

DRAM_ data_ width

0* 8 bit wide data bus on DRAM_ data[31:24]°.
1 16 bit wide data bus on DRAM__ data[31:16]°L
2 32 bit wide data bus on DRAM__data[31:0].

“Default after reset.
®Unused signals are held high impedance.

[1657] A.20.5 Address bits

[1658] On-chip, a 24 bit address is generated. How this
address is used to form the row and column addresses
depends on the width of the data bus and the number of bits
selected for the row address. Some configurations do not
permit all the internal address bits to be used (and) therefore,
produce “hidden bits).

[1659] The row address is extracted from the middle
portion of the address. This maximizes the rate at which the
DRAM is naturally refreshed.

[1660] A.20.5.1 Low order column address bits

[1661] The least significant 4 to 6 bits of the column
address are used to provide addresses for fast page mode

US 2003/0196078 Al

transfers of up to 64 bytes. The number of address bits
required to control these transfers will depend on the width
of the data bus (see A.20.4).

[1662] A.20.5.2 Row address bits

[1663] The number of bits taken from the middle section
of the 24 bit internal address to provide the row address is
configured by the register row_address_bits.

TABLE A.20.5

Configuring row__address bits

row__address_ bits Width of row address

0 9 bits
1 10 bits
2 11 bits

[1664] The width of row address used will depend on the
type of DRAM used and whether the MSBs of the row
address are Decoded off-chip to access multiple banks of
DRAM.

[1665] NOTE: The row address is extracted from the
middle of the internal address. If some bits of the row
address are decoded to select banks of DRAM, then all
possible values of these “bank select bits” must select a bank
of DRAM. Otherwise, holes will be left in the address space.

TABLE A.20.6

Oct. 16, 2003

[1669] A.20.7 Refresh

[1670] Unless disabled by writing to the register, no_re-
fresh, the DRAM interface will automatically refresh the
DRAM using a CAS before RAS refresh cycle at an interval
determined by the register refresh_interval.

[1671] The value in refresh_interval specifies the interval
between refresh cycles in periods of 16 decoder_clock
cycles. Values in the range 1 to 255 can be configured. The
value O is automatically loaded after reset and forces the
DRAM interface to continuously execute refresh cycles
(once enabled) until a valid refresh interval is configured. It
is recommended that refresh_interval should be configured
only once after each reset.

[1672] A.20.8 Signal strengths

[1673] The drive strength of the outputs of the DRAM
interface can be configured by the user using the 3 bit
registers, CAS_strength, RAS strength, addr_strength,
DRAM_data_strength, PEWE_strength. The MSB of this 3
bit value selects either a fast or slow edge rate. The two less
significant bits configure the output for different load capaci-
tances.

[1674] The default strength after reset is 6, configuring the
outputs to take approximately 10 ns to drive signal between
GND and Vpp, if loaded with 12,F.

Selecting a value for row__address__bits

row__address_bits row address bits bank select

DRAM depth

0 DRAM__addr[8:0]
1 DRAM__addr[8:0]
DRAM__addr[9:0]
DRAM__addr[9:0]

DRAM.__addi[9]

2 DRAM__addr[8:0]

DRAM__addr[9:0]
DRAM__addr[9:0]

DRAM__addi[10:9]
DRAM._ addi[10]
DRAM._ addi[10]

DRAM__addi[10:0]
DRAM__addi[10:0]

256k
256k
512k
1024k
256k
512k
1024k
2048k
4096k

[1666] A.20.6 DRAM Interface enable

[1667] There are two ways to make all the output signals
on the DRAM interface become high impedance. The DRA-
M_enable Register and the DRAM_enable signal. Both the
register and The signal must be at a logic 1 for the DRAM
interface to Operate. If either is low, then the interface is
taken to High impedance and data transfers through the
interface are halted.

[1668] The ability to take the DRAM interface to high
impedance is provided in order to allow other devices to test
or to use the DRAM controlled by the Spatial Decoder (or
the Temporal Decoder) when the Spatial Decoder (or the
Temporal Decoder) is not in use. It is not intended to allow
other Devices to share the memory during normal operation.

TABLE A.20.7

Qutput strength configurations

strength value Drive characteristics

Approx. 4 ns/V into 6 pf load

Approx. 4 ns/V into 12 pf load
Approx. 4 ns/V into 24 pf load
Approx. 4 ns/V into 48 pf load
Approx. 2 ns/V into 6 pf load

Approx. 2 ns/V into 12 pf load
Approx. 2 ns/V into 24 pf load
Approx. 2 ns/V into 48 pf load

®

~ o W= O

Default after reset

[1675] When an output is configured approximately for
the load it is driving, it will meet the AC electrical charac-

US 2003/0196078 Al

teristics specified in Tables A.20.22 to Table A.20.12. When
appropriately configured each output is approximately
matched to it’s load end, therefore, minimal overshoot will
occur after a signal transition.

[1676] A.20.9 After reset

[1677] After reset, the DRAM interface configuration reg-
isters are all reset to their default values. Most significant of
these default configurations are:

[1678] The DRAM interface is disabled and allowed
to go high impedance.

[1679] The refresh interval is configured to the spe-
cial value 0 which means execute refresh cycle
continuously after the interface is re-enabled.

[1680] The DRAM interface is set to it’s slowest
configuration.

[1681] Most DRAMSs required a “pause” of between 100us
and 500us after power is first applied, followed by a number
of refresh cycles before normal operation is possible.

[1682] Immediatley after reset, the DRAM interface is
inactive until both the DRAM_enable signal and the DRA-
M_enable register are set. When these have been set, the
DRAM interface will execute refresh cycles (approximately
every 400 ns, depending upon the clock frequency used)
until the DRAM interface is configured.

[1683] The user is responsible for ensuring that the
L 2

DRAM’s “pause” after POWEI 1, and for allowing sufficient time

after enabling the DRAM interface to ensure that the required number of

refresh cycles have occurred before data transfers are attempted.

[1684] While reset is asserted, the DRAM interface is
unable to refresh the DRAM. However, the reset time
required by the decoder chips is sufficiently short so that is
should be possible to reset them and to then re-enable the
DRAM interface before the DRAM contents decay. This
may be required during debugging.

TABLE A.20.8

Maximum Ratings®

Symbol Parameter Min. Max. Units
Vop Supply voltage relative to -0.5 65 V
GND
Vin Input voltage on any pin GND-05 Vpp+05 V
Tx Operating temperature -40 +85 ic
Ty Storage temperature -55 +150 C
[1685]
TABLE A.20.9

DC Operating conditions

Symbol Parameter Min. Max. Units

Voo Supply voltage relative to 4.75 5.25 \%
GND

GND Ground 0 0 v

Vin Input logic ‘1’ voltage 2.0 Vpp +05 V

\'%3 Input logic ‘0’ voltage GND - 0.5 0.8 \%

T, Operating temperature 0 70 ace

*With TBA linear ft/min transverse airflow

Oct. 16, 2003

[1686]
TABLE A.20.10

DC Electrical characteristics
Symbol Parameter Min. Max. Units
VoL Output logic “0” voltage 04 V2
Vou Output logic “1” voltage 2.8 \%
tp Output current +100 HAP
toz Output off state leakage current =20 UA
tiz Input leakage current 10 HA
Ino RMS power supply current 500 mA
C Input capacitance 5 pF
Cour Output/IO capacitance 5 pF

#AC parameters are specified using Vo ., = 0.8 V as the measurement
level.

This is the steady state drive capability of the interface. Transient currents
may be much greater.

[1687]
TABLE A.20.11
Differences from nominal values for a strobe
A.20.10.1 AC characteristics

Num. Parameter Min. Max. Unit Note?
45 Cycle time e.g tPC -2 42 ns
46 Cycle time e.g tRC -2 42 ns
47 High pulse e.g. tRP, tCP, tCPN -5 42 ns
48 Low pulse e.g. tRAS, tCAS, tCAC, -11 +2 ns

tWP, tRASP, tRASC

49 Cycle time e.g. tACP/tCPA -8 42 ns

The driver strength of the signal must be configured appropriately for its
load

[1688]
TABLE A.20.12
Differences from nominal values between two strobes
Num. Parameter Min. Max. Unit Note?
50 Strobe to strobe -3 +3 ns
delay e.g. tRCD.tCSR
51 Low hold time e.g. -13 43 ns
tRSH, tCSH, tRWL,
tCWL, tRAC, tOAC/OE, tCHR,
52 Strobe to strobe percharge e.g. tCRP, -9 43 ns
tRCS, tRCH, tRRH, tRPC
CAS precharge pulse between any -5 +2 ns

two CAS signals on
wide DRAMS e.g. tCP, or
between RAS rising and CAS
falling e.g. tRPC
53 Precharge before disable e.g. tRHCP/ -12 +3 ns
CPPH

*The driver strength of the two signals must be configured appropriately
for their loads

[1689] SECTION B.1 Start Code Detector
[1690] B.1.1 overview

[1691] As previously shown in FIG. 11, the Start Code
Detector (SCD) is the first block on the Spatial Decoder. Its
primary purpose is to detect MPEG, JPEG and H.261 start
codes in the input data stream and to replace them with
relevant Tokens. It also allows user access to the input data

US 2003/0196078 Al

stream via the microprocessor interface, and performs pre-
liminary formatting and “tidying up” of the token data
stream. Recall, the SCD can receive either raw byte data or
data already assembled in Token format.

[1692] Typically, start codes are 24, 16 and 8 bits wide for
MPEG, H.261, and JPEG, respectively. The Start Code
Detector takes the incoming data in bytes, either from the
Microprocessor Interface (upi) or a token/byte port and
shifts it through three shift registers. The first register is an
8 bit parallel in serial out, the second register is of program-
mable length (16 or 24 bits) and is where the start codes are
detected, and the third register is 15 bits wide and is used to
reformat the data into 15 bit tokens. There are also two “tag”
Shift Registers (SR) running parallel with the second and
third SRs. These contain tags to indicate whether or not the
associated bit in the data SR is good. Incoming bytes that are
not part of a DATA Token and are unrecognized by the SCD,
are allowed to bypass the shift registers and are output when
all three shift registers are flushed (empty) and the contents
output successfully. Recognized non-data tokens are used to
configure the SCD, spring traps, or set flags. They also
bypass the shift registers and are output unchanged.

[1693] B.1.2 Major Blocks

[1694] The hardware for the Start Code Detector consists
of 10 state machines.

[1695] B.1.2.1 Input Circuit (scdipc.sch.iplm.M)

[1696] The input circuit has three modes of operation:
token, byte and microprocessor interface. These modes
allow data to be input either as a raw byte stream (but still
using the two-wire interface), as a token stream, or by the
user via the upi. In all cases, the input circuit will always
output the correct DATA Tokens by generating DATA Token
headers where appropriate. Transitions to and from upi
mode are synchronized to the system clocks and the upi may
be forced to wait until a safe point in the data stream before
gaining access. The Byte mode pin determines whether the
input circuit is in token or byte mode. Furthermore, initially
informing the system as to which standard is being decoded
(so a CODING_STANDARD Token can be generated) can
be done in any of the three modes.

[1697] B.1.2.2 Token decoder (scdipnew.sch, scdip-
nem.M)

[1698] This block decodes the incoming tokens and issues
commands to the other blocks.

TABLE B.1.1.

Recognized input tokens

Command
Input Token issued Comments
NULL WAIT NULLs are removed
DATA NORMAL Load next byte into first SR
CODING__STD BYPASS Flush shift registers, perform

padding, output and switch to bypass
mode Load CODING_STANDARD
register.

Flush SRs with padding, output and

switch to bypass mode.

FLUSH BYPASS

Oct. 16, 2003

TABLE B.1.1.-continued

Recognized input tokens

Command
Input Token issued Comments
ELSE BYPASS Flush SRs with padding, output and

(unrecognised token) switch to bypass mode.

Note: A change in coding standard is passed to all blocks via the two-wire
interface after the SRs are flushed. This ensures that the change from one
data stream to another happens at the correct point throughout the SCD.
This principle is applied throughout the presentation so that a change in
the coding standard can flow through the whole chip prior to the new
stream.

[1699] B.1.2.3 JPEG (scdjpeg.sch scdjpegm.M)

[1700] Start codes (Markers) in JPEG are sufficiently
different that JPEG has a state machine all to itself. In the
present invention, this block handles all the JPEG marker
detection, length counting/checking, and removal of data.
Detected JPEG markers are flagged as start codes (with
v_not_t—see later text) and the command from scdipnew is
overridden and forced to bypass. The operation is best
described in code.

switch (state)

case (LOOKING):
if (input == Oxff)

state = GETVALUE,; /*Found a marker*/
remove; /*Marker gets removed*/

else
state = LOOKING;
break;
case (GET VALUE);
if (input == Oxff)

state = GETVALUE; /*Overlapping markers*/
remove;

else if (input == 0x00)

state = LOOKING:;/*Wasn’t a marker*/
insert(Oxff);/*Put the Oxff back*/

}
else
{
command = BYPASS;/*override command*/
if(lc)/* Does the marker have a length count*/
state = GETLCO;
else
state = LOOKING;
break;

case (GETLCO):
loadlcO;/*Load the top length count byte*/
state = GETLCI;
remove;

break;

case (GETLC1)
loadlcl;
remove;
state = DECLC;

break;

case (DECLC):
lent = lent — 2

US 2003/0196078 Al

[1701]

state = CHECKLG;

break;
case (CHECKLC):
if (lent = 0)

state = LOOKING:;/*No more to do*/
else if (lent < 0)
state = LOOKING;/*generate Illegal__Length_ Error*/
else
state = COUNT;
break;
case (COUNT):
decrement length count until 1
if (le <=1)
state = LOOKING;

[1702] B.1.2.4 Input Shifter (scinshft.sch, scinshm.M)

[1703] The basic operation of this block is quite simple.
This block takes a byte of data from the input circuit, loads
the shift register and shifts it out. However, it also obeys the
commands from the input decoder and handles the transi-
tions to and from bypass mode (flushing the other SRs): On
receiving a BYPASS command, the associated byte is not
loaded-into the shift register. Instead “rubbish” (tag=1) is
shifted out to force any data held in the other shift registers
to the output. The block then waits for a “flushed” signal
indicating that this “rubbish” has appeared at the token
reconstructor. The input byte is then passed directly to the
token reconstructor.

[1704] B.1.2.5 Start Code Detector

scdetm. M)

(scdetect.sch,

[1705] This block includes two shift registers which are
programmable to 16 or 24 bits, start code detection logic and
“valid contents” detection logic. MPEG start codes require
the full 24 bits, whereas H.261 requires only 16.

[1706] In the present invention, the first SR is for data and
the second carries tags which indicate whether the bits in the
data SR are valid—there are no gaps or stalls (in the
two-wire interface sense) in the SRs, but the bits they
contain can be invalid (rubbish) whilst they are being
flushed. On detection of a start code, the tag shift register
bits are set in order to invalidate the contents of the detector
SR.

[1707] A start code cannot be detected unless the SR
contents are all valid. Non byte-aligned start codes are
detected and may be flagged. Moreover, when a start code is
detected, it cannot be definitely flagged until an overlapping
start code has been checked for. To accomplish this function,
the “value” of the detected start code (the byte following it)
is shifted right through scinshift, scdetect and into scoshift.
Having arrived at scoshift without the detection of another
start code, it is overlapping start codes have been eliminated
and it is flagged as a valid start code.

[1708] B.1.2.6 Output Shifter (scoshift.sch, scoshm.M)

[1709] The basic operation of the output shifter is to take
serial data (and tags) from scdetect, pack it into 15 bit words
and output them. Other functions are:

115

Oct. 16, 2003

[1710] B.1.2.6.1 Data Padding

[1711] The output consists of 15 bit words, but the input
may consist of an arbitrary number of bits. In order to flush,
therefore, we need to add bits to make the last word up to 15
bits. These extra bits are called padding and must be
recognized and removed by the Huffman block. Padding is
defined to be:

[1712] After the last data bit, a “zero” is inserted followed
by sufficient “ones” to make up a 15 bit word.

[1713] The data word containing the padding is output
with a low extension bit to indicate that it is the end of a data
token.

[1714] B.1.2.6.2 Generation of “flushed”

[1715] In accordance with the present invention, the gen-
eration of “flushed” operation involves detecting when all
SRs are flushed and signalling this to the input shifter. When
the “rubbish” inserted by the input shifter reaches the end of
the output shifter, and the output shifter has completed its
padding, a “flushed” signal is generated. This “flushed”
signal must pass through the token reconstructor before it is
safe for the input shifter to enter bypass mode.

[1716] B.1.2.6.3 Flagging valid start codes

[1717] 1If scdetect indicates that it has found a start code,
padding is performed and the current data is output. The start
code value (the next byte) is shifted through the detector to
eliminate overlapping start codes. If the “value” arrives at
the output shifter without another start code being detected,
it was not overlapped and the value is passed out with a flag
v_not_t (ValueNotToken) to indicate that it is a start code
value. If, however, another start code is detected (by scde-
tect) whilst the output shifter is waiting for the value, an
overlapping_start_error is generated. In this case, the first
value is discarded and the system then waits for the second
value. This value can also be overlapped, thus causing the
same procedure to be repeated until a non-overlapped start
code is found.

[1718] B.1.2.6.4 Tidying up after a start code

[1719] Having detected and output a good start code, a
new DATA header is generated when data (not rubbish)
starts arriving.

[1720] B.1.2.7 Data stream reconstructor (sctokrec.sch,
sctokrem.M)

[1721] The Data Stream reconstructor has two-wire inter-
face inputs: one from scinshift for bypassed tokens, and one
from scoshift for packed data and start codes. Switching
between the two sources is only allowed when the current
token (from either source) has been completed (low exten-
sion bit arrived).

[1722] B.1.2.8 Start value to start number conversion
(scdromhw.sch, schrom.M)

[1723] The process of converting start values into tokens
is done in two stages. This block deals mainly with coding
standard dependent issues reducing the 520 odd potential
codes down to 16 coding standard independent indices.

[1724] As mentioned earlier, start values (including JPEG
ones) are distinguished from all other data by a flag (val-
ue_not_token). If v_not_t is high, this block converts the 4
or 8 bit value, depending on the CODING_STANDARD,

US 2003/0196078 Al

into a 4 bit start_number which is independent of the
standard, and flags any unrecognized start codes.

[1725] The start numbers are as follows:

TABLE B.1.2.

Start Code numbers (indices)

Start/Marker Code Index (start__number) Resulting Token

Oct. 16, 2003

[1737] This block also adds the token extensions to PIC-
TURE and SLICE start tokens:

[1738] PICTURE_START is extended with PIC-
TURE_NUMBER, a four bit count of pictures.

[1739] SLICE_START is extended with svp (slice
vertical position). This is the “value” of the start code
minus one (MPEG, H.261), and minus 0XDO
(JPEG).

[1740] B.1.2.10 Data Stream Formatting (scinsert.sch,
scinserx.M)

[1741] In the present invention, Data Stream Formatting
relates to conditional insertion of PICTURE_END, FLUSH,
CODING_STANDARD, SEQUENCE_START tokens, and
generation of the STOP_AFTER_PICTURE event. Its func-
tion is best simplified and described in software:

not_a_ start code 0 —
sequence__start__code 1 SEQUENCE__START
group__start__code 2 GROUP_START
picture__start__code 3 PICTURE__START
slice_ start_ code 4 SLICE__START
user__data_ start_code 5 USER__ DATA
extension_ start__code 6 EXTENSION__DATA
sequence__end__code 7 SEQUENCE__END
JPEG Markers
DHT 8 DHT
DQT 9 DQT
DNL 10 DNL
DRI 11 DRI
LPEG markers that can be mapped onto tokens for MPEG/H.251
SOS picture__start__code PICTURE__START
SOI sequence__start_code SEQUENCE__START
[1726]

TABLE B.1.2

Start Code numbers (indices)

Start/Marker Code index (start_number) Resulting Token

EOI sequence__end__code SEQUENCE__END
SOFO0 group__start__code GROUP__START
JPEG markers that generate extn or user data

JPG extension_ start_ code EXTENSION__DATA
JPGn extension_ start code EXTENSION__DATA
APPn user_data_ start_code =~ USER_DATA

COM user_data_ start_code =~ USER_DATA

NOTE: All unrecognised JPEG markers generate an extn_ start_ code
index
B.1.2.9 Start number to token conversion (sconvert.sch, sconverm.M)

[1727] The second stage of the conversion is where the
above start numbers (or indices) are converted into tokens.
This block also handles token extensions where appropriate,
discarding of extension and user data, and search modes.

[1728] Search modes are a means of entering a data stream
at arandom point. The search mode can be set to one of eight
values:

[1729] 0: Normal Operation—find next start code.

[1730] 1/2: System level searches not implemented
on Spatial Decoder

[1731] 3: Search for Sequence or higher
[1732] 4: Search for group or higher
[1733] 5: Search for picture or higher
[1734] 6: Search for slice or higher
[1735] 7: Search for next start code

[1736] Any non-zero search mode causes data to be dis-
carded until the desired start code (or higher in the syntax)
is detected.

switch (input_ data)
case (FLUSH)
1. if (in_ picture)
output = PICTURE__END
2. output = FLUSH
3. if (in_picture & stop_after_picture)
sap__error = HIGH
in_ picture = FALSE;
4. in_ picture = FALSE;
break
case (SEQUENCE__START)
1. if (in_ picture)
output = PICTURE__END
2. if (in_picture & stop_after_picture)
2a. output = FLUSH
2b. sap_error = HIGH
in_ picture = FALSE

3. output = CODING__STANDARD
4. output = standard
5. output = SEQUENCE__START
6. in_ picture = FALSE;

break

case (SEQUENCE__END) case (GROUP_START):
1. if (in_ picture)
output = PICTURE__END
2. if (in_picture & stop_after_picture).
2a. output = FLUSH
2b. sap_error = HIGH
in_ picture = FALSE
3. output = SEQUENCE__END or GROUP__START
4. in_ picture = FALSE;
break
cast (PICTURE__END)
1. output = PICTURE__END
2. if (stop_after_ picture)
2a. output = FLUSH
2b. sap_error = HIGH
3. in__picture = FALSE
break
case (PICTURE__START)
1. if (in_ picture)
output = PICTURE__END
2. if (in_picture & stop_after_picture)
2a. output = FLUSH
2b. sap_error = HIGH
3. if (insert_sequence_ start)
3a. output = CODING__STANDARD
3b. output = standard
3c. output = SEQUENCE__START
insert_sequence_start = FALSE
4. output = PICTURE__START
in_ picture = TRUE
break
default: Just pass it through

US 2003/0196078 Al

[1742] SECTION B.2 Huffman Decoder and Parser
[1743] B.2.1 Introduction

[1744] This section describes the Huffman Decoder and
Parser circuitry in accordance with the present invention.

[1745] FIG. 118 shows a high level -block diagram of the
Huffman Decoder and Parser. Many signals and buses are
omitted from this diagram in the interests of clarity, in
particular, there are several places where data is fed back-
wards (within the large loop that is shown).

[1746] In essence, the Huffman Decoder and Parser of the
present invention consist of a number of dedicated process-
ing blocks (shown along the bottom of the diagram) which
are controlled by a programmable state machine.

[1747] Data is received from the Coded Data Buffer by the
“Inshift” block. At this point, there are essentially two types
of information which will be encountered: Coded data which
is carried by DATA Tokens and start codes which have
already been replaced by their respective Tokens by the Start
Code Detector. It is possible that other Tokens will be
encountered but all Tokens (other than the DATA Tokens)
are treated in the same way. Tokens (start codes) are treated
as a special case as the vast majority of the data will still be
encoded (in H.261, JPEG or MPEG).

[1748] Inthe present invention, all data which is carried by
the DATA Tokens is transferred to the Huffman Decoder in
a serial form (bit-by-bit). This data, of course, includes many
fields which are not Huffman coded, but are fixed length
coded. Nevertheless, this data is still passed to the- Huffman
Decoder serially. In the case of Huffman encoded data, the
Huffman Decoder only performs the first stage of decoding
in which the actual Huffman code is replaced by an index
number. If there are N district Huffman codes in the par-
ticular code table which is being decoded, then this “Huff-
man Index” lies in the range 0 to N-1. Furthermore, the
Huffman Decoder has a “no op”, i.e., “no operation” mode,
which allows it to pass along data or token information to a
subsequent stage without any processing by the Huffman
Decoder.

[1749] The Index to Data Unit is a relatively simple block
of circuitry which performs table look-up operations. It
draws its name from the second stage of the Huffman
decoding process in which the index number obtained in the
Huffman Decoder is converted into the actual decoded data
by a simple table look-up. The Index to Data Unit cooperates
with the Huffman Decoder to act as a single logical unit.

[1750] The ALU is the next block and is provided to
implement other transformations on the decoded data. While
the Index to Data Unit is suitable for relatively arbitrary
mappings, the ALU may be used where arithmetic is more
appropriate. The ALU includes a register file which it can
manipulate to implement various parts of the decoding
algorithms. In particular, the registers which hold vector
predictions and DC predictions are included in this block.
The ALU-is based around a simple adder with operand
selection logic. It also includes dedicated circuitry for sign-
extension type operations. It is likely that a shift operation
will be implemented, but this will be performed in a serial
manner; there will be no barrel shifter.

[1751] The Token Formatter, in accordance with the
present invention, is the last block in the Video Parser and

Oct. 16, 2003

has the task of finally assembling decoded data into Tokens
which can be passed onto the rest of the decoder. At this
point, there are as many Tokens as will ever be used by the
decoder for this particular picture.

[1752] The Parser State Machine, which is 18 bits wide
and has been adopted for use with a two-wire interface has
the task of coordinating the operation of the other blocks. In
essence, it is a very simple state machine and it produces a
very wide “micro-code” control word which is passed to the
other blocks. FIG. 118 shows that the instruction word is
passed from block-to-block by the side of the data. This is,
indeed, the case and it is important to understand that
transfers between the different blocks are controlled by
two-wire interfaces.

[1753] In the present invention, there is a two-wire inter-
face between each of the blocks in the Video Parser. Fur-
thermore, the Huffman Decoder works with both serial, data,
the inshifter inputs data one bit at a time, and with control
tokens. Accordingly, there are two modes of operation. If
data is coming into the Huffman Decoder via a DATA Token,
then it passes through the shifter one bit at a time. Again,
there is a two-wire interface between the inshifter and the
Huffman Decoder. Other tokens, however, are not shifted in
one bit at a time (serial) but rather in the header of the token.
If a DATA token is input, then the header containing the
address information is deleted and the data following the
address is shifted in one bit at a time. If it is not a DATA
Token, then the entire token, header and all, is presented to
the Huffman Decoder all at once.

[1754] In the present invention, it is important to under-
stand that the two-wire interface for the Video Parser is
unusual in that it has two valid lines. One line is valid
serially and one line is valid tokenly. Furthermore, both lines
may not be asserted at the same time. One or the other may
be asserted or if no valid data exists, then neither may be
asserted although there are two valid lines, it should be
recognized that there is only a single accept wire in the other
direction. However, this is not a problem. The Huffman
Decoder knows whether it wants serial data or token infor-
mation depending on what needs to be done next based upon
the current syntax. Hence, the valid and accept signals are
set accordingly and an Accept is sent from the Huffman
Decoder to the inshifter. If the proper data or token is there,
then the inshifter sends a valid signal.

[1755] For example, a typical instruction might decode a
Huffman code, transform it in the Index to Data Unit, modify
that result in the ALU and then this result is formed into a
Token word. A single microcode instruction word is pro-
duced which contains all of the information to do this. The
command is passed directly to the Huffman Decoder which
requests data bits one-by-one from the “Inshift” block until
it has decoded a complete symbol. Control Tokens are input
in parallel. Once this occurs, the decoded index value is
passed along with the original microcode word to the Index
to Data Unit. Note that the Huffman Decoder will require
several cycles to perform this operation and, indeed, the
number of cycles is actually determined by the data which
is decoded. The Index to Data Unit will then map this value
using a table which is identified in the microcode instruction
word. This value is again passed onto the next block, the
ALU, along with the original microcode word. Once the
ALU has completed the appropriate operation (the number
of cycles may again be data dependant) it passes the appro-

US 2003/0196078 Al

118

priate data onto the Token Formatting block along with the
microcode word which controls the way in which the Token
word is formed.

[1756] The ALU has a number of status wires or “condi-
tion codes” which are passed back to the Parser State
Machine. This allows the State Machine to execute condi-
tional jump instructions. In fact, all instructions are condi-
tional jump instructions; one of the conditions that may be
selected is hard-wired to the value “False”. By selecting this
condition, a “no jump” instruction may be constructed. In
accordance with the present invention, the Token Formatter
has two inputs: a data field from the ALU and/or a constant
field coming from the Parser State Machine. In addition,
there is an instruction that tells the Token Formatter how
many bits to take from one source and then to fill in with the

Oct. 16, 2003

[1759]

[1760] In the present invention, the Input Shifter is a very
simple piece of circuitry consisting of a two pipeline stage
datapath (“hfidp”) and controlling Zcells (“hfi”).

Input Shifter

[1761]
place. At this stage, only the DATA token is recognized. Data
contained in a DATA token is shifted one bit at a time into
the Huffman Decoder. The second pipeline stage is the shift
register. In the very last word of a DATA token, special
coding takes place such that it is possible to transmit an
arbitrary number of bits through the coded data buffer. The
following are all possible patterns in the last data word.

In the first pipeline stage, Token decoding takes

TABLE B2.1

Possible Patterns in the Last Data Word

E D C B A 9 8 7 6 5 4 3 2 1 0 No. of Bits
o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 None
x 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x x 0 1 1 1 1 1 1 1 1 1 1 1 1 2
x x x 0 1 1 1 1 1 1 1 1 1 1 1 3
x x x x 0 1 1 1 1 1 1 1 1 1 1 4
x x x x x 0 1 1 1 1 1 1 1 1 1 5
x X X x x x 0 1 11 1 1 1 1 1 6
x x X x x x x 0 1 1 1 1 1 1 1 7
x x X x x x x x 0 1 1 1 1 1 1 8
Xx X X xXx x x x x x 0 1 1 1 1 1 9
X X X X X xXx x x x x 0 1 1 1 1 10
X X X X X X X X X x x 0 1 1 1 11
X X X X X X X X x x x x 0 1 1 12
X X X X X X X X x x x x x 0 1 13
X X X X X X X X X X X X X X 0 14

remaining bits from the other for a total of 8 bits. For
example, HORIZONTALSIZE has an 8 bit field that is an
invariant address identifying it as a HORIZONTAL_SIZE
Token. In this case, the 8 bits come from the constant field
and no data comes from the ALU. If, however, it is a DATA
Token, then you would likely have 6 bits from the constant
field and two lower bits indicating the color components
from the ALU. Accordingly, the Token Formatter takes this
information and puts it into a token for use by the rest of he
system. Note that the number of bits from each source in the
above examples are merely for illustration purposes and one
of ordinary skill in the art will appreciate that the number of
bits from either source can vary.

[1757] The ALU includes a bank of counters that are used
to count through the structure of the picture. The dimensions
of the picture are programmed into registers associated with
the counters that appear to the “microprogrammer” as part of
the register bank. Several of the condition codes are outputs
from this counter bank which allows conditional jumps
based on “start of picture”, “start of macroblock” and the
like.

[1758] Note that the Parser State Machine is also referred
to as the “Demultiplex State Machine”. Both terms are used
in this document.

[1762] As the data bits are shifted left, one by one, in the
shift register, the bit pattern “0 followed by all ones” is
looked for (padding). This indicates that the remaining bits
in the shift register are not valid and they are discarded. Note
that this action only takes place in the last word of a DATA
Token.

[1763] As described previously, all other Tokens are
passed to the Huffman Decoder in parallel. They are still
loaded into the second pipeline stage, but no shifting takes
place. Note that the DATA header is discarded and is not
passed to the Huffman at all. Two “valid” wires (out_valid
and serial valid) are provided. Only one is asserted at a given
time and it indicates what type of data is being presented at
that moment.

[1764] B.2.2 Huffman Decoder

[1765] The Huffman Decoder has a number of modes of
operation. The most obvious is that it can decode Huffman
Codes, turning them into a Huffman Index Number. In
addition, it can decode fixed length codes of a length (in bits)
determined by the instruction word. The Huffman Decoder
can also accept Tokens from the Inshift block.

[1766] The Huffman Decode includes a very small state
machine. This is used when decoding block-level informa-

US 2003/0196078 Al

tion. This is because it takes too long for the Parser State
Machine to make decisions (since it must wait for data to
flow through the Index to Data Unit and the ALU before it
can make a decision about that data and issue a new
command). When this State Machine is used, the Huffman
Decoder itself issues commands to the Index to Data Unit
and ALU. The Huffman Decoder State Machine cannot
control all of the microcode instruction bits and, therefore,
it cannot issue the full range of commands to the other
blocks.

[1767] B.2.2.1 Theory of operation

[1768] When decoding Huffman codes, the Huffman
Decoder of the present invention uses an arithmetic proce-
dure to decode the incoming code into a Huffman Index
Number. This number lies between 0 and N-1 (for a code
table that has N entries). Bits are accepted one by one from
the Input shifter.

[1769] In order to control the operation of the machine, a
number of tables are required. These specify for each
possible number of bits in a code (1 to 16 bits) how many
codes there are of that length. As expected, this information
is typically not sufficient to specify a general Huffman code.
-However, in MPEG, H.261 and JPEG, the Huffman codes
are chosen such that this information alone can specify the
Huffman Code table. There is unfortunately just one excep-
tion to this; the Tcoefficient table from H.261 which is also
used in MPEG. This requires an additional table that is
described elsewhere (the exception was deliberately intro-
duced in H.261 to avoid start code emulation).

[1770] It is important to realize that the tables used by this
Huffman Decoder are precisely the same as those transmit-
ted in JPEG. This allows these tables to be used directly
while other designs of Huffman decoders would have
required the generation of internal tables from the transmit-
ted ones. This would have required extra storage and extra
processing to do the conversion. Since the tables in MPEG
and H.261 (with the exception noted above) can be
described in the same way, a multi-standard decoder
becomes practical.

[1771] The following fragment of “C” illustrates the
decoding process;

int total = 0;

int s = 0;

int bit = 0;

unsigned long code = 0;
int index = 0;

while (index>=total)

if (bit>=max_ bits)
fail (“huff_decode: ran off end of huff table\n™);
code = (code<<1) Inext_ bit0;
index = code-s+total;
total += codes_ per_ bit(bit);
s = (s+codes_per_ bit(bit))<<1;
bit++;

[1772] The process generally, is directly mapped into the
silicon implementation although advantage is taken of the
fact that certain intermediate values can be calculated in
clock phases before they are required.

Oct. 16, 2003

119

[1773] From the code fragment we sce that;

total,,, =total +cpb, EQ 1.
'Sar1=2('Sy+bit, EQ 2.
code,, =2code,+bit, EQ 3.
index,, ;=2code +bit +total 'S, EQ 4.

[1774] Unfortunately in the hardware e proved easier to
use a modified set of equations in which a variable “shifted”
is used in place of the variable so In this case:

[1775] In the hardware, however, it proved easier to use a
modified set of equations in which a variable “shifted” is
used in place of the variable “s”. In this case;

shifted, , ,=2shifted +cpb, EQ 5.
[1776] 1t turns out that:

i,=2shifted, EQ 6.
[1777] and so substituting this back into Equation 4 we see
that:

index,, ,=2(code -shifted,)+total +bit, EQ 7.
[1778] In addition to calculating successive values of

“index:”, it is necessary to know when the calculation is
completed. From the “C” code fragment we see that we are
done when:

index,, ,>total EQ 8.

[1779] Substituting from Equation 7 and Equation 1 we
see that we are done when:

2(code,—shifted,)+bit,—cpb,>0 EQ 9.

[1780] In the hardware implementation of the present
invention, the common term in Equation 7 and Equation 9,
(code_-shifted,) is calculated one phase before the remain-
der of these equations are evaluated to give the final result
and the information that the calculation is “done™.

[1781] One word of warning. In various pieces of “C”
code, notably the behavioral compiled code Huffman
Decoder and the sm4code projects, the “C” fragment is used
almost directly, but the variable “s” is actually called
“shifted”. Thus, there are two different variables called
“shifted”. One in the “C” code and the other in the hardware
implementation. These two variables differ by a factor of
two.

[1782] B.2.2.1.1 Inverting the Data Bits

[1783] There is one other piece of information required to
correctly decode the Huffman codes. This is the polarity of
the coded data. It turns out that H261 and JPEG use
opposite conventions. This reflects itself in the fact that the
start codes in H.261 are zero bits whilst the marker bytes in
JPEG are one bits.

[1784] In order to deal with both conventions, it is nec-
essary to invert the coded data bits as they are read into the
Huffman Decoder in order to decode H.261 style Huffman
codes. This is done in the obvious manner using an exclusive
OR gate. Note that the inversion is only performed for
Huffman codes, as when decoding fixed length codes, the
data is not inverted.

[1785] MPEG uses a mix of the two conventions. In those
aspects inherited from H.261, the H.261 convention is used.
In those inherited from JPEG (the decoding of DC intra
coefficients) the JPEG convention is used.

US 2003/0196078 Al

[1786] B.2.2.1.2 Transform Coefficients Table

[1787] When using the transform coefficients table in
H.261 and 5 MPEG, there are number of anomalies. First,
the table in MPEG is a super-set of the table in H.261. In the
hardware implementation of the present invention, there is
no distinction drawn between the two standards and this
means that an H.261 stream that contains codes from the
extended 10 part of the table (i.e., MPEG codes) will be
decoded in the “correct” manner. Of course, other aspects of
the compression standard may well be broken. For example,
these extended codes will cause start code emulation in
H.261.

[1788] Second, the transform coefficient table has an
anomaly that means that it is not describable in the normal
manner with the codes_per_bit tables. This anomaly occurs
with the codes of length six bits. These code words are
systematically substituted by alternate code words. In an
encoder, the correct result is obtained by first encoding in the
normal manner. Then, for all codes that are six bits or longer,
the first six bits are substituted by another six bits by a
simple table look-up operation. In a decoder, in accordance
with the present invention, the decoding process is inter-
rupted just before the sixth bit is decoded, the code words are
substituted using a table look-up, and the decoding contin-
ues.

[1789] In this case, there are only ten possible six-bit
codes so the necessary look-up table is very small. The
operation is further helped by the fact that the upper two bits
of the code are unaltered by the operation. As a result, it is
not necessary to use a true look-up table- Instead a small
collection of gates are hard-wired to give the appropriate
transformation. The module that does this is called “hftc-
frng”. This type of code substitution is defined herein as a
“ring” since each code from the set of possible codes is
replaced by another code from that set (no new codes are
introduced or old codes omitted).

[1790] Furthermore, a unique implementation is used for
the very first coefficient in a block. In this case, it is
impossible for an end-of-block code to occur and, therefore,
the table is modified so that the most commonly occurring
symbol can use the code that would otherwise be interpreted
as end-of-block. This may save one bit. It turns out that with
the architecture for decoding, in accordance with the present
invention, this is easily accommodated. In short, for the first
bit of the first coefficient the decoding is deemed “done™ if
“index” has the value zero. Furthermore, after decoding only
a single bit there are only two possible values for “index”,
zero and one, it is only necessary to test one bit.

[1791] B.2.2.1.3 Resister and Adder Size

[1792] The Huffman Decoder of the present invention can
deal with Huffman codes that may be as long as 16 bits.
However, the decoding machine is only eight bits wide. This
is possible because we know that the largest possible value
of the decoded Huffman Index number is 255. In fact, this
could only happen in extended JPEG and,-in the current
application, the limit is somewhat lower (but larger than 128,
so 7 bits will not suffice).

[1793] It turns out that for all legal Huffman codes, not
only the final value of “index”, but all intermediate values lie
in the range 0 to 255. However, for an illegal code, i.c., an
attempt to decode a code that is not in the current code table

Oct. 16, 2003

120

(probably due to a data error) the index value may exceed
255. Since we are using an eight bit machine, it is possible
that at the end of decoding, the final value of “index” does
not exceed 255 because the more significant bits that tell us
an error has occurred have been discarded. For this reason,
if at any time during decoding the index value exceeds 255
(i.e., carry out of the adder that forms index) an error occurs
and decoding is abandoned.

[1794] Twelve bits of “code” are preserved. This is not
necessary for decoding Huffman codes where an eight bit
register would have been sufficient. These upper bits are
required for fixed length codes where up to twelve bits may
be read.

[1795] B.2.2.1.4 Operation for Fixed Length Codes

[1796] For fixed length codes, the “codes per bit” value is
forced to zero. This means that “total” and “shifted” remain
at zero throughout the operation and “index” is, therefore,
the same as code. In fact, the adders and the like only allow
an eight bit value to be produced for “index”. Because of
this, the upper bits of the output word are taken directly from
the “code” register when decoding fixed length codes. When
decoding Huffman codes these upper bits are forced to zero.

[1797] The fact that sufficient bits have been read from the
input is calculated in the obvious manner. A comparator
compares the desired number of bits with the “bit” counter.

[1798] B.2.2.2 Decoding Coefficient Data

[1799] The Parser State Machine, in accordance with the
present invention, is generally only used for fairly high-level
decoding. The very lowest level decoding within an eight-
by-eight block of data is not directly handled by this state
machine. The Parser State Machine gives a command to the
Huffman Decoder of the form “decode a block”. The Huff-
man Decoder, Index to Data Unit and ALU work together
under the control of a dedicated state machine (essentially in
the Huffman Decoder). This arrangement allows very high
performance decoding of entropy coded coefficient data.
There are also other feedback paths operational in this mode
of operation. For instance, in JPEG decoding where the
VLCs are decoded to provide SIZE and RUN information,
the SIZE information is fed back directly from the output of
the Index to Data Unit to the Huffman Decoder to instruct
the Huffman Decoder how many FLC bits to read. In
addition, there are several accelerators implemented. For
instance, using the same example all VL.C values which
yield a SIZE of zero are explicitly trapped by looking at the
Huffman Index Value before the Index to Data stage. This
means that in the case of non-zero SIZE values, the Huffman
Decoder can proceed to read one FLLC bit BEFORE the
actual value of SIZE is known. This means that no clock
cycles are wasted because this reading of the first FLC bit
overlaps the single clock cycle required to perform the table
look-up in the Index to Data Unit.

[1800] B.2.2.2.1 MPEG and K.261 AC Coefficient Data

[1801] FIG. 127 shows the way in which AC Coefficients
are decoded in MPEG and H.261. A flow chart detailing the
operation of the Huffman Decoder is given in FIG. 119.

[1802] The process starts by reading a VL.C code. In the
normal course of events, the Huffman index is mapped
directly into values representing the six bit RUN and the
absolute value of the coefficient. A one bit FLC is then read

US 2003/0196078 Al

giving the sign of the coefficient. The ALU assembles the
absolute value of the coefficient with this sign bit to provide
the final value of the coefficient.

[1803] Note that the data format at this point is sign-
magnitude and, therefore, there is little difficulty in this
operation. The RUN value is passed on an auxiliary bus of
six bits while the coefficients value (LEVEL) is passed on
the normal data bus.

[1804] Two special cases exist and these are trapped by
looking at the value of the decoded index before the Index
to Data operation. These are End of Block (EOB) and
Escape coded data. In the case of EOB, the fact that this
occurred is passed along through the Index to Data Unit and
the ALU blocks so that the Token Formatter can correctly
close the open DATA Token.

[1805] Escape coded data is more complicated. First six
bits of RUN are read and these are passed directly through
the Index to Data Unit and are stored in the ALU. Then, one
bit of FLC is read. This is the most significant bit of the eight
bits of escape that are described in MPEG and H.261 and it
gives the sign of the level. The sign is explicitly read in this
implementation because it is necessary to send different
commands to the ALU for negative values versus positive
values. This allows the ALU to convert the twos comple-
ment value in the bit stream into sign magnitude. In either
case, the remaining seven bits of FLLC are then read. If this
has the value zero, then a further eight bits must be read.

[1806] In the present invention, the Huffman Decoder’s
internal state machine is responsible for generating com-
mands to control itself and to also control the Index to Data
Unit, the ALU and the Token Formatter. As shown in FIG.
124, the Huffman Decoder’s instruction comes from one of
three sources, the Parser State Machine, the Huffman State
Machine or an instruction stored in a register that has
previously been received from the Parser State Machine.
Essentially, the original instruction from the Parser State
Machine (that causes the Huffman State Machine to take
over control and read coefficients) is retained in a register,
i.e., each time a new VLC is required, it is used. All the other
instructions for the decoding are supplied by the Huffman
State Machine.

[1807] B.2.2.2.2 MPEG DC Coefficient Data

[1808] This is handled in the same way as JPEG DC
Coefficient Data. The same (loadable) tables are used and it
is the responsibility of the controlling microprocessor to
ensure that their contents are correct. The only real differ-
ence from the MPEG standard is that the predictors are reset
to zero (like in JPEG) the correction for this being made in
the Inverse Quantizer.

[1809] B.2.2.2.3 JPEG Coefficient Data

[1810] FIG. 120 is a block diagram illustrating the hard-
ware, in accordance with the present invention, for decoding
JPEG AC Coefficients. Since the process for DC Coefficients
is essentially a simplication of the JPEG process, the dia-
gram serves for both AC and DC Coefficients. The only real
addition to the previous diagram for the MPEG AC coeffi-
cients is that the “SSSS” field is fed back and may be used
as part of the Huffman Decoder command to specify the
number of FLC bits to be read. The remainder of the
command is supplied by the Huffman State Machine.

Oct. 16, 2003

[1811] FIG. 121 depicts flow charts for the Huffman
decoding of both AC and DC Coefficients.

[1812] Dealing first with the process for AC Coefficients,
the process starts by reading a VLC using the appropriate
tables (there are two AC tables). The Huffman index is then
converted into the RUN and SIZE values in the Index to
Data Unit. Two values are trapped at the Huffman Index
stage, these are for EOB and ZRL. These are the only two
values for which no FLC bits are read. In the case when the
decode index is neither of these two values, the Huffman
Decoder immediately reads one bit of FL.C while it waits for
the Index to Data Unit to complete the look-up operation to
determine how many bits are actually required. In the case
of EOB, no further processing is performed by the Huffman
State Machine in the Huffman Decoder and another com-
mand is read from the Parser State Machine.

[1813] Inthe case of ZRL, no FLC bits are required but the
block is not completed. In this case, the Huffman decoder
immediately commences decoding a further VLC (using the
same table as before).

[1814] There is a particular problem with detecting the
index values associated with ZRL and EOB. This is because
(unlike H.261 and MPEG) the Huffman tables are down-
loadable. For each of the two JPEG AC tables, two registers
are provided (one for ZRL and one for EOB). These are
loaded when the table is downloaded. They hold the value of
index associated with the appropriate symbol.

[1815] The ALU must convert the SIZE bit FL.C code to
the appropriate sign-magnitude value. These are loaded
when the table is downloaded. They hold the value of index
associated with the appropriate symbol.

[1816] The ALU must convert the SIZE bit FL.C code to
the appropriate sign-magnitude value. This can be done by
first sign-extending the value with the wrong sign. If the sign
bit is now set, then the remaining bits are inverted (ones
complement).

[1817] Inthe case of DC Coefficients, the decision making
in the Huffman Decoding Stage is somewhat easier because
there is no equivalent of the ZRL field. The only symbol
which causes zero FLC bits to be read is the one indicating
zero DC difference. This is again trapped at the Huffman
Index stage, a register being provided to hold this index for
each of the (downloadable) JPEG DC tables.

[1818] The ALU of the present invention has the job of
forming the final decoded DC coefficient by retaining a copy
of the last DC Coefficient value (known as the prediction).
Four predictors are required, one for each of the four active
color components. When the DC difference has been
decoded, the ALLU adds on the appropriate predictor to form
the decoded value. This is stored again as the predictor for
the next DC difference of that color component. Since DC
coefficients are signed (because of the DC offset) conversion
from twos complement to sign magnitude is required. The
value is then output with a RUN of zero. In fact, the
instructions to perform some of the last stages of this are not
supplied by the Huffman State Machine. They are simply
executed by the Parser State Machine.

[1819] In a similar manner to the AC Coefficients, the
ALU must first form the DC difference from the SIZE bits
of FLC. However, in this case, a twos complement value is

US 2003/0196078 Al

required to be added to the predictor. This can be formed by
first sign extending with the wrong sign, as before. If the
result is negative, then one must be added to form the correct
value. This can, of course, be added at the same time as the
predictor by jamming the carry into the adder.

[1820] B2.2.3 Error Handling

[1821] Error handling deserves some mention. There are
effectively four sources of error that are detected:

[1822] Ran off the end of a table.
[1823] Serial when token expected.
[1824] Token when serial expected.
[1825] Too many coefficients in a block.

[1826] The first of these occurs in two situations. If the bit
counter reaches sixteen (legal values being 0 to 15) then an
error has occurred because the longest legal Huffman code
is sixteen bits. If any intermediate value of “index™ exceeds
255 then an error has occurred as described in section
B.2.2.1.3.

[1827] The second occurs when serial data is encountered
when a Token was expected. The third when the opposite
condition arises.

[1828] The last type of error occurs if there are too many
coefficients in a block. This is actually detected in the Index
to Data Unit.

[1829] When any of these conditions arises, the error is
noted in the Huffman error register and the Parser state
machine is interrupted. It is the responsibility of the Parser
State Machine to deal with the error and to issue the
commands necessary to recover.

[1830] The Huffman cooperates with the Parser State
Machine at the time of the interrupt in order to assure correct
operation. When the Huffman Decoder interrupts the Parser
State Machine, it is possible that a new command is waiting
to be accepted at the output of the Parser State Machine. The
Huffman Decoder will not accept this command for two
whole cycles after it has interrupted the Parser State
Machine. This allows the Parser State Machine to remove
the command that was there (which should not now be
executed) and replace it with an appropriate one. After these
two cycles, the Huffman Decoder will resume normal opera-
tion and accept a command if a valid command is there. If
not, then it will do nothing until the Parser State Machine
presents a valid command.

[1831] When any of these errors occur, the “Huffman
Error” event bit is set and, if the mask bit is set, the block
will stop and the controlling microprocessor will be inter-
rupted in the normal manner.

[1832] One complication occurs because in certain situa-
tions, what looks like an error, is not actually an error. The
most important place where this occurs is when reading the
macroblock address. It is legal in the syntaxes of MPEG,
H.261 and JPEG for a Token to occur in place of the
expected macroblock address. If this occurs in a legal
manner, the Huffman error register is loaded with zero
(meaning no error) but the Parser State Machine is still
interrupted. The Parser State Machine’s code must recog-
nize this “no error” situation and respond accordingly. In this
case, the “Huffman Error” event bit will not be set and the
block will not stop processing.

Oct. 16, 2003

122

[1833] Several situations must be dealt with. First, the
Token occurs immediately with no preceding serial bits. In
this case, a “Token when serial expected error” would occur.
Instead, a “no error” error occurs in the way just described.

[1834] Second, the Token is preceded by a few serial bits.
In this case, a decision is made. If all of the bits preceding
the Token had the value one (remember that in H.261 and
MPEG the coded data is inverted so these are zero bits in the
coded data file) then no error occurs. If, however, any of
them were zero, then they are not valid stuffing bits and,
thus, an error has occurred and a “Token when serial
expected” error does occur.

[1835] Third, the token is preceded by many bits. In this
case, the same decision is made. If all sixteen bits are one,
then they are treated as padding bits and a “no error” error
occurs. If any of them had been zero, then “Ran off Huffman
Table” error occurs.

[1836] Another place that a token may occur unexpectedly
is in JPEG. When dealing with either Huffman tables or
Quantizer tables, any number of tables may occur in the
same Marker Segment. The Huffman Decoder does not
know how many there are. Because of this fact, after each
table is completed it reads another 4-bit FL.C assuming it to
be a new table number. If, however, a new marker segment
starts, then a token will be encountered in place of the 4 bit
FLC. This requirement is not foreseen and, therefore, an
“Ignore Errors” command bit has been added.

[1837] B.2.2.4 Huffman Commands

[1838] Here are the bits used by the Parser state Machine
to control the Huffman Decoder block and their definitions.
Note the Index to Data Unit command bits are also included
in this table. From the microprogrammer’s point of view, the
Huffman Decoder and the Index to Data Unit operate as one
coherent logical block.

TABLE B.2.2

Huffman Decoder Commands

Bit Name Function

Used to disable errors in certain circumstances.
Either nominate a table for download or download
data into that table.

11 Ignore Errors
10 Download

9 Alutab Use information from the ALU registers to
specify the table number (or number of bits of
FLO)

8 Bypass Bypass the index to Data Unit

7 Token Decode a Token rather than FLC or VLC

6 First Coeff Selects first coefficient tnex for Tcoeff table and
other special modes.

5 Special if set the Huffman State machine sncod take over
control.

4 VLC (not FLC) Specify VLC or FLC

3 Table[3] Specify tha table to use for VLC

2 TABLE|2] or the number of bits to read for a FLC

1 Table[1]

0 Table[0]

[1839] B.2.2.4.1 Reading FLC

[1840] In this mode, Ignore Errors, Download, Alutab,
Token, First Coeff, Special and VL.C are all zero. Bypass
will be set so that no Index to Data translation occurs.

[1841] The binary number in Table(3:0] indicates how
many bits are to be read.

US 2003/0196078 Al

[1842] The numbers O to 12 are legal. The value zero does
indeed read zero bits (as would be expected) and this
instruction is, therefore, the Huffman Decoder NOP instruc-
tion. The values 13, 14 and 15 will not work and the value
15 is used when the Huffman State Machine is in control to
denote the use of “SSSS” as the number of bits of FLC to
read.

[1843] B.2.2.4.2 Reading VL.C

[1844] In this mode, Ignore Errors, Download, Alutab,
Token, First Coefficient and Special are zero and VLC is
one. Bypass will usually be zero so that Index to Data
translation occurs.

[1845] In this mode Token, First Coefficient and Special
are all zero, VLC is one.

[1846] The binary number in Table(3:0) indicates which
table to use as shown:

TABLE B2.3

Huffman Tables

Table[3.0] VLC Table to use
0000 TCoefficient (MPEG and H.261)
0001 CBP (Coded Block Pattern)
0010 MBA (Macroblock Address)
0011 MVD (Motion Vector Data)
0100 Intra Mtype
0101 Predicted Mtype
0110 Inpterpolated Mtype
0111 H.261 Mtype
10x0 JPEG (MPEG) DC Table 0
10x1 JPEG (MPEG) DC Table 1
11x0 JPEG AC Table 0
11x1 JPEG AC Table 1

[1847] Note thatin the case of the tables held in RAM (i.e.,
the JPEG tables) bit 1 is not used so that the table selections
occur twice. If a non-baseline JPEG decoder is built, then
there will be four DC tables and four AC tables and Table [1]
then be required.

[1848] If Table [3] is zero, then the input data is inverted
as it is used in order that the tables are read correctly as
H.261 style tables. In the case of Table[3:0]=0, the appro-
priate Ring modification is also applied.

[1849] B.2.2.4.3 NOP Instruction

[1850] As previously described, the action of reading a
FLC of zero bits is used as a No operation instruction. No
data is read fromn the input ports (either Token or Serial) and
the Huffmnan Decoder outputs a data value of zero along
with the instruction word.

[1851] B.2.2.4.4 Tcoefficient First Coefficient

[1852] The H.261and MPEG TCoefficient Table has a
special non-Huffman code that is used for the very first
coefficient in the block. In order to decode a TCoefficient at
the start of a block, the First Coefficient bit may be set along
with a VLC instruction with table zero. One of the many
effects of the First Coefficient bit is to enable this code to be
decoded.

[1853] Note that in normal operation, it is unusual to issue
a “simple” command to read a TCoefficient VL.C. This is
because control is usually handed to the Huffman Decoder
by setting the Special Bit.

Oct. 16, 2003

[1854] B.2.2.4.5 Reading Token Words

[1855] In order to read Token words, the Token bit should
be set to one. The Special and First Coefficient bits should
be zero. The VLC bit should also be set if the Table[0] bit
is to work correctly.

[1856] In this mode, the bits Table[1] and Table[0] are
used to modify the behavior of the Token reading as follows:

Bit Meaning

Table[0]
Table[1]

Discard padding pits of senal data
Discard all serial data.

[1857] 1If both Table[0] and Table[1] are zero, then the
presence of serial data before the token is considered to be
an error and will be signalled as such.

[1858] 1If Table (1] is set, then all serial data is discarded
until a Token Word is encountered. No error will be caused
by the presence of this serial data.

[1859] If Table[0] is set, then padding bits will be dis-
carded. It is, of course, necessary to know the polarity of the
padding bits. This is determined by Table[3] in exactly the
same way as for reading VLLC data. If Table [3] is zero, input
data is first inverted and then any “one” bits are discarded.
If Table [3] is set to one, the input data is NOT inverted and
“one” bits are discarded. Since the action of inverting the
data depending upon the Table[3] bit is conditional on the
VLC bit, this bit must be set to one. If any bits that are not
padding bits are encountered (i.e., “1” bits in H.261 and
MPEG) an error is reported.

[1860] Note that in these instructions only a single Token
word is read. The state of the extension bit is ignored and it
is the responsibility of the Demux to test this bit and act
accordingly. Instructions to read multiple words are also
provided—see the section on Special Instructions.

[1861] B.2.2.4.6 ALU Registers Specify Table

[1862] If the “Alutab” bit is set, registers in the ALU’s
register file can be used to determine the actual table number
to use. The table number supplied in the command, together
with the VLC bit, determines which ALU registers are used;

TABLE B.2.4

ALU Register Selection

VLC table[3.0] ALU table
0 x0xx fwd_r_size
0 x1xx bwd_r_ size
1 x0xx de__huff(compid)
1 x1xx ac__huff(compid)

[1863] In the case of fixed length codes, the correct
number of bits are read for decoding the vectors. If r_size is
zero, a NOP instruction results.

[1864] In the case of Huffman codes, the generated table
number has table[3] set to one so that the resulting number
refers to one of the JPEG tables.

US 2003/0196078 Al

[1865] B.2.2.4.7 Special Instructions

[1866] All of the instructions (or modes of operation)
described thus far are considered as “Simple” instructions.
For each command that is received, the appropriate amount
of input data (of either serial of token data) is read and the
resulting data is output. If no error is detected, exactly one
output will be generated per command.

[1867] In the present invention, special instructions have
the characteristic that more than one output word may be
generated for a single command. In order to accomplish this
function, the Huffman Decoder’s internal State Machine
takes control and will issue itself instructions as required
until it decides that the instruction which the Parser
requested has been complete.

[1868] In all Special instructions, the first real instruction
of the sequence that is to be executed is issued with the
Special bit set to one. This means that all sequences must
have a unique first instruction. The advantage of this scheme
is that the first real instruction of the sequence is available
without a look-up operation being required based upon the
command received from the Parser.

[1869] There are four recognized special instructions:

[1870] TCoefficient
[1871] JPEG DC
[1872] JPEG AC
[1873] Token

[1874] The first of these reads H.261 and MPEG Trans-
form coefficients, and the like, until the end-of-block symbol
is read. If the block is a non-intra block, this command will
read the entire block. In this case, the “First Coefficient” bit
should be set so that the first coefficient trick is applied. If
the block is an intra block, the DC term should already have
been read and the “First Coefficient” bit should be zero.

[1875] In the case of an intra block in H.261, the DC term
is read using a “simple” instruction to read the 8 bits FLC
value. In MPEG, the JPEG DC special instruction described
below is used.

[1876] The “JPEG DC” command is used to read a JPEG
style DC term (including the SSSS bits FLC indicated by the
VLC). It is also used in MPEG. The First Coefficient bit
must be set in order that a counter (counting the number of
coefficients) in the Index to Data Unit is reset.

[1877] The “JPEG AC” command is used to read the
remainder of a block, after the DC term until either an EOB
is encountered or the 64™ coefficient is read.

[1878] The “Token” command is used to read an entire
Token. Token words are read until the extension bit is clear.
It is a convenient method of dealing with unrecognized
tokens.

[1879] B.2.2.4.8 Downloading Tables.

[1880] In the present invention, the Huffman Decoder
tables can be downloaded by using the “*Download” bit.
The first step is to nominate which table to download. This
is done by issuing a command to read a FL.C with both the
Download and First Coeff bits set. This is treated as an NOP
so no bits are actually read, but the table number is stored in
a register and is used to identify which table is being loaded
in subsequent downloading.

Oct. 16, 2003

124

TABLE B.2.5
JPEG Tables
table[3.0] Table nominated
10xx JPEG DC Codes per bit
Tlxx JPEG AC Codes per bit
00xx JPEG DC Index to Data
01xx JPEG AC Index to Data

[1881] As the above table shows, either the AC or DC
tables can be loaded and table[3] determines whether it is the
codes- per-bit table (in the Huffman decoder itself) or the
Index to Data table that is loaded.

[1882] Once the table is nominated, data is downloaded
into it by issuing a command to read the required number of
FLC (always 8 bits) with the Download bits set (and the First
Coeff bit zero). This causes the decoded data to be written
into the nominated table. An address counter is maintained,
the data is written at the current address and then the address
counter is incremented. The address counter is reset to zero
whenever a table is nominated.

[1883] When downloading the Index to Data tables, the
data and addresses are monitored. Note that the address is
the Huffman Index number while the data loaded into that
address is the final decoded symbol. This information is used
to automatically load the registers that hold the Huffman
index number for symbols of interest. Accordingly, in a
JPEG AC table, when the data has the value corresponding
to ZRL is recognized, the current address is written into the
register CED_H_KEY ZRL INDEX0 or CED_H-
_KEY_ZRI _INDEX]1 as indicated by the table number.

[1884] Since decoded data is written into the codes-per-bit
table one phase after it has been decoded, it is not possible
to read data from the table during this phase. Therefore, an
instruction attempting to read a VLC that is issued imme-
diately after a table download instruction will fail. There is
no reason why such a sequence should occur in any real
application (i.e., when doing JPEG). It is, however, possible
to build simulation tests that do this.

[1885] B.2.2.5 Huffman State Machine

[1886] The Huffman State Machine, in accordance with
the present invention, operates to provide the Huffman
Decoder commands that are internally generated in certain
cases. All of the commands that may be generated by the
internal state machine may also be provided to the Huffman
Decoder by the Demux.

[1887] The basic structure of the State Machine is as
follows. When a command is issued to the Huffman
Decoder, it is stored in a series of auxiliary latches so that it
may be reused at a later time. The command is also executed
by the Huffman Decoder and analyzed by the Huffman State
Machine. If the command is recognized as being the first of
a known instruction sequence and the SPECIAL bit is set,
then the Huffman Decoder State Machine takes over control
of the Huffman Decoder from the Parser State Machine.

US 2003/0196078 Al

[1888] At this point, there are three sources of instructions
for the Huffman Decoder:

[1889] 1) The Parser State Machine—this choice is
made at the completion of the special instruction
(e.g., when EOB has been decoded) and the next
demux command is accepted.

[1890] 2) The Huffman State Machine. The Huffman
State Machine may provide itself with an arbitrary
command.

[1891] 3) The original instruction that was issued by
the Parser State Mchine to start the instruction.

[1892] 1In case (2), it is possible that the table number is
provided by feedback from the Index to Data Unit, this
would then replace the field in the Huffman State Machine
ROM.

[1893] In case (1), in certain instances, table numbers are
provided by values obtained from the ALU register file (e.g.,
in the case of AC and DC table numbers and F-numbers).
These values are stored in the auxiliary command Storage,
so that when that command is later reused the table number
is that which has been stored. It is not recovered again from
the ALU since, in general, the counters will have advanced
in order to refer to the next block.

[1894] Since the choice of the next instruction that will be
used depends upon the data that is being decoded, it is
necessary for the decision to be made very late in a cycle.
Accordingly, the general structure is one in which all of the
possible instructions are prepared in parallel and multiplex-
ing late in the cycle determines the actual instruction.

[1895] Note that in each case, in addition to determining
the instruction that will be used by the Huffman Decoder in
the next cycle, the state machine ROM also determines the
instruction that will be attached to the current data as it
passes to the Index to Data Unit and then onto the ALU. In
exactly the same way, all three of these instructions are
prepared in parallel and then a choice is made late in the
cycle.

[1896] Again, there are three choices for this part of the
instruction that correspond to the three choices for the next
Huffman Decoder instruction above.

[1897] 1.) A constant instruction suitable for End of
Block.

[1898] 2.) The Huffman State Machine. The Huffman
State Machine may provide an arbitrary instruction for the
Index to Data Unit.

[1899] 3.) The original instruction that was issued by the
Parser to start the instruction.

[1900] B2.2.5.1 EOB Comparator

[1901] The EOB comparator’s output essentially forces
selection of the constant instruction to be presented to the
Index to Data Unit and will also cause the next Huffman
Instruction to be the next instruction from the Parser. The
exact function of the comparator is controlled by bits in the
Huffman State Machine ROM.

[1902] Behind the EOB comparator, there are four regis-
ters holding the index of the EOB symbol in the AC and DC
JPEG tables. In the case of the DC tables, there is of course

125

Oct. 16, 2003

no End-Of-Block symbol but there is the zero-size symbol,
that is generated by a DC difference of zero. Since this
causes zero bits of FLC to be read in exactly the same way
as the EOB symbol, they are treated identically.

[1903] In addition to the four index values held in regis-
ters, the constant value, 1, can also be used. This is the index
number of the EOS symbol in H.261 and MPEG.

[1904] B.2.2.5.2 ZRL Comparator

[1905] In the present invention, this is the more general
purpose comparator. It causes the choice of either the
Huffman State Machine instruction or the Original Instruc-
tion for use by the I to D.

[1906] Behind the ZRL comparator, there are four values.
Two are in registers and hold the index of the ZRL code in
the AC tables. The other two values are constants, one is the
value zero and the other is 12 (the index of ESCAPE in
MPEG and H.261).

[1907] The constant zero is used in the case of an FLC.
The constant 12 is used whenever the table number is less
than 8 (and VLC). One of the two registers is used if the
table number is greater than 7 (and VLC) as determined by
the low order bit of the table number.

[1908] A bit in the state machine ROM is provided to
enable the comparator and another is provided to invert its
action.

[1909] If the TOKEN bit in the instruction is set, the
comparator output is ignored and replaced instead by the
extn bit. This allows for running until the end of a Token.

[1910] B.2.2.5.3 Huffman State Machine ROM

[1911] The instruction fields in the Huffman State
Machine are as follows: nxtstate [4:0]

[1912] The address to use in the next cycle. This address
may be modified.

[1913]

[1914] Allows modification of the next state address. If
zero, the state machine address is unmodified, otherwise the
LSB of the address is replaced by the value of either of the
two comparators as follows:

statectl

nxtstate[0]

0
1

Replace Lsb by EOB match
Replace Lsb by ZRL match

[1915] Note: in any case, if the next Huffman Instruction
is selected as “Re-run original command” the state machine
will jump to location O, 1, 2 or 3 as appropriate for the
command.

[1916] eobct [1:0]

[1917] This controls the selection of the next Huffman
instruction based upon the EOB comparator and extn bit as
follows:

US 2003/0196078 Al

eobetl[1:0]

00 No effect-see zrlctl[1:0]

01 Take new (Parser) command if EOB

10 Take new (Parser) command of extn low

11 Unconditional Demux Instruction
[1918] zrlet [1:0]

[1919] This controls the selection of the next Huffman
instruction based upon the ZRL comparator. if the condition
is met, then it takes the state machine instruction, otherwise
it re-runs the original instruction. In either case, if an
eobctl*+condition takes a demux instruction then this
(eobetl*+) takes priority as follows:

zrlet][1:0]

00 Never take SM (always re-run)
01 Always take SM command
10 SM if ZRL matches
1 SM if ZRL does not match
[1920] smtab [3:0]
[1921] In the present invention, this is the table number

that will be used by the Huffman Decoder if the selected
instruction is the state machine instruction. However, if the
ZR1. comparator matches, then the zrltab [3:0] field is used
in preference.

[1922] Ifit is not required that a different table number be
used depending upon whether a ZRL match occurs, then
both smtab [3:0] and zrltab [3:0) will have the same value.
Note, however, that this can lead to strange simulation
problems in Lsim. In the case of MPEG, there is no obvious
requirement to load the registers that indicate the Huffman
index number for ZRL (a JPEG only construction). How-
ever, these are still selected and the output of the ZRL
comparator becomes “unknown” despite the fact that both
smtab [3:0] and zrltab [3:0] have the same value in all cases
that the ZRL comparator may be “unknown” (so it does not
matter which is selected) the next state still goes to
“unknown”.

[1923] zrltab [3:0]

[1924] This is the table number that will be used by the
Huffman decoder if the selected instruction is the state
machine instruction. However, if the ZRL comparator
matches then the zrltab [3:0] field is used in preference.

[1925] If it is not required that a different table number be
used depending upon whether a ZRL match occurs, then
both smtab [3:0] and zrltab [3:0] will have the same value.
Note, however, that this can lead to strange simulation
problems in Lsim. In the case of MPEG, there is no obvious
requirement to load the register that indicate the Huffman
index number for ZRL (a JPEG only construction). How-
ever, these are still selected and the output of the ZRL
comparator becomes “unknown” despite the fact that both
smtab [3:0] and zrltab [3:0] have the same value in all cases

126

Oct. 16, 2003

that the ZRL comparator may be “unknown” (so it does not
matter which is selected) the next state still goes to
“unknown”.

[1926] zrltab [3:0]

[1927] This is the table number that will be used by the
Huffman Decoder if the selected instruction is the state
machine instruction and the ZRL comparator matches.

[1928]

[1929] This is the VLC bits used by the Huffman Decoder
if the selected instruction is the state machine instruction.

[1930] aluzrl [1:0]

[1931] This field controls the selection of the instruction
that is passed to the ALU. It will either be the command from
the Parser State Machine (that was stored at the start of the
instruction sequence) or the command from the state
machine:

smvle

aluzrl[1:0]
00 Always take the saved Parser State Machine Command
01 Always take the Huffan State Machine Command
10 Take the Huffman SM command if not EOB
11 Take the Huffman SM command of not ZRL
[1932] alueob

[1933] This wire controls modification of the instruction
passed to the ALU based upon the EOB comparator. This
simply forces the ALLU’s output mode to “zinput”. This is an
arbitrary choice; any output mode apart from “none” will
suffice. This is to ensure that the end-of-lock command word
is passed to the Token Formatter block where it controls the
proper formatting of DATA Tokens:

alueob

Do not modify ALU outsrc field
Force “zinput” into outsrc if EOB match

[1934] The remainder of the fields are the ALU instruction
fields. These are properly documented in the ALU descrip-
tion.

[1935] B.2.2.5.4 Huffman State Machine Modification

[1936] Inone embodiment of the state machine, the Index
to Data Unit needs to “know” when the RUN part of an
escape-coded Tcoefficient is being passed to the Index to
Data Unit. While this can be accomplished using an appro-
priate bit in the control ROM, but to avoid changing the
ROM, an alternative approach has been used. In this regard,
the address going into the ROM is monitored and the address
value five is detected. This is the appropriate location
designated in the ROM dealing with the RUN field. Of
course, it will be apparent that the ROM could be pro-
grammed to use other selected address values. Moreover, the
aforedescribed approach of using a bit in the control ROM
could be utilized.

US 2003/0196078 Al

[1937] B.2.2.6 Guided Tour of Schematics

[1938] In the present invention, the Huffman Decoder is
called “hd”. Logically, “hd” actually includes the Index to
Data Unit (this is required by the limitations of compiled
code generation). Accordingly, “hd” includes the following
major blocks;

TABLE B.2.6

Huffman Modules

Module Name Description

hddp Huffman Decoder (Arithmetic) datapath
hdstdp Huffman State Machine Datapath
hfitod Index to Data Unit

[1939] The following description of the Huffman modules
is accomplished by a global explanation of the various
subsystem areas shown in greater detail in the drawings
which are readily comprehended by one of ordinary skill in
the art.

[1940] B.2.2.6.1 Description of “hd”

[1941] The logic for the two-wire interface control usually
includes three ports controlled by the two-wire interface;
data input, data output and the command. In addition, there
are two “valid” wires from the input shifter; token_valid
indicating that a Token is being presented on in_data [7:0]
and serial_valid indicating that data is being presented on
serial.

[1942] The most important signals generated are the
enables that go to the latches. The most important being el
which is the enable for the phl latches. The majority of phO
latches are not enabled whilst two enables are provided for
those that are; ¢0 associated with serial data and eOt asso-
ciated with Token data.

[1943] In the present invention, the “done” signals (done,
notdone and their phO variants done0 and notdone0) indicate
when a primitive Huffman command is completed. In the
case when a Huffman State Machine command is executed,
“done” will be asserted at the completion of each primitive
command that comprises the entire state-machine command.
The signal notnew prevents the acceptance of a new com-
mand from the Parser State Machine until the entire Huff-
man State Machine command is completed.

[1944] Regarding control of information received from the
Index to Data Unit, the control logic for the “size” field is fed
back to the Huffman decoder during JPEG coefficient decod-
ing. This can actually happen in two ways. If the size is
exactly one, this is fed back on the dedicated signal notf-
bone0. Otherwise, the size is fed back from the output of the
Index to data unit (out_data[3:0] and a signal fbvalidl
indicates that this is occurring. The signal muxsize is pro-
duced to control the multiplexing of the fed-back data into
the command register (sheet 10).

[1945] In addition, there is feedback that exactly 64 coef-
ficients have been decode. Since in JPEG the EOB is not
coded in this situation, the signal forceeob is produced. By
analogy, with the signals for feeding back size, as mentioned
above, there are in fact two ways in which this is done.
Either jpegeob is used (a phl signal) or jpegeob0. Note that

Oct. 16, 2003

127

in the case when a normal feedback is made (jpegeob), the
latch I__971 is only loaded as the data is fed back and not
cleared until a new Parser State Machine command is
accepted. The signal forceeob does not actually get gener-
ated until a Huffman code is decoded. Thus, the fixed length
code (i.e., size bits) is not affected, but the next Huffman
coded information is replaced by the forced end of block. In
the case when size is one and jpegeobo is used, only one bit
is read and, therefore, i 1255 and 11256 delay the signal
to the correct time. Note that it is impossible for a size of
zero to occur in this situation since the only symbols with
size zero are EOB and ZRL.

[1946] The decoding is fairly random decoding of the
command to produce tcoeff_tabo (Huffman decoding using
TCOeﬁ table)’ mba—tabo (Huffman decoding using the MBA table) and
nop (no operation). There are several reasons for generating nop. A Fixed
length code of size zero is one, the forceeob signal is another (since no data
should be read from the input shifter even though an output is produced to

signal EOB) and lastly table download nomination is a third.

[1947] notfrczero (generated by a FLC of size zero, a
NOP) ensures that the result is zero when a NOP instruction
is used. Furthermore, invert indicates when the serial bits
should be inverted before Huffman decoding (see section
B.2.2.1.1). ring indicates when the transform coefficient ring
should be applied (see section B.2.2.1.2).

[1948] Decoding is also accomplished regarding address-
ing the codes-per-bit ROMs. These are built out of the small
data-path ROMs. The signals are duplicated (e.g., csha and
csla) purely to get sufficient drive by separating the ROMs
into two sections. The address can be taken either from the
bit counter (bit[3:0]) or from the microprocessor interface
address (key-addi{3:0]) depending upon UPI access to the
block being selected.

[1949] Additional decoding is concerned with the UPI
reading of registers such as those that hold the Huffman
index values for the JPEG tables (EOB, ZRL etc.). Also
included is a tristate driver control for these registers and the
UPI reading of the codes per bit RAMs.

[1950] Arithmetic datapath decoding is also provided for
certain important bit numbers. first_bit is used in connection
with the Tcoeff first coefficient trick and bit_five is con-
cerned with applying the ring in the Tcoeff table. Note the
use of forceeob to simulate the action that the EOB com-
parator matches the decoded index value.

[1951] Regarding the extn bit, if a token is read from the
input shifter, then the associated extn bit is read along with
it. Otherwise, the last -value of extn is preserved. This allows
the testing of the extn bit by the microcode program at any
time after a token has been read.

[1952] When zerodat is asserted, the upper four bits of the
Huffman output data are forced to zero. Since these only
have valid values when decoding fixed length codes, they
are zeroed when decoding a VLC, a token or when a NOP
instruction is executed for any reason.

[1953] Further circuitry detects when each command is
completed and generates the “done” signals. Essentially,
there are two groups of reasons for being “done”; normal
reasons and exceptional reasons. These are each handled by
one of the two three way multiplexers.

US 2003/0196078 Al

[1954] The lower multiplexer (i__1275) handles the nor-
mal reasons. In the case of a FLC, the signal ndnflc is used.
This is the output of the comparator comparing the bit
counter with the table number. In the case of a VLC, the
signal ndnvle is used. This is an output from the arithmetic
datapath and reflects directly Equation 9. In the case of an
NOP instruction or a Token, only one cycle is required and,
therefore, the system is unconditionally “done”.

[1955] In the present invention, the upper multiplexer
(1__1274) handles exceptional cases. If the decoder is expect-
ing a size to be fed back (fbexpctdo) in JPEG decoding and
that size is one (notfbone0), then the decoder is done
because only one bit is required. If the decoder is doing the
first bit of the first coefficient using the Tcoeff table, it is
done if bit zero of the current index is zero (see Section
B.2.2.1.2). If neither of these conditions are met then there
is no exceptional reason for being done.

[1956] The NOR gate (i__1293) finally resolves the “done”
condition. The condition generated by i-570 (i.e., that the
data is not valid) forces “done”. This may seem a little
strange. It is used primarily just after reset to force the
machine into its “done” state in preparation for the first
command (“done” resets all counters, registers, etc.) Note
that any error condition also forces “done”.

[1957] The signal notdonex is required for use in detecting
errors. The normal “done™ signals cannot be used since on
detecting an error “done” is forced anyway. The use of
“done” would give a combinatorial feedback loop.

[1958] Error detection and handling, is accomplished by
circuitry which detects all of the possible error conditions.
These are ORed together in i 1190. In this case, i 1193,
i-585 and i_584 constitute the three bit Huffman error
register. Note i 1253 and i-1254 which disable the error in
the cases when there is no “real” error (section B.2.2.3).

[1959] In addition,i 580 and i_ 579 along with the asso-
ciated circuitry provide a simple state machine that controls
the acceptance of the first command after an error is
detected.

[1960] As previously indicated, control signals are
delayed to match pipeline delays in the Index to Data Unit
and the ALU.

[1961] Itod_bypass is the actual bypass signal passed to
the Index to Data Unit. It is modified when the Huffman
State Machine is in control to force bypass whenever a fixed
length code is decoded.

[1962] Aluinstr [32] is the bit that causes the ALU to
feedback (condition codes) to the Parser State Machine.
Furthermore, it is important when the Huffman State
Machine is in control that the signals are only asserted once
(rather than each time one of the primitive commands
completes).

[1963] Aluinstr [36] is the bit that allows the ALU to step
the block counters (if other ALU instruction bits specify an
increment too). This also must only be asserted once.

[1964] In addition, these bits must only be asserted for
ALU instructions that output data to the Token Formatter.
Otherwise, the counters may be incremented prior to the first
output to the Token formatter causing an incorrect value of
“cc” in a DATA token.

Oct. 16, 2003

[1965] In the illustrated embodiment of the invention,
either alunode[1] or alunode[0] will be low if the ALU will
output to the Token Formatter.

[1966] FIG. 118, similar to FIG. 27, illustrates the Huff-
man State Machine datapath referred to as “hdstdp”. There
is also a UPI decode for reading the output of the Huffman
State machine ROM.

[1967] Multiplexing is provided to deal with the case
when the table number is specified by the ALU register file
locations (see Section B.2.2.4.6).

[1968] The modification of aluinstr[3:2) deals with forcing
the ALU outsrc instruction field to non-none (section
B.2.2.5.3, description of alueob)

[1969] Regarding the command register for the Huffman
Decoder block (x), each bit of the command has associated
multiplexer which selects between the possible sources of
commands. Four control signals control this selection:

[1970] Selhold causes the register to retain its current
state.

[1971] Selnew causes a new command to be loaded from
the Parser State Machine. This also enables loading of the
registers that retain the original Parser State Machine com-
mand for later use.

[1972] Selold causes loading of the command from the
registers that retain the original Parser State Machine com-
mand.

[1973] /selsm causes loading of the command from the
Huffman State Machine ROM.

[1974] In the case of the table number, the situation is
slightly more complicated since the table number may also
be loaded from the output data of the Index to Data Unit
(selholdt and muxsize). Latches hold the current address in
the Huffman state machine ROM. The logic detects which of
the possible four commands are being executed. These
signals are combined to form the lower two bits of the start
address in the case of a new command.

[1975] Logic also detects when the output of the state
machine ROM is meaningless (usually because the com-
mand is a “simple” command). The signal notignorerom
effectively disables operation of the state machine, in par-
ticular, disabling any modification of the instruction passed
to the ALU.

[1976] The circuitry generating fixstateO controls the lim-
ited jumping capability of this state machine.

[1977] Decoding is also provided for driving the signals
into the Huffman State Machine ROM. This is datapath-style
combinatorial ROM.

[1978] The generation of escape_run is described in Sec-
tion B.2. 2.5.4.

[1979] Decoding also provides for the registers that hold
the Huffman Index number for symbols such as ZRL and
EOB. These registers can be loaded from the UPI or the
datapath. The decoding in the center(es[4:01 and zs[3:0] is
generating the select signals for the multiplexers that select
which register or constant value to compare against the
decode Huffman Index.

US 2003/0196078 Al

[1980] Regarding the control logic for the Huffman State
Machine. Here the “instruction” bits from the Huffman State
Machine ROM are combined with various conditions to
determine what to do next and how to modify the instruction
word for the ALU.

[1981] In the present invention, the signals notnew, notsm
and notold are used on sheet 10 to control the operation of
the Huffman Decoder command register. They are generated
here in an obvious manner from the control bits in the state
machine ROM (described in Section B.2.2.5.3) together
with the output of the Huffman Index comparators (neob-
match and nzrlmatch).

[1982] Selection is also accomplished of the source for the
instruction passed to the ALU. The actual multiplexing is
performed in the Huffman State Machine datapath “hfstdp”.
Four control signals are generated.

[1983] In the case when the end-of-block has not been
encountered, one of aluseldmx (selecting the Parser State
Machine instruction) or aluselsm (selecting the Huffman
state machine instruction) will be generated.

[1984] In the case when the end-of-block has not been
encountered, one of aluseleobd (selecting the Parser State
Machine instruction) or aluseleobs (selecting the Huffman
State Machine instruction) will be generated. In addition the
“outsrc” field of the ALU instruction is modified to force it
to “zinput”.

[1985] Aregister holds the nominated table number during
table download. Decoding is provided for the codes-per-bit
RAMSs. Additional decoding recognizes when symbols like
EOB and ZRL are downloaded so that the Huffman Index
number registers can be automatically loaded.

[1986] Regarding the bit counter, a comparator detects
when the correct number of bits have been read when
reading a FLC.

[1987] B.2.2.6.2 Description of “hddP”

[1988] Comparators detect the specific values of Huffman
Index. Registers hold the values for the downloadable tables.
The multiplexers (meob[7:0] and mzi[7:0]) select which
value to use and the exclusive-or gates and gating constitute
the comparators.

[1989] Adders and registers directly evaluate the equa-
tions described in Section B.2.2.1. No further description is
thought necessary here. An exclusive or is used for inverting
the data (I_807) described in Section B.2.2.1.1.

[1990] The “code” register is 12 bits wide. A multiplexing
arrangement implements the “ring” substitution described in
Section B.2.2.1.2.

[1991] Regarding the pipeline delays for data and multi-
plexing between decoded serial data (index[7:0]) and Token
data (ntoken0[7:0]), the Huffman index value is decided in
ZRL and EOB symbols.

[1992] Codes-per-bit ROMs and their multiplexing are
used for deciding which table to use. This arrangement is
used because the table select information arrives late. All
tables are then accessed and the correct table selected.

[1993] Regarding the codes-per-bit RAM, the final mul-
tiplexing of the codes-per-bit ROM and the output of the
codes-per-bit RAM takes place inside the block “hdcp-
bram”.

Oct. 16, 2003

[1994] B.2.2.6.3 Description of “hdstdp”

[1995] In the present invention, “Hdstdp” comprises two
modules. “hdstdel” is concerned with delaying the Parser
State Machine control bits until the appropriate pipeline
stage, e.g., when they are supplied to the ALU and Token
Formatter. It only processes about half of the instruction
word that is passed to the ALU, the remainder being deal,
with by the other module “hdstmod”.

[1996] “Hdstmod” includes the Huffman State Machine
ROM. Some bits of this instruction are used by the Huffman
State Machine control logic. The remaining bits are used to
replace that part of the ALU instruction word (from the
Parser State Machine) that is not dealt with in “hdstdel”.

[1997] “Hdstmod” is obvious and requires no explana-
tion—there are only pipeline delay registers.

[1998] “Hdstdel” is also very simple and is handled by a
ROM and multiplexers for modifying the ALU instruction.
The remainder of the circuitry is concerned with UPI read
access to half of the Huffman State Machine ROM outputs.
Buffers are also used for the control signals.

[1999] B.2.3 The Token Formatter

[2000] The Huffman Decoder Token Formatter, in accor-
dance with the present invention, sits at the end of the
Huffman block. Its function, as its name suggests, is to
format the data from the Huffman Decoder into the propriety
Token structure. The input data is multiplexed with data in
the Microinstruction word, under control of the Microin-
struction word command field. The block has two operating
modes; DATA_WORD, and DATA_ 1oxen.

[2001] B.2.3.1The Microinstruction word

TABLE B.2.7

The Microinstruction
word consisting of seven fields

Field Name Bits
Token 0:7
Mask 8:11
Block Type (Bt) 12:23
External Extn (Ee) 14
Demux Extn (De) 15
End of Block (Eb) 16
Command (Cmd) 17
17 16 15 14 12 8 0
Cmd Eb De Ee Bt Mask Token

The Microinstruction word is governed by the same accept as the Data
word.

[2002] The Microinstruction word is governed by the
same accept as the Data word.

[2003] B.2.3.2 operating Modes

TABLE B.2.8
Bit Allocation
Cmd Mode
0 Data_ Word
1 Data_ Token

US 2003/0196078 Al

[2004] B.2.3.2.1 Data Word

[2005] In this mode, the top eight bits of the input are fed
to the output. The bottom eight bits will be either the bottom
eight bits of the input, the Token field of the Microinstruc-
tion word or a mixture of both, depending on the mask field.
Mask represents the number of input bits in the mix, i.e.

[2006] out_data[16:8]=in_data[16:8]

[2007] out_data[7:03=(Token[7:0]
&(ff<<mask))indata[7:0]

[2008] When mask is set to 0x8 or greater, the output data
will equal the input data. This mode is used to output words
in non-DATA Tokens. With mask set to 0, out_data[7:0] will
be the Token field of the Microinstruction word. This mode
is used for outputting Token headers that contain no data.
When Token headers do contain data, the number of data bits
is given by the mask field.

[2009] If External Extn(Ee) is set, out_extn=in extn,
[2010] otherwise

[2011] out extn=De.Bt and Eb are “don’t care”.

[2012] B.2.3.2.2 Data Token

[2013] This mode is used for formatting DATA Tokens and

has two functions dependent on a signal, first_coefficient. At
reset, first_coefficient is set. When the first data coefficient
arrives along with a Microinstruction word that has cmd set
to 1, out_data[16:2] is set to Ox1 and out_data[1:0] takes the
value of the Bt field in the Microinstruction word. This is the
header of a DATA Token. When this word has been
accepted, the coefficient that accompanied the command is
loaded into a register, RL and first_coefficient takes the value
of Eb. When the next coefficient arrives, out_data[16:0]
takes the previous coefficient, stored in RL. RL and first-
_coefficient are then updated. This ensures that when the end
of the block is encountered and Eb is set, first_coefficient is
set, ready for the next DATA Token, i.e.,

If (first_coefficient)

out_data [16:2] = 0x1
out_ data [1:0] = Bt [1:0]
RL [16:0] = in__data[16:0]

else
{
out_ data [16:0] = RL [16:0]
RL [16:0] = in__data [16:0]
¥

out_extn = —FEb

[2014] B.2.3.3 Explanatory Discussion

[2015] In accordance with the present invention, most of
the instruction bits are supplied in the normal manner by the
Parser State Machine. However, two of the fields are actu-
ally supplied by other circuitry. The “Bt” field mentioned
above is connected directly to an output of the ALU block.
This two bit field gives the current value of “cc” or “color
component”. Thus, when a DATA Token header is con-
structed, the lowest order two bits take the color 10 com-
ponent directly from the ALU counters. Secondly, the “Eb”
bit is asserted in the Huffman decoder whenever and End-

Oct. 16, 2003

130

of-block symbols id decoded (or in the case of JPEG when
one is assumed because the last coefficient in the block is
coded).

[2016] The in_extn signal is derived in the Huffman
Decoder. It only has meaning with respect to Tokens when
the extension bit is supplied along with the Token word in
the normal way.

[2017] B.2.4 The Parser State Machine

[2018] The Parser State Machine of the present invention
is actually a very simple piece of circuitry. The complication
lies in the programming of the microcode ROM which is
discussed in Section B.2.5.

[2019] Essentially the machine consists of a register which
holds the current address. This address is looked up in the
microcode ROM to produce the microcode word. The
address is also incremented in a simple incrementer and this
incremented address is one of two possible addresses to be
used for the next state. The other address is a field in the
microcode ROM itself. Thus, each instruction is potentially
a jump instruction and may jump to a location specified in
the program. If the jump is not taken, control passes to the
next location in the ROM.

[2020] A series sixteen condition code bits are provided.
Any one of these conditions may be selected (by a field in
the microcode ROM) and, in addition, it may be inverted
(again a bit in the microcode ROM). The resulting signal
selects between either the incremented address or the jump
address in the microcode ROM. One of the conditions is
hard-wired to evaluate as “False”. If this condition is
selected, no jump will occur. Alternatively, if this condition
is selected and then inverted, the jump is always taken; an
unconditional jump.

TABLE B.2.9

Condition Code Bits

Bit No. Name Description
0 user[0] Connected to a register programmable by the
1 user[1] user from the microprocessor interface. They
2 CDD_eight allow user defined condition codes that can be
3 CDD_ special tested with little overhead Two are defined to

control non-standard “Coded block Pattern”
processing for experimental 4 block and 8
block macroblock structures.

4 he[0] These bits connect directly to the Huffman
5 he[1] decoders Huffman Error register.
6 he[2]
7 Extn The Extension bit (for Tokens)
8 Blkptn The Block Pattern Shifter
9 MBstart At Start of a Macroblock

10 Picstart At Start of a Picture

11 Restart At Start of a Restart Interval

12 Chngdet The “Sticky” Change Detect bit

13 Zero ALU zero condition

14 Sign ALU sign condition

15 False Hard wired to False.

[2021] B.2.4.1 Two wire Interface Control

[2022] The two-wire interface control, in accordance with
the invention, is a little unusual in this block. There is a
two-wire interface between the Parser State Machine and the
Huffman Decoder. This is used to control the progress of
commands. The Parser State Machine will wait until a given

US 2003/0196078 Al

command has been accepted before it proceeds to read the
next command from the ROM. In addition, condition codes
are fed back through a wire from the ALU.

[2023] Each command has a bit in the microcode ROM
that allows it to specify that it should wait for feedback. If
this occurs, then after that instruction has been accepted by
the Huffman Decoder, no new commands are presented until
the feedback wire from the ALU becomes asserted. This
wire, fb_valid, indicates that the condition codes currently
being supplied by the ALU are valid in the sense that they
reflect the data associated with the command that requested
the wait for feedback.

[2024] The intended use of the feature, in accordance with
the present invention, is in constructing conditional jump
commands that decide the next state to jump to as a result of
decoding (or processing) a particular piece of data. Without
this facility it would be impossible to test any conditions
depending upon data in the pipeline since the two-wire
control means that the time at which a certain command
reaches a given processing block (i.e., the ALU in this case)
is uncertain.

[2025] Not all instructions are passed to the Huffman
Decoder. Some instructions may be executed without the
need for the data pipeline. These tend to be jump instruc-
tions. A bit in the microcode ROM selects whether or not the
instruction will be presented to the Huffman Decoder. If not,
there is no requirement that the Huffman Decoder accept the
instruction and, therefore, execution can continue in these
circumstances even if the pipeline is stalled.

[2026] B.2.4.2 Event Handling

[2027] There are two event bits located in the Parser State
Machine. One is referred to as the Huffman event and the
other is referred to as the Parser Event.

[2028] The Parser Event is the simplest of these. The
“condition” being monitored by this event is simply a bit in
the microcode ROM. Thus, an instruction may cause a
Parser Event by setting this bit. Typically, the instruction that
does this will write an appropriate constant into the rom-
_control register so that the interrupt service routine can
determine the cause of the interrupt.

[2029] After servicing a Parser Event (or immediately if
the event is masked out) control resumes at the point where
it left off. If the instruction that caused the event has a jump
instruction (whose condition evaluates true) then the jump is
taken in the normal manner. Hence, it is possible to jump to
an error handler after servicing by coding the jump.

[2030] A Huffman event is rather different. The condition
being monitored is the “OR” of the three Huffman Error bits.
In reality, this condition is handled in a very similar manner
to the Parser Event. However, an additional wire from the
Huffman Decoder, huffintrpt, is asserted whenever an error
occurs. This causes control to jump to an error handler in the
microcode program.

[2031] When a Huffman error occurs, therefore, the
sequence involves generating interrupt and stopping the
block. After servicing, control is transferred to the error
handler. There is no “call” mechanism and unlike a normal
interrupt, it is not possible to return to the point in the
microcode before the error occurred following error han-
dling.

Oct. 16, 2003

[2032] 1t is possible for huffintrpt to be asserted without a
Huffman error being generated. This occurs in the special
case of a “no-error” error as discussed in Section B.2.2.3. In
this case, no interrupt (to the microprocessor interface) is
generated, but control is still passed to the error handler (in
the microcode). Since the Huffman error register will be
clear in this case, the microcode error handler can determine
that this is the situation and respond accordingly.

[2033] B.2.4.3 Special locations

[2034] There are several special locations in the micro-
code ROM. The first four locations in the ROM are entry
points to the main program. Control passes to one of these
four locations on reset. The location jumped to depends
upon the coding standard selected in the ALU register,
coding_std. Since this location is itself reset to zero by a true
reset control passes to location zero. However, it is possible
to reset the Parser State Machine alone by using the UPI
register bit CED_H_TRACE_RST in CED_H_TRACE. In
this case, the coding_std register is not reset and control
passes to the appropriate one of the first four locations.

[2035] The second four locations (0x004 to 0x007) are
used when a Huffman interrupt takes place. Typically, a
jump to the actual error handler is placed in each of these
locations. Again, the choice of location is made as a result
of the coding standard.

[2036] B.2.4.4 Tracing

[2037] As a diagnostic aid, a trace mechanism is imple-
mented. This allows the microcode to be single-stepped. The
bits CED_H_TRACE_EVENT and CED__ TRACE_MASK
in the register CED_H_TRACE control this. As their names
suggest, they operate in a very similar fashion to the normal
event bits. However, because of several differences (in
particular no UPI interrupt is ever generated) they are not
grouped with the other event bits.

[2038] The tracing mechanism is turned on when
CED_H_TRACE_MASK is set to one. After each micro-
code instruction is read from the ROM, but before it is
presented to the Huffman Decoder, a trace event occurs. In
this case, CED_H_TRACE_EVENT becomes one. It must
be polled because no interrupt will be generated. The entire
microcode word is available in the registers CED_H KEY
DMX_WORD_ 0 through CED_H_KEY_DMX_WORD__
9. The instruction can be modified at this time if required.
Writing a one to CED H_TRACE_EVENT causes the
instruction to be executed and clears CED_H_TRA-
CE_EVENT. Shortly after this time, when the next micro-
code word to be executed has been read from the ROM, a
new trace event will occur.

[2039] B.2.5 The Microcode

[2040] The microcode is programmed using an assembler
“hpp” which is a very simple tool and much of the abstrac-
tion is achieved by using a macro preprocessor. A standard
“C” preprocessor “cpp” may be used for this purpose.

[2041] The code is instructed as follows:

[2042] Ucode.u is the main file. First, this includes
tokens.h to define the tokens. Next, regfile.h defines
the ALU registermap. The fields.u defines the vari-
ous fields in the microcode word, giving a list of
defined symbols for each possible bit pattern in the

US 2003/0196078 Al

field. Next, the labels that are used in the code are
defined. After this step, instr.u is included to define
a large number of “cpp” macros which define the
basic instructions. Then, errors.h defines the num-
bers which define the Parser events. Next, unword.u
defines the order in which the fields are placed to
build the microcode word.

[2043] The remainder of ucode.u is the microcode pro-
gram itself.

[2044] B.2.5.1 The Instructions

[2045] In this section the various instructions defined in
ucode.u are described. Not all instructions are described here
since in many cases they are small variations on a theme
(particularly the ALU instructions).

[2046] B.2.5.1.1 Huffman and Index to Data Instructions
In the invention, the H_NOP instruction is used by the
Huffman Decoder. It is the No-operation instruction. The
Huffman does nothing in the sense that no data is decoded.
The data produced by this instruction is always zero.
Accordingly, the associated instruction is passed onto the
ALU.

[2047] The next instructions are the Token groups;
H_TOKSRCH, H_TOKSKIP_PAD, H_TOKSKIP_JPAD,
H_TOKPASS and H_TOKREAD. These all read a token or
tokens from the Input Shifter and pass them onto the rest of
the machine. H_TOKREAD reads a single token word.
H_TOKPASS can be used to read an entire token, up to and
including, the word with a zero extn bit. The associated
command is repeated for each word of the Token. H_TOK-
SRCH discards all serial data preceding a Token and then
reads one token word. H_TOKSKIP_PAD skips any pad-
ding bits (H.261 and MPEG) and then reads one Token
word. H_TOKSEIP_JPAD does the same thing for JPEG
padding.

[2048] H_FLC(NB) reads a fixed length code of “NB”
bits.

[2049] H_VLC(TBL) reads a vic using the indicated table
(passed as mnemonic, ¢.g., H_VLC(tcoeff)).

[2050] H_FLC_IE(NB) is like H_FLC, but the “ignore
errors” bit is set.

[2051] H_TEST VLC(TBL) is like H_VLC, but the

bypass bit is set so that the Huffman Index is passed through
the Index to Data Unit unmodified.

[2052] H_FWD_R and H_BWD_R read a FL.C of the size
indicated by the ALU registers r_fwd_r_size and r_bw-
d_r_size, respectively.

[2053] H_DCIJ reads JPEG style DC coefficients, the table
number from the ALU.
[2054] H_DCH reads a H.261 DC term.

[2055] H_TCOEFF and HDCTCOEFF read transform
coefficients. In H_DCTCOEFF, the first coeff bit is set and
is for non-intra blocks, whilst H_TCOEFTF is for intra blocks
after the DC term has already been read.

[2056] H_NOMINATE(TBL) nominates a table for sub-
sequent download.

[2057] H_DNL(NB) reads NB bits and downloads them
into the nominated table.

Oct. 16, 2003

132

[2058] B.2.5.1.2 ALU Instructions

[2059] There really are too many ALU instructions to
explain them all in detail. The basic way in which the
Mnemonics are constructed is discussed and this should
make the instructions readable. Furthermore, these should
readily be understandable to one of ordinary skill in the art.

[2060] Most of the ALU instructions are concerned with
moving data from place to place and, therefore, a generic
“load” instruction is used. In the Mnemonic, A_LDxy, it is
understood that the contents of y are loaded into x., i.e., the
destination is listed first and the source second:

TABLE B.2.10

Letters used to denote possible
sources and destinations of data

Letter Meaning
A A register
R Run register
I Data input
O Data Output
F ALU register File
C Constant
V4 Constant of zero

[2061] By way of example, LDAI loads the A register with
the data from the data input port of the ALU. If the ALU
register file is specified, the mnemonic will take an address
so that LDAF(RA) loads A with the contents of location RA
in the register file.

[2062] The ALU has the ability to modify data as it is
moved from source to destination. In this case, the arith-
metic is indicated as part of the source data. Accordingly, the
Mnemonic LDA_AADDF(RA) loads A with the existing
contents of the A register plus the contents of the indicated
location in the register file. Another example is LDA_IS-
GXR, which takes the input data, sign extends from the bit
indicated in the RUN register, and stores the result in the A
register.

[2063] In many cases, more than one destination for the
same result is specified. Again, by way of example,
LDF_LDA_ASUBC(RA) which loads the result of A minus
a constant into both the A register and the register file.

[2064] Other mnemonics exist for specific actions. For
example, “CLRA” is used for clearing the A register,
“RMBC?” to reset the macroblock counter. These are fairly
obvious and are described in comments in instr.u.

[2065] One anomaly is the use of a suffix “_0” to indicate
that the result of the operation is output to the Token
formatter in addition to the normal action. Thus
LDFI_O(RA) stores the input data and also passes it to the
token formatter. Alternatively, this could have been
LDF_LDO_I(RA) if desired.

[2066] B.2.5.1.3 Token Formatter Instructions

[2067] This is the T_NOP “No-operation” instruction.
This is really a misnomer as it is impossible to construct a
no-operation instruction. However, this is used whenever the
instruction is of no consequence because the ALU does not
output to the Token Formatter.

US 2003/0196078 Al

[2068] T-TOK output a Token word.

[2069] T _DAT output a DATA Token word (used only
with the Huffman State Machine instructions).

[2070] T-GENTS generates a token word based on the 8
bits of constant field.

[2071] T _GENTSE like T_GENTS, but the extension bit
is one.

[2072] T_OPD(NB) NB bits of data from the bottom NB
bits of the output with the remainder of the bits coming from
the constant field.

[2073] T_OPDE(NB) like T_OPD, but the extension bit is
high.

[2074] T_OPDS short-hand for T_OPD(8)

[2075] T_OPDSE short-hand for T_OPDE(8)

[2076] B.2.5.1.4 Parser State Machine Instructions
[2077] This instruction, D_NOP No-operation, i.c., the

address increments as normal and the Parser State Machine
does nothing special. The Remainder of the instruction is
passed to the data pipeline. No waiting occurs.

[2078] D_WAIT is like D_NOP, but waits for feedback to

occur.

[2079] The simple jump group. Mnemonics like D_JM-
P(ADDR) and D_JNX(ADDR) jump if the condition is met.
The instruction is not output to the Huffman Decoder.

[2080] The external jump group. Mnemonics like
D_XIMP(ADDR) and D_XINX(ADDR). these are like
their simple counterparts above, but the instruction is output
to the Huffman Decoder.

[2081] The jump and wait group. Mnemonics like
D_WINZ(ADDR). These instructions are output to the
Huffman Decoder and the Parser waits for feedback from the
ALU before evaluating the condition.

[2082] The following Mnemonics are used for the condi-
tions themselves.

TABLE B.2.11

Mnemonics used for the conditions

Mnemonic Meaning
IMP — Unconditional jump
IXT INX Jump if extn = 1 (extn = 0)
JHEOQ JNHEOQ Jump if Huffman error bit 0 set (clear)
JHE1 JNHE1 Jump if Huffman error bit 1 set (clear)
JHE2 JNHE2 Jump if Huffman error bit 2 set (clear)
JPTN — Jump if pattern shifter LSB is set
JPICST JNPICST Jump is at picture start (not at picture start)
JRSTST JNRSTST Jump if at start of restart interval (not at start)
— INCPBS Jump if not special CPB coding
— JNCPB8 Jump if not 8 block (i.e. 4 block) macroblock
ML JPL Jump if negative (jump if plus)
JZE INZ Jump if zero (jump if non-zero)
JCHNG JNCHNG Jump if change detect bit set (clear)
JMBST JNMBST Jump if at start of macroblock (not at start)
[2083] D_EVENT causes generation of an event.

[2084] D_DFLT for construction of a default instruction.
This causes an event and then jumps to a location with the

Oct. 16, 2003

label “dfit”. This instruction should never be executed since
they are used to fill a ROM so that a jump to an unused
location is trapped.

[2085] D_ERROR causes an event and then jumps to a
label “srch_dispatch” which is assumed to attempt recovery
from the error.

[2086] Section B.3 Human Decoder ALU
[2087] B.3.1 Introduction

[2088] The Huffman Decoder ALU sub-block, in accor-
dance with the present invention, provides general arith-
metic and logical functionality for the Huffman Decoder
block. It has the ability to do add and subtract operations,
various types of sign-extend operations, and formatting of
the input data into run-sign-level triples. It also has a flexible
structure whose precise operation and configuration are
specified by a microinstruction word which arrives at the
ALU synchronously with the input data, i.e., under the
control of the two-wire interface.

[2089] In addition to the 36-bit instruction and 12-bit data
input ports, the ALU has a 6-bit run port, and an 8-bit
constant port (which actually resides on the token bus). All
of these, with the exception of the microinstruction word,
drive buses of their respective widths through the ALU
datapath. There is a single bit within the microinstruction
word which represents an extension bit and is output
together with the 17-bit-run-sign-level (out_data). There is a
two-wire interface at each end of the ALU datapath, and a
set of condition codes which are output together with their
own valid signal, ccvalid. There is a register file which is
accessible to other Huffman Decoder sub-blocks via the
ALU, and also to the microprocessor interface.

[2090] B.3.2.2 Basic Structure

[2091] The basic structure of the Huffman ALU is as
shown in FIG. 126. It comprises the following components:

[2092] Input block 400

[2093] Output block 401

[2094] Condition Codes block 402

[2095] “A” register 403 with source multiplexing

[2096] Run register (6 bits) 404 with source multi-
plexing

[2997] Adder/Subtractor 405 with source multiplex-
ing

[2098] Sign Extend logic 406 with source multiplex-
ing

[2099] Register file 407

[2100] Each of these blocks (except the output block)
drives its output onto a bus running through the datapath,
and these buses are, in turn, used as inputs to the multiplex-
ing for block sources. For example, the adder output has it
own datapath bus which is one of the possible inputs to the
A register. Likewise, the A register has its own bus which
forms one of the possible inputs to the adder. Only a sub-set
of all possibilities exist in this respect, as specified in Section
7 on the microinstruction word.

[2101] In asingle cycle, it is possible to execute either an
add-based instruction or a sign-extend-based instruction.

US 2003/0196078 Al

Furthermore, it is allowable to execute both of these in a
single cycle provided that their operation is strictly parallel.
In other words, add then sign extend or sign extend then add
sequences are not allowed. The register file may be either
read from or written to in a single cycle, but not both.

[2102] The output data has three fields:

[2103] run—©6 bits
[2104] sign—1 bit
[2105] level—10 bits

[2106] 1If data is to be passed straight through the ALU, the
least significant 11 bits of the input data register are latched
into the sign and level fields.

[2107] TItis possible to program limited multi-cycle opera-
tions of the ALU. In this regard, the number of cycles
required is given by the contents of the register file location
whose address is specified in the microinstruction, and the
same operation is performed repeatedly while an iteration
counter decrements to one. This facility is typically used to
effect left shifts, using the adder to add the A register to itself
and to store the result back in the A register.

[2108] B.3.3 The Adder/subtractor Sub-Block

[2109] This is a 12-bit wide adder, with optional invert on
its input2 and optional setting of the carry-in bit. Output is
a .12 bit sum, and carry-out is not used. There are 7 modes
of operation:

[2110] ADD add with carry in set to zero: inputl+
input2

[2111] ADC: add with carry in set to one: inputl+
input2+1

[2112] SBC: invert input2, carry in set to zero:
inputl-input2-1

[2113] SUB: invert input2, carry in set to one:
inputl-input2

[2114] TCI: if input2<0, use SUB, else use ADD.
This is used with inputi set to zero for obtaining a
magnitude value from a two’s compliment value.

[2115] DCD (DC difference): if input2<0 do ADC,
otherwise do ADD.

[2116] VRA (vector residual add): if inputl<0 do
ADC, otherwise do SBC.

[2117] B.3.4 The Sign Extend Sub-Block

[2118] This is a 12-bit unit which sign extends, in various
modes, the input data from the size input. Size is a 4 bit value
ranging from 0 to 11 (O relates to the least significant bit, 11
to the most significant). Output is a 12 bit modified data
value, and the “sign” bit.

[2119] In SGXMODE=NORMAL, all bits above (and
including) the size-th bit, take the value of the size-th bit. All
those below remain unchanged. Sign takes the value of the
size-th bit. For example:

[2120] data=1010 1010 1010
[2121]
[2122] output=0000 0000 0010, sign=0

size=2

Oct. 16, 2003

[2123] In SGXMOD=INVERSE, all bits above (and
including) the size-th bit, take the inverse of the size-th bit,
while all those below remain unchanged. Sign takes the
inverse of the size-th bit. For example:

[2124] data=1010 1010 1010
[2125]
[2126] output=1111 1111 1111, sign=1

[2127] In SGXMODE=DIFMAG, if the size-th bit is zero,
all the bits below (and including) the size-th bit are inverted,
while all those above remain unchanged. If the size-th bit is
one, all bits remain unchanged. In both cases, sign takes the
inverse of the size-th bit. This is used for obtaining the
magnitude of AC difference values. For example:

size=0

[2128] data=0000 1010 1010

[2129] size=2

[2130] output=0000 1010 1101, sign=1
[2131] data=0000 1010 1010

[2132] size=1

[2133] output=0000 1010 1010, sign=0

[2134] In SGXMODE=DIFCOMP, all bits above (but not
including) the size-th bit, take the inverse of the size-th bit,
while all those below (and including) remain unchanged.
Sign takes the inverse of the size-th bit. This is used for
obtaining two’s compliment values for DC difference val-
ues.

[2135] For example:
[2136] data=1010 1010 1010
[2137]
[2138] output=1111 1111 1110, sign 1
[2139] B.3.5 Condition Codes

[2140] There are two bytes (16 bits) of condition codes
used by the Huffman block, certain bits of which are
generated by the ALUfregister file. These are the Sign
condition code, the Zero condition code, the Extension
condition code and a Change Detect bit. The last two of
these codes are not really condition codes since they are not
used by the Parser in the same way as the others.

size=0

[2141] The Sign, Zero and Extension condition codes are
updated when the Parser issues an instruction to do so, and
for each of these instructions the condition code valid signal
is pulsed high once.

[2142] The Sign condition code is simply the sign extend
sign output latched, while the Zero condition code is set to
1 if the input to the A register is zero. The Extension
condition code is the input extension bit latched regardless
of OUTSRC.

[2143] Condition codes may be used to evaluate certain
condition types:

[2144] result equals constant—use subtract and Zero
condition

[2145] result equals register value—use subtract and
Zero condition

US 2003/0196078 Al

[2146] register equals constant—use subtract and
Zero condition

[2147] register bit set—use sign extend and Sign
condition

[2148] result bit set—use sign extend and Sign con-
dition

[2149] Note that when using the sign extend and Sign
condition code combination, it is possible only to evaluate a
single specified bit, rather than multiple bits as would be the
case with a conventional logical AND.

[2150] The Change Detect bit, in the present invention, is
generated using the same logic as for the Zero condition
code, but it does not have an associated valid signal. Abit in
the microinstruction indicates that the Change Detect bit
should be updated if the value currently being written to the
register file is different from that already present (meaning
that two clock cycles are necessary, first with REG-MODE
set to READ and second with REGMODE set to WRITE).
A microprocessor interrupt can then be initiated if a changed
value is detected. The Change Detect bit is reset by activat-
ing Change Detect in the normal way, but with REGMODE
set to READ.

[2151] The hardwired macroblock counter structure
(which forms part of the register file- see below) also
generates condition codes as follows: Mb_Start, Pattern-
_Code, Restart and Pic_Start.

[2152] B.3.6 The Register File

[2153] The address map for the register file is shown
below. It uses a 7-bit address space, which is common to
both the ALU datapath and the UPI. A number of locations
are not accessed by the ALU, these typically being counters
in the hardwired macroblock structure, and registers within
the ALU itself. The latter have dedicated access, but form
part of the address map for the UPL. Some multi-byte
locations (denoted in the table by “O” for oversize) have a
single ALU address, but multiple UPI addresses. Similarly,
groups of registers which are indexed by the component
count, CC (Indicated by I” in the table) are treated as a single
location by -the ALU. This eases microprogramming for
initialization and resetting, and also for block-level opera-
tions.

[2154] All of the locations, except the dedicated ALU
registers (UPI read only), are read/write, and all of the
counters are reset to zero by a bit in the instruction word.
The pattern code register has a right shift capability, its least
significant bit forming the Pattern_Code condition bit. All
registers in the hardwired macroblock structure are denoted
in the table by “M”, and those which are also counters (n-bit)
are annotated with Cn.

[2155] In the present invention, certain locations have
their contents hardwired to other parts of the Huffman
sub-system-coding standard, two r-size locations, and a
single location (2-bit word) for each of ac huff table and dc
huff table to the Huffman Decoder.

[2156] Addresses in bold indicate that locations are acces-
sible by both the ALU and the UPI, otherwise they have UPI
access only. Groups of registers that are undirected through
CC by the ALU can have a single ALU address specified in
the instruction word and CC will select which physical

Oct. 16, 2003

135

location in the group to access. The ALU address may be
that of any of the registers in the group, though convention-
ally, the address of the first should be used. This is also the
case for multi-byte locations which should be accessed using
the lowest address of the pair, although in practice, either
address will suffice. Note that locations 2E and 2F are
accessible in the top-level address map (denoted “T7), i.e.,
not only through the keyhole registers. These two locations
are also reset to zero.

[2157] The register file is physically partitioned into four
“banks” to improve access speed, but this does not affect the
addressing in any way. The main table shows allocations for
MPEG, and the two repeated sections give the variations for
JPEG and H.261 respectively.

TABLE B.3.1

Table 1: Huffman Register File Address Map

AddL Location Addr Location
00 Aregister 1 I 3E c2
01 Aregister 0 1 3F c3
02 un L,O 40 dcpred_01
10 horizpels1 LO 41 dc pred_00
11 horizpels 0 LO 42 depred_11
12 vert pels 1 LO 43 dc pred_10
13 vert pels 0 LO 44 depred_21
14 buff size 1 LO 45 dc pred_2 0
15 buff size 0 LO 46 depred_31
16 pel asp. ratio LO 47 dc pred_3 0
17 bit rate 2 (0] 50 prev mhf 1
18 bit rate 1 (0] 51 prev mhf 0
19 bit rate 0 (0] 52 prev mvf 0
1A pic rate (0] 53 prev mvf 0
1B constrained O 54 prev mhb 1
1C picture type O 55 prev mhb 0
1D H261 picture type O 56 prev mvb 1
1E broken closed O 57 prev mvb 0
1F pred mode M 60 mb horiz cntl C13
20 vbv delay 1 M 61 mb horiz cnt0 —
21 vbv delay 0 M 62 mb vert cntl C13
22 full pel fwd M 63 mb vert cnt0 —
23 full pel bwd M 64 horiz mb 1
24 horiz mb cooy M 65 horiz mb 0
25 pic number M 66 vert mb 1
26 max h M 67 vert mb 0
27 max v M 68 restart countl ~ C16
28 — M 69 restart count0 —
29 — M 6A restart gapl
2A — M 6B restart gap0
2B — M 6C horiz blk count C2
2C first group M 6D vert blk count C2
2D in picture HM ©6E comp id c2
TR 2E rom control M 6F max comp id C2
TR 2F rom revision HR 70 coding std
LH 30 dc huff 0 MH 71 pattern code SR8
I 31 dc huff 1 H 72 fwd 1 size
I 32 de huff 2 H 73 bwd 1 size
I 33 dc huff 3
LH 34 ac huff 0
I 35 ac huff 1
I 36 ac huff 2 MI 78 ho
I 37 ac huff 3 MI 79 hi
I 38 tq0 MI 7A h2
I 39 tql MI 7B h3
I 3A tq2 MI 7C vO0
I 3B tq3 MI 7D vl
I 3C c0 MI 7E v2
I 3D cl M1 7F v3

US 2003/0196078 Al

[2158] JPEG Variations

TABLE B.3.2

JPEG Variations

horiz pels 1
horiz pels 0
vert pels 1
vert pels 0
buff size 1
buff size 0

pel asp. ratio
bit rate 2

bit rate 1

bit rate 0

pic rate
constrained
picture type
H261 picture type
broken closed
pred mode
vbv delay 1
vbv delay O
pending frame ch
restart index
horiz mb copy
pic number
max h

max v

first scan

in picture
rom control
rom revision

[2159] H.261 Variations

TABLE B.3.3

H.261 Variations

horiz pels 1
horiz pels 0
vert pels 1
vert pels 0

136

Oct. 16, 2003

TABLE B.3.3-continued

H.261 Variations

14 buff size 1

15 buff size 0

16 pel asp. ratio
17 bit rate 2

18 bit rate 1

19 bit rate 0

1A pic rate

1B constrained
1C picture type
1D H261 picture type
1E broken closed
1F pred mode

20 vbv delay 1
21 vbv delay 0
22 full pel fwd
23 full pel bwd
24 horiz mb copy
25 pic number
26 max h

27 max v

28 —

29 —

2A —

2B in gob

2C first group
2D in picture

2E rom control
2F rom revision

[2160] B.3.7 The Microinstruction Word

[2161] The ALU microinstruction word, in accordance
with the present invention, is split into a number of fields,
each controlling a different aspect of the structure described
above. The total number of bits used in the instruction word
is 36, (plus 1 for the extension bit input) and a minimum of
encoding across fields has been adopted so that maximum
flexibility of hardware configuration is maintained. The
instruction word is partitioned as detailed below. The default
field values, that is, those which do not alter the state of the
ALU or register file, are those given in the italics.

TABLE B.3.4

Table 2: Huffman ALU microinstruction fields

Field Value Description Bits
OUTSRC RSA6 run, sign, A register as 6 bits 0000
(specifies ZZA zero, zero, A register 0001
sources for 77A8 zero, zero, A register is 8 bits 0010
run, sign and 77ZADDU4 zero, zero, adder ofp ms 4 bits 0011
level output) ZINPUT zero, input data 0100
RSSGX run, sign, sign extend o/p 0111
RSADD run, sign, adder o/p 1000
RZADD run, zero, adder o/p 1001
RIZADD input run, zero, adder output
ZSADD zero, sign, adder o/p 1010
ZZADD zero, zero, adder o/p 1011
NONE no valid output - out_ valid set to zero 11XX
REGADDR 00-7F register file address for ALU access 7 bits
REGSRC ADD drive adder o/p onto register file i/p 0
SGX drive sign extend o/p onto register file i/p 1
REGMODE READ read from register file 0
WRITE write to register file 1

US 2003/0196078 Al

Oct. 16, 2003

137

TABLE B.3.4-continued

Table 2: Huffman ALU microinstruction fields

Field Value Description Bits
CNGDET TEST update change detect if REGMODE is 0
WRITE
(change HOLD do not update change detect bit 1
detect) CLEAR reset change detect if REGMODE is READ 0
RUNSRC RUNIN drive run i/p onto run register i/p 0
(run source) ADD drive adder o/p onto run register i/p 1
RUNMODE LOAD update run register 0
HOLD do not update run register 1
ASRC ADD drive adder o/p onto A register i/p 00
(A register INPUT drive input data onto A register i/p 01
source) SGX drive sign extend o/p onto A register i/p 10
REG drive register file o/p onto A register i/p 11
AMODE LOAD update A register 0
HOLD do not update A register 1
SGXMODE NORMAL sign extend with sign 00
(sign extend INVERSE sign extend with —sign 01
mode - see DIFMAG invert lower bits if sign bit is O 10
section 4) DIFCOMP sign extend with —sign from next bit up 11
SIZESRC CONST drive const. i/p onto sign extend size i/p 00
(source for A drive A register onto sign extend size i/p 01
sign extend REG drive reg.file o/p onto sign extend size i/p 10
size input) RUN drive run reg. onto sign extend size i/p 11
SGXSRC INPUT drive input data onto sign extend data i/p 0
(sgx input) A drive A register onto sign extend data i/p 1
ADDMODE ADD inputl + input2 000
(adder mode ADC inputl + input2 + 1 001
see sect. 3) SBC inputl - input2 - 1 010
SUB inputl - input2 011
TCI SUB if input2 < 0, else ADD - 2’s comp. 100
DCD ADC if input2 < 0, else ADD - DC diff 101
VRA ADC if inputl < 0, else SBC-vec resid add 110
ADDSRC1 A drive A register onto adder input 1 00
(source for REG drive register file o/p onto adder i/pl 01
adder-i/p 1 - INPUT drive input data onto adder input 1 10
non-invert) ZERO drive zero onto adder input 1 11
ADDSRC2 CONST drive constant i/p onto adder input2 00
(source for A drive A register onto adder input2 01
inverting INPUT drive input data onto adder input2 10
input) REG drive register file o/p onto adder i/p2 11
CNDC- TEST update condition codes 0
MODE
(cond. codes) HOLD do not update condition codes 1
CNTMODE NOCOUNT do not increment counters Xo00
(mbstructure BCINCR increment block counter and ripple 001
count mode) CCINCR force the component count to incr 010
RESET reset all counters in mb structure 011
DISABLE disable all counters 1XX
INSTMODE MULTI iterate current instr multi times 0
SINGLE single cycle instruction only 1

[2162] Section B.4 Buffer Manager
[2163] B.4.1 Introduction
[2164] This document describes the purpose, actions and

implementation of the Buffer Manager, in accordance with
the present invention (bman).

[2165] B.4.2 Overview

[2166] The buffer manager provides four addresses for the
DRAM interface. These addresses are page addresses in the
DRAM. The DRAM interface maintains two FIFOs in the
DRAM, the Coded Data Buffer and the Token Data Buffer.
Hence, for the four addresses, there is a read and a write
address for each buffer.

[2167] B.4.3 Interfaces

[2168] The Buffer Manager is connected only to the
DRAM interface and to the microprocessor. The micropro-

cessor need only be used for setting up the “Initialization
registers” shown in Table B.4.4. The interface with the
DRAM interface is the four eighteen bit addresses controlled
by a REQuest/ACKnowledge protocol for each address.
(Since the Buffer Manager is not in the datapath, the Buffer
Manager lacks a two-wire interface.)

[2169] Furthermore, the Buffer Manager operates off the
DRAM interface clock generator and on the DRAM inter-
face scan chain.

[2170] B.4.4 Address Calculation

[2171] The read and write addresses for each buffer are
generated from 9 eighteen bit registers:

[2172] Initialization registers (RW from microprocessor)
[2173] BASECB—base address of coded data buffer

[2174] LENGTHCB—maximum size (in pages of
coded data buffer

US 2003/0196078 Al

[2175] BASETB—base address of token data buffer

[2176] LENGTHTB—maximum size (in pages) of token
data buffer

[2177] LIMIT—size (in pages) of the DRAM.
[2178] Dynamic registers (RO from microprocessor)

[2179] READCB——coded data buffer read pointer
relative to

[2180] BASECB

[2181] NUMERCB—coded data buffer write pointer
relative to READCB

[2182] REMDTB—token data buffer read pointer
relative to BASETB

[2183] NUMBERTB—token data
pointer relative to READTB

[2184] To calculate addresses:
[2185] readaddr=(BASE+READ) mod LIMIT

[2186] writcaddr=(((READ+NUMBER) mod
LENGTH)+BASE) mod LIMIT

buffer write

[2187] The “mod LIMIT” term is used because a buffer
may wrap around DRAM.

[2188] B.4.5 Block Description

[2189] Inthe present invention, and as shown in FIG. 127,
the Buffer Manager is composed of three top level modules
connected in a ring which snooper monitors the DRAM
interface connection. The modules are bmprtize (prioritize),
bminstr (instruction), and bmrecalc (recalculate) are
arranged in a ring of that order and omsnoop (snoopers) is
arranged on the address outputs. The module, Bmprtize,
deals with the REQ/ACK protocol, the FULL/EMPTY flags
for the buffers and it maintains the state of each address, i.e.,
“is it a valid address?”. From this information, it dictates to
bminstr which (if any) address should be recalculated. It also
operates the BUF_CSR (status) microprocessor register,
showing FULL/EMPTY flags, and the buf_access micro-
processor register, controlling microprocessor write access
to the buffer manager registers.

[2190] The module, Bminstr, on being told by bmprtize to
calculate an address, issues six instructions (one every two
cycles) to control bmrecalc to calculating an address.

[2191] The module, Bmrcale, recalculates the addresses
under the instruction of bminstr. Running an instruction
every two cycles, it contains all of the initialization and
dynamic registers, and a simple ALU capable of addition,
subtraction and modulus. It informs Sbmprtize of FULL/
EMPTY states it detects and when it has finished calculating
an address.

[2192] B.4.6 Block Implementation
[2193] B.4.6.1 Bmprtize

[2194] At reset, the buf_access microprocessor register is
set to one to allow the setting up of the initialization
registers. While buf_access reads back one, no address
calculations are initiated because they are meaningless with-
out valid initialization registers.

Oct. 16, 2003

[2195] Once buf_access is de-asserted (write zero to it)
bmprtize goes about making all the addresses valid (by
recalculating them) since its purpose is to keep all four
addresses valid. At this stage, the Buffer Manager is “starting
up” (i.e., all addresses have not yet been calculated), thus, no
requests are asserted. Once all addresses have become valid
start-up ends and all requests are asserted. From this point
forward, when an address becomes invalid (because it has
been used and acknowledged) it will be recalculated.

[2196] No prioritizing between addresses will ever need to
be performed, because the DRAM interface can, at its
fastest, use an address every seventeen cycles, while the
Buffer Manager can recalculate an address every twelve
cycles. Therefore, only one address will ever be invalid at
one time after start-up. Accordingly, bmprtize will recalcu-
late any invalid address that is not currently being calcu-
lated.

[2197] In the invention, start-up will be re-entered when-
ever buf_access is asserted and, therefore, no addresses will
be supplied to the DRAM interface during microprocessor
accesses.

[2198] B.4.6.2 Bminstr

[2199] The module, Bminstr, contains a MOD 12 cycle
counter (the number of cycle it takes to generate an address).
Note that even cycles start an instruction, whereas odd
cycles end an instruction. The top 3 bits along with whether
it is a read or a write calculation are decoded into instruc-
tions for bmrecalc as follows:

[2200] For read addresses:

Table B.4.1

Read address calculation

Opera- Meaning of

Cycle tion BusA BusB Result result’s signs

0-1 ADD READ BASE

2-3 MOD Accum LIMIT Address

4-5 ADD READ “17

67 MOD Accum LENGTH READ

89 SUB NUMBER “1” NUMBER
10-11 MOD “0” Accum SET_EMPTY

(NUMBER »>= 0)
[2201] For write addresses:
Table B.4.2

For write address calculations

Opera- Meaning of
Cycle tion BusA BusB Result result’s sign
0-1 ADD NUMBER READ
2-3 MOD Accum LIMIT
4-5 ADD Accum BASE
6-7 MOD Accum LIMIT Address
8-9 ADD NUMBER “1” NUMBER

US 2003/0196078 Al

139

Table B.4.2-continued

For write address calculations

Opera- Meaning of
Cycle tion BusA BusB Result result’s sign
10-11 MOD Accum LENGTH SET_FULL
(NUMBER
>=
LENGTH)

[2202] Note: The result of the last operation is always held
in the accumulator.

[2203] When there is no addresses to be recalculated, the
cycle counter idles at zero, thus causing an instruction that
writes to none of the registers. This has no affect.

[2204] B.4.6.3 Bmrecalc

[2205] The module, Bimrecaic, performs one operation
every two clock cycles. It latches in the instruction from
bminstr (and which buffer and io type) on an even counter
cycle (start_alu_cyc) , and latches the result of the operation
on an odd counter cycle (end_alu_cyc). The result of the
operation is always stored in the “Accum” register in
addition to any registers specified by the instruction. Also,
on end_alu_cyc, bmrecalc informs bmprtize as to whether
the use of the address just calculated will make the buffer
full or empty, and when the address and full/empty has been
successfully calculated (load_addr).

[2206] Full/empty are calculated using the sign bit of the
operation’s result.

[2207] The modulus operation is not a true modulus, but
A mod B is implemented as:

[2208] (A>B? (A-B):A) however this is only wrong
when

[2209] A>(2B-1) which will never occur.

[2210] B.4.6.4 Bmsnoop

[2211] The module, Bmsnoop, is composed of four eigh-
teen bit super snoopers that monitor the addresses supplied
to the DRAM interface. The snooper must be “super” (i.e.,
can be accessed with the clocks running) to allow on chip
testing of. the external DRAM. These snoopers must work
on a REQ/ACK system and are, therefore, different to any
other on the device.

[2212] REQ/ACK is used on this interface, as opposed to
a two-wire protocol because it is essential to transmit
information (i.e., acknowledges) back to the sender which
an accept will not do). Hence, this rigorously monitors the
FIFO pointers.

[2213] B.4.7 Registers

[2214] To gain microprocessor write access to the initial-
ization registers, a one should be written to buf_access, and
access will be given when buf_access reads back one.
Conversely, to give up microprocessor write access, zero
should be written to buf_access. Access will be given when
buf_access reads back zero. Note that buf_access is reset to
one.

[2215] The dynamic and initialization registers of the
present invention may be read at any time, however, to
ensure that the dynamic registers are not changing the
microprocessor, write access must be gained.

Oct. 16, 2003

[2216] 1t is intended that the initialization registers be
written to only once. Re-writing them may cause the buffers
to operate incorrectly. However, it is envisioned to increase
the buffer length on-the-fly and to have the buffer manager
use the new length when appropriate.

[2217] No check is ever made to see that the values in the
initialization registers are sensible, e.g., that the buffers do
not overlap. This is the user’s responsibility.

TABLE B.4.3

Buffer manager non-keyhole registers

Register Name Usage Address
CED_BUF__ACCESS XXXXXXXD 0x24
CED_BUF_KEYHOLE_ADDR xxDDDDDD 0x25

DDDDDDDD 0x26
xxxxxxDD 0x54
DDDDDDDD 0x55
DDDDDDDD 0x56
xxxxxxDD 0x57
DDDDDDDD 0x58
DDDDDDDD 0x59
xxxxxxDD Ox5a
DDDDDDDD 0x5b
DDDDDDDD 0x5¢c
xxxxxxDD 0x5d
DDDDDDDD 0x5e
DDDDDDDD 0x5f

CED_BUF_KEYHOLE
CED_BUF_CB_WR_SNP_2
CED_BUF_CB_WR_SNP_1
CED_BUF_CB_WR_SNP_0
CED_BUF_CB_RD_SNP_2
CED_BUF_CB_RD_SNP_1
CED_BUF_CB_RD_SNP_0
CED_BUF_TB_WR_SNP_2
CED_BUF_TB_WR_SNP_1
CED_BUF_TB_WR_SNP_0
CED_BUF_TB_RD_SNP_2
CED_BUF_TB_RD_SNP_1
CED_BUF_TB_RD_SNP_0

[2218] Where D indicates a registers bit and x shows no
register bit.

TABLE B.4.4

Registers in buffer manager keyhole

Key hole
Keyhole Register Name Usage Address
CED_BUF_CB_BASE_3 XXXXXKXX 0x00
CED_BUF_CB_BASE_2 xxxxxxDD 0x01

DDDDDDDD 0x02
DDDDDDDD 0x03
XXXXXXXX 0x04
xxxxxxDD 0x05
DDDDDDDD 0x06
DDDDDDDD 0x07
XXXXXXXX 0x08
xxxxxxDD 0x09
DDDDDDDD 0x0a
DDDDDDDD 0x0b
XXXXXXXX 0x0c

CED_BUF_CB_BASE_1
CED_BUF_CB_BASE_0
CED_BUF_CB_LENGTH__3
CED_BUF_CB_LENGTH_2
CED_BUF_CB_LENGTH__1
CED_BUF_CB_LENGTH_0
CED_BUF_CB_READ_3
CED_BUF_CB_READ_2
CED_BUF_CB_READ_ 1
CED_BUF_CB_READ_0
CED_BUF_CB_NUMBER__3

[2219]

TABLE B.4.4

Registers in buffer manager keyhole

Key hole
Keyhole Register Name Usage Address
CED_BUF_CB_NUMBER_2 xxxxxxDD 0x0d

DDDDDDDD Ox0e
DDDDDDDD Ox0f
XXXXXXXX 0x10

CED_BUF_CB_NUMBER__1
CED__BUF_CB_NUMBER_0
CED_BUF_TB_BASE_3

US 2003/0196078 Al

TABLE B.4.4-continued

Registers in buffer manager keyhole

Key hole
Keyhole Register Name Usage Address
CED_BUF_TB_BASE_2 xxxxxxDD 0x11

CED_BUF_TB_BASE_1
CED_BUF_TB_BASE_0
CED_BUF_TB_LENGTH_3
CED_BUF_TB_LENGTH_2
CED_BUF_TB_LENGTH_1
CED_BUF_TB_LENGTH_0
CED_BUF_TB_READ_3
CED_BUF_TB_READ_2
CED_BUF_TB_READ_1
CED_BUF_TB_READ_0
CED_BUF_TB_NUMBER_3
CED_BUF_TB_NUMBER_2
CED_BUF_TB_NUMBER_1
CED_BUF_TB_NUMBER_0
CED_BUF_LIMIT_3
CED_BUF_LIMIT_2
CED_BUF_LIMIT 1
CED_BUF_LIMIT_0
CED_BUF_CSR

DDDDDDDD 0x12
DDDDDDDD 0x13
XXXXXXXX 0x14
xxxxxxDD 0x15
DDDDDDDD 0x16
DDDDDDDD 0x17
XXXXXXXX 0x18
xxxxxxDD 0x19
DDDDDDDD Oxla
DDDDDDDD Ox1b
XXXXXXXX Ox1c
xxxxxxDD Ox1d
DDDDDDDD Oxle
DDDDDDDD Ox1f
XXXXXXXX 0x20
xxxxxxDD 0x21
DDDDDDDD 0x22
DDDDDDDD 0x23
xxxxDDDD 0x24

[2220] B.4.8 Verification

[2221] Verification was conducted in Lsim with small
FIFO’s onto a dummy DRAM interface, and in C-code as
part of the top level chip simulation.

[2222] B.4.9 Testing

[2223] Test coverage to the bman is through the snoopers
in bmscoop, the dynamic registers (shown in B.4.4) and
using the scan chain which is part of the DRAM interface
scan chain.

[2224] Section B.5 Inverse Modeler
[2225] B.5.1 Introduction

[2226] This document describes the purpose, actions and
implementation of the Inverse Modeller (imodel) and the
Token Formatter (hsppk), in accordance with the present
invention.

[2227] Note: hsppk is a hierarchically part of the Huffman
Decoder, but functionally part of the Inverse Modeller. It is,
therefore, better discussed in this section.

[2228] B.5.2 Overview

[2229] The Token buffer, which is between the imodel and
hsppk, can contain a great deal of data, all in off-chip
DRAM. To ensure that efficient use is made of this memory,
the data must be in a 16 bit format. The Formatter “packs”
the data from the Huffman Decoder into this format for the
Token buffer. Subsequently, the Inverse Modeler “unpacks”
data from the Token buffer format.

[2230] However, the Inverse Modeller’s main function is
the expanding out of “run/level” codes into a run of zero data
followed by a level. Additionally, the Inverse Modeller
ensures that DATA tokens have at least 64 coefficients and
it provides a “gate” for stopping streams which have not met
their start-up criteria.

Oct. 16, 2003

140

[2231] B.5.3 Interfaces
[2232] B.5.3.1 Hsppk

[2233] 1In the present invention, Hsppk has the Huffman
Decoder as input and the Token buffer as output. Both
interfaces are of the two-wire type, the input being a 17 bit
token port, the output being 16 bit “packed data”, plus a
FLUSH signal. In addition, Hsppk is clocked from the
Huffman clock generator and, thus, connected to the Huff-
man scan chain.

[2234] B.5.3.2 Imodel

[2235] Imodel has the Token buffer start-up output gate
logic (bsogl) as inputs and the Inverse Quantizer as output.
Input from the Token buffer is 16 bit “packed data”, plus
Block_end signal, from the bsogi is one wirestream_enable.
Output is an 11 bit token port. All interfaces are controlled
by the two-wire interface protocol. Imodel has its own clock
generator and scan chain.

[2236] Both blocks have microprocessor access only to the
snoopers at their outputs.

[2237] B.5.4 Block description
[2238] B.5.4.1 Hsppk

[2239] Hsppk takes in the 17 bit data from the Huffman
and outputs 16 bit data to the Token buffer. This is achieved
by first, either truncating or splitting the input data into 12
bit words, and second by packing these words into a 16 bit
format.

[2240] B.5.4.1.1 Splitting

[2241] Hsppk receives 17 bit data from the Inverse Huff-
man.

[2242] This data is formatted into 12 bits using the fol-
lowing formats.

[2243] Where F specifies format; E=extension bit; R=Run
bit; L=length bit (in sign mag.) or non-DATA token bit;
x=don’t care.

[2244] FLLLLLLLLLLLFormat O ELLLLLLLLLLILFor-
mat Oa

[2245] FRRRRRROOOOOFormat 1

[2246] Normal tokens only occupy the bottom 12 bits,
having the form:

[2247] ExxxxxxLLLLLLLLLLL

[2248] This is truncated to format Oa However, DATA
tokens have a run and a level in each word in the form:

[2249] ERRRRRRLLLLLLLLLLL.
[2250] This is broken in to the formats:

[2251] ERRRRRRLLLLLLLLLLL->FRRRRR-
ROOOOOFormat 1 ELLLLLLLLLLLFormat Oa

[2252] Or if the run is zero format 0 is used:

[2253] EOOOOOOLLLLLLLLLLL~
>FLLLLLLLLLLLFormat 0

[2254] 1t can be seen that in the format 0, the extension bit
is lost and assumed to be one. Therefore, it cannot be used
where the extension is zero. In this case, format 1 is
unconditionally used.

US 2003/0196078 Al

141

[2255] B.5.4.1.2 Packing

[2256] After splitting, all data words are 12 bits wide.
Every four 12 bit words are “packed” into three 16 bit
words:

TABLE B.5.1

Packing method

Input words Output words

000000000000 0000000000001111
111111111111 1111111122222222
222222222222 2222333333333333
333333333333

[2257] B.5.4.1.3 Flushing of the buffer

[2258] The DRAM interface of the present invention
collects a block, 32 sixteen bit “packed” words, before
writing them to the buffer. This implies that data can get
stuck in the DRAM interface at the end of a stream, if the
block is only partially complete. Therefore a flushing
mechanism is required. Accordingly, .Hsppk signals the
DRAM interface to write it current partially complete block
unconditionally.

[2259] B.5.4.2.X Inuo (UnPacker)

[2260] Imup performs three functions:

[2261] 4)Unpacking data from its sixteen bit format
into 12 bit words.

TABLE B.5.2

Unpacking method

Input words Output words

0000000000001111 000000000000

1111111122222222 111111111111

2222333333333333 222222222222
333333333333

[2262] 5)Maintaining correct data during flushing of
the Token buffer.

[2263] When the DRAM interface flushes, by uncondi-
tionally writing the current partially complete block, rubbish

Oct. 16, 2003

[2264] ©6)Holding back data until Start-up Criteria are
met. Output of data from the block is conditional that
a “valid” (stream enable) is accepted from the Buffer
Start-up for each different stream. Consequently,
twelve bit data is output to hsppk.

[2265] B.5.4.2.2 Imex (EXpander)

[2266] In the invention, Imex expands out all run length
codes into runs of zeros followed by a level.

[2267] B.5.4.2.3 Impad (PADder)

[2268] Impad ensures that all DATA Token bodies contain
64 (or more) words. It does this by padding the last word of
the Token with zeros. DATA Tokens are not checked for
having over 64 words in the body.

[2269] B.5.5 Block implementation
[2270] B.5.5.1 Hsppk

[2271] Typically, both the Splitting and packing is done in
a single cycle.

[2272] B.5.5.1.1 Splitting
[2273] First, the format must be determined

[2274] 1IF (datatoken)
[2275] IF (lastformat==1) use format Oa;
[2276] ELSE IF (run =—0) use format 0,
[2277] ELSE use format 1,
[2278] ELSE use format Oa;
[2279] and format bit determined
[2280] format O format bit=0,
[2281] format Oa format bit=extension bit;
[2282] format 1 format bit=1,

[2283] If format 1 is used, no new data should be accepted
in the next cycle because the level of the code has yet to be
output.

[2284] B.S.5.1.2 Packing

[2285] The packing procedure cycles every four valid data
inputs. The sixteen bit word output is formed from the last
valid word, which is held, and the succeeding word. If this
is not valid, then the output is not valid. The procedure is:

TABLE B5.3

Packing procedure

Held Word Succeeding Word Packed Word

XXXXXXXXXxxX 000000000000
000000000000 111111111111

111111141141 222222222222
222222222222 333333333333

valid cycle 0
valid cycle 1
valid cycle 2
valid cycle 3

XXXXXXXXXXXXXXXX don’t output
0000000000001111 output
1111111122222222 output
2222333333333333 output

data remains in the block. The imup must delete rubbish
data, i.c., delete all data from a FLUSH token, until the end
of a block.

[2286] Where x indicates undefined bits.

[2287] During valid cycle 0, no word is output because it
is not valid.

US 2003/0196078 Al

Oct. 16, 2003

142

[2288] The valid cycle number is maintained by a ring
counter. It is incremented by valid data from the splitter and
an

[2289] When a FLUSH (or picture_end) token is received
and the token itself is ready to output, a flush signal is also
output to the DRAM interface to reset the valid cycle to zero.
If a FLUSH token arrives on anything but cycle 3, the flush
signal must be delayed a valid cycle to ensure the token itself
it output.

[2290] B.5.5.2 Imodel
[2291] B5.5.2.1 Imup (Unpacker)

[2292] As with the packer, the last valid input is stored,
and combined with the next input, allows unpacking.

TABLE B.5.4

[2305] B.5.5.2.3 impad (PADder)

[2306] Impad is informed of DATA Token headers by
imex. Next, it counts the number of coefficients in the body
of the token.

[2307] 1If the token ends before there are 64 coefficients,
zero coefficients are inserted at the end of the token to
complete it to 64 coefficients. For example, unextended data
headers have 64 zero coefficients inserted after them. DATA
tokens with 64 or more coefficients are not affected by
impad.

[2308] B.5.6 Registers

[2309] The imodel and hsppk of the present invention do
not have microprocessor registers, with the exception of
their snooper.

Unpacking procedure

Succeeding word Held Word Unpacked Word
valid cycle 0 0000000000001111 XXXXXXXXXXXXXXXX 000000000000 input
valid cycle 1 1111111122222222 0000000000001111 111111111111 input
valid cycle 2 2222333333333333 1111111122222222 222222222222 don t input
valid cycle 3 2222333333333333 1111111122222222 333333333333 input

[2293] Where x indicates undefined bits

[2294] The valid cycle is maintained by a ring counter.
The unpacked data contains the token’s data, flush and
PICTURE_END decoded from it. Additionally, format and
extension bit are decoded from the unpacked data.

[2295] formatbit_is
databody

extn=(lastformat==1) 11

[2296] format=databody
lastformatbit)

&& (formatbit &&

[2297] for token decoding and to be passed on to
imex.

[2298] When a FLUSH (or picture_end) token is unpacked
and output to imex, all data is deleted (Valid forced low)
until the block end signal is received from the DRAM
interface.

[2299] B.5.5.2.2 Imex (EXpander)

[2300] In accordance with the present invention, imex is a
four state machine to expand run/level codes out. The state
machine is:

[2301] stateO: load run count from run code.

[2302] state 1: decrement run count, outputting zeros.

[2303] state 2: input data and output levels; default
state.

[2304] state 3: illegal state.

TABLE B.5.5

Imodel & hsppk registers

Register Name Usage Address
CED_H_SNP_2 VAXXXXXX 0x49
CED_H_SNP_1 DDDDDDDD Ox4a
CED_H_SNP_0 DDDDDDDD 0x4b
CED_IM_SNP_1 VAExxDDD Ox4a
CED_IM_SNP_0 DDDDDDDD 0x4d

[2310] Where V=valid bit; A=accept bit; E=extension bit;
D=data bit.

[2311] B.5.7 Verification
[2312]
[2313]

[2314] Test coverage to the imodel at the input is through
the Token buffer output snooper, and at the output through
the Imodel’s own snooper. Logic is covered the imodel’s
own scan chain.

[2315] The output of the hsppk is accessible through the
huffman output snooper. The logic is visible through the
huffman scan chain.

SECTION B.6 Buffer Start-Up
[2316] B.6.1 Introduction
[2317] This section describes the method and implemen-

tation of the buffer start-up in accordance with the present
invention.

Selected streams run through Lsim simulations.

B.5.8 Testing

US 2003/0196078 Al

[2318] B.6.2 Overview

[2319] To ensure that a stream of pictures can be displayed
smoothly and continuously a certain amount of data must be
gathered before decoding can start. This is called the start-up
condition. The coding standard specifies a VBV delay which
can be translated, approximately, into the amount of data
needed to be gathered. It is the purpose of the “Buffer
Start-up” to ensure that every stream fulfills its start-up
condition before its data progresses from the token buffer,
allowing decoding. It is held in the buffers by a notional gate
(the output gate) at the output of the token buffer (i.e., in the
Inverse Modeler). This gate will only be open for the stream
once its start-up condition has been met.

[2320] B.6.3 Interfaces

[2321] Bscntbit (Buffer Start-up bit counter) is in the
datapath, and communicates by two-wire interfaces, and is
connected to the microprocessor. It also branches with a
two-wire interface to bsogl (Buffer Start-up Output Gate
Logic). Bsogl via a two-wire interface controls imup
(Inverse Modeler UnPacker), which implements the output
gate.

[2322] B.6.4 Block Structure

[2323] As shown in FIG. 130, Bscntbit lies in the datapath
between the Start Code Detector and the coded data buffer.
This single cycle block counts the valid words of data
leaving the block and compares this number with the start-
up condition (or target) which will be loaded from the
microprocessor. When the target is met, bsogl is informed.
Data is unaffected by bscntbit.

[2324] Bsogl lies between bsecntbit and imup (in the
inverse modeler). In effect, it is a queue of indicators that
streams have met their targets. The queue is moved along by
streams leaving the buffers (i.e., FLUSH tokens received in
the data stream at imup), when another “indicator” is
accepted by imup. If the queue is empty (i.e., there are no
streams in the buffers which have yet met their start-up
target) the stream in imup is stalled.

[2325] The queue only has a finite depth, however, this
may be indefinitely expanded by breaking the queue in bsogl
and allowing the microprocessor to monitor the queue.
These queue mechanisms are referred to as internal and
external queues respectively.

[2326] B.6.5 Block Implementation
[2327] B.6.5.1 Bsbitent (Buffer Start-Up Bit Counter)

[2328] Bscntbit counts all the valid words that are input
into the buffer start-up. The counter (bsctr) is a program-
mable counter of 16-24 bits width. Moreover, bsctr has carry
look ahead circuitry to give it sufficient speed. Bsctr’s width
is programmed by ced_bs_prescale. It does this by forcing
bits 8-16 high, which makes them always pass a carry. They
are, therefore, effectively not used. Only the top eight bits of
bsetr are used for comparisons with the target (ced_bs_tar-

get).

Oct. 16, 2003

[2329] The comparison (ced_bs_count>=ced_bs_target) is
done by bscmp.

[2330] The target is derived from the stream when the
stream is in the Huffman Decoder and calculated by the
microprocessor. It will, therefore, only be set sometime after
the start of the stream. Before start-up, the target_valid is set
low. Writing to ced_bs_target sets target valid high and
allows comparisons in bscmp to take place. When the
comparison shows ced_bs_count>=ced_bs_target, tar-
get_valid is set low. The target has been met.

[2331] When the target is met the count is reset. Note, it
is not reset at the end of a stream. In addition, counting is
disabled after the target is met if it is before the end of the
stream. The count saturates to 255.

[2332] When a stream ends (i.c., a flush) is detected in
bsbitcnt, an abs_flush event is generated. If the stream ends
before the target is met, an additional event is also generated
(bs_flush_before_target met_event). When any of these
events occur, the block is stalled. This allows the user to
recommence the search for the next stream’s target or in the
case of a bs_flush_before_target_met_event event either:

[2333] 1)write a target of zero which will force a
target_met or

[2334] 2)note that target was not met and allow the
next stream to proceed until this combined with the
last stream reaches the target. The target for this next
stream can should adjusted accordingly.

[2335] B.6.5.2 BSOGL (Buffer Start-Up Output Gate
Logic)

[2336] As previously described, Bsogl is a queue of indi-
cators that a stream has met its target. The queue type is set
by ced_bs_queue (internal(0) or external(1)). This is a reset
to select an internal queue. The depth of the queue deter-
mines the maximum number of satisfied streams that can be
in the coded data buffer, Huffman, and token buffer. When
this number is reached (i.e. the queue is full) bsogl will force
the datapath to stall at bsbitcnt.

[2337] Using an internal queue requires no action from the
microprocessor. However, if it is necessary to increase the
depth of the queue, an external queue can be set (by setting
ced bs_access to gain access to ced_bs_queue which should
be set, target_met_event and stream_end_event enabled and
access relinquished).

[2338] The external queue (a count maintained by the
microprocessor) is inserted into the internal queue. The
external queue is. maintained by two events. target_me-
t_event and stream_end_event. These can simply be referred
to as service_queue_input and service_queue_output respec-
tively] and a register ced_bs_enable_nxt_stream. In effect,
target_met_event is the up stream end of the internal queue
supplying the queue. Similarly, ced_bs_enable_nxt_stream
is the down stream end of the internal queue consuming the
queue. similarly, stream_end_event is a request to supply the
down stream queue; stream_end_event resets ced_bs_en-
able_nxt_stream. The two events should be serviced as
follows:

US 2003/0196078 Al

Oct. 16, 2003

144

/* TARGET_MET_EVENT */
j = micro__read (CED_BS_ENABLE_NXT_STM) ;
if (j == 0) /*Is next stream enabled ?*/
(/*no. enable it*/
micro_write (CED_BS_ENABLE_NXT_STM, 1) ;

printf(* enable next stream (queue = 0x%x) \n*. (context —>queue)

else /*yes, increment the queue of “target_met” streams™*/

{

quete++ ;

printf(* stream already enabled (queue = 0x%x) \n*. (context—
>queue))

/* STREAM__EVENT */

if (queue > 0) /*are there any “target_ mets” left?*/

(/*yes, decrement the queue and enable another stream */
queue——;

micro_write(CED_BS_ENABLE_NXT_STM, 1) ;

printf (* enable next stream (queue = 0x%x) \n*, (context->queue)

}

else
printf (* queue empty cannot enable next stream (queue = 0x%x) \n.*
queue) ;
micro_write (CED_EVENT_1, 1 << 35_STREAM__END_EVENT) ; /*
*/

clear event

[2339] The queue type can be changed from internal to
external at any time (by the means described above), but
they can only be changed external to internal when the
external queue is empty (from above “queue==0&srlarr;), by
setting ced_bs_access to gain access to ced_bs_queue which
should be reset, target_met_event and stream_end_event
masked, and access relinquished.

[2340] On the other hand, disable checking of stream
start-up conditions, set ced_bs_queue (external), mask tar-
get_met_event and stream_end_event and set ced_bs_en-

able_nxt_stream. In this way, all streams will always be
enabled.

[2341] B.6.6 Microprocessor Registers

TABLE B.6.1

Bscntbit registers

Register name Usage Address
CED_BS_ACCESS XxxxxxxD 0x10
CED_BS_ PRESCALE* xxxxxDDD 0x11
CED_BS_TARGET* DDDDDDDD 0x12
CED_BS_COUNT* DDDDDDDD 0x13
BS_FLUSH__EVENT rrrrrDrr 0x02
BS_FLUSH_MASK rrrrtDrr 0x03
BS_FLUSH_BEFORE_TARGET _ rrerDrrr 0x02
MET—EVENT

BS_FLUSH_BEFORE_TARGET__ rrerDrrr 0x03
MET_piasic

[2342]

[2343] where
[2344] D is a register bit
[2345] x is a non-existent register bit
[2346]

[2347] to gain access to these registers ced_bs_access
must be set to one and polled until it reads back one,

r is a reserved register bit

unless in an interrupt service routine. Access is given
up by setting ced_bs access to zero.

SECTION B.7 The DRAM Interface
[2348] B.7.1 Overview

[2349] Inthe present invention, the Spatial Decoder, Tem-
poral Decoder and Video Formatter each contain a DRAM
interface block for that particular chip. In all three devices,
the function of the DRAM interface is to transfer data from
the chip to the external DRAM and from the external DRAM
into the chip via block addresses supplied by an address
generator.

[2350] The DRAM interface typically operates from a
clock which is asynchronous to both the address generator
and to the clocks of the various blocks through which data
is passed. This asynchronism is readily managed, however,
because the clocks are operating at approximately the same
frequency.

[2351] Data is usually transferred between the DRAM
Interface and the rest of the chip in blocks of 64 bytes (the
only exception being prediction data in the Temporal
Decoder). Transfers take place by means of a device known
as a “swing Buffer”. This is essentially a pair of RAMs
operated in a double-buffered configuration, with the
DRAM interface filling or emptying one RAM while
another part of the chip empties or fills the other RAM. A
separate bus which carries an address from an address
generator is associated with each swing buffer.

[2352] Each of the chips has four swing buffers, but the
function of these swing buffers is different in each case. In
the Spatial Decoder, one swing buffer is used to transfer
coded data to the DRAM, another to read coded data from
the DRAM, the third to transfer tokenized data to the DRAM
and the fourth to read tokenized data from the DRAM. In the
Temporal Decoder, one swing buffer is used to write Intra or
Predicted picture data to the DRAM, the second to read Intra
or Predicted data from the DRAM and the other two to read

US 2003/0196078 Al

forward and backward prediction data. In the Video For-
matter, one swing buffer is used to transfer data to the
DRAM and the other three are used to read data from the
DRAM, one for each of Luminance (Y) and the Red and
Blue color difference data (Cr and Cb, respectively).

[2353] The following section describes the operation of a
DRAM interface in accordance with the present invention,
which has one write swing buffer and one read swing buffer,
which is essentially the same as the operation of the Spatial
Decoder DRAM Interface. This is illustrated in FIG. 131,
“DRAM Interface,”.

[2354] B.7.2 A Generic DRAM Interface

[2355] Referring to FIG. 131, the interfaces to the address
generator 420 and to the blocks which supply and take the
data are all two wire interfaces. The address generator 420
may either generate addresses as the result of receiving
control tokens, or it may merely generate a fixed sequence
of addresses. The DRAM interface 421 treats the two wire
interfaces associated with the address generator in a special
way. Instead of keeping the accept line high when it is ready
to receive an address, it waits for the address generator to
supply a valid address, processes that address and then sets
the accept line high for one clock period. Thus, it imple-
ments a request/acknowledge (REQ/ACK) protocol.

[2356] A unique feature of the DRAM Interface is its
ability to communicate with the address generator and the
blocks which provide or accept the data completely inde-
pendent of the other. For example, the address generator
may generate an address associated with the data in the write
swing buffer, but no action will be taken until the write
swing buffer signals that there is a block of data which is
ready to be written to the external DRAM 422. However, no
action is taken until an address is supplied on the appropriate
bus from the address generator. Further, once one of the
RAMSs in the write swing buffer has been filled with data, the
other may be completely filled and “swung” to the DRAM
Interface side before the data input is stalled (the two-wire
interface accept signal set low).

[2357] Inunderstanding the operation of the DRAM Inter-
face of the present invention, it is important to note that in
a properly configured system the DRAM Interface will be
able to transfer data between the swing buffers and the
external DRAM at least as fast as the sum of all the average
data rates between the swing buffers and the rest of the chip.

[2358] Each DRAM Interface contains a method of deter-
mining which swing buffer it will service next. In general,
this will be either a “round robin”, in which the swing buffer
which is serviced is the next available swing buffer which
has less recently had a turn, or a priority encoder in which
some swing buffers have a higher priority than others. In
both cases, an additional request will come from a refresh
request generator which has a higher priority than all the
other requests. The refresh request is generated from a
refresh counter which can be programmed via the micro-
processor interface.

[2359] B.7.2.1 The swing Buffers

[2360] FIG. 132 illustrates a write swing buffer. The
operation is as follows:

[2361] 1)Valid data is presented at the input 430 (data
in). As each piece of data is accepted it is written into
RAM1 and the address is incremented.

[2362] 2)When RAML1 is full, the input side gives up
control and sends a signal to the read side to indicate

Oct. 16, 2003

that RAM1 is now ready to be read. This signal
passes between two asynchronous clock regimes,
and so passes through three synchronizing flip-flops.

[2363] 3)The next item of data to arrive on the input
side is written into RAM?2, which is still empty.

[2364] 4)When the round robin or priority encoder
indicates that it is the turn of this swing buffer to be
read, the DRAM Interface reads the contents of
RAM1 and writes them to the external DRAM. A
signal is then sent back across the asynchronous
interface, as in (2), to indicate that RAM1 is now
ready to be filled again.

[2365] 5)If the DRAM Interface empties RAM1 and
“swings” it before the input side has filled RAM2,
then data can be accepted by the swing buffer con-
tinually, otherwise when PAM?2 is filled the swing
buffer will set its accept signal low until RAM1 has
been “swung” back for use by the input side.

[2366] ©6)This process is repeated ad infinitum.

[2367] The operation of a read swing buffer is similar, but
with input and output data busses reversed.

[2368] B.7.2.2 Addressing of External DRAM and Swing
Buffers

[2369] The DRAM Interface is designed to maximize the
available memory bandwidth. Consequently, it is arranged
so that each 8x8 block of data is stored in the same DRAM
page. In this way full use can be made of DRAM fast page
access modes, where one row address is supplied followed
by many column addresses. In addition, a facility is provided
to allow the data bus to the external DRAM to be 8, 16 or
32 bits wide, so that the amount of DRAM used can be
matched to the size and bandwidth requirements of the
particular application.

[2370] In this example (which is exactly how the DRAM
Interface on the Spatial Decoder works), the address gen-
erator provides the DRAM Interface with block addresses
for each of the read and write swing buffers. This address is
used as the row address for the DRAM. The six bits of
column address are supplied by the DRAM Interface itself,
and these bits are also used as the address for the swing
buffer RAM. The data bus to the swing buffers is 32 bits
wide, so if the bus width to the external DRAM is less than
32 bits, two or four external DRAM accesses must be made
before the next word is read from a write swing buffer or the
next word is written to a read swing buffer (read and write
refer to the direction of transfer relative to the external
DRAM).

[2371] The situation is more complex in the cases of the
Temporal Decoder and the Video Formatter. These are
covered separately below.

[2372] B.7.3 DRAM Interface Timing

[2373] Inthe present invention, the DRAM Interface Tim-
ing block uses timing chains to place the edges of the
DRAM signals to a precision of a quarter of the system clock
period. Two quadrature clocks from the phase locked loop
are used. These are combined to form a notional 2x clock.
Any one chain is then made from two shift registers in
parallel, on opposite phases of the “2x clock™.

[2374] First of all, there is one chain for the page start
cycle and another for the read/write/refresh cycles. The
length of each cycle is programmable via the microprocessor

US 2003/0196078 Al

interface, after which the page start chain has a fixed length,
and the cycle chain’s length changes as appropriate during
a page start.

[2375] On reset, the chains are cleared and a pulse is
created. This pulse travels along the chains, being directed
by the state information from the DRAM Interface. The
DRAM Interface clock is generated by this pulse. Each
DRAM Interface clock period corresponds to one cycle of
the DRAM. Thus, as the DRAM cycles have different
lengths, the DRAM Interface clock is not at a constant rate.

[2376] Further, timing chains combine the pulse from the
above chains with the information from DRAM Interface to
generate the output strobes and enables (notcas, notras,
notwe, notoe).

SECTION B.8 Inverse Quantizer
[2377] B.8.1 Introduction

[2378] This document describes the purpose, actions and
implementation of the inverse quantizer, (iq) in accordance
with the present invention.

[2379] B.8.2 Overview

[2380] The inverse quantizer reconstructs coefficients
from quantized coefficients, quantization weights and step
sizes, all of which are transmitted within the datastream.

[2381] B.8.3 Interfaces

[2382] The iq lies between the inverse modeler and the
inverse DCT in the datapath and is connected to a micro-
processor. Datapath connections are via two-wire interfaces.
Input data is 10 bits wide, output is 11 bits wide.

[2383] B.8.4 Mathematics of Inverse Quantization
[2384] B.8.4.1 H261 Equations
[2385] For blocks coded in intra mode:

C; =80 i=0

C; = iq_quant scale{2Q; + sign(Q;)}
C; = C; —sign(C;) C; =even 0<i<64

C[=C; C[= odd

C; = min{max(Cy —2048).2047)

[2386] For all other coded blocks:

C; = 1iq_quant scale{2Q; + sign(Q;)}
C; = C; —sign(C;) C; =even 0=i<64
Ci=C C; = odd

C; = min{max(Cyy —2048).2047)

[2387] B.8.4.2 JPEG Equations
C'=W,;0:+1024 i=0
C'=Wy;0; 0<i<64
Cymin(max(C;—2048).2047)

J=jpeg_table_indirection(c)

Oct. 16, 2003

[2388] B.8.4.3 MPEG Equations
[2389] For blocks coded in intra mode:

Ci =W, ;Q; +1024 i=0
2i t scaleW,; ;Q;
cl = ﬂoo{ iq_quant scaleW; ;Q,]
16 0<i<64
Ci = —sign(C}) C} =even j=0,2
C=C Ci =odd

C; = min(max(C}y —2048).2047)

[2390] 1024 is added in intra DC case to account for
predictors in huffman being reset to zero. For all other coded
blocks:

. iq_quant_scaleW; ;(2Q; + sign(Q;))
C; = ﬂoo{ .]
16 0<i<64

C‘;:C‘;—sign(C";) C; = even j=13
¢ =¢ C;=odd
C; = min{max(Cy, —2048).2047)
[2391] B.8.4.4 JPEG Variatbn Equations
. 2iq_quant scaleW, ;Q;
Gi= ﬂoo{u] +1024 i=0
16

. 2i t scaleW, ;Q;
Ci:ﬂoo{w] 0<i<64

C; = min{max(Cyy —2048).2047)

J = jpeg table indirectionc)

[2392] B.8.4.5 All Other Tokens

[2393] All tokens except DATA Tokens must pass through
the iq unquantized

[2394] Where:

-1 a<0
signia)=4 0 a=0

1 a>0

a a>b
max(a, b) =

b a<b
. b a asb
R VI

[2395] Floor(a) returns an integer such that:
(a-1)<floor(a)Za a=0
aZ=floor(a)<(a+1) a=0
[2396] Q; are the quantized coefficients.
[2397] C; are the reconstructed coefficients

[2398] W, ;are the values in the quantisation table matrices

US 2003/0196078 Al

Oct. 16, 2003

147

[2399]
[2400] jis the quantisation table matrix number (O<=j<=3)
[2401] B.8.4.6 Multiple Standards Combined

[2402] 1t can be shown that all the above standards and
their variations (also control data which must be unchanged
by the iq) can be mapped on to single equaton:

i 1s the coefficient index along the zigzag

QINPUT +k)(xy)

OUTPUT =
16

[2403] With the additional post inverse quantisation func-
tions of:

[2404] Add 1024

[2405] Convert from sign magnitude to 2°s comple-
ment representation.

[2406] Round all even numbers to the nearest odd
number towards zero.

[2407] Saturate result to +2047 or -2048.

[2408] The variables k, x and y for each variation of the
standards and which functions they use is shown in Table
BS8.1.

[2409] B.8.4.6 Multiple Standards Combined

TABLE B.8.1

quantizer. Its arithmetic block diagram is shown in FIG.
133“Arithmetic Block™:

[2412] Control for the arithmetic block can be functionally
broken into two sections:

[2413] Decoding of tokens to load status registers or
quantization tables.

[2414] Decoding of the status registers into control
signals.

[2415] Tokens are decoded in igca which controls the next
cycle, i.e., iqeb’s bank of registers. It also controls the access
to the four quantization tables in igram. The arithmetic, that
is, two multipliers and the post functions, are in iqarith. The
complete block diagram for the iq is shown in FIG. 134.

[2416] B.8.6 Block Implementation
[2417] B.8.6.1 Igca

[2418] In the invention, igca is a state machine used to
decode tokens into control signals for igram and the register
in iqcb. The state machine is better described as a state
machine for each token since it is reset by each new token.
For example:

Control decodin

X Add Round Sat Convert
Standard Weight Scale k 1024 Even Pest 2’s comp
H261 intra DC 8 8 0 No No Yes Yes
intra 16 iq_quant_scale 1 No Yes Yes Yes
other 16 iq_quant_scale 1 No Yes Yes Yes
JPEG DC W; 0 Yes No Yes Yes
other w; 8 0 No No Yes Yes
MPEG intraDC 8 8 0 Yes No Yes Yes
intra w; iq_quant_scale 0 No No Yes Yes
other w; iq_quant_scale 1 No Yes Yes Yes
XXX DC w; iq_quant_scale 0 Yes No Yes Yes
other w; iq_quant_scale 0 No No Yes Yes
Other Tokens 1 8 0 No No No No

[2410] B.8.5 Block Structure

[2411] From B.8.4.6 and Table B.8.1, it can be seen that a
single architecture can be used for a multi-standard inverse

[2419] The code for the QUANT_SCALE (sec B.8.7.4,
“QUANT_SCALE”) and QUANT_TABLE (sec B.8.7.6,
“QUANT _TABLE”) are as follows:

if (tokenheader == QUANT__SCALE)

{

sprintf(preport, “QUANT_SCALE”);
reg_addr = ADDR_IQ_QUANT_SCALE;
rmotw = WRITE;

enable =1;

}
if (tokenheader == QUANT_TABLE) /*QUANT_TABLE token */
switch (substate)

case 0: /* quantisation table header */

sprintf(preport, “QUANT_TABLE_ %s_ s0” ,

US 2003/0196078 Al

148

-continued

Oct. 16, 2003

(headerextn ? “(full)” : “(empty)™) };
nextsubstate = 1;
insertnext = (headerextn ? 0 : 1);
reg_addr = ADDR__IQ_ COMPONENT;
rmotw = WRITE;
enable = 1;
break;
case 1: /* quantisation table body */
sprintf(preport, “QUANT_TABLE_ %s_s1”,
(headerextn ? “(full) : “(empty)™)};
nextsubstate = 1;
insertnext = (headerextn ? 0 : (qtm__addr_ 63 == 0));
reg_addr = USE__QTM;
motw = (headerextn ? WRITE : READ);
enable = 1;
break;
default:
sprintf(preport, *ERROR in iq quantisation table tokendecoder
(substate %x) \n*,
substate);
break

[2420] Where a substate is a state within a token,
QUANT_SCALE has, for example, only one substate. How-
ever, the QUANT_TABLE has two, one being the header,
the second the token body.

[2421] The state machine is implemented as a PLA.
Unrecognized tokens cause no wordline to rise and the PLA
to output default (harmless) controls.

[2422] Additionally, igca supplies addresses to igram from
BodyWord counter and inserts words into the stream, for
example in an unextended QUANT_TABLE (sce B.8.7.4).
This is achieved by stalling the input while maintaining the
output valid. The words can be filled with the correct data in
succeeding blocks (igeb or iqarith).

[2423] igca is a single cycle in the datapath controlled by
two-wire interfaces.

[2424] B.8.6.2 Igcb

[2425] In the invention, igeb holds the iq status registers.
Under the control of igca it loads or unloads these from/to
the datapath.

[2426] The status registers are decoded (see Table B.8.1)
into control wires for iqarith; to control the XY multiplier
terms and the post quantization functions.

[2427] The sign bit of the datapath is separated here and
sent to the post quantization functions. Also, zero valued
words on the datapath are detected here. The arithmetic is
then ignored and zero muxed onto the datapath. This is the
easiest way to comply with the “zero in; zero out” spec of
the iq.

[2428] The status registers are accessible from the micro-
processor only when the register iq_access has been set to
one and reads back one. In this situation, iqcb has halted the
datapath, thus ensuring the registers have a stable value and
no data is corrupted in the datapath.

[2429] Igcb is a single cycle in the datapath controlled by
two wire interfaces.

[2430] B.8.6.3 Igram

[2431] Igram must hold up to four quantization table
matrices (QTM), each 64*8 bits. It is, therefore, a 256*8 bits
six transistor RAM, capable of one read or one write per
cycle. The RAM is enclosed by two-wire interface logic
receiving its control and write data from iqca. It reads out
data to iqarith. Similarly, igram occupies the same cycle in
the datapath as iqcb.

[2432] The RAM may be read and written from the
microprocessor when iq_access reads back one. The RAM is
placed behind a keyhole register, iq_qtm_keyhole and
addressed by iq_qtm_keyhole_addr. Accessing iq_qtm_key-
hole will cause the address to which it points, held in
iq_qtm_keyhole_addr to be incremented. Likewise, iq_qt-
m_keyhole addr can be written to directly.

[2433] B.8.6.4 Igarith

[2434] Note, igarith is three functions pipelined and split
over three cycles. The functions are discussed below (see
FIG. 133).

[2435] B.8.6.4.1 XY Multiplier

[2436] This is a 5(X) by 8(Y) bit carry save unsigned
multiplier feeding on to the datapath multiplier. The multi-
plier and multiplicand are selected with control wires from
igcb. The multiplication is in the first cycle, the resolving
adder in the second.

[2437] At the input to the multiplier, data from igram can
be muxed onto the datapath to read a QUANT_TABLE out
onto the datapath.

[2438] B.8.6.4.2 (XY)* Datapath Multiplier

[2439] This 13 (XY) by 12 (datapath) bit carry save
unsigned multiplier is split over the three cycles of the block.
Three partial products in the first cycle, seven in the second
and the remaining two in the third.

[2440] Since all output from the multiplier is less than
2047 (non_coefficient) or saturated to +2047/-2048, the top
twelve bits don’t ever need to be resolved. Accordingly, the

US 2003/0196078 Al

resolving adder is just two bits wide. On the remainder of the
high order bits, a zero detect suffices as a saturate signal.

[2441] B.8.6.4.3 Post Quantization Functions

[2442] The post quantization functions are
[2443] Add 1024
[2444] Convert from sign magnitude to 2°s comple-
ment representation.
[2445] Round all even numbers to the nearest odd
number towards zero.
[2446] Saturate result to +2047 or -2048.
[2447] Set output to zero (see B.8.6.2)
[2448] The first three functions are implemented on a 12
bit adder (pipelined over the second and third cycles). From
this, it can be seen what each function requires and these are
then combined onto the single adder.

TABLE B8.2

Post quantization adder function

Function if datapath > 0 if datapath > O
Convert to 2°s complement nothing invert add one
Round all even numbers subtract one add one

Add 1024 add 1024 add 1024

[2449] As will be appreciated by one off ordinary skill in
the art, care should be taken when reprogramming these
functions as they are very interdependent when combined.

[2450] The saturate values, zero and zero+1024 are muxed
onto the datapath at the end of the third cycle.

[2451] B.8.7 Inverse Quantizer Tokens

[2452] The following notes define the behavior of the
Inverse Quantizer for each Token tp which it responds. In all
cases, the Tokens are also transported to the output of the
Inverse Quantizer. In most cases, the Token is unmodified by
the Inverse Quantizer with the exceptions as noted below.
All unrecognized Tokens are passed unmodified to the
output of the Inverse Quantizer.

[2453] B.8.7.1 SEQUENCE_START

[2454] This Token causes the registers iq_prediction mode
[1:0] and ig_mpeg_indirection[1:0] to be reset to zero.

[2455] B.8.7.2 CODING_STANDARD

[2456] This Token causes iq_standard[1:0] to be loaded
with the appropriate value based upon the current standard
(MPEG, JPEG or H.261) being decoded.

[2457] B.8.7.3 PREDICTION_MODE

[2458] This Token loads iq_prediction_mode[1:0].
Although the PREDICTION_MODE Token carries more
than two bits, the Inverse Quantizer only needs access to the
two lowest order bits. These determine whether or not the
block is intra coded.

[2459] B.8.7.4 QUANT _SCALE
[2460] This Token loads iq_quant scale[4:0].
[2461] B.8.7.5 DATA

[2462] In the present invention, this Token carries the
actual quantized coefficients. The head of the token contains

Oct. 16, 2003

two bits identifying the color component and these are
loaded into iq_component[1:0]. The next sixty four Token
words contain the quantized coefficients. These are modified
as a result of the inverse quantization process and are
replaced by the reconstructed coefficients.

[2463] If exactly sixty four extension words are not
present in the Token, the behavior of the Inverse Quantizer
is undefined.

[2464] The DATA Token at the input of the Inverse
Quantizer carries quantized coefficients. These are repre-
sented in eleven bits in a sign-magnitude format (ten bits
plus a sign bit). The value “minus zero” should not be used
but is correctly interpreted as zero.

[2465] The DATA Token at the output of the Inverse
Quantizer carries reconstructed coefficients. These are rep-
resented in twelve bits in a twos complement format (eleven
bits plus a sign bit). The DATA Token at the output will have
the same number of Token Extension words as it had at the
input of the Inverse Quantizer.

[2466] B.8.7.6 QUANT_TABLE

[2467] This Token may be used to load a new quantization
table or to read out an existing table. Typically, in the Inverse
Quantizer, the Token will be used to load a new table which
has been decoded from the bit stream. The action of reading
out an existing table is useful in the forward quantizer of an
encoder if that table is to be encoded into the bit stream.

[2468] The Token Head contains two bits identifying the
table number that is to be used. These are placed in iq_com-
ponent[1:0]. Note that this register now contains a “table
number” not a color component.

[2469] 1If the extension bit of the Token Head is one, the
Inverse Quantizer expects there to be exactly sixty four
extension Token Words. Each one is interpreted as a quan-
tization table value and placed in a successive location of the
appropriate table, starting at location zero. The ninth bit of
each extension Token word is ignored. The Token is also
passed to the output of the Inverse Quantizer, unmodified, in
the normal way.

[2470] 1If the extension bit of the Token Head is zero, then
the Inverse Quantizer will read out successive locations of
the appropriate table starting at location zero. Each location
becomes an extension Token word (the ninth bit will be
zero). At the end of this operation, the Token will contain
exactly sixty four extension Token words.

[2471] The operation of the Inverse Quantizer in response
to this token is undefined for all numbers of extension words
except zero and sixty four.

[2472] B.8.7.7 JPEG_TABLE_SELECT

[2473] This token is used to load or unload translations of
color components to table numbers to/from iq_ipeg_indi-
rection. These translations are used in JPEG and other
standards.

[2474] The Token Head contains two bits identifying the
color component that is currently of interest. These are
placed in iq_component[1:0].

US 2003/0196078 Al

[2475] 1If the extension bit of the Token Head is one, the
Token should contain one extension word, the lowest two
bits of which are written into the iq_ipeg_indirection[2*ig-
_component [1:0]+1:2*iq_component [1:0]] location. The
value just read becomes a Token extension word (the upper
seven bits will be zero). At the end of this operation, the
Token will contain exactly one Token extension word.

TABLE B.8.3

JPEG_TABLE_SELECT action

Colour component in reader bits of iq__jpeg indirection addressed

0 [1:0]
1 [3:2]
2 [5:4]
3 [7:6]

[2476] B.8.7.8 MPEG_TABLE_SELECT

[2477] This Token is used to define whether to use the
default or user defined quantization tables while processing
via the MPEG standard. The Token Head contains two bits.
Bit zero of the header determines which bit if iq_mpeg_in-
direction is written into. Bit one is written into that location.

[2478] Since the iq_mpeg_indirection[1:0] register is
cleared by the SEQUENCE_START Token, it will only be
necessary to use this Token if a user defined quantization
table has been transmitted in the bit stream.

[2479] B.8.8 Microprocessor Registers
[2480] B.8.8.1 iq_access

[2481] To gain microprocessor access to any of the iq
registers, iq_access must be set to one and polled until it
reads back one (see B.8.6.2). Failure to do this will result in
the registers being read still being controlled by the datapath
and, therefore, not being stable. In the case of the igram, the
accesses are locked out, reading back zeros.

[2482] Writing zero to iq_access relinquishes control back
to the datapath.

[2483] B.8.8.2 Iq_coding_standard[1:0]

[2484] This register holds the coding standard that is being
implemented by the Inverse Quantizer.

TABLE B84

Coding standard values

iq_coding_ standard Coding Standard

0 H.261
1 JPEG
2 MPEG
3 XXX

[2485] This register is loaded by the CODING_STAN-
DARD Token.

[2486] Although this is a two bit register, at present eight
bits are allocated in the memory map and future implemen-
tations can deal with more than the above standards.

Oct. 16, 2003

150

[2487] B.8.8.3 Iq_mpeg_indirection[1:0]

[2488] This two bit register is used during MPEG decod-
ing operations to maintain a record of which quantization
tables are to be used.

[2489] Ig_mpeg_indirection[0] controls the table that is
used for intra coded blocks. If it is zero then quantization
table 0 is used and is expected to contain the default
quantization table. If it is one, then quantization table 2 is
used and is expected to contain the user defined quantization
table for intra coded blocks.

[2490] This register is loaded by the MPEG_TABLE_SE-
LECT Token and is reset to zero by the SEQUENCE_S-
TART Token.

[2491] B.8.8.4 Ig_ipeg_indirection[7:0]

[2492] This eight bit register determines which of the four
quantization tables will be used for each of the four possible
color components that occur in a JPEG scan.

[2493] Bits [1.0] hold the table number that will be
used for component zero.

[2494] Bits [3.2] hold the sable number that will be
used for component one.

[2495] Bits [5.4] hold the table number that will be
used for component two.

[2496] bits [7.6] hold the table number that will be
used for component three.

[2497] This register is affected by the JPEG_TABLE
SELECT Token.

[2498] B.8.8.5 iq_quant_scale[4.0]

[2499] This register holds the current value of the quan-
tization scale factor. This register is loaded by the
QUANT _SCALE Token.

[2500] B.8.8.6 iq_component[1:0]

[2501] This register usually holds a value which is trans-
lated into the Quantization Table Matrix (QTM) number. It
is loaded by a number of Tokens.

[2502] The DATA Token header causes this register be
loaded with the color component of the block which is about
to be processed. This information is only used in JPEG and
JPEG wvariations to determine the QTM number, which it
does with reference to iq_ipeg_indirection[7:0]. In other
standards, iq_component[1:0] is ignored.

[2503] The JPEG_TABLE_SELECT Token causes this
register be loaded with a color component. It is then used as
an index into iq_ipeg_indirection[7:0] which is accessed by
the tokens body.

[2504] The QUANT_SCALE Token causes this register to
be loaded with the QTM number. This table is then either
loaded from the Token (if the extended form of the Token is
used) or read out from the table to form a properly extended
Token.

[2505] B.8.8.7 iq_prediction_mode[1:0]

[2506] This two bit register holds the prediction mode that
will be used for subsequent blocks. The only use that the
Inverse Quantizer makes of this information is to decide
whether or not intra coding is being used. If both bits of the
register are zero, then subsequent blocks are intra coded.

US 2003/0196078 Al

[2507] This register is loaded by the PREDIC-
TION_MODE Token. This register is reset to zero by the
SEQUENCE_START Token.

[2508] Iq_prediction_mode[1:0] has no effect on the
operation in JPEG and JPEG variation modes.

[2509] B.8.8.8 Iq_ipeg_indirection[7:0]

[2510] Iq_ipeg_indirection is used as a lookup table to
translate color components into the QTM number. Accord-
ingly, iq_component is used as an index to iq_ipeg_indirec-
tion as shown in Table B.8.3.

[2511] This register location is written to directly by the
JPEG_TABLE_SELECT Token if the extended form of the
Token is used.

[2512] This register location is read directly by the JPEG-
_TABLE_SELECT Token if the non-extended form of the
Token is used.

[2513] B.8.8.9 Ig_quant_table[3:0]63:0][7:0]

[2514] There are four quantization tables, each with 64
locations. Each location is an eight bit value. The value zero
should not be used in any location.

[2515] These registers are implemented as a RAM
described in B.8.6.3, “Igram”.

[2516] These tables may be loaded using the QUANT-
_TABLE Token.

[2517] Note that data in these tables are stored in zig-zag
scan order. Many documents represent quantization table
values as a square eight by eight array of numbers. Usually,
the DC term is at the top left with increasing horizontal
frequency running left to right and increasing vertical fre-
quency running top to bottom. Such tables must be read
along the zig-zag scan path as the numbers are placed into
the quantization table with consecutive “i”.

[2518] B.8.9 Microprocessor Register Map

TABLE B.8.5

Memory Map

Register Location Direction Reset State
iq__access 0x30 R/W 0
iq_coding standard[1:0] 0x31 R/W 0
ig__quant_scale[4:0] 0x32 RW ?
iq__component[1:0] 0x33 RW ?
iq__prediction__mode[1:0] 0x34 RW 0
iq_jpeg_indirection[7:0] 0x35 RW ?
iq__mpeg_indirection[1:0] 0x36 RW 0
iq_qtm__keyhole_addi7.0] 0x38 RW 0
iq_qtm__keyhole[7.0] 0x39 RW ?

[2519] B.8.10 Test

[2520] Test coverage to the Inverse Quantizer at the input
is through the Inverse Modeler’s output snooper, and at the
output through the Inverse Quantizer’s own snooper. Logic
is covered by the Inverse Quantizer’s own scan chain.

[2521] Access can be gained to igram without reference to
iq_access if the ramtest signal is asserted.

Oct. 16, 2003

SECTION B.9 IDCT
[2522] B.9.1 Introduction
[2523] The purpose of this description of the Inverse
Discrete Cosine Transform (IDCT) block is to provide a

source of engineering information for the IDCT. It includes
information on the following.

[2524] purpose and main features of the IDCT

[2525] how it was designed and verified

[2526]
[2527] 1t is intended that the description should provide
one of ordinary skill in the art sufficient information to
facilitate or aid the following tasks.

[2528] appreciation of the IDCT as a “illicon macro

function”
[2529]

[2530] development of test programs for the IDCT
silicon

structure

integration the IDCT onto another device

[2531] modification, re-design or maintenance of the
IDCT

[2532] development of a forward DCT block
[2533] B.9.2 Overview

[2534] A Discrete Cosine Transform/Zig-Zag (DCT/ZZ)
performs a transformation on blocks of pixels wherein each
block represents an area of the screen 8 pixels high by 8
pixels wide. The purpose of the transform is to represent the
pixel block in a frequence domain, sorted according to
frequency. Since the eye is sensitive to DC components in a
picture, but much less sensitive to high frequency compo-
nents, the frequency data allows each component to be
reduced in magnitude separately, according to the eye’s
sensitivity. The process of magnitude reduction is known as
quantization. The quantization process reduces the informa-
tion contained in the picture, that is, the quantization process
is lossy. Lossy processes give overall data compression by
eliminating some information. The frequency data is sorted
so that high frequencies, most likely to be quantized to zero,
all appear consecutively. The consecutive zeros means that
coding the quantized data by using run-length coding
schemes yields further data compression, although run-
length coding is generally not a lossy process.

[2535] The IDCT block (which actually includes an
Inverse Zig-Zag RAM, or 1ZZ, and an IDCT) takes fre-
quency data, which is sorted, and transforms it into spatial
data. This inverse sorting process is the function of 1ZZ.

[2536] The picture decompression system, of which the
IDCT block forms a part, specifies the pixels as integers.
This means that the IDCT block must take, and yield, integer
values. However, since the IDCT function is not integer
based, the internal number representation uses fractional
parts to maintain internal accuracy. Full floating-point arith-
metic is preferable, but the implementation described herein
uses fixed-point arithmetic. There is some loss of accuracy
using fixed-point arithmetic, but the accuracy of this imple-
mentation exceeds the accuracy specified by H.261 and the
IEEE.

[2537] B.9.3 Design Objectives

[2538] The main design objective, in accordance with the
present invention, was to design a functionally correct IDCT
block which uses a minimum silicon area. The design was

US 2003/0196078 Al

also required to run with a clock speed of 30 MHZ under the
specified operating conditions, but it was considered that the
design should also be adaptable for the future. Higher clock
rates will be needed in the future, and the architecture of the
design allows for this wherever possible.

[2539] B.9.4 IDCT Interfaces Description
[2540] The IDCT block has the following interfaces.

[2541] a 12-bit wide Token data input port
[2542] a 9-bit wide Token data output port
[2543] a microprocessor interface port
[2544] a system services input port

[2545] a test interface

[2546] resynchronizing signals

[2547] Both the Token data ports are the standard Two-
Wire Interface type previously described. The widths illus-
trated, refer to the number of bits in the data representation,
not the total number of wires in a port. In addition, associ-
ated with the input Token data port are the clock and reset
signals used for resynchronization to the output of the
previous block. There are also two resynchronizing clocks
associated with the output Token data port and used by the
subsequent block.

[2548] The microprocessor interface is standard and uses
four bits of address. There are also three externally decoded
select inputs which are used to select the address spaces for
events, internal registers and test registers. This mechanism
provides the flexibility to map the IDCT address space into
different positions in different chips. There is also a single
event output, idctevent, and two i/o signals, n_derrd and
n_serrd, which are the event tristate data wires to be con-
nected externally to the IDCT and to the appropriate bits of
the microprocessor notdata bus.

[2549] The system services port consists of the standard
clock and reset input signals, as well as, the 2-phase override
clocks and associated clock override mode select input.

[2550] The test interface consists of the JTAG clock and
reset signals, the scan-path data and control signals and the
ramtest and chiptest inputs.

[2551] In normal operation, the microprocessor port is
inactive since the IDCT does not require any microprocessor
access to achieve its specified function. Similarly, the test
interface is only active when testing or verification is
required.

[2552] B.9.5 The Mathematical Basis for the Discrete
Cosine Transformation

[2553] In video bandwidth compression, the input data
represents a square area of the picture. The transform
applied must, therefore, be two-dimensional. Two-dimen-
sional transforms are difficult to compute efficiently, but the
two-dimensional DCT has the property of being separable.
Separable transforms can be computed along each dimen-
sion independent of the other dimensions. This implemen-
tation uses a one-dimensional IDCT algorithm designed
specifically for mapping onto hardware; the algorithm is not
appropriate for software models. The one-dimensional algo-
rithm is applied successively to obtain a two-dimensional
result.

Oct. 16, 2003

152

[2554] The mathematical definition of the two-dimen-
sional DCT for an N by N block of pixels is as follows:

Y(j k)= EQ 10
N-1N-1
2m +)j= (2n + Lk
_C(”C(k)m:o 2, X, meo [-] [o~]
forward DCT
X(m, n) = EQ 11
2= OFC Reed 2t DiE Qn+ Dkr
ﬁjzo 24 c(fHetk)Y(j,)cos[N]cos[N]

inverse DCT
Where
Jok=0,1,...,N=-1
1 .
ﬁ Js

1 otherwise

k=0
c(feth) =

[2555] The above definition is mathematically equivalent
to multiplying two N by N matrices, twice in succession,
with a matrix transposition between the multiplications. A
one-dimensional DCT is mathematically equivalent to mul-
tiplying two N by N matrices. Mathematically the two-
dimensional case is:

Y=[x C]TC
[2556] Where C is the matrix of cosine terms.

[2557] Thus the DCT is sometimes described in terms of
matrix manipulation. Matrix descriptions can be convenient
for mathematical reductions of the transform, but it must be
stressed that this only makes notation easier. Note that the
2/N term governs the DC level. The constants c(j) and c(k)
are known as the normalization factors.

[2558] B.9.6 The IDCT Transform Algorithm

[2559] As subsequently explained in further detail, the
algorithm used to compute the actual IDCT transform
should be a “fast” algorithm. The algorithm used is opti-
mized for an efficient hardware architecture and implemen-
tation. The main features of the algorithm are the use of v2
scaling in order to remove one multiplication, and a trans-
formation of the algorithm designed to yield a greater
symmetry between the upper and lower sections. This sym-
metry results in an efficient re-use of many of the most costly
arithmetic elements.

[2560] In the diagram illustrating the algorithm (FIG.
136), the symmetry between the upper and lower halves is
evident in the middle section. The final column of adders and
subtractors also has a symmetry, the adders and subtractors
can be combined with relatively little cost (4 adder/subtrac-
tors being significantly smaller than 4 adders+4 subtractors
as illustrated).

[2561] Note that all the outputs of a single dimensional
transform are scaled by v2. This means that the final
2-dimensional answer will be scaled by 2. This can then be
easily corrected in the final saturation and rounding stage by
shifting.

[2562] The algorithm shown was coded in double preci-
sion floating-point C and the results of this compared with

US 2003/0196078 Al

a reference IDCT (using straightforward matrix multiplica-
tion). A further stage was then used to code a bit-accurate
integer version of the algorithm in C (no timing information
was included) which could be used to verify the perfor-
mance and accuracy of the algorithm as it would be imple-
mented on silicon. The allowable inaccuracies of the trans-
form are specified in the H.261 standard and this method
was used to exercise the bit-accurate model and measure the
delivered accuracy.

[2563] FIG. 137 shows the overall IDCT Architecture in
a way that illustrates the commonality between the upper
and lower sections and which also shows the points at which
intermediate results need to be stored. The circuit is time
multiplexed to allow the upper and lower sections to be
calculated separately.

[2564] B.9.7 The IDCT Transform Architecture

[2565] As described previously, the IDCT algorithm is
optimized for an efficient architecture. The key features of
the resulting architecture are as follows:

[2566] significant re-use of the costly arithmetic
operations

[2567] small number of multipliers, all being con-
stant coefficient rather than general purpose (reduces
multiplier size and removes need for separate coef-
ficient store)

[2568] small number of latches, no more than
required for pipelining the architecture

[2569] operations are arranged so that only a single
resolving operation is required per pipeline stage

[2570] can arrange to generate results in natural order

[2571] no complex crossbar switching or significant
multiplexing (both costly in a final implementation)

[2572] advantage is taken of resolved results in order
to remove two carry-save operations (one addition,
one subtraction)

[2573] architecture allows each stage to take 4 clock
cycles, i.e., removes the requirement for very fast
(large) arithmetic operations

[2574] architecture will support much faster opera-
tion than current 30 MHz pixel-clock operation by
simply changing resolving operations from small/
slow ripple carry to larger/faster carry-lookahead
versions. The resolving operations require the largest
proportion of the time required in each stage so
speeding up only these operations has a significant
effect on the overall operations speed, whilst having
only a relatively small increase on the overall size of
the transform. Further increases in speed can also be
achieved by increasing the depth of pipelining.

[2575] control of the transform data-flow is very
straightforward and efficient

[2576] The diagram of the ID Transform Micro-Architec-
ture (FIG. 141) illustrates how the algorithm is mapped onto
asmall set of hardware resources and then pipelined to allow
the necessary performance constraints to be met. The control
of this architecture is achieved by matching a “control

Oct. 16, 2003

153

shift-register” to the data-flow pipeline. This control is
straightforward to design and is efficient in silicon layout.

[2577] The named control signals on FIG. 141 (latch,
sel_byp etc.) are the various enable signals used to control
the latches and, thus, the signal flow. The clock signals to the
latches are not shown.

[2578] Several implementation details are significant in
terms of allowing the transform architecture to meet the
required accuracy standards whilst minimizing the trans-
form size. The techniques used generally fall into two major
classes.

[2579] Retention of maximum dynamic range, with a
fixed word width, at each intermediate state by
individual control of the fixed-point position.

[2580] Making use of statistical definition of the
accuracy requirement in order to achieve accuracy
by selective manipulation of arithmetic operations
(rather than increasing accuracy by simply increas-
ing the word width of the entire transform)

[2581] The straightforward way to design a transform
would involve a simple fixed-point implementation with a
fixed word-width made large enough to achieve accuracy.
Unfortunately, this approach results in much larger word
widths and, therefore, a larger transform. The approach used
in the present invention allows the fixed point position to
vary throughout the transform in a manner that makes the
maximum use of the available dynamic range for any
particular intermediate value, achieving the maximum pos-
sible accuracy.

[2582] Because the allowable results are specified statis-
tically, selective adjustments can be made to any interme-
diate value truncation operation in order to improve overall
accuracy. The adjustments chosen are simple manipulations
of LSB calculations, which have little or no cost. The
alternative to this technique is to increase the word width,
involving significant cost. The adjustments effectively
“weight” final results in a given direction, if it is found that
previously, these results tend in the opposite direction. By
adjusting the fractional parts of results, we are effectively
shifting the overall average of these results.

[2583] B.9.8 IDCT Block Diagram Description

[2584] The block diagram of the IDCT shows all the
blocks that are relevant to the processing of the Token
Stream. This diagram, FIG. 138, does not show details of
clocking, test and microprocessor access and the event
mechanism. Snooper blocks, used to provide test access, are
not shown in the diagram.

[2585] B.9.8.1 DATA Error Checker

[2586] The first block is the DATA error checker and
corrector, called “decheck” which takes and produces a
12-bit wide Token Stream, parses this stream and checks the
DATA Tokens. All other Tokens are ignored and are passed
straight through. The checks that are performed are for
DATA Tokens with a number of extensions not equal to 64.
The possible errors are termed “deficient” (<64 extensions)
an idct_too_few_event, and “supernumerary” (>64 exten-
sions), an idct_too_many_event. Such errors are signalled
with the standard event mechanism, but the block also
attempts simple error recovery by manipulation of the Token

US 2003/0196078 Al

154

Stream. In the case of deficient errors, the DATA Token is
packed with “0” value extensions (stops accepting input and
performs insert) to make up the correct 64 extensions. In the
case of a supernumerary error, the extension bit is forced to
“0” for the 64th extension and all extra extensions are
removed from the Token Stream.

[2587] B.9.8.2 Inverse Zig-Zag

[2588] The next block on the Spatial Decoder in FIG. 138
is the inverse zig-zag RAM 441, “izz”, and again it takes and
produces a 12-bit wide Token Stream. As with all other
blocks, the stream is parsed, but only DATA Tokens are
recognized. All other Tokens are passed through unchanged.
DATA Tokens are also passed through, but the order of the
extensions is changed. This block relies on correct DATA
Tokens (i.e., 64 extensions only). If this is not true, then
operation is unspecified. The reordering is done according to
the standard inverse Zig-Zag pattern and, by default, is done
so as to provide horizontally scanned data at the IDCT
output. It is also possible to change the ordering to provide
vertically scanned output. In addition to the standard 1ZZ
ordering, this block performs an extra re-ordering of each
8-word row. This is done because of the specific require-
ments of the IDCT one-dimensional transform block and
results in rows being output in the order (1,3,5,7,0,2,4,6)
rather than (0,1,2,3,4,5,6,7).

[2589] B.9.8.3 Input Formatter

[2590] The next block in FIG. 138 is the input formatter
442, “ip_fmt”, which formats DATA input for the first
dimension of the IDCT transform. This block has a 12-bit
wide Token Stream input and 22-bit wide token Stream
output. DATA Tokens are shifted left so as to move the
integer part to the correct significance in the IDCT transform
standard 22-bit wide word, the fractional part being set to 0.
This means that there are 10 bits of fraction at this point. All
other Tokens are unshifted and the extra unused bits are
simply set to 0.

[2591] B.9.8.4 1-Dimensional Transform—1st Dimension

[2592] The next block shown in FIG. 138 is the first single
dimension IDCT transform block 443, “oned”. This inputs
and outputs 22-bit wide token Streams and, as usual, the
stream is parsed and DATA Tokens are recognized. All other
tokens are passed through unaltered. The DATA Tokens pass
through a pipelined datapath that performs an implementa-
tion of a single dimension of an 8-by-8 Inverse Discrete
Cosine Transform. At the output of the first dimension, there
are 7 bits of fraction in the data word. All other Tokens run
through a merely shift register datapath that simply matches
the DATA transform latency and are recombined into the
Token Stream before output.

[2593] B.9.8.5 Transpose RAM

[2594] The transpose RAM 444“tram”, is similar in many
ways to the inverse zig-zag RAM 441 in the way it handles
a Token Stream. The width of Tokens handled (22 bits) and
the re-ordering performed are different, but otherwise they
work in the same way and actually share much of their
control logic. Again, rows are additionally re-ordered for the
requirements of the following IDCT dimension as well as
the fundamental swapping of columns into rows.

Oct. 16, 2003

[2595] B.9.8.6 1-Dimensional Transform—2nd Dimen-
sion

[2596] The next block shown is another instance of a
single dimension IDCT transform and is identical in every
way to the first dimension. At the output of this dimension
there are 4 bits of fraction.

[2597] B.9.8.7 Round and Saturate

[2598] The round-and-saturate block 446 in FIG. 138,
“ras”, takes a 22-bit wide Token Stream containing DATA
extensions in 22-bit fixed point format and outputs a 9-bit
wide Token Stream where DATA extensions have been
rounded (towards +ve infinity) into integers and saturated
into 9-bit two’s complement representation and all other
Tokens have been passed straight through.

[2599] B.9.9 Hardware Descriptions of Blocks
[2600] B.9.9.1 Standard Block Structure

[2601] For all the blocks that handle a Token Stream there
is a standard notional structure as shown in FIG. 139. This
separates the two-wire interface latches from the section that
performs manipulation of the Token Stream. Variations on
this structure can include extra internal blocks (such as a
RAM core). In some blocks shown, the structure is made
less obvious in the schematic (although it does actually still
exist) because of the requirement of grouping together all
the “datapath” logic and separate this from all the standard
cell logic. In the case of a very simple block, such as “ras”,
it is possible to take the latched out_accept straight into the
input two-wire latch without logical manipulation.

[2602] B.9.9.2 “Decheck”—DATA Error checking/Recov-
ery

[2603] The first block 440 in the Token Stream performs
DATA checking and correcting as specified in the Block
Diagram overview section. The detected errors are handled
with the standard event mechanism which means that events
can be masked and the block can either continue with the
recovery procedure when an error is detected or be stopped
depending on event mask status. The IDCT should never see
incorrect DATA Tokens and, therefore, the recovery that it
attempted is only a fairly simple attempt to contain what
may be a serious problem.

[2604] This block has a pipeline depth of two stages and
is implemented entirely in zcells. The input two-wire inter-
face latch is of the “front” type, meaning that all inputs
arrive onto transistor gates to allow safe operation when this
block (at the front of the IDCT) is on a separate power
supply regime from the one preceding it. This block works
by parsing a Token Stream and passing non-DATA Tokens
straight through. When a DATA Token is found, a count is
started of the number of extensions found after the header.
If the extension bit is found to be “0” when the count does
not equal 63, an error signal is generated (which goes to the
event logic) and depending on the state of the mask bit for
that event, “decheck” will either be stopped (i.e., no longer
accept input or generate output) or will begin error recovery.
The recovery mechanism for “deficient” errors uses the
counter to control the insertion of the correct number of
extensions into the Token Stream (the value inserted is
always “07”). Obviously, input is not accepted whilst this
insertion proceeds. When it is found that the extension bit is
not “0” on the 64th extension, a “supernumerary” error is
generated, the DATA Token is completed by forcing the
extension bit to “0”, and all succeeding words with the

US 2003/0196078 Al

155

extension bit set to “1” are deleted from the Token Stream
by continuing to accept data but invalidating the output.

[2605] Note that the two error signals are not persistent
(unless the block is stopped) i.e., the error signal only
remains active from the point when an error is detected until
recovery is complete. This is a minimum of one complete
cycle and can persist forever in the case of a infinitely
supernumerary DATA Token.

[2606] B.9.9.3 “Izz” and “tram”—Reordering RAMs

[2607] The “izz”441 (inverse zig-zag RAM) and the
“tram”444 (transposc RAM) are considered here together
since they both perform a variation on the same function and
they have more similarities than differences. Both these
blocks take a Token Stream and re-order the extensions of a
DATA Token whilst passing through all other Tokens
unchanged. The widths of the extensions handled and the
sequences of the re-ordering are different, but a large section
of the control logic for each RAM is identical and is actually
organized into a “common control” block which is instanced
in the schematic for each RAM. The difference in width has
no effect upon this control section so it is only necessary to
use a different “sequence address generator” for each RAM
together with RAM cores and two-wire interface blocks of
the appropriate width.

[2608] The overall behavior of each RAM is essentially
that of a FIFO. This is strictly true at the Token level and a
particular modification to the output order is made for the
extension words of a DATA Token. The depth of the FIFO
is 128 stages. This is necessary to fulfill the requirement for
a sustainable 30 MHz throughout the system since output of
the FIFO is held up after the start of the output of a DATA
Token is detected. This is because the features of the
reordering sequences used require that a complete block of
64 extensions be gathered in the FIFO before re-ordered
output can begin. More precisely, the minimum number
required is different for inverse zig-zag and transpose
sequences and is somewhat less than 64 in both cases.
However, the complications of controlling a FIFO which has
a length which is not a power of two, means that the small
saving in RAM core would be outweighed by the additional
complexity of control logic required.

[2609] The RAM core is implemented with a design which
allows a read and a write (to the same or separate addresses)
in a single 30 MHz cycle. This means that the RAM is
effectively operating with an internal 60 MHz cycle time.

[2610] The re-ordering operation is performed by gener-
ating a particular sequence of read addresses (“sequence
address generation”) in the range 0—63, but not in natural
order. The sequences required are specified by the standard
zig-zag sequence (for eight horizontal or vertical scanning)
or by the sequence needed for normal matrix transposition.
These standard sequences are then further reordered by the
requirement to output each row in Odd/Even format (i.e.,
1,3,5,7,0,2,4,6) rather than (0,1,2,3,4,5,6,7)) because of the
requirements of the IDCT transform 1-dimensional blocks.

[2611] Transpose address sequence generation is quite
straightforward algorithmically. Straight transpose sequence
generation simply requires the generation of row and col-
umn addresses separately, both implemented with counters.
The row re-ordering requirement simply means that row
addresses are generated with a simple specific state machine
rather than a natural counter.

Oct. 16, 2003

[2612] Inverse zig-zag sequences are rather less straight-
forward to generate algorithmically. Because of this fact, a
small ROM is used to hold the entire 64 6 bit values of
address, this being addressed with row and column counters
which can be swapped in order to change between horizontal
and vertical scan modes. A ROM based generator is very
quick to design and it further has the advantage that it is
trivial to implement a forward zig-zag (ROM re-program) or
to add other alternative sequences in the future.

[2613] B.9.9.4 “Oned”—Single Dimension IDCT Trans-
form

[2614] This block has a pipeline depth of 20 stages and the
pipeline is rigid when stalled. This rigidity greatly simplifies
the design and should not unduly affect overall dynamics
since the pipeline depth is not that great and both dimensions
come after a RAM which provides a certain amount of
buffering.

[2615] The block follows the standard structure, but has
separate paths internally for DATA Token extensions (which
are to be processed) and all other items which should be
passed through unchanged. Note that the schematic is drawn
in a particular way. First, because of the requirements to
group together all the datapath logic and second, to allow
automatic compiled code generation (this explains the con-
trol logic at the top level).

[2616] Tokens are parsed as normal and then DATA exten-
sions, and other values, are routed respectively through two
different parallel paths before being re-combined with a
multiplexer before the output two-wire interface latch block.
The parallel paths are required because it is not possible to
pass values unchanged through the transform datapath. The
latency of the transform datapath is matched with a simple
shift register to handle the remainder of the Token Stream.

[2617] The control section of “oned” needs to parse the
Token Stream and control the splitting and re-combination
of the Tokens. The other major section controls the trans-
form datapath. The main mechanism for the control of this
datapath is a control shift-register which matches the data-
path pipeline and is tapped-off to provide the necessary
control signals for each stage of the datapath pipeline.

[2618] The “oned” block has the requirement that it can
only start operation on complete rows of DATA extensions,
i.e., groups of 8. It is not able to handle invalid data (“Gaps™)
in the middle of rows, although, in fact, the operation of
“izz” and the “tram” ensure that complete DATA blocks are
output as an uninterrupted sequence of 64 valid extension
values.

[2619] B.9.9.4.1 Transform Datapath

[2620] The micro-architecture of the transform datapath,
“t_dp” was previously shown in FIG. 141. Note that some
detail (e.g., clocking, shifts, etc.) is not shown. This diagram
does illustrate, however, how the datapath operates on four
values simultaneously at any stage in the pipeline. The basic
sub-Structure of the datapath, i.e., the three main sections
can also be seen (e.g., pre-common, common and post-
common) as can the arithmetic and latch resources required.
The named control signals are the enables for the-pipeline
latches (and the add/sub selector) which are sequenced with
decodes of the control shift-register state. Note that each
pipeline stage is actually four clock cycles in length.

US 2003/0196078 Al

[2621] Within the transform datapath there are a number
of latch stages which are required to gather input, store
intermediate results in the pipeline, and serialize the output.
Some of latches are of the muxing type, i.c., they can be
conditionally loaded from more than one source. All the
latches are of the enabled type, i.c., there are separate clock
and enable inputs. This means that it is easy to generate
enable signals with the correct timing, rather than having to
consider issues of skew that would arise if a generated clock
scheme was adopted.

[2622] The main arithmetic elements required are as fol-
lows.

[2623] a number of fixed coefficient multipliers
(carry-save output)

[2624] carry-save adders

[2625] carry-save subtractors
[2626] resolving adders

[2627] resolving adder/subtractors

[2628] All arithmetic is performed in two’s complement
representation. This can either be in normal (resolved) form
or in carry-save form (i.e., two numbers whose sum repre-
sents the actual value). All numbers are resolved before
storage and only one resolving operation is performed per
pipeline stage since this is the most expensive operation in
terms of time. The resolving operations performed here all
use simple ripple-carry. This means that the resolvers are
quite small, but relatively slow. Since the resolutions domi-
nate the total time in each stage, there is obviously an
opportunity to speed up the entire transform by employing
fast resolving arithmetic units.

[2629] B.9.9.5 “Ras”—Rounding and Saturation

[2630] In the present invention, the “ras” block has the
task of taking 22-bit fixed point numbers from the output of
the second dimension “oned” and turning these into the
correctly rounded and saturated 9-bit signed integer results
required. This block also performs the necessary divide-by-4
inherent in the scheme (the 2/N term) and to further divide-
by-2 required to compensate for the V2 pre-scaling per-
formed in each of the two dimensions. This division by 8
implies that the fixed point position is interpreted as being
three bits further left than anticipated, i.c., treat the result as
having 15 bits of integer representation and 7 bits of fraction
(rather than 4 bits of fraction). The rounding mode imple-
mented is “round to positive infinity”, i.e., add one for
fractions of exactly 0.5. This is primarily done because it is
the simplest rounding mode to implement. After rounding (a
conditional increment of the integer part) is complete, this
result is inspected to see whether the 9-bit signed result
requires saturation to the maximum or minimum value in
this range. This is done by inspection of the increment carry
out together with the upper bits of the original integer value.

[2631] As usual, the Token Stream is parsed and the round
and saturation operation is only applied to DATA Token
extension values. The block has a pipeline depth of two
stages and is implemented entirely in zcells.

[2632] B.9.9.6 “Idctsels” —IDCT Register Select Decoder

[2633] This block is a simple decoder which decodes the
4 microprocessor interface address lines, and the “sel_test”

Oct. 16, 2003

156

input, into select lines for individual blocks test access
(snoopers and RAMs). The block consists only of zcells
combinatorial logic. The selects decoded are shown in Table
B.9.2.

TABLE B.9.1

IDCT Test Address Space

Addr. Bit
(hex) num. Register Name
0x0 7...1 not used
0 TRAM keyhole address
0x1 7...0
0x2 7...0 TRAM keyhole data
0x3 7...0 TRAM keyhole data®
0x4 7...0 1ZZ keyhole address
0x5 7...0 1ZZ keyhole data
0x6 7...3 not used
2 ipfsnoop test select
1 ipfsnoop valid
0 ipfsnoop accept
0x7 7...5 not used
5...0 ipfsnoop bits[21:16]
0x8 7...0 ipfsnoop bits[15:8]
0x9 7...0 ipfsnoop bits[7:0]
OxA 7...3 not used
2 d2snoop test select
1 d2snoop valid
0 d2snoop accept
0xB 7...6 not used
5...0 d2snoop bits[21:16]
0xC 7...0 d2snoop bits[15:8]
0xD 7...0 d2snoop bits[7:0]
OxE 7 outsnoop test select
6 outsnoop valid
5 outsnoop accept
4...2 not used
0xE 1...0 outsnoop data[9:8]
OxF 7...0 outsnoop data[7:0]

“Repeated address

[2634] B.9.9.7 “Idctregs”—IDCT Control Register and
Events

[2635] This block of the invention contains instances of
the standard event logic blocks to handle the DATA deficient
and supernumerary errors and also a single memory mapped
bit “vscan” which can be used to make the “izz” re-ordering
change such that the IDCT output is vertically scanned. This
bit is reset to the value “0”, ie., the default mode is
horizontally scanned output. The two possible events are
OR-ed together to form an idctevent signal which can be
used as an interrupt. See Section B.9.10 for the addresses
and bit positions of registers and events.

[2636] B.9.9.8 Clock Generators

[2637] Two “standard” type (“clkgen™) clock generators
are used in the IDCT. This is done so that there can be two
separate scan-paths. The clock generators are called
“idctcga” and “idctegb”. Functionally, the only difference is
that “idctcgb” does not need to generate the “notrstl” signal.
The amounts of buffering for each of the clock and reset
outputs in the two clock generators is individually tailored to
the actual loads driven by each clock or reset. The loads that
are matched were actually measured from the gate and track
capacitances of the final layout.

[2638] When the IDCT top-level Block Place and Route
(BPR) was performed, advantage was taken of the capabili-

US 2003/0196078 Al

ties of the interactive global routing feature to increase the
widths of tracks of the first sections of the clock distribution
trees for the more heavily loaded clocks (phO_b and phl_b)
since these tracks will carry significant currents.

[2639] B.9.9.9 JTAG Control Blocks

[2640] Since the IDCT has two separate scan-chains, and
two clock generators, there are two instances of the standard
JTAG control block, “jspctle”. These interface between the
test port and the two scan-paths.

[2641] B.9.10 Event and Control Registers

[2642] The IDCT can generate two events and has a single
bit of control. The two events are idct_too_few_event and
idet_too_many_event which can be generated by the
“decheck” block at the front of the IDCT if incorrect DATA
Tokens are detected. The single control bit is “vscan” which
is set if it is required to operate the IDCT with the output
vertically scanned. This bit, therefore, controls the “izz”
block. All the event logic and the memory mapped control
bit are located in the block “idctregs”.

[2643] From the point of view of the IDCT, these registers
are located in the following locations. The tristate i/o wires
n_derrd and n-serrd are used to read and write to these
locations as appropriate.

TABLE B.9.2

IDCT Control Register Address Space

Addr. Bit
(hex) num. Register Name
0x0 7...1 not used
0 vscan
[2644]
TABLE B.9.3
IDCT Event Address Space
Addr. Bit
(hex) name Register Name
0x0 n__derrd idct__too__few__event
n_serrd idct__too__many__event
Ox1 n_ derrd idet_too_ few_ mask
n_serrd idct__too__many__mask

[2645] B.9.11 Implementation Issues
[2646] B.9.11.1 Logic Design Approach

[2647] Inthe design of all the IDCT blocks, in accordance
with the invention, there was an attempt to use a unified and
simple logic design strategy which would mean that it was
possible to do a “safe” design in a quick and straightforward
manner. For the majority of control logic, a simple scheme
of using master-slaves only was adopted. Asynchronous
set/reset inputs were only connected to the correct system
resets. Although it might often be possible to come up with
clever non-standard circuit configurations to perform the
same functions more efficiently, this scheme possesses the
following advantages.

Oct. 16, 2003

157

[2648] conceptually simple
[2649] easy to design
[2650] speed of operation is fairly obvious (cf.

latch—logic—latch—logic style design) and ame-
nable to automatic analysis

[2651] glitches not a problem (cf. SR latches)

[2652] wusing only system reset for initialization
allows scan paths to work correctly

[2653]

[2654] There are a number of places where transparent
d-type latches were used and these are listed below.

[2655] B.9.11.1.1 Two-Wire Interface Latches

[2656] The standard block structure uses latches for the
input and output two-wire interfaces. No logic exists
between an output two-wire latch and the following input
two-wire latch.

[2657] B.9.11.1.2 ROM Interface

[2658] Because of the timing requirements of the ROM
circuit, latches are used in the I[ZZ sequence generator at the
output of the ROM.

[2659] B.9.11.1.3 Transform Datapath and Control Shift-
Register

[2660] 1t is possible to implement every pipeline storage
stage as a full master-slave device, but because of the
amount of storage required there is a significant savings to
be had by using latches. However, this scheme requires the
user to consider several factors.

[2661] control shift-register must now produce con-
trol signals of both phases for use as enables (i.c.,
need to use latches in this shift-register)

[2662]

[2663] the “t_postc” will no longer automatically
produce compiled code since one latch outputs to
another latch of the same phase (because of the
timing of the enables this is not a problem for the
circuit)

[2664] Nonetheless, the area saved by the use of latches

makes it worthwhile to accept these factors in the present
invention.

[2665] B.9.11.1.4 Microprocessor Interfaces

[2666] Due to the nature of this interface, there is a
requirement for latches (and resynchronizers) in the Event
and register block “idctregs” and in the keyhole logic for
RAM cores.

[2667] B.9.11.1.5 JTAG Test Control
[2668]
[2669]

[2670] Apart from the work done in the design of the
library cells that were used in the IDCT design (standard
cells, datapath library, RAMS, ROMs, etc.) there is no
requirement for any transistor level circuit design in the
IDCT. circuit simulations (using Hspice) were performed of
some of the known critical paths in the transform datapath
and Hspice was also used to verify the results of the Critical

allows automatic complied C-code generation

timing analysis complicated by use of latches

These standard blocks make use of latches.

B.9.11.2 Circuit Design Issues

US 2003/0196078 Al

Path Analysis (CPA) tool in the case of paths that were close
to the allowed maximum length.

[2671] Note that the IDCT is fully static in normal opera-
tion (i.e., we can stop the system clocks indefinitely) but
there are dynamic nodes in scanable latches which will
decay when test clocks are stopped (or very slow). Due to
the non-restored nature of some nodes which exhibit a Vt
drop (e.g., mux outputs) the IDCT will not be “micro-
power” when static.

[2672] B.9.11.3 Layout Approach

[2673] The overall approach to the layout implementation
of the present invention was to use BPR (some manual
intervention) to lay out a complete IDCT which consisted of
many zcells and a small number of macro blocks. These
macro blocks were either hand-edited layout (e.g., RAMs,
ROM, clock generators, datapaths) or, in the case of the
“oned” block, had been built using BPR from further zcells
and datapaths.

[2674] Datapaths were constructed from kdplib cells.
Additionally, locally defined layout variations of kdplib cells
were defined and used where this was perceived as provid-
ing a worthwhile size benefit. The datapath used in each of
the “oned” blocks, “oned_d”, is by far the largest single
element in the design and considerable effort was put into
optimizing the size (height) of this datapath.

[2675] The organization of the transform datapath, “t_dp”,
is rather crucial since the precise ordering of the elements
within the datapath will affect the way the interconnect is
handled. It is important to minimize the number of “overs”
(vertical wires not connecting to a sub-block) which occur at
the most congested point since there is a maximum allowed
value (ideally 8, 10 is also possible, although highly incon-
venient). The datapath is split logically into three major
sub-sections and this is the way that the datapath layout was
performed. In each subsection, there are really four parallel
data flows (which are combined at various points) and there
are, therefore, many ways of organizing the flows of data
(and, thus, the positions of all the elements) within each
subsection. The ordering of the blocks within each subsec-
tion, and also the allocation of logical buses to physical bus
pitches was worked out carefully before layout commenced
in order to make it possible to achieve a layout that could be
connected correctly.

[2676] B.9.12 Verification

[2677] The verification of the IDCT was done at a number
of levels, from top-level verification of the algorithms to
final layout checks.

[2678] The initial work on the transform architecture was
done in C, both full-precision and bit-accurate integer mod-
els were developed. Various tests were performed on the
bit-accurate model in order to prove the conformance to the
H.261 accuracy specification and to measure the dynamic
ranges of the calculations within the transform architecture.

[2679] The design progressed in many cases by writing an
M behavioral description of sub-blocks (for example, the
control of datapaths and RAMs). Such descriptions were
simulated in Lsim before moving onto the design of the
schematic description of that block. In some cases (e.g.,
RAMSs, clock generators) the behavioral descriptions were
still used for top-level simulations.

Oct. 16, 2003

[2680] The strategy for performing logic simulation was to
simulate the schematics for everything that would simulate
adequately at that level. The low-level library cells ((i.e.,
zcells and kdplib) were mainly simulated using their behav-
ioral descriptions since this results in far smaller and quicker
simulations. Additionally, the behavioral library cells pro-
vide timing check features which can highlight some circuit
configuration problems. As a confidence check, some simu-
lations were performed using the transistor descriptions of
the library cells. All the logic simulations were in the
zero-delay manner and, therefore, were intended to verify
functional performance. The verification of the real timing
behavior is done with other techniques.

[2681] Lsim switch-level simulations (with RC_Timing
mode being used) were done as a partial verification of
timing performance, but also provide checks for some other
potential transistor level problems (e.g., glitch sensitive
circuits).

[2682] The main verification technique for checking tim-
ing problems was the use of the CPA tool, the “path” option
for “datechk”. This was used to identify the longer signal
paths (some were already known) and Hspice was used to
verify the CPA analysis in some critical cases.

[2683] Most Lsim simulations were performed with the
standard source—block—>sink methodology since the bulk
of the IDCT behavior is exercised by the flow of Tokens
through the device. Additional simulations are also neces-
sary to test the features accessed through the microprocessor
interface (configuration, event and test logic) and those test
features accessed via JTAG/scan.

[2684] Compiled-code simulations can be readily accom-
plished by one of ordinary skill in the art for entire IDCT,
again using the standard source—bloc—sink method and
many of the same Token Streams that were used in the Lsim
verification.

[2685] B.9.13 Testing and Test Support

[2686] This section deals with the mechanisms which are
provided for testing and an analysis of how each of the
blocks might be tested.

[2687] The three mechanisms provided for test access are
as follows:

[2688] microprocessor access to RAM cores

[2689] microprocessor access to snooper blocks

[2690] scan path access to control and datapath logic

[2691] There are two “snooper” blocks and one “super
snooper” block in the IDCT. FIG. 140 shows the positions
of the snooper blocks and the other microprocessor test
access.

[2692] Using these, and the two RAM blocks, it is possible
to isolate each of the major blocks for the purpose of testing
their behavior in relation to the Token flow. Using micro-
processor access, it is possible to control the Token inputs to
any block and then to observe the Token port output of that
block in isolation. Furthermore, there are two separate scan
paths which run through (almost) all of the flip-flops and
latches in the control sections of each block and also some
of the datapath latches in the case of the “oned” transform
datapath pipeline. The two scan paths are denoted “a” and

US 2003/0196078 Al

159

“b”, the former running from the “decheck” block to the
“ip_fmt” block and the latter from the first “oned” block to
the “ras” block.

[2693] Access to snoopers is possible by accessing the
appropriate memory mapped locations in the normal man-
ner. The same is true of the RAM cores (using the “ramtest”
input as appropriate). The scan paths are accessed through
the JTAG port in the normal way.

[2694] Each of the blocks is now discussed with reference
to the various test issues.

[2695] B.9.13.1 “Decheck”

[2696] This block has the standard structure (see FIG.
139) where two latches for the input and output two-wire
interfaces surround a processing block. As usual, no scan is
provided to the two-wire latches since these simply pass on
data whenever enabled and have no depth of logic to be
tested. In this block, the “control” section consists of a
1-stage pipeline of zcells which are all on scanpath “a” The
logic in the control section is relatively simple, the most
complex path is probably in the generation of the DATA
extension count where a 6-bit incrementer is used.

[2697] B.9.132 “Izz”

[2698] This block is a variant of the standard structure and
includes a RAM core block added to the two-wire interface
latches and the control section. The control section is
implemented with zcells and a small ROM used for address
sequence generation. All the zcells are on scanpath “a” and
there is access to the ROM address and data via zcell latches.
There is also further logic, e.g., for the generation of
numbers plus the ability to increment or decrement. In
addition, there is a 7-bit full adder used for read address
generation. The RAM core is accessible through keyhole
registers, via the microprocessor interface, see Table B.9.1.

[2699] B.0.13.3 “Ip_fat”

[2700] This block again has the standard structure. Control
logic is implemented with some rather simple zcell logic (all
on scanpath “a”) but the latching and shifting/muxing of the
data is performed in a datapath with no direct access since
the logic here is very shallow and simple.

[2701] B.9.13.4 “Oned”

[2702] Again, this block follows the standard structure and
divides into random logic and datapath sections. The zcell
logic is relatively straightforward; all the zcells are on
scanpath “a”. The control signals for the transform pipeline
datapath are derived from a long shift register consisting of
zcell latches which are on the scanpath. Additionally, some
of the pipeline latches are on the scanpath, this being done
because there is a considerable depth of logic between some
stages of the pipeline (e.g., multipliers and adders). The
non-DATA Tokens are passed along a shift register, imple-
mented as a datapath, and there is no test access to any of the
stages.

[2703] B.9.13.5 Tram’

[2704] This block is very similar to the “izz” block. In this
case, however, there is no ROM used in the address
sequence address generation. This is performed algorithmi-
cally. All the zcell control states are on datapath “b”.

Oct. 16, 2003

[2705] B.9.13.6 Rras’

[2706] This block follows the standard structure and is
entirely implemented with zcells. The most complex logical
function is the 8-bit incrementer used when rounding up. All
other logic is fairly simple. All states are scanpath “b”.

[2707] B.9.13.7 Other Top-Level Blocks

[2708] There are several other blocks that appear at the top
level of the IDCT. The snoopers are obviously part of the test
access logic, as are the JTAG control blocks. There are also
the two clock generators which do not have any special test
access (although they support various test features). The
block “idctsels” is combinatorial zcell logic for decoding
microprocessor addresses and the block “idctregs™ contains
the microprocessor accessible event and control bits asso-
ciated with the IDCT.

SECTION B.10 Introduction
[2709] B.10.1 Overview of the Temporal Decoder

[2710] The internal structure of the Temporal Decoder, in
accordance with the invention, is shown in FIG. 142.

[2711] All data flow between the blocks of the chip (and
much of the data flow within blocks) is controlled by means
of the usual two-wire interfaces and each of the arrows in
FIG. 142 represents a two-wire interface. The incoming
token stream passes through the input interface 450 which
synchronizes the data from the external system clock to the
internal clock derived from the phase-locked-loop (ph0/
ph1). The token stream is then split into two paths via a Top
Fork 451; one stream passes to the Address Generator 452
and the other to a 256 word FIFO 453. The FIFO buffers data
while data from previous I or P frames is fetched from the
DRAM and processed in the Prediction Filters 454 before
being added to the incoming error data from the Spatial
Decoder in the Prediction Adder 455 (P and B frames).
During MPEG decoding, frame reordering data must also be
fetched for I and P frames so that the output frames are in the
correct order, the reordered data being inserted into the
stream in the Read Rudder block 456.

[2712] The Address Generator 452 generates separate
addresses for forward and backward predictions, reorder,
read and write-back, the data which is written back being
split from the stream in the Write Rudder block 457. Finally,
data is resynchronized to the external clock in the Output
Interface Block 458.

[2713] All the major blocks in the Temporal Decoder are
connected to the internal microprocessor interface (UPI)
bus. This is derived from the external microprocessor inter-
face (MPI) bus in the Microprocessor Interface block 459.
This block has address decodes for the various blocks in the
chip associated with it. Also associated with the micropro-
cessor interface is the event logic.

[2714] The rest of the logic of the Temporal Decoder is
concerned primarily with test. First, the IEE 1149.1 JTAG)
interface 460 provides an interface to internal scan paths as
well as to JTAG boundary-scan features. Secondly, two-wire
interface stages which allow intrusive access to the data flow
via the microprocessor interface while in test mode are
included at strategic points in the pipeline architecture.

US 2003/0196078 Al

SECTION B.11 Clocking, Test and Related Issues
[2715] B.11.1 Clock Regimes

[2716] Before considering the individual functional blocks
within the chip, it is helpful to have an appreciation of the
clock regimes within the chip and the relationship between
them.

[2717] During normal operation, most blocks of the chip
run synchronously to the signal pllsysclk from the phase-
locked-loop (PLL) block. The exception to this is the
DRAM interface whose timing is governed by the need to be
synchronous to the iftime sub-block, which generates the
DRAM control signals (notwe, notoe, notcas, notras). The
core of this block is clocked by the two-phase non-overlap-
ping clocks clkO and clkl, which are derived from the
quadrature two-phase clocks supplied independently from
the PLL cki0, ckil and clkqO, ckql.

[2718] Because the clk0, clkl DRAM interface clocks are
asynchronous to the clocks in the rest of the chip, measures
have been taken to eliminate the possibility of metastable
behavior (as far as practically possible) at the interfaces
between the DRAM interface and the rest of the chip. The
synchronization occurs in two areas: in the output interfaces
of the Address Generator (addrgen/predread/psgsync,
addrgen/ip_wrt2/syncl8 and addrgervip_rd2/syncl8) and in
the blocks which control the “swinging” of the swing-buffer
RAMs in the DRAM Interface (see section on the DRAM
Interface). In each case, the synchronization process is
achieved by means of three metastable-hard flip-flops in
series. It should be noted that this means that clkO/clkl are
used in the output stages of the Address Generator.

[2719] Inaddition to these completely asynchronous clock
regimes, there are a number of separate clock generators
which generate two-phase non-overlapping clocks (phO,
phl) from pllsysclk. The Address Generator, Prediction
Filters and DRAM Interface each have their own clock
generators; the remainder of the chip is run off a common
clock generator. The reasons for this are twofold. First, it
reduces the capacitive load on individual clock generators,
allowing smaller clock drivers and reduced clock routing
widths. Second, each scan path is controlled by a clock
generator, so increasing the number of clock generators
allows shorter scan-paths to be used.

[2720] Tt is necessary to resynchronize signals which are
driven across these clock-regime boundaries because the
minor skews between the non-overlapping clocks derived
from different clock generators could mean that underlap
occurred at the interfaces. Circuitry built into each
“Snooper” block (see Section B.11.4) ensures that this does
not occur, and Snooper blocks have been placed at the
boundaries between all the clock regimes, excepting at the
front of the Address Generator, where the resynchronization
is performed in the Token Decode block.

[2721] B.11.2 Control of Clocks

[2722] Each standard clock generator generates a number
of different clocks which allow operation in normal mode
and scan-test mode. The control of clocks in scan-test mode
is described in detail elsewhere, but it is worth noting that
several of the clocks generated by a clock generator (tphO,
tphl, tckm, tcks) do not usually appear to be joined to any
primitive symbols on the schematics. This is because scan

Oct. 16, 2003

160

paths are generated automatically by a post-processor which
correctly connects these clocks. From a functional point of
view, the fact that the post-processor has connected different
clocks from those shown on the schematics can be ignored;
the behavior is the same.

[2723] During normal operation, the master clocks can be
derived in a number of different-ways. Table B.11.1 indi-
cates how various modes can be selected depending on the
states of the pins pllselect and override.

TABLE B.11.1

Clock Control Modes

pliselect override Mode

0 0 plisysclk is connected directly to external sysclk.
bypassing the PLL: DRAM interface clocks (cki0,
ckil, ckq0, ckql) are controlled directly from the pins
ti and tq.

Override mode - phO and phl clocks are controlled
directly from pins tphoish and tphlish: DRAM
interface clocks (cki0, ckil, ckq0, ckql) are
controlled directly from the pins ti and tq.

Normal operation. plisyscik is the clock generated by
the PLL: DRAM interface clocks are generated by
the PLL.

External resistors connected to ti and tq are used
instead of the internal resistors (debug only).

[2724] B.11.3 The Two-Wire Interface

[2725] The overall functionality of the two-wire interface
is described in detail in the Technical Reference. However,
the two-wire interface is used for all block-to-block com-
munication within the Temporal Decoder and most blocks
consist of a number of pipeline stages, all of which are
themselves two-wire interface stages. It is, therefore, essen-
tial to understand the internal implementation of the two-
wire interface in order to be able to interpret many of the
schematics. In general, these internal pipeline stages are
structured as shown in FIG. 143.

[2726] FIG. 143 shows a latch-logic-latch representation
as this is the configuration which is normally used. However,
when a number of stages are put together, it is equally valid
to think of a “stage” as being latch-latch-logic (for many
engineers a more familiar model). The use of the latch-logic-
latch configuration allows all inter-block communication to
be latch to latch, without any intervening logic in either the
sending or receiving block.

[2727] Referring again to FIG. 143, a simple two-wire
interface FIFO stage can be constructed by removing the
logic block, connecting the data and valid signals directly
between the latches and the latched in_valid directly into the
NOR gate on the input to the in_accept latch in the same way
asout_valid and out_accept are gated. Data and valid signals
then propagate when the corresponding accept signal is
high. By ORing in_valid with out_accept_reg in the manner
shown, data will be accepted if in_valid in low, even if
out_accept_reg is low. In this way gaps (data with the valid
bit low) are removed from the pipeline whenever a stall
(accept signal low) occurs.

[2728] With the logic block inserted, as shown in FIG.
143, in_accept and out_valid may also be dependent on the
data or the state of the block. In the configuration shown, it

US 2003/0196078 Al

is standard for any state within the block to be held in
master-slave devices with the master enabled by ph1 and the
slave enabled by phO.

[2729] B.11.4 Snooper Blocks

[2730] Snooper blocks enable access to the data stream at
various points in the chip via the Microprocessor Interface.
There are two types of snooper blocks. Ordinary Snoopers
can only be accessed in test mode where the clocks can be
controlled directly. “Super Snoopers” can be accessed while
the clocks are running and contain circuitry which synchro-
nizes the asynchronous data from the Microprocessor bus to
the internal chip clocks. Table B.11.2 lists the locations and
types of all Snoopers in the Temporal Decoder.

TABLE B.11.2

Snoopers in Temporal Decoder.

Location Type

addrgervvec__pipe/snoopz31 Snooper
addrgervent__pipe/midsnp Snooper
addrtgervent__pipe/endsnp Snooper
addrgervpredread/snoopz44 Snooper

addrgervip__wrt2/superz10
addrgervip__rc2/superz10
dramx/dramif/ifsnoops/snoopz15 (fsnp)
dramx/dramif/ifsnoops/snoopz15 (bsnp)
dramx/dramif/ifsnoops/superz9
wrudder/superz9

Super Snooper
Super Snooper
Snooper
Snooper
Super Snooper
Super Snooper

pflts/twdflt/dimbuff/snoopk13 Snooper
pflts/bwdfit.dimbuff/snoopk13 Snooper
pflts/snoopz9 Snooper

[2731] Details on the use of both Snoopers are contained
in the test section. Details of the operation of the JTAG
interface are contained in the JTAG documnent.

SECTION B.12 Functional Blocks
[2732] B.12.1 Top Fork

[2733] The Top Fork, in accordance with the present
invention, serves two different functions. First, it forks the
data stream into two separate streams: one to the Address
Generator and the other to the FIFO. Second, it provides the
means of starting and stopping the chip so that the chip can
be configured.

[2734] The fork part aspect of the component is very
simple. The same data is presented to both the Address
Generator and the FIFO, and has to have been accepted by
both blocks before an accept is sent back to the previous
stage. Thus, the valids of the two branches of the fork are
dependent on the accepts from the other branch. If the chip
is in a stopped state, the valids to both branches are held low.

[2735] The chip powers up in a state where in_accept is
held low until the configure bit is set high. This ensures that
no data is accepted until the user has configured the chip. If
the user needs to configure the chip at any other time, he
must set the configure bit and wait until the chip has finished
the current stream. The stopping process is as follows:
[2736] 1) If the configure bit has been set, do not
accept any more data after a flush token has been
detected by the Top Fork.
[2737] 2) The chip will have finished processing the
stream when the FLUSH Token reaches the Read
Rudder. This causes the signal seq_done to go high.

Oct. 16, 2003

[2738] 3) When seq_done goes high, set an event bit
which can be read by the Microprocessor. The event
signal can be masked by the Event block.

[2739] B.12.2 Address Generator

[2740] In the present invention, the address generator
(addrgen) is responsible for counting the numbers of blocks
within a frame, and for generating the correct sequence of
addresses for DRAM data transfers. The address generator’s
input is the token stream from the token input port (via
topfork), and its output to the DRAM interface consists of
addresses and other information, controlled by a request/
acknowledge protocol.

2741 The principal sections of the address generator are:

[2743] block counting and generation of the DRAM
block address

[2744] conversion of motion vector data into an
address offset

[2745] request and address generator for prediction
transfers

[2746] reorder read address generator write address
generator

[2747] B.12.2.1 Token Decode (tokdec)

[2748] In the Token Decoder, tokens associated with cod-
ing standards, frame and block information and motion
vectors are decoded. The information extracted from the
stream is stored in a set of registers which may also be
accessed via the upi. The detection of a DATA token header
is signalled to subsequent blocks to enable block counting
and address generation. Nothing happens when running
JPEG.

[2749] List of tokens decoded:

token decode

[2750] CODING_ ¢ranparD
[2751] DATA

[2752] DEFINE_MAX_SAMPLING
[2753] DEFINE_SAMPLING
[2754] HORIZONTAL MBS
[2755] MVD_BACKWARDS
[2756] MVD_FORWARDS

[2757] PICTURE_START

[2758] PICTURE_TYPE

[2759] PREDICTION _MODE

[2760] This block also combines information from the
request generators to control the toggling of the frame
pointers and to stall the input stream. The stream is stalled
when a new frame appears at the input (in the form of a
PICTURE_START token) but the writeback or reorder read
associated with the previous frame is incomplete.

[2761] B.12.2.2 Macroblock Counter (mblkentr)

[2762] The macroblock counter of the present invention
consists of four basic counters which point to the horizontal
and vertical position of the macroblock in the frame and to

US 2003/0196078 Al

Oct. 16, 2003

162

the horizontal and vertical position of the block within the
macroblock. At the beginning of time, and on each PIC-
TURE_START, all counters are reset to zero. As DATA
Token headers arrive, the counters increment and resect
according to the color component number in the token
header and the frame structure. This frame structure is
described by the sampling registers in the token decoder.

[2763] For a given color component, the counting pro-
ceeds as follows. The horizontal block count is incremented
on each new DATA Token of the same component until it
reaches the width of the macroblock, and then it resets. The
vertical block count is incremented by this reset until it
reaches the height of the macroblock, and then it resets.
When this happens, the next color component is expected.
Hence, this sequence is repeated for each of the components
in the macroblock—the horizontal and vertical size of the
macroblock, possibly being different for each component. If,
for any component, fewer blocks are received than are
expected, the count will still proceed to the next component
without error.

[2764] When the color component of the DATA Token is
less than the expected value, the horizontal macroblock
count is incremented. (Note that this will also occur when
more than the expected number of blocks appear for a given
color component, as the counters will then be expecting a
higher component index.) This horizontal count is reset
when the count reaches the picture width in macroblocks.
This reset increments the vertical macroblock count.

[2765] There is a further ability to count macroblocks in
H.261 CIF format. In this case, there is an extra level
hierarchy between macroblocks and the picture called the
group of blocks. This is eleven macroblocks wide and three
deep, and a picture is always two groups wide. The token
decoder extracts the CIF bit from the PICTURE_TYPE
token and passes this to the macroblock counter to instruct
it to count groups of blocks. Instances of too few or too
many blocks per component will provoke similar reactions
as above.

[2766] 8.12.2.3 Block Calculation (blkcalc)

[2767] The Block calculation converts the macroblock and
block-within-macroblock coordinates into coordinates for
the block’s position in the picture, i.e., it knocks out the level
of hierarchy. This, of course, has to take into account the
sampling ratios of the different color components.

[2768] B.12.2.4 Base block Address (bsblkadr)

[2769] The information from the blkcalc, together with the
color component offsets, is used to calculate the block
address within the linear DRAM address space. Essentially,
for a given color component, the linear block address is the
number of blocks down times the width of the picture plus
the number of blocks long. This is added to the color
component offset to form the base block address.

[2770] B.12.2.S Vector Offset (vec_pipe)

[2771] The motion vector information presented by the
token decoder is in the form of horizontal and vertical pixel
offset coordinates. That is, for each of the forward and
backward vectors there is an (x,y) which gives the displace-
ment in half-pixels from the block being formed to the block
from which it is being predicted. Note that these coordinates
may be positive or negative. They are first scaled according

to the sampling of each color component, and used to form
the block and new pixel offset coordinates.

[2772] 1In FIG. 145, the shaded area represents the block
that is being formed. The dotted outline is the block from
which it is being predicted. The big arrow shows the block
offset—the horizontal and vertical vector to the DRAM
block that contains the prediction block’s origin—in this
case (1,4). The small arrow shows the new pixel offset—the
position of the prediction block origin within that DRAM
block. As the DRAM block is 8x8 bytes, the pixel offset
looks to be (7,2).

[2773] The multiplier array vmarrla then converts the
block vector offset into a linear vector offset. The pixel
information is passed to the prediction request generator as
an (X,y) coordinate (pix_info).

[2774] B.12.2.6 Prediction Requests

[2775] The frame pointer, base block address and vector
offset are added to form the address of the block to be
fetched from the DRAM (Inblkad3). If the pixel offset is
zero, only one request is generated. If there is an offset in
either the x OR y dimension, then two requests are gener-
ated—the original block address and the one either imme-
diately to the right or immediately below. With an offset in
both x and y, four requests are generated.

[2776] Synchronization between the chip clock regime
and the DRAM interface clock regime takes place between
the first addition (Inblkad3) and the state machine that
generates the appropriate requests. Thus, the state machine
(psgstate) is clocked by the DRAM interface clocks, and its
scanned elements form part of the DRAM interface scan
chain.

[2777] B.12.2.7 Reorder Read Requests and Write
Requests

[2778] As there is no pixel offset involved here, each
address is formed by adding the base block address to the
relevant frame pointer. The reorder read uses the same frame
store as the prediction and data is written back to the other
frame store. Each block includes a short FIFO to store
addresses as the transfer of read and write data is likely to
lag the prediction transfer at the corresponding address.
(This is because the read/write data interacts with stream
further along the chip dataflow than the prediction data).
Each block also includes synchronization between the chip
clock and the DRAM interface clock.

[2779] B.12.2.8 Offsets

[2780] The DRAM is configured as two frame stores, each
of which contains up to three color components. The frame
store pointers and the color component offsets within each
frame must be programmed via the upi.

[2781] B.12.2.9 snoopers

[2782]
follows:

In the present invention, snoopers are positioned as

[2783] Between blkcalc and bsblkadr—this interface
comprises the horizontal and vertical block coordi-
nates, the appropriate color component offset and the
width of the picture in blocks (for that component).

US 2003/0196078 Al

[2784] After bsblkadr—the base block address.

[2785] After vec_pipe—the linear block offset, the
pixel offset within the block, together with informa-
tion on the prediction mode, color component and
H.261 operation.

[2786] After Inblkad3—the physical block address,
as described under “Prediction Requests”.

[2787] Super snoopers are located in the reorder read and
write request generators for use during testing of the external
DRAM. See the DRAM Interface section for all the details.

[2788] B.12.2.10 Scan

[2789] The addrgen block has its own scan chain, the
clocking of which is controlled by the block’s own clock
generator (adclkgen). Note that the request generators at the
back end of the block fall within the DRAM interface clock
regime.

[2790] B.12.3 **Prediction Filters

[2791] The overall structure of the Prediction Filters, in
accordance with the present invention, is shown in FIG.
146. The forward and backward filters are identical and filter
the MPEG forward and backward prediction blocks. Only
the forward filter is used in H.261 mode (the h261_on input
of the backward filter should be permanently low because
H.261 streams do not contain backward predictions). The
entire Prediction Filters block is composed of pipelines of
two-wire interface stages.

[2792] B.12.3.1 A Prediction Filter

[2793] Each Prediction Filter acts completely indepen-
dently of the other, processing data as soon as valid data
appears at its input. It can be seen from FIG. 147 that a
Prediction Filter consists of four separate blocks, two of
which are identical. It is best if the operation of these blocks
is described independently for MPEG and H.261 operation.
H.261 being the more complex, is described first.

[2794] B.12.3.1.1 [.261 operation

[2795] The one-dimensional filter equation used is as
follows:

Xipp + 2%+
P

F; = x;(otherwise)

F: = (l=i<6)

[2796] This is applied to each row of the 8x8 block by the
x Prediction Filter and to each column by the y Prediction
Filter. The mechanism by which this is achieved is illus-
trated in FIG. 148, which is basically a representation of the
pfitldd schematic. The filter consists of three two-wire
interface pipeline stages. For the first and last pixels in a row,
registers A and C are reset and the data passes unaltered
through registers B, D and F (the contents of B and D being
added to zero). The control of Bx2mux is set so that the
output of register B is shifted left by one. This shifting is in
addition to the one place which it is always shifted in any
event. Thus, all values are multiplied by 4 (more of this
later). For all other pixels, x;, ; is loaded into register C, x;
into register B and x;_, into register A. It can be seen from

163

Oct. 16, 2003

FIG. 148 that the H.261 filter equation is then implemented.
Because vertical filtering is performed in horizontal groups
of three (see notes on the Dimension Buffer, below) there is
no need to treat the first and last pixels in a row differently.
The control and the counting of the pixels within a row is
performed by the control logic associated with each 1-D
filter. It should be noted that the result has not been divided
by 4. Division by 16 (shift right by 4) is performed at the
input of the Prediction Filters Adder (Section B.12.4.2) after
both horizontal and vertical filtering has been performed, so
that arithmetic accuracy is not lost. Registers DA, DD and
DF pass control information down the pipeline. This
includes h261_on and last_byte.

[2797] Of the other blocks found in the Prediction Filter,
the function of the Formatter is merely to ensure that data is
presented to the x-filter in the correct order. It can be seen
above that this merely requires a three-stage shift register,
the first stage being connected to the input of register C, the
second to register B and the third to register A.

[2798] Between the x and vy filters, the Dimension Buffer
buffers data so that groups of three vertical pixels are
presented to the y-filter. These groups of three are still
processed horizontally, however, so that no transposition
occurs within the Prediction Filters. Referring to FIG. 149,
the sequence in which pixels are output from the Dimension
Buffer is illustrated in Table B.12.1.

TABLE B.12.1

H.261 Dimension Buffer Sequence

Clock Input Pixel Output Pixel Clock Input Pixel Output Pixel
1 0 55[a] 17 16 7
2 1 56 18 17 F (0,8,16)(b)
3 2 57 19 18 F (1,9,17)
4 3 58 20 19 F (2,10,18)
5 4 59 21 20 F (3,11,19)
6 5 60 22 21 F (4,12,20)
7 6 61 23 22 F (5,13,21)
8 7 62 24 23 F (6,14,22)
9 8 63 25 24 F (7,15,23)
10 9 0 26 25 F (8,16,24)
11 10 1 27 26 F (9,17,25)
12 11 2 28 27 F (10,18,26)
13 12 3 29 28 F (11,19,27)
14 13 4 30 29 F (12,20,28)
15 14 5 31 30 F (12,20,28)
16 15 6 32 31 F (14,22,30)

(a)Least row of pixels from previous block or invalid data if there was no
previous block (or if there was a long gap between blocks.)
(b)F(x) indicates the function in H.261 filter equation.

[2799] B.12.3.1.2 XPEG Opration

[2800] During MPEG operation, a Prediction Filter per-
forms a simple half pel interpolation:

X+ Xip g

F; = T(O < i=<8, halfpel

Fi=x; (02i=7 integer pel)
[2801] This is the default filter operation unless the
h261_on input is low. If the signal dim into a 1-D filter is low
then integer pel interpolation will be performed. Accord-
ingly, if h261 on is low and xdim and ydim are low, all

US 2003/0196078 Al

pixels are passed straight through without filtering. It is an
obvious requirement that when the dim signal into a 1-D
filter is high, the rows (or columns) will be 8 pixels wide (or
high). This is summarized in Table B.12.2. Referring to FIG.
148, “11-D Prediction Filter,”, the

TABLE B.12.2

1-D Filter Operation

h261_on xdim ydim Function

0 0 0 F,=x;

0 0 1 MPEG 8 x 9 block

0 1 0 MPEG 9 x 8 block

0 1 1 MPEG 9 x 9 block

1 0 0 H.261 Low-pass Filter
1 0 1 Illegal

1 1 0 Illegal

1 1 1 Illegal

[2802] operation of the 1-D filter is the same for MPEG
inter pel as it is for the first and last pixels in a row in H.261.
For MPEG half-pel operation, register A is permanently
reset and the output of register C is shifted left by 1 (the
output of register B is always shifted left by 1 anyway).
Thus, after a couple of clocks register F contains (2B+2C),
four times the required result, but this is taken care of at the
input of the Prediction Filters Adder, where the number,
having passed through both x and y filters, is shifted right by
4.

[2803] The function of the Formatter and Dimension
Buffer are also simpler in MPEG. The formatter must collect
two valid pixels before passing them to the x-filter for
half-pel interpolation; the Dimension Buffer only needs to
buffer one row. It is worth noting that after data has passed
through the x-filter, there can only ever be 8 pixels in a row,
because the filtering operation converts 9-pixel rows into
8-pixel rows. “Lost” pixels are replaced by gaps in the data
stream. When performing half-pel interpolation, the x-filter
inserts a gap at the end of each row (after every 8 pixels); the
y-filter inserts 8 gaps at the end of the block. This is
significant because the group of 8 or 9 gaps at the end of a
block align with DATA Token headers and other tokens
between DATA Tokens in the stream coming out of the
FIFO. This minimizes the worst-case throughput of the chip
which occurs when 9x9 blocks are being filtered.

[2804] B.12.3.2 The Prediction Filters Adder.

[2805] During MPEG operation, predictions may be
formed using an earlier picture, a later picture, or the average
of the two. Predictions formed from an earlier frame termed
forward predictions and those formed from a later frame are
called backward predictions. The function of the Prediction
Filters Adder (pfadd) is to determine which filtered predic-
tion values are being used (forward, backward or both) and
either pass through the forward or backward filtered predic-
tions or the average of the two (rounded towards positive
infinity).

[2806] The prediction mode can only change between
blocks, i.e., at power-up or after the fwd_ 1st_byte and/or
bwd__1st_byte signals are active, indicating the last byte of
the current prediction block. If the current block is a forward
prediction then only fwd_ 1st_byte is examined. If it is a
backward prediction then only bwd__1st_byte is examined.

Oct. 16, 2003

164

If it is a bidirectional prediction, then both fwd_ 1st_byte
and bwd__1st_byte are examined. The signals fwd_on and
bwd on determine which prediction values are used. At any
time, either both or neither of these signals may be active. At
start-up, or if there is a gap when no valid data is present at
the inputs of the block, the block enters a state when neither
signal is active.

[2807] Two criteria are used to determine the prediction
mode for the next block: the signals fwd_, . twin and
bwd_ima twin, which indicate whether a forward or back-
ward block is part of a bidirectional prediction pair, and the
buses fwd_p num[1:0] and bwd_p_num[1:0]. These buses
contain numbers which increment by one for each new
prediction block or pair of prediction blocks. These blocks
are necessary because, for example, if there are two forward
prediction blocks followed by a bidirectional prediction
block, the DRAM interface can fetch the backward block of
the bidirectional prediction sufficiently far ahead so that it
reaches the input of the Prediction Filters Adder before the
second of the forward prediction blocks. similarly, other
sequences of backward and forward predictions can get out
of sequence at the input of the Prediction Filters Adder.
Thus, the next prediction mode is determined as follows:

[2808] 1) If valid forward data is present and fwd_i-
ma_twin is high, then the block stalls until valid
backward data arrives with bwd_ima_twin set and
then it goes through the blocks averaging each pair
of prediction values.

[2809] 2) If valid backward data is present and
bwd_ima_twin is high, then the block stalls until
valid forward data arrives with fwd_ima_twin set
and then it proceeds as above. If forward and back-
ward data are valid together, there is no stall.

[2810] 3) If valid forward data is present, but fwd_i-
ma_twin is not set, then fwd_p_num is examined. If
this equals the number from the previous prediction
plus one (stored in pred_num) then the prediction
mode is set to forward.

[2811] 4)If valid backward data is present but bwd_i-
ma_twin is not set, then bwd_p_num is examined. If
this equals the number from the previous prediction
plus one (stored in pred_num) then the prediction
mode is set to backward.

[2812] Note that “early_valid” signals from one stage back
in the pipeline are used so that the Prediction Filters Adder
mode can be set up before the first data from a new block
arrives. This ensures that no stalls are introduced into the
pipeline.

[2813] The ima_twin and pred_num signals are not passed
along the forward and backward prediction filter pipelines
with the filtered data. This is because:

[2814] 1) These signals are only examined when
fwd__1st_byte and/or bwd__1st_byte are valid. This
saves about 25 three-bit pipeline stages in each
prediction filter.

[2815] 2) The signals remain valid throughout a
block and, therefore, are valid at the time when

fwd__1st_byte

US 2003/0196078 Al

[2816] and/or bwd__1st _byte reach the Prediction
Filters Adder.

[2817] 3) The signals are examined a clock before
data arrives anyway.

[2818] B.12.4 Prediction Adder and FIFO

[2819] The prediction adder (padder) forms the predicted
frame by adding the data from the prediction filters to the
error data. To compensate for the delay from the input
through the address generator, DRAM interface and predic-
tion filters, the error data passes through a 256 word FIFO
(sfifo) before reaching padder.

[2820] The CODING_STANDARD, PREDIC-
TION_MODE and DATA Tokens are decoded to determine
when a predicted block is being formed. The 8-bit prediction
data is added to the 9-bit two’s complement error data in the
DATA Token. The result is restricted to the range 0 to 255
and passes to the next block. Note that this data restriction
also applies to all intra-coded data, including JPEG.

[2821] The prediction adder of the present invention also
includes a mechanism to detect mismatches in the data
arriving from the FIFO and the prediction filters. In theory,
the amount of data from the filters should exactly correspond
to the number of DATA Tokens from the FIFO which
involve prediction. In the event of a serious malfunction,
however, padder will attempt to recover.

[2822] The end of the data blocks from the FIFO and
filters are marked, respectively, by the in_extn and fl_last
inputs. Where the end of the filter data is detected before the
end of the DATA Token, the remainder of the token contin-
ues to the output unchanged. If, on the other hand, the filter
block is longer than the DATA Token, the input is stalled
until all the extra filter data has been accepted and discarded.

[2823] There is no snooper in either the FIFO or the
prediction adder, as the chip can-be configured to pass data
from the token input port directly to these blocks, and to pass
their output directly to the token output port.

[2824] B.12.5 Write and Read Rudders
[2825] B.12.5.1 The Write Rudder (wrudder)

[2826] The Write Rudder passes all tokens coming from
the Prediction Adder on to the Read Rudder. It also passes
all data blocks in I or P pictures in MPEG, and all data
blocks in H.261 to the DRAM interface so that they can be
written back into the external frame stores under the control
of the Address Generator. All the primary functionality is
contained within one two-wire interface stage, although the
write-back data passes through a snooper on its way to the
DRAM interface.

[2827] The Write-Rudder decodes the following tokens:

TABLE B.12.3

B.12.3 Tokens Decoded by the Write Rudder

Token Name Function in Write Rudder

Write-back is inhibited for JPEG streams.
Write-back only occurs in I and P frames.
not B frames.

Only the data within DATA tokens

is written back.

CODING__STANDARD
PICTURE_TYPE

DATA

[2828] After the DATA Token header has been detected,
all data bytes are output to the DRAM Interface. The end of

Oct. 16, 2003

the DATA Token is detected by in_extn going low and this
causes a flush signal to be sent to the DRAM Interface swing
buffer. In normal operation, this will align with the point
when the swing buffer would swing anyway, but if the DATA
Token does not contain 64 bytes of data this provides a
recovery mnechanismn (although it is likely that the next
few output pictures would be incorrect).

[2829] B..12.5.2 The Read Rudder (rrudder)

[2830] The Read Rudder of the present invention has three
functions, the two major ones relating to picture sequence
reordering in MPEG:

[2831] 1) To insert data which has been read-back
from the external frame store into the token stream at
the correct places.

[2832] 2) To reorder picture header information in I
and P pictures.

[2833] 3) To detect the end of a token stream by
detecting the FLUSH token (see Section B.12.1,
“Top Fork™).

[2834] The structure of the Read Rudder is illustrated in
FIG. 150. The entire block is made from standard two-wire
interface technology. Tokens in the input interface latches

are decoded and these decodes determine the operation of
the block:

TABLE B.12.4

Tokens decoded by the Read Rudder

Token Name Function in Read Rudder

FLUSH
CODING__STANDARD

Signals to Top Fork.

Reordering is inhibited if the coding
standard is not MPEG.

The read-back data for the first
picture or a reordered sequence is
invalid.

Signals that the current cutout
FIFO must be swapped (I or P
pictures)

The first at the picture header
tokens.

All tokens above the picture
layer are allowed through

The second of the picture header
tokens.

The third of the picture header
tokens.

When reordering, the contents of
DATA tokers are replaced with
reordered data.

SEQUENCE__START

PICTURE__START

PICTURE_END

TEMPORTAL__REFERENCE

PICTURE_TYPE

DATA

[2835] The reorder function is turned on via the Micro-
processor Interface, but is inhibited if the coding standard is
not MPEG, regardless of the state of the register. The same
MPI register controls whether the Address Generator gen-
erates a reorder address and thus, reorder is an output from
this block. To understand how the Read Rudder works,
consider the input and output control logic separately, bear-
ing in mind that the sequence of tokens is as follows:

[2836] CODING_STANDARD
[2837] SEQUENCE_START
[2838] PICTURE_START

US 2003/0196078 Al

[2839] TEMPORAL_REFERENCE
[2840] PICTURE_TYPE
[2841] Picture containing DATA Tokens and other

tokens
[2842] PICTURE_END
[2843]
[2844] PICTURE_START
[2845]

[2846] B.12.5.2.1 Input Control Logic

[2847] From the power-up, all tokens pass into FIFO 1
(called the current input FIFO) until the first PICTURE-
_TYPE token for an I or P picture is encountered. FIFO 2
then becomes the current input FIFO and all input is directed
to it until the next PICTURE_TYPE for an I or P picture is
encountered and FIFO 1 becomes the current input FIFO
again. Within I and P pictures, all tokens between PIC-
TURE_TYPE and PICTUR_END, except DATA Tokens,
are discarded. This is to prevent motion vectors, etc. from
being associated with the wrong pictures in the reordered
stream, where they would have no meaning.

[2848] A three-bit code is -put into the FIFO, along with
the token stream, to indicate the presence of certain token
headers. This saves having to perform token decoding on the
output of the FIFOS.

[2849] B.12.5.2.2 Output Control Logic

[2850] From the power-up, tokens are accepted from FIFO
1 (called the current output FIFO) until a picture start code
is encountered, after which FIFO 2 becomes the current
output FIFO. Referring back to Section B.12.5.2.1, it can be
seen that at this stage the three picture header tokens,
PICTURE_START, TEMPORAL_REFERENCE and PIC-
TURE_START are retained in FIFO 1. The current output
FIFO is swapped every time a picture start code is encoun-
tered in an I or P frame. Accordingly, the three picture header
tokens are stored until the next I or P frame, at which time
they will become associated with the correctly reordered
data. B pictures are not reordered and, hence, pass through
without any tokens being discarded. All tokens in the first
picture, including PICTURE_END are discarded.

[2851] During I and P pictures, the data contained in
DATA Tokens in the token stream is replaced by reordered
data from the DRAM Interface. During the first picture,
“reordered” data is still present at the reordered data input
because the Address Generator still requests the DRAM
Interface to fetch it. This is considered garbage and is
discarded.

Section B.13 The DRAM Interface

[2852] B.13.1 overview

[2853] Inthe present invention, the Spatial Decoder, Tem-
poral Decoder and Video Formatter each contain a DRAM
Interface block for that particular chip. In all three devices,
the function of the DRAM Interface is to transfer data from
the chip to the external DRAM and from the external DRAM
into the chip via block addresses supplied by an address
generator.

166

Oct. 16, 2003

[2854] The DRAM Interface typically operates from a
clock which is asynchronous to both the address generator
and to the clocks of the various blocks through which data
is passed.

[2855] This asynchronism is readily managed, however,
because the clocks are operating at approximately the same
frequency.

[2856] Data is usually transferred between the DRAM
Interface and the rest of the chip in blocks of 64 bytes (the
only exception being prediction data in the Temporal
Decoder). Transfers take place by means of a device known
as a “swing Buffer”. This is essentially a pair of RAMs
operated in a double-buffered configuration, with the
DRAM interface filling or emptying one RAM while
another part of the chip empties or fills the other RAM. A
separate bus which carries an address from an address
generator is associated with each swing buffer.

[2857] Each of the chips has four swing buffers, but the
function of these swing buffers is different in each case. In
the Spatial Decoder, one swing buffer is used to transfer
coded data to the DRAM, another to read coded data from
the DRAM, the third to transfer tokenized data to the DRAM
and the fourth to read tokenized data from the DRAM. In the
Temporal Decoder, one swing buffer is used to write Intra or
Predicted picture data to the DRAM, the second to read Intra
or Predicted data from the DRAM and the other two to read
Intra or Predicted data from the DRAM and the other two to
read forward and backward prediction data. In the Video
Formatter, one swing buffer is used to transfer data to the
DRAM and the other three are used to read data from the
DRAM, one of each of Luminance (Y) and the Red and Blue
color difference data (Cr and Cb respectively).

[2858] The operation of the generic features of the DRAM
Interface is described in the Spatial Decoder document. The
following section describes the features peculiar to the
Temporal Decoder.

[2859] B.13.2 The Temporal Decoder DRAM Interface

[2860] As mentioned in section B.13.1, the Temporal
Decoder has four swing buffers: two are used to read and
write decoded Intra and Predicted (I and P) picture data and
these operate as described above. The other two are used to
fetch prediction data.

[2861] In general, prediction data will be offset from the
position of the block being processed as specified by motion
vectors in X and y. Thus, the block of data to be fetched will
not generally correspond to the block boundaries of the data
as it was encoded (and written into the DRAM). This is
illustrated in FIGS. 151 and 25, where the shaded area
represents the block that is being formed. The dotted outline
shows the block from which it is being predicted. The
address generator converts the address specified by the
motion vectors to a block offset (a whole number of blocks),
as shown by the big arrow, and a pixel offset, as shown by
the little arrow.

[2862] In the address generator, the frame pointer, base
block address and vector offset are added to form the address
of the block to be fetched from the DRAM. If the pixel offset
is zero, only one request is generated. If there is an offset in
either the x or y dimension, then two requests are gener-
ated—the original block address and the one either imme-

US 2003/0196078 Al

diately to the right or immediately below. With an offset in
both x and vy, four requests are generated. For each block
which is to be fetched, the address generator calculates start
and stop addresses parameters and passes these to the
DRAM interface. The use of these start and stop addresses
is best illustrated by an example, as outlined below.

[2863] Consider a pixel offset of (1, 1), as illustrated by the
shaded area in FIG. 152 and FIG. 26. The address generator
makes four requests, labelled A through D in the figure. The
problem to be solved is how to provide the required
sequence of row addresses quickly. The solution is to use
“start/stop” technology, and this is described below.

[2864] Consider block A in FIG. 152. Reading must start
at position (1, 1) and end at position (7, 7). Assume for the
moment that one byte is being read at a time (i.e. an 8 bit
DRAM Interface). The x value in the coordinate pair forms
the three LSBs of the address, the y value the three MSBS.
The x and y start values are both 1, giving the address 9.
Data is read from this address and the x value is incre-
mented. The process is repeated until the x value reaches its
stop value. At this point, the y value is incremented by 1 and
the x start value is reloaded, giving an address of 17. As each
byte of data is read, the x value is again incremented until
it reaches its stop value. The process is repeated until both
x and y values have reached their stop values. Thus, the
address sequence of 9, 10, 11, 12, 13, 14, 15, 17, . . ., 23,
25,...,31,33,w...,,57, ..., 63 is generated.

[2865] In a similar manner, the start and stop coordinates
for block B are: (1, 0) and (7, 0), for block C: (0,1) and (0,7),
and for block D: (0, 0) and (0, 0).

[2866] The next issue is where this data should be written.
Clearly, looking at block A, the data read from address 9
should be written to address O in the swing buffer, the data
from address 10 to address 15 in the swing buffer, and so on.
Similarly, the data read from address 8 in block B should be
written to address 15 in the swing buffer and the data from
address 16 into address 15 in the swing buffer. This function
turns out to have a very simple implementation as outlined
below.

[2867] Consider block A. At the start of reading, the swing
buffer address register is loaded with the inverse of the stop
value, the y inverse stop value forming the 3 MSBs and the
x inverse stop value forming the 3 LSBs. In this case, while
the DRAM Interface is reading address 9 in the external
DRAM, the swing buffer address is zero. The swing buffer
address register is then incremented as the external 5 DRAM
address register is incremented, as illustrated in Table
B.13.1:

TABLE B.13.1

Ilustration of Prediction Addressing

Ext DRAM Ext DRAM Ad. Swing Buff Ad.
Address Swing Buff Address (Binary) (Binary)

9 = y-start, 0 = y-stop, X-stop 001 001 000 000
x-start

10 1 111 110 000 001

11 2 001 011 000 010

15 6 001 111 000 110

Oct. 16, 2003

167

TABLE B.13.1-continued

Ilustration of Prediction Addressing

Ext DRAM Ext DRAM Ad. Swing Buff Ad.
Address Swing Buff Address (Binary) (Binary)
17=y+1, 8=y+1,%stop 010 001 001 000
x-start

18 9 010 010 001 001

[2868] The discussion thus far has centered an an 8 bit
DRAM Interface. In the case of a 16 or 32 bit interface, a
few minor modifications must be made. First, the pixel offset
vector must be “clipped” so that it points to a 16 or 32 bit
boundary. In the example we have been using, for block A,
the first DRAM read will point to address 0, and data in
addresses 0 through 3 will be read. Next, the unwanted data
must be discarded. This is performed by writing all the data
into the swing buffer (which must now be physically bigger
than was necessary in the 8 bit case) and reading with an
offset. When performing MPEG half-pel interpolation, 9
bytes in x and/or y must be read from the DRAM Interface.
In this case, the address generator provides the appropriate
start and stop addresses and some additional logic in the
DRAM Interface is used, but there is no fundamental change
in the way the DRAM Interface operates.

[2869] The final point to note about the Temporal Decoder
DRAM Interface is that additional information must be
provided to the prediction filters to indicate what processing
is required on the data. This consists of the following:

[2870] a “last byte” signal indicating the last byte of
a transfer (of 64, 72 or 81 bytes)

[2871] an H.261 flag
[2872] a bidirectional prediction flag
[2873] two bits to indicate the block’s dimensions (8

or 9 bytes in x and y)

[2874]
blocks

[2875] The last byte flag can be generated as the data is
read out of the swing buffer. The other signals are derived
from the address generator and are piped through the DRAM
Interface so that they are associated with the correct block of
data as it is read out of the swing buffer by the prediction
filter block.

a two bit number to indicate the order of the

Section B.14 UPI Documentation
[2876] B.14.1 Introduction

[2877] This document is intended to give the reader an
appreciation of the operation of the microprocessor interface
in accordance with the present invention. The interface is
basically the same on both the SPATIAL DECODER and the
Temporal Decoder, the only difference being the number of
address lines.

[2878] The logic described here is purely the micropro-
cessor internal logic. The relevant schematics are:

[2879] UPI
[2880] UPI101

[2881] UPI102

US 2003/0196078 Al

[2882] DINLOGIC

[2883] DINCELL

[2884] UPIN

[2885] TDET

[2886] NONOVRLP

[2887] WRTGEN

[2888] READGEN

[2889] VREFCKT

[2890] The circuits UPI, UPI101, UPI102 are all the same

except that the UPIO1 has a 7 bit address input with the 8th
bit hardwired to ground, while the other two have an 8 bit
address input.

[2891]

[2892] The signals described here are a list of all the inputs
and outputs (defined with respect to the UPI) to the UPI
module with a note detailing the source or destination of
these signals:

Input/Output Signals

[2893] NOTRSTInputGlobal chip reset, active low, from
Pad Input Driver

[2894] EllnputEnable signal 1, active low, from the Pad
Input Driver (Schmitt).

[2895] E21 nputEnable signal 2, active low, from the Pad
Input Driver (Schmitt).

[2896] RNOTWInputRead not Write signal from the Pad
Input Driver (Schmitt).

[2897] ADDRIN][7:0] InputAddress bus signals from the
Pad Input Drivers (Schmitt).

[2898] NOTDIN[7:0] Inputlnput data bus from the Input
Pad

[2899] Drivers of the Bi-directional Microprocessor Data
pins (TTLin).

[2900] INT _RNOTWOutputThe Internal Read not Write
signal to the internal circuitry being accessed by micropro-
cessor interface (See memory map).

[2901] INT_ADDR[7:0] OutputThe Internal Address Bus
to all the circuits being accessed by the microprocessor
interface (See memory map).

[2902] INTDBUS[7:0] Input/OutputThe Internal Data bus
to all the circuits being accessed by the microprocessor
interface (See the memory map) and also the microprocessor
data output pads. The internal Data bus transfers data which
is the inverse to that on the pins of the chip.

[2903] READ_STROutputAn is an internal timing signal
which indicates a read of a location in the device memory
map.

[2904] WRITE_STROutputAn is an internal signal which
indicates a write of a location in the internal memory map.

[2905] TRISTATEDPADOutputAn is an internal signal
which connects to the microprocessor data output pads
which indicates that they should be tristate.

Oct. 16, 2003

[2906] General Comments:

[2907] The UPI schematic consists of 6 smaller modules:
NONOVRLP, UPIN, DINLOGIC, VREFCKT, READGEN,
WRTGEN. It should be noted from the overall list of signals
that there are no clock signals associated with the micro-
processor interface other than the microprocessor bus timing
signals which are asynchronousto all the other timing signals
on the chip. Therefore, no timing relationship should be
assumed between the operation of the microprocessor and
the rest of the device other than those that can be forced by
external control. For example, stopping of the system clock
externally while accessing the microprocessor interface on a
test system.

[2908] The other implication of not having a clock in the
UPI is that some internal timing is self timed. That is, the
delay of some signals is controlled internally to the UPI
block.

[2909] The overall function of the UPI is to take the
address, data and enable and read/write signals from the
outside world and format them so that they can drive the
internal circuits correctly. The internal signals that define
access to the memory map are INT_RNOTW_INT_ADDR[.
..], INTDBUSJ. . .] and READ_STR and WRITE_STR.
The timing relationship of these signals is shown below for
a read cycle and a write cycle. It should be noted that
although the datasheet definition and the following diagram
always shows a chip enable cycle, the circuit operation is
such that the enable can be held low and the address can be
cycled to do successive read or write operations. This
function is possible because of the address transition cir-
cuits.

[2910] Also, the presence of the INT_RNOTW and the
READ_STR, WRITE_STR does reflect some redundancy. It
allows internal circuits to use either a separate READ_STR
and WRITE_STR (and ignore INT_RNOTW) or to use the
INT_RNOTW and a separate Strobe signal (Strobe signal
being derived from OR of READ_STR and WRITE_STR).

[2911] The internal databus is precharged High during a
read cycle and it also has resistive pullups so that for
extended periods when the internal data bus is not driven it
will default to the OXFF condition. As the internal databus
is the inverse of the data on the pins, this translates to 0x00
on the external pins, when they are enabled. This means that,
if any external cycle accesses a register or a bit of a register
which is a hole in the memory map, then the output data id
determinate and is Low.

[2912] Circuit Details:
[2913] UPIN—

[2914] This circuit is the overall change detect block. It
contains a sub-circuit called TDET which is a single bit
change detect circuit. UPIN has a TDET module for each
address bit and rnotw and for each enable signal. UPIN also
contains some combinatorial logic to gate together the
outputs of the change detect circuits. This gating generates
the signals:

[2915] TRAN-—which indicates a transition on one of the
input signals, and

[2916] UPD-DONE—which indicates that transitions
have been completed and a cycle can be performed.

[2917] CHIP_EN—which indicates that the chip has been
selected.

US 2003/0196078 Al

[2918] TDET—

[2919] This is the single bit change detect circuit. It
consists of a 2 latches, and 2 exclusive OR gates. The first
latch is clocked by the signal SAMPLE and the second by
the signal UPDATE. These two non-overlapping signals
come from the module NONOVRLP. The general operation
is such that an input transition causes a CHANGE which, in
turn, causes a SAMPLE. All input changes while SAMPLE
is high are accepted and when input changes cease then
CHANGE goes low and SAMPLE goes low which causes
UPDATE to go high which then transfers data to the output
latch and indicates UPD_DONE.

[2920] NONOVRLP—

[2921] This circuit is basically a non-overlapping clock 25
generator which inputs TRAN and generates SAMPLE and
UPDATE. The external gating on the output of UPDATE
stops UPDATE from going high until a write pulse has been
completed.

[2922] DINLOGIC—

[2923] This module consists of eight instances of the data
input circuit DINCELL and some gating to drive the
TRISTATEPAD signal. This indicates that the output data
port will only drive if Enable1 is low, Enable2 is low, RnotW
is high and the internal read_str is high.

[2924] DINCELL—

[2925] This circuit consists of the data input latch and a
tristate driver to drive the internal databus. Data from the
input pad is latched when the signal DATAHOLD is high
and when both Enablel and Enable2 are low. The tristate
driver drives the internal data bus whenever the internal
signal INT_RNOTW is low. The internal databus precharge
transistor and the bus pullup are also included in this
module.

[2926] WRTGEN—

[2927] This module generates the WRITE_STR, and the
latch signal DATAHOLD for the data latches. The write
strobe is a self timed signal, however, the self time delay is
defined in the VREFCKT. The output from the timing circuit
RESETWRITE is used to terminate the WRITE_STR sig-
nal. It should be noted that the actual write pulse which
writes a register only occurs after an access cycle is con-
cluded. This is because the data input to the chip is sampled
only on the back edge of the cycle. Hence, data is only valid
after a normal access cycle has concluded.

[2928] READGEN—

[2929] This circuit, as its name suggests, generates the
READ_STR and it also generates the PRECH signal which
is used to precharge the internal databus. The PRECH signal
is also a self timed signal whose period is dependant on
VREFCKT and also on the voltage on the internal databus.
The READ_STR is not self timed, but lasts from the end of
the precharge period until the end of the cycle. The pre-
charge circuitry uses inverters with their transfer character-
istic biased so that they need a voltage of approximately
75% of supply before they invert. This circuit guarantees
that the internal bus is correctly precharged before a READ-
_STR begins. In order to stop a PRECH pulse tending to

Oct. 16, 2003

zero width if the internal bus is already precharged, the
timing circuit guarantees a minimum, width via the signal
RESETREAD.

[2930] VREFCKT—

[2931] The VREFCKT is the only circuit which controls
the self timing of the interface. Both the delays, 1/Width of
WRITE_STR and 2/Width of PRECH, are controlled by a
current through a P transistor. The gate on this P transistor
is controlled by a signal VREF and this voltage is set by a
diffusion resistor of 25K ohm.

Section C.1 Overview

[2932] C.1.1. Introduction

[2933] The structure of the image Formatter, in accor-
dance with the present invention, is shown in FIG. 155.
There are two address generators, one for writing and one
for reading, a buffer manager which supervises the two
address generators and which provides frame-rate conver-
sion, a data processing pipeline, including both vertical and
horizontal unsamplers, color-space conversion and gamma
correction, and a final control block which regulates the
output of the processing pipeline.

[2934] C.1.2 Buffer manager

[2935] Tokens arriving at the input to the Image Formatter
are buffered in the FIFO and then transferred into the buffer
manager. This block detects the arrival of new pictures and
determines the availability of a buffer in which to store each
picture. If there is a buffer available, it is allocated to the
arriving picture and its index is transferred to the write
address generator. If there is no buffer available, the incom-
ing picture will be stalled until one becomes available. All
tokens are passed on to the write address generator.

[2936] Each time the read address generator receives a
VSYNC signal from the display system, a request is made
to the buffer manager for a new display buffer index. If there
is a buffer containing complete picture data, and that picture
is deemed ready for display, then that buffer’s index will be
passed to the display address generator. If not, the buffer
manager sends the index of the last buffer to be displayed.
At start-up, zero is passed as the index until the first buffer
is full.

[2937] A picture is ready for display if its number (calcu-
lated as each picture is input) is greater than or equal to the
picture number which is expected at the display (presenta-
tion number) given the encoding frame rate. The expected
number is determined by counting picture clock pulses,
where picture clock can be generated either locally by the
clock dividers, or externally. This technology allows frame-
rate conversion (e.g., 2-3 pull-down).

[2938] External DRAM is used for the buffers, which can
be either two or three in number. -Three are necessary if
frame-rate conversion is to be effected.

[2939] C.1.3 Write Address Generator

[2940] The write address generator receives tokens from
the buffer manager and detects the arrival of each new DATA
Token. As each DATA Token arrives, the address generator
calculates a new address for the DRAM interface for storing
the arriving block. The raw data is then passed to the DRAM
interface where it is written into a swing buffer. Note that

US 2003/0196078 Al

DRAM addresses are block addresses, and pictures in the
DRAM or organized as rasters of blocks. Incoming picture
data, however, is actually organized sequences of macrob-
locks, so the address generation algorithm must take into
account line-width (in blocks) offsets for the lower rows of
blocks within the macroblock.

[2941] The arrival buffer index provided by the buffer
manager is used as an address offset for the whole of the
picture being stored. Furthermore, each component is stored
in a separate area within the specified buffer, so component
offsets are also used in the calculation.

[2942] C.1.4 Read Address Generator

[2943] The Read Address Generator (dispaddr) does not
receive or generate tokens, it generates addresses only. In
response to a VSYNC, it may, depending on field_info,
read_start, sync_mode, and Isb_invert, request a buffer
index from the buffer manager. Having received an index, it
generates three sets of addresses, one for each component,
for the current picture to be read in raster order. Different
setups allow for: interlaced/progressive display and/or data,
vertical unsampling, and field synchronization (to an inter-
laced display). At the lower level, the Read Address Gen-
erator converts base addresses into a sequence of block
addresses and byte counts for each of the three components
that are compatible with the page structure of the DRAM.
The addresses provided to the DRAM interface are page and
line addresses along with block start and block end counts.

[2944] C.1.5 Output Pipeline

[2945] Data from the DRAM interface feeds the output
pipeline. The three component streams are first vertically
interpolated, then horizontally interpolated. Following the
interpolators, the three components should be of equal ratios
(4:4:4), and are passed through the color-space converter
and color lookup tables/gamma correction. The output inter-
face may hold the streams at this point until the display has
reached an HSYSC. Thereafter, output controller directs the
three components into one, two or three 8-bit buses, multi-
plexing as necessary.

[2946] C.1.6 Timing Regimes

[2947] There are basically two principal timing regimes
associated with the Image Formatter. First, there is a system
clock, which provides timing for the front end of the chip
(address generators and buffer manager, plus the front end of
the DRAM interface). Second, there is a pixel clock which
drives all the timing for the back end (DRAM interface
output, and the whole of the output pipeline).

[2948] Each of the two aforementioned clocks drives a
number of on-chip clock generators. The FIFO, buffer
manager and read address generator operate from the same
clock (D®) with the write address generator using a similar,
but separate clock (W®). Data is clocked into the DRAM
interface on an internal DRAM interface clock, (out®). D®,
W and out®d are all generated from syscik.

[2949] Read and write addresses are clocked in the DRAM
interface by the DRAM interface’s own clock.

[2950] Data is read out of the DRAM interface on bifRD,
and is transferred to the section of the output pipeline named
“bushy_ne” (north-east—by virtue of its physical location)
which operates on clocks denoted by NE®. The section of

Oct. 16, 2003

170

the pipeline from the gamma RAMSs onward Is clocked on
a separate, but similar, clock (R®) bifR®, NE® and R® are
all derived from the pixel clock, pixin.

[2951] For testing, all of the major interfaces between
blocks have either snoopers or super-snoopers attached. This
depends on the timing regimes and the type of access
required. Block boundaries between separate, but similar
timing regimes have retiming latches associated therewith.

Section C.2 Buffer Management
[2952] C.2.1. Introduction

[2953] The purpose of the buffer management block, in
accordance with the present invention, is to supply the
address generators with indices identifying any of either two
or three external buffers for writing and reading of picture
data. The allocation of these indices is influenced by three
principal factors, each representing the effect of one of the
timing regimes in operation. These are the rate at which
picture data arrives at the input to Image Formatter (coded
data rate), the rate at which data is displayed (display data
rate), and the frame rate of the encoded video sequence
(presentation rate).

[2954] C.2.2 Functional Overview

[2955] A three-buffer system allows the presentation rate
and the display rate to differ (e.g., 2-3 pulldown), so that
frames are either repeated or skipped as necessary to achieve
the best possible sequence of frames given the timing
constraints of the system. Pictures which present some
difficulty in decoding may also be accommodated in a
similar way, so that if a picture takes longer than the
available display time to decode, the previous frame will be
repeated while everything else “catches up”. In a two-buffer
system, the three timing regimes must be locked—it is the
third buffer which provides the flexibility for taking up the
slack.

[2956] The buffer manager operates by maintaining cer-
tain status information associated with each external buffer.
This includes flags indicating if the buffer is in use, if it is
full of data, or ready for display, and the picture number
within the sequence of the picture currently stored in the
buffer. The presentation number is also recorded, this being
a number which increments every time a picture clock pulse
is received, and represents the picture number which is
currently expected for display based on the frame rate of the
encoded sequence.

[2957] An arrival buffer (a buffer to which incoming data
will be written) is allocated every time a PICTURE_START
token is detected at the input. This buffer is then flagged as
IN_USE. On PICTURE_END, the arrival buffer will be
de-allocated (reset to zero) and thebuffer flagged as either
FULL or READY depending on the relationship between the
picture number and the presentation number.

[2958] The display address generator requests a new dis-
play buffer, once every vsync, via a two-wire interface. If
there is a buffer flagged as READY, then that will be
allocated to display by the buffer manager. If there is no
READY buffer, the previously displayed buffer will be
repeated.

[2959] Each time the presentation number changes, it is
detected and every buffer containing a complete picture is

US 2003/0196078 Al

tested for READY-ness by examining the relationship
between its picture number and the presentation number.
Buffers are considered in turn. When any of the buffers are
deemed to be READY, this automatically cancels the
RtADY-ness of any buffer which was previously flagged as
READY. The previous buffer is then flagged as EMPTY.
This works because later picture numbers are stored, by
virtue of the allocation scheme, in the buffers that are
considered later.

[2960] TEMPORAL_REFERENCE tokens in H.261
cause a buffer’s picture number to be modified if skipped
pictures in the input stream are indicated. This feature,
although envisioned, is not currently included, however.
Similarly, TEMPORAL-REFERENCE tokens in MPEG
have no effect.

[2961] ATFLUSH token causes the input to stall until every
buffer is either EMPTY or has been allocated as the display
buffer. Thereafter, presentation number and picture number
are reset and a new sequence can commence.

[2962]
[2963]
[2964]

[2965] All data is input to the buffer manager from the
input FIFO, bm_front. This transfer takes place via a two-
wire interface, the data being 8 bits wide plus an extension
bit. All data arriving at the buffer manager is guaranteed to
be a complete token. This is a necessity for the continued
processing of presentation numbers and display buffer
requests in the event of significant gaps in the data upstream.

C.2.3 Architecture
C.2.3.1 Interfaces

C.2.3.1.1. Interface to bm front

[2966] C.2.3.1.2 Interface to waddrgen

[2967] Tokens (8 bit data, 1 bit extension) are transferred
to the write address generator via a two-wire interface. The
arrival buffer index is also transferred on the same interface,
so that the correct index is available for address generation
at the same time as the PICTURE_START token arrives at
waddrgen.

[2968] (C.2.3.1.3 Interface to dispaddr

[2969] The interface to the read address generator com-
prises two separate two-wire interfaces which can be con-
sidered to act as “request” and “acknowledge” signals,
respectively. Single wires are not adequate, however,
because of the two two-wire-based state machines at either
end.

[2970] The sequence of events normally associated with
the dispaddr interface is as follows. First, dis-paddr invokes
a request in response to a vsync from the display device by
asserting the drq_valid input to the buffer manager. Next,
when the buffer manager reaches an appropriate point in its
state machine, it will accept the request and go about
allocating a buffer to be displayed. Thereafter, the disp_valid
wire is asserted, the buffer index is transferred, and this is
typically accepted immediately by dispaddr. Furthermore,
there is an additional wire associated with this last two-wire
interface (rst fld) which indicates that the field number
associated with the current index must be reset regardless of
the previous field number.

Oct. 16, 2003

[2971] C.2.3.1.4 Microprocessor Interface

[2972] The buffer manager block uses four bits of micro-
processor address space, together with the 8-bit data bus and
read and write strobes. There are two select signals, one
indicating user-accessible locations and the other indicating
test locations which should not require access under normal
operating conditions.

[2973] C.2.3.1.5 Events

[2974] The buffer manager is capable of producing two
different events, index found and late arrival. The first of
these is asserted when a picture arrives and its PICTURE
START extension byte (picture index) matches the value
written into the BU_BM TARGET _IX register at setup. The
second event occurs when a display buffer is allocated and
its picture number is less than the current presentation
number, i.e., the processing in the system pipeline up to the
buffer manager has not managed to keep up with the
presentation requirements.

[2975] (C.2.3.1.6 Picture Clock

[2976] In the present invention, picture clock is the clock
signal for the presentation number counter and is either
generated on-chip or taken from an external source (nor-
mally the display system). The buffer manager accepts both
of these signals and selects one based on the value of
pelk_ext (a bit in the buffer manager’s control register). This
signal also acts as the enable for the pad picoutpad, so that
if the Image Formatter is generating its own picture clock,
this signal is also available as an output from the chip.

[2977] C.2.3.2. Major Blocks

[2978] The following sections describe the various hard-
ware blocks that make up the buffer manager schematic
(bmlogic).

[2979] (C.2.3.2.1 Input/Output block (bm input)

[2980] This module contains all of the hardware associ-
ated with the four two-wire interfaces of the buffer manager
(input and output data, drq_valid/accept and disp_valid/
accept). The input data register is shown, together with some
token decoding hardware attached thereto. The signal
vheader at the input to bm_tokdec is used to ensure that the
token decoder outputs can only be asserted at a point where
a header would be valid (i.e., not in the middle of a token.
The rtimd block acts as the output data registers, adjacent to
the duplicate input data registers for the next block in the
pipeline. This accounts for timing differences due to differ-
ent clock generators. Signals go and ngo are based on the
AND of data valid, accept and not stopped, and are used
elsewhere in the state machine to indicate if things are
“bunged up” at either the input or the output.

[2981] The display index part of this module comprises
the two-wire interfaces together with equivalent “go” signals
as for data. The rst_fld bit also happens here, this being a
signal which, if set, remains high until disp_valid has been
high for one cycle. Thereafter, it is reset. In addition, rst_fid
is reset after a FLUSH token has caused all of the external
buffers to be flagged either as EMPTY or IN_USE by the
display buffer. This is the same point at which both picture
numbers and presentation number are reset.

[2982] There is a small amount of additional circuitry
associated with the input data register which appears at the
next level up the hierarchy. This circuitry produces a signal

US 2003/0196078 Al

which indicates that the input data register contains a value
equal to that written into BU_BM_TARGIX and it is used
for event generation.

[2983] (C.2.3.2.2 Index block (bm index)

[2984] The Index block consists mainly of the 2-bit reg-
isters denoting the various strategic buffer indices. These are
arr_buf, the buffer to which arriving picture data is being
written, disp_buf, the buffer from which picture data is being
read for display, and rdy_buf, the index of the buffer
containing the most up to date picture which could be
displayed if a buffer was requested by dispaddr. There is also
a register containing buf_ix, which is used as a general
pointer to a buffer. This register gets incremented (“D” input
to mux) to cycle through the buffers examining their status,
or which gets assigned the value of one of arr_buf, disp_buf
or rdy_buf when the status needs changing. All of these
registers (phO versions) are accessible from the micropro-
cessor as part of the test address space. Old_ix is just a
re-timed version of buf_ix and is used for enabling buffer
status and picture number registers in the bm_stus block.
Both buf_ix and old_ix are decoded into three signals (each
can hold the value 1 to 3) which are output from this block.
Other outputs indicate whether buf_ix has the same value as
either arr_buf or disp_buf, and whether either of rdy_buf and
disp_buf have the value zero. Zero is not a reference to a
buffer. It merely indicates that there is no arrival/display/
ready buffer currently allocated.

[2985] Arr_buf and disp_buf are enabled by their respec-
tive two- wire interface output accept registers.

[2986] Additional circuitry at the bmlogic level is used to
determine if the current buffer index (buf_ix) is equal to the
maximum index in use as defined by the value written into
the control register at setup. A “1” in the control register
indicates a three-buffer system, and a “0” indicates a two-
buffer system.

[2987] (C.2.3.2.3 Buffer Status

[2988] The main components in the buffer status are status
and picture number registers for each buffer. Each of the
groups of three is a master-slave arrangement where the
slaves are the banks of three registers, and the master is a
single register whose output is directed to one of the slaves
(switched, using register enables, by old_ix). One of the
possible inputs to the master is multiplexed between the
different slave outputs (indexed by buf_ix at the bmlogic
level). Buffer status, which is decoded at the bmlogic level,
for use in the state machine logic can take any of the values
shown in Table C.2.1, or recirculate its previous value.
Picture number can take the previous value or the previous
value incremented by one (or one plus delta, the difference
between actual and expected temporal reference, in the case
of H.261). This value is supplied by the 8-bit adder present
in the block. The first input to this adder is this_pnum, the
picture number of the data currently being written.

TABLE C2.1

Buffer Status Values

Buffer Status Value
EMPTY 00
FULL 01

Oct. 16, 2003

172

TABLE C.2.1-continued

Buffer Status Values

Buffer Status Value
READY 10
IN_USE 1

Table C.2.1 Buffer Status Values

[2989] This needs to be stored separately (in its own
master-slave arrangement) so that any of the three buf fer
picture number registers can be easily updated based on the
current (or previous) picture number rather than on their
own previous picture number (which is almost always out of
date). This_pnum is reset to —1 so that when the first picture
arrives it is added to the output from the adder and, hence,
the input to the first buffer picture number register, is zero.

[2990] Note that in the current version, delta is connected
to zero because of the absence of the temporal reference
block which should supply the value.

[2991] C.2.3.2.4 Presentation Number

[2992] The 8-bit presentation number register has an asso-
ciated presentation flag which is used in the state machine to
indicate that the presentation number has changed since it
was last examined. This is necessary because the picture
clock is essentially asynchronous and may be active during
any state, not just those which are concerned with the
presentation number. The rest of the circuitry in this block is
concerned with detecting that a picture clock pulse has
occurred and “remembering” this fact. In this way, the
presentation number can be updated at a time when it is valid
to do so. A representative sequence of events is shown in
FIG. 156. The signal incr_prn goes active the cycle after the
re-timed picture clock rising edge, and persists until a state
is entered during which presentation number can be modi-
fied. This is indicated by the signal en_prnum. The reason
for only allowing presentation number to be updated during
certain states is because it is used to drive a significant
amount of logic, including a standard-cell, not-very-fast
8-bit adder to provide the signal rdyst. It must, therefore, be
changed only during states in which the subsequent state
does not use the result.

[2993] (C.2.3.2.5 Temporal Reference

[2994] The temporal reference block in accordance with
the present invention, has been omitted from the current
embodiment of the Image Formatter, but its operation is
described here for completeness.

[2995] The function of this block is to calculate delta, the
difference between the temporal reference value received in
a token in an H,261 data stream, and the “expected” tem-
poral reference (one plus the previous value). This allows
frames to be skipped in H.261. Temporal reference tokens
are ignored in all non-H.261 streams. The calculated value
is used in the status block to calculate picture numbers for
the buffers. The effect of omitting the block from bmlogic is

US 2003/0196078 Al

that picture numbers will always be sequential in any
sequence, even if the H.261 stream indicates that some
should be skipped.

[2996] The main components of the block (visible in the
schematic bm_tref) are registers for tr, exptr and delta.

[2997] Inthe invention, tr is reset to zero and loaded, when
appropriate, from the input data register. Similarly, exptr is
reset to —1, and is incremented by either 1 or delta during the
sequence of temporal reference states. In addition, delta is
reset to zero and is loaded with the difference between the
other two registers. All three registers are reset after a
FLUSH token. The adder in this block is used for calculation
of both delta and exptr, i.e., a subtract and an add operation,
respectively, and is controlled by the signal delta_calc.

[2998] C.2.3.2.6 Control Reqisters (bm uregs)

[2999] Control registers for the buffer manager reside in
the block bm_uregs. These are the access bit register, setup
register (defining the maximum number of external buffers,
and internal/external picture clock), and the target index
register. The access bit is synchronized as expected. The
signals stopd_ 0, stopd 1 and nstopd 1 are derived form
the OR of the access bit and the two event stop bits. Upi

Oct. 16, 2003

address decoding for all of bmlogic is done by the block
bm_udec, which takes the lower 4 bits of the upi data bus
together with the 2 select signals from the Image Formatter
top-level address decode.

[3000] C.2.3.2.7 Controlling State Machine

[3001] The state machine logic originally occupied its own
block, bm_state. For code generation reasons, however, it
has now been flattened and resides on sheet 2 of the bmlogic
schematic.

[3002] The main sections of this logic are the same. This
includes the decoding, the generation of logic signals for the
control of other bmlogic blocks, and the new state encoding,
including the flags from_ps and from_fl which are used to
select routes through the state machine. There are separate
blocks to produce the mux control signals for bm_stus and
bm_index.

[3003] Signals in the state machine hardware have been
given simple alphabetic names for ease of typing and
reference. They are all listed in Table C.2.2, together with
the logic expressions which they represent. They also appear
as comments in the behavioral M. description of bmlogic
(bmlogic.M).

Table C.2.2

Signal Name

Signal Names Used in the State Machine

Logic Expression

QZ-“"IEOREQAMmMUORE >
Woz O

EC%MOQEWOZZE%F‘

el

orVV

N Q~TXg<
o ™ €

ST__PRES1.presflg. (bstate==FULL).rdytst.(rdy==0),(ix==max)
ST__PRES1.presflg. (bstate==FULL).rdytst.(rdy==0),(ix!=max)
ST__PRES1.presflg. (bstate==FULL).rdytst.(rdy!=0)
ST__PRES1.presflg.((bstate==FULL).rdytst).(ix==max)
ST__PRES1.presflg.((bstate==FULL).rdytst).(ix!=max)
ST_PRES1.presflg
ST_DRQ.drq_valid.disp__acc.(rdy==0).(disp!=0)
ST_DRQ.drq_valid.disp__acc.(rdy==0).(disp!=0).fromps
ST__DRQ.drq_ valid.disp_ acc.(rdy==0).(disp!=0).fromfl
ST_DRQ.drq_valid.disp__acc.(rdy==0).(disp!=0).! (fromps+fromfl)
ST_DRQ.drq_valid.disp__acc.(rdy!=0).(disp!=0)
ST_DRQ.drq_valid.disp__acc.(rdy!=0).(disp!==0)
ST__DRQ.drq_ valid.disp_ acc.(rdy==0).(disp==0).fromps
ST_DRQ.drq_valid.disp__acc.(rdy==0).(disp==0).fromfl
ST_DRQ.drq_valid.disp__acc.(rdy==0).(disp==0).!(fromps+fromfl)
ST__DRQ.!(drq__valid.disp__acc).fromps

ST__DRQ.!(drq_ valid.disp_ acc).fromfl
ST_DRQ.!(drq__valid.disp__acc).! (fromps+fromfl)
ST_TOKEN.ivr.oar.(idr==TEMPORAL_ REFERENCE)
ST_TOKEN.ivr.oar.(idr==TEMPORAL_ REFERENCE).H251
ST_TOKEN.ivr.oar.(idr==TEMPORAL_ REFERENCE).!H251
ST_TOKEN.ivr.oar.(idr==FLUSH)
ST_TOKEN.ivr.oar.(idr==PICTURE__START)
ST_TOKEN.ivr.oar.(idr==PICTURE__END)
ST_TOKEN.ivr.oar.(idr==<OTHER_ TOKEN>)
ST_TOKEN.ivr.oar.(idr==<OTHER_ TOKEN>).in_ extn
ST_TOKEN.ivr.oar.(idr==<OTHER__TOKEN>).lin__extn)
ST__TOKEN.!(ivr.oar)
ST_PICTURE__END.(ix==arr).!rdytst.oar
ST_PICTURE__END.(ix==arr).rdytst.(rdy==0)oar
ST__PICTURE__END.(ix==arr).rdytst.(rdy!=0)oar
ST_PICTURE__END.!oar
ST__PICTURE__END.!((ix==arr).0ar)

ST_TEMP_ REFO.ivr.oar

ST_TEMP__REFO.!(ivr.0ar)

ST_OUTPUT__TAIL.ivr.oar

ST_OUTPUT_TAIL.ivr.oar!lin _extn
ST_OUTPUT_TAIL.!(ivr.oar)
ST_OUTPUT_TAIL.!(ivr.oar).in_ extn

ST__FLUSH. (ix==max).((bstate==VAC)+((bstate==USE).(ix==disp))
ST__FLUSH.(ix!=max).((bstate==VAC)+((bstate==USE).(ix==disp))

US 2003/0196078 Al

Table C.2.2-continued

Oct. 16, 2003

Signal Names Used in the State Machine

Signal Name Logic Expression

DDorEE !((bstate==VAC)+((bstate==USE).(ix==disp))+ (ix==max)
AA ST_ALLOC.(bstate==VAC).oar

BB ST_ALLOC.(bstate!=VAC).(ix==max)

CcC ST__ALLOC.(bstate!=VAC).(ix!=max)

uu ST_ALLOC.!oar

[3004] C.2.3.2.8 Monitoring operation (bminfo)

[3005] In the present invention, the module, bminfo, is
included so that buffer status information, index values and
presentation number can be observed during simulations. It
is written in M and produces an output each time one of its
inputs changes.

[3006] C.2.3.3 Register Address Map

[3007] The buffer manager’s address space is split into
two areas, user-accessible and test. There are, therefore, two
separate enable wires derived from range decodes at the
top-level. Table C.2.3 shows the user-accessible registers,
and Table C.2.4 shows the contents of the test space.

TABLE C2.3

TABLE C.2.4-continued

Test Registers

User-Accessible Registers

Register Reset
Name Address Bits State Function
BU_BM__ACCESS 0x10 (0) 1 Access bit for buffer
manager
BU_BM__CTLO 0x11 (0) 1 Max out tsb. 1->3
buffers 0->2
@ 1 External picture stock
select
BU_FM_TARGET_IX 0x12 (3.0) 0x0 For detecting arrival
of picture

BU_BM_ PRES_NUM 0x13 (7.0) 0x00 Presentation number

BU_BM_THIS_ PNUM 0x14 (7.0) OxFF Current picture
number

BU_BM__PIC_NUMO 0x15 (7.0) none Picture number in
buffer 1

BU_BM__PIC_NUM1 0x16 (7.0) none Picture number in
buffer 2

BU_BM__PIC_NUM2 0x17 (7.0) none Picture number in
buffer 3

BU_BM_TEMP_REF 0x18 (4.0) 0x00 Temporal reference
from stream

[3008]
TABLE C24
Test Registers
Register Reset
Name Address Bits State Function
BU_BM_PRES_FLAG 0x80 (©) O Presentation
flag
BU_BM_EXP_TR 0x81 (4.0) OxFF Expected temporal
reference
BU_BM_TR_DEILTA 0x82 (4.0) 0x00 Delta

Arrival buffer
index

BU_BM_ARR_IX 0x83 (1.0) 0x0

Register Reset
Name Address Bits State Function
BU_BM_DSP_IX 0x84 (1.0) 0x0 Display buffer

index
BU_BM_RDY_IX 0x85 (1.0) 0x0 Ready buffer index
BU_BM__BSTATE3 0x86 (1.0) 0x0 Buffer 3 status
BU_BM_ BSTATE2 0x87 (1.0) 0x0 Buffer 2 status
BU_BM__BSTATE1 0x88 (1.0) 0x0 Buffer 1 status
BU_BM_INDEX 0x89 (1.0) 0x0 Current buffer index
BU_BM__STATE 0x8A (4.0) 0xO Buffer manager state
BU_BM__FROMPS 0x8B (0) 0x0 From PICTURE__

START flag
BU_BM_FROMFL 0x8C (0) 0x0 From FLUSH__

TOKEN flag

[3009] C.2.4 Operation of The State Machine

[3010] There are 19 states in the buffer manager’s state
machine, as detailed in Table C.2.5. These interact as shown
in FIG. 157, and also as described in the S behavioral
description bmlogic. M.

TABLE C.2.5

Buffer States

State Value
PRESO 0x00
PRES1 0x10
ERROR 0x1F
TEMP__REF0 0x04
TEMP__REF1 0x05
TEMP__REF2 0x06
TEMP__REF3 0x07
ALLOC 0x03
NEW__EXP_ TR 0x0D
SET_ARR_IX 0x0E
NEW__PIC_NUM 0x0F
FLUSH 0x01
DRQ 0x0B
TOKEN 0x0C
OUTPUT__TAIL 0x08
VACATE_RDY 0x17
USE_RDY 0x0A
VACATE__DISP 0x09
PICTURE__END 0x02

[3011] C.2.4.1 The Reset State

[3012] The reset state is PRESO, with flags set to zero such
that the main loop circulated initially.

US 2003/0196078 Al

[3013] C.2.4.2 The Main Loop

[3014] The main loop of the state machine comprises the
states shown in FIG. 153 (high-lighted in the main dia-
gram—FIG. 152). States PRESO and PRES1 are concerned
with detecting a picture clock via the signal presflg. Two
cycles are allowed for the tests involved since they all
depend on the value of rdyst, the adder output signal
described in C.2.3.2.4. If a presentation flag is detected, all
of the buffers are examined for possible ‘readiness’, other-
wise the state machine just advances to state DRQ. Each
cycle around the PRESO-PRES1 loop examines a different
buffer, checking for full and ready conditions. If these are
met, the previous ready buffer (if one exists) is cleared, the
new ready buffer is allocated and its status is updated. This
process is repeated until all buffers have been examined
(index==max buf) and the state then advances. A buffer is
deemed to be ready for display when any of the following is
true:

(pic_nums>pres_num)&&((pic_num-pres_num)>=
28)

or

(pic_num<pres_num)&&((pres_num-pic_num)<=
128)

or
pic_num==pres_num

[3015] State DRQ checks for a request for a display buffer
(drq_valid_reg && disp_acc_reg). If there is no request the
state advances (normally to state TOKEN—as will be
described later). Otherwise, a display buffer index is issued
as follows. If there is no ready buffer, the previous index is
re-issued or, if there is no previous display buffer, a null
index (zero) is issued. If a buffer is ready for display, its
index is issued and its state is updated. If necessary, the
previous display buffer is cleared. The state machine then
advances as before. State TOKEN is the typical option for
completing the main loop. If there is valid input and the
output is not stalled, tokens are examined for strategic values
(described in later sections), otherwise control returns to
state PRESO.

[3016] Control only diverges from the main loop when
certain conditions are met. These are described in the
following sections.

[3017] C.2.4.3 Allocating The Ready Buffer Index

[3018] If during the PRESO-PRES1 loop a buffer is deter-
mined to be ready, any previous ready buffer needs to be
vacated because only one buffer can be designated ready at
any time, State VACATE_RDY clears the old ready buffer
by setting its state to VACANT, and it resets the buffer index
to 1 so that when control returns to the PRESO state, all
buffers will be tested for readiness. The reason for this is that
the index is by now pointing at the previous ready buffer (for
the purpose of clearing it) and there is no record of our
intended new ready buffer index. It is necessary, therefore,
to re-test all of the buffers.

[3019] C.2.4.4 Allocating The Display Buffer Index

[3020] Allocation of the display buffer index takes place
either directly from state DRQ (state USE_RDY) or via state
VACATE_DISP which clears the old display buffer state.
The chosen display buffer is flagged as IN_USE, the value
of rdy_buf is set to zero, and the index is reset to 1 to return

Oct. 16, 2003

to state DRQ. Moreover, disp_buf is given the required
index and the two-wire interface wires (disp_valid and
drg_acc) are controlled accordingly. Control returns to state
DRQ only so that the decision between states TOKEN,
FLUSH and ALLOC does not need to be made in state
USE_RDY.

[3021] C.2.4.5 Operation when PICTURE_END Received

[3022] On receipt of a PICTURE_END token, control
transfers from state TOKEN to state PICTURE_END where,
if the index is not already pointing at the current arrival
buffer, it is set to point there so that its status can be updated.
Assuming both out_acc_reg and en_full are true, status can
be updated as described below. If not, control remains in
state PICTURE_END until they are both true. The en_full
signal is supplied by the write address generator to indicate
that the swing buffer has swung, i.e., the last block has been
successfully written and it is, therefore, safe to update the
buffer status.

[3023] The just-completed buffer is tested for readiness
and given the status either FULL or READY depending on
the result of the test. If it is ready, rdy_buf is given the value
of its index and the set_la_ev signal (late arrival event) is set
high (indicating that the expected display has got ahead in
time of the decoding). The new value of arr_buf now
becomes zero and, if the previous ready buffer needs its
status clearing, the index is set to point there and control
moves to state VACATE_RDY. Otherwise, the index is reset
to 1 and control returns to the start of the main loop.

[3024] C2.4.6 Operation When
Received (Allocation of Arrival Buffer)

PICTURE_START

[3025] When a PICTURE_START token arrives during
state TOKEN, the flag from_ps is set, causing the basic state
machine loop to be changed such that state ALLOC is visited
instead of state TOKEN. State ALLOC is concerned with
allocating an arrival buffer (into which the arriving picture
data can be written), and cycles through the buffers until it
finds one whose status is VACANT. A buffer will only be
allocated if out_acc_reg is high since it is output on the data
two-wire interface. Accordingly, cycling around the loop
will continue until this is indeed the case. Once a suitable
arrival buffer has been found, the index is allocated to
arr_buf and its status is flagged as IN_USE. Index is set to
1, the flag from_ps is reset, and the state is set to advance to
NEW_EXP_TR. A check is made on the picture’s index
(contained in .the word following the PICTURE_START) to
determine if it is the same as targ_ix (the target index
specified at setup) and, if so, set_if+_ev (index found event)
is set high.

[3026] The three states NEW_EXP_TR, SET_ARR_IX
and NEW_PIC_NUM set up the new expected temporal
reference and picture number for the incoming data. The
middle state just sets the index to be arr_buf so that the
correct picture number register is updated (note that this_p-
num is also updated). Control then proceeds to state OUT-
PUT_TAIL which outputs data (assuming favorable two-
wire interface signals) until a low extension is encountered.
At this point, the main loop is re-started. This means that
whole data blocks (64 items) are output, in between which,
there are no tests for presentation flags or display requests.

US 2003/0196078 Al

[3027] C.2.4.7 Operation When FLUSH Received

[3028] A FLUSH token in the data stream indicates that
sequence information (presentation number, picture number,
rst_fld) should be reset. This can only occur when all of the
data leading up to the FLUSH has been correctly processed.
Accordingly, it is necessary, having received a FLUSH, to
monitor the status of all of the buffers until it is certain that
all frames have been handed over to the display, i.e., all but
one of the buffers have status EMPTY, and the other is
IN_USE (as the display buffer). At that point, a “new
sequence” can safely be used.

[3029] When a FLUSH token is detected in state TOKEN,
the flag from_1l is set, causing the basic state machine loop
to be changed such that state FLUSH is visited instead of
state TOKEN. State FLUSH examines the status of each
buffer in turn, waiting for it to become VACANT or IN_USE
as display. The state machine simply cycles around the loop
until the condition is true, then increments its index and
repeats the process until all of the buffers have been visited.
When the last buffer fulfills the condition, presentation
number, picture number, and all of the temporal reference
registers assume their reset values rst_fld is set to 1. The flag
from_{fl is reset and the normal main loop operation is
resumed.

[3030] C.2.4.8 Operation When TEMPORAL_REFER-
ENCE Received

[3031] When a TEMPORAL_REFERENCE token is
encountered, a check is made on the H.261 bit and, if set, the
four states TEMP_REFO to TEMP_REF3 are visited. These
perform the following operations:

[3032] TEMP_REFO: temp_ref=in_data_reg;

[3033] TEMP_REF1: delta=temp_ref-exp_tr; index=
arr_buf;

[3034] TEMP_REF2: exp_tr=delta+exp_tr;

[3035] TEMP_REF3: pic_num[I]=this_pnum+delta;in-
dex=1.

[3036] (C.2.4.9 Other Tokens and Tails

[3037] State TOKEN passes control to state OUTPUT-
_TAIL in all cases other than those outlined above. Control
remains here until the last word of the token is encountered
(in_extn_reg is low) and the main loop is then reentered.

[3038] C.2.5 Applications Notes

[3039] C.2.5.1 State Machine Stalling Buffer Manager
Input

[3040] This requirement repeatedly check for the “asyn-
chronous” timing events of picture clock and display buffer
request. The necessity of having the buffer manager input
stalled during these checks means that when there is a
continuous supply of data at the input to the buffer manager,
there will be a restriction on the data rate through the buffer
manager. A typical sequence of states may be PRESO,
PRES1, DRQ, TOKEN, OUTPUT_TAIL, each, with the
exception of OUTPUT_TAIL, lasting one cycle. This means
that for each block of 64 data items, there will be an
overhead of 3 cycles during which the input is stalled
(during states PRESO, PRES1 and DRQ) thereby slowing
the write rate by 3/64 or approximately 5%. This number
may occasionally increase to up to 13 cycles of overhead

Oct. 16, 2003

when auxiliary branches of the state machine are executed
under worst-case conditions. Note that such large overheads
will only apply on a once-per-frame basis.

[3041] C.2.5.2 Presentation Number Behavior During An
Access

[3042] The particular embodiment of the bm_pres illus-
trated by the schematic shown in C.2.3.2.4 means that
presentation number free-runs during upi accesses. If pre-
sentation number is required to be the same when access is
relinquished as it was when access was gained, this can be
effected by reading presentation number after access is
granted, and writing it back just before it is relinquished.
Note that this is asynchronous, so it may be desirable to
repeat the accesses several times to further ensure effective-
ness.

[3043] C.2.5.3 H261 Temporal Reference Numbers

[3044] The module bm_tref (not shown) should be
included in the bmlogic. The H.261 temporal reference
values are correctly processed by directing delta input from
the bmtref to the bm_stus module. The delta input can be
tied to zero if the frames are always sequential.

Section C.3 Write Address Generation
[3045] C.3.1 Introduction

[3046] The function of the write address generation hard-
ware, in accordance with the present invention, is to produce
block addresses for data to be written away to the buffers.
This takes account of buffer base addresses, the component
indicated in the stream, horizontal and vertical sampling
within a macroblock, picture dimensions, and coding stan-
dard. Data arrives in macrobl6ck form, but must be stored so
that lines may be retrieved easily for display.

[3047] C.3.2 Functional Overview

[3048] Each time a new block arrives in the data stream
(indicated by a DATA token), the write address generator is
required to produce a new block address. It is not necessary
to produce the address immediately, because up to 64 data
words can be stored by the DRAM interface (in-the swing
buffer) before the address is actually needed. This means
that the various address components can be added to a
running total in successive cycles, and thus, hence obviating
the need for any hardware multipliers. The macroblock
counter function is effected by storing strategic terminal
values and running counts in the register file, these being the
operands for comparisons and conditional updates after each
block address calculation.

[3049] Considering the picture format shown in FIG. 161,
expected address sequences can be derived for both standard
and H.261-like data streams. These are shown below. Note
that the format does not actually conform to the H.261
specification because the slices are not wide enough (3
macroblocks rather than 11) but the same “half-picture-
width-slice” concept is used here for convenience and the
sequence is assumed to be “H.261-type”. Data arrives as full
macroblocks, 4:2:0 in the example shown, and each com-
ponent is stored in its own area of the specified buffer.

US 2003/0196078 Al

[3050] Standard address sequence:
[3051] 000,001, 00C, 00D,100, 200;
[3052] 002,003,00E, 00F,101,201;
[3053] 004,005, 10,011, 102,202;
[3054] 006,007,012,013,103,203;
[3055] 008,009,014,015, 104,105;
[3056] 00A,00B,016,017, 105,205;
[3057] 018,019,024,025, 106, 107:
[3058] 01A,01 B,026 . ..

[3059] ...
[3060] 080,081, 08C,08D,122,222;
[3061] 082,083,08E,08F,123,223;

[3062] H261-type sequence:

[3063] 000,00 1, 00C,00D,100,200;
[3064] 002,003, 00E,00F, 101 ,201;
[3065] 004,005,010,011, 102,202;
[3066] 018,019,024, 025,106,107,
[3067] 01A,01B,026.027,107,207,
[3068] 01C, 01B, 026, 027, 107, 207;
[3069] 030,031,03C,03D, 10C,20C,
[3070] 032,033,03E,03F, 10D,20D;
[3071] 034,035,040,041,10E,20E;
[3072] 006,007,012,013,103,203;
[3073] 008,009,014,015,104,105;
[3074] 00A,00B,016,017,105,205;
[3075] O1E,01F,02A,02B,109,209;
[3076] 020,021,02C,02D, 10A,20A;
[3077] 022,023,02E,02F,10B,20B;
[3078] 036,037,042,043,10E,20F;
[3079] 038,039,044,045,110,210;
[3080] 03A,03B,046,047,111,211;
[3081] 048,049,054,055,112,212;
[3082] 04A,04B,056 . . .

[3083]
[3084]
[3085]
[3086]
[3087]

[3088]

[3089]

[3090]

[3091] The buffer manager outputs data and the buffer
index directly to the write address generator. This is per-
formed under the control of a two-wire-interface. In some

06A,06B,076,077,11D,21 D;
07E,07F,08A,08B,121,221;
080,081,08C,08D,122,222;
082,083,08E,08F,123:223;

C.3.3 Architecture

C.3.3.1 Interfaces

C.3.3.1.1 Interface to buffer manager

Oct. 16, 2003

177

ways, it is possible to consider the write address generator
block as an extension of the buffer manager because the two
are very closely linked. They do, however, operate from two
separate (but similar) clock generators.

[3092] (C.3.3.1.2 Interface to dramif

[3093] The write address generator provides data and
addresses for the DRAM interface. Each of these has their
own two-wire-interface, and the dramif uses each of them in
different clock regimes. In particular, the address is clocked
into the dramif on a clock which is not related to the Write
address generator clock. It is, therefore, synchronized at the
output.

[3094] C.3.3.1.3 Microprocessor Interface

[3095] The write address generator uses three bits of
microprocessor address space together with 8-bit data bus
and read and Write strobes. There is a single select bit for
register access.

[3096] C.3.3.1.4 Events

[3097] The write address generator is capable of produc-
ing five different events. Two are in response to picture size
information appearing in the data stream (hmbs and vmbs),
and three are in response to DEFINE_SAMPLING tokens
(one event for each component.

[3098] (C.3.3.2 Basic Structure

[3099] The structure of the write address generator is
shown in the schematic waddrgen.sch. It comprises a data-
path, some controlling logic, and snoopers and synchroni-
zation.

[3100] C.3.3.2.1 The Datapath (bwadpath)

[3101] The datapath is of the type described in Chapter
C.5 of this document, comprising an 18-bit adder/subtractor
and register file (see C.3.3.4), and producing a zero flag
(based on the adder output) for use in the control logic.

[3102] (C.3.3.2.2 The Controlling Logic

[3103] The controlling logic of the present invention con-
sists of hardware to generate all of the register file load and
drive signals, the adder control signals, the two-wire- inter-
face signals, and also includes the writable control registers.

[3104] (C.3.3.2.3 Snoopers and Synchronization

[3105] Super snoopers exist on both the data and address
ports. Snoopers in the datapaths, controlled as super-snoop-
ers from the zcells. The address has synchronization
between the write address generator clock and the dramif’s
“clk” regime. Syncifs are used in the zcells for the two-wire
interface signals, and simplified synchronizers are used in
the datapath for the address.

[3106] C.3.3.3 Controlling Logic and State Machine
[3107] C.3.3.3.1 Input/Output Block (wa inout)

[3108] This block contains the input and two output two-
wire interfaces, together with latches for the input data (for
token decode) and arrival buffer index (for decoding four
ways).

US 2003/0196078 Al

178

[3109] C.3.3.3.2 Two Cycle Control Block (wa fc)

[3110] The flag fc (first cycle) is maintained here and
indicates whether the state machine is in the middle of a
two-cycle operation (i.e., an operation involving an add).

[3111] C.3.3.3.3. Component Count (wa comp)

[3112] Separate addresses are required for data blocks in
each component, and this block maintains the current com-
ponent under consideration based on the type of DATA
header received in the input stream.

[3113] C.3.3.3.4 Modulo-3 Control (wa mod3)

[3114] When generating address sequences for H.261 data
streams, it is necessary to count three rows of macroblocks
to half way along the screen (see C.3.2). This is effected by
maintaining a modulo-3 counter, incremented each time a
new row of macroblocks is visited.

[3115] C.3.3.3.5 Control Reqisters (wa ureqs)

[3116] Module wa_uregs contains the setup register and
the coding standard register - the latter is loaded from the
data stream. The setup register uses 3 bits: QCIF (Isb) and
the maximum component expected in the data stream (bits
1 and 2). The access bit also resides in this block (synchro-
nized as usual), with the “stopped” bits being derived at the
next level up the hierarchy (walogic) as the OR of the access
bit and the event stop bits. Microprocessor address decoding
is done by the block wa_udec which takes read and write
strobes, a select wire, and the lower two bits of the address
bus.

[3117] C.3.3.3.6 Controlling State Machine (wa state)

[3118] The logic in this block is split into several distinct
arcas. The sate decode, new state encode, derivation of
“intermediate” logic signals, datapath control signals
(drivea, driveb, load, adder controls and select signals),
multiplexer controls, two-wire-interface controls, and the
five event signals.

Oct. 16, 2003

[3119] (C.3.3.3.7 Event Generation

[3120] The five event bits are generated as a result of
certain tokens arriving at the input. It is important that, in
each case, the entire token is received before any events are
generated because the event service routines perform cal-
culations based on the new values received. For this reason,
each of the bits is delayed by a whole cycle before being
input to the event hardware.

[3121] C.3.3.4 Register Address Map

[3122] There are two sets of registers in the write address
generator block. These are the top-level setup type registers
located in the standard cell section, and keyholed datapath
registers. These are listed in Table C.3.1 and C.3.2, respec-
tively.

TABLE C.3.1

Top-Level Registers

Reset

Register Name Address Bits State Function

BU_WADDR_COD_STD 0x4 2 0 Cod std from
data stream

BU_WADDR__ACCESS 0x5 1 0 Access bit

BU_WADDR_ CTL1 0x6 3 0 max component

(2.1) and CCIF(0)
BU_WA__ADDR__SNP2 0xBO 8 snoooper on the

write

BU_WA__ADDR_ SNP1 0xB1 8 address generator
BU_WA_ ADDR_ SNPO 0xB2 8 address c/p.
BU_WA_ DATA_SNP1 0xB4 8 snooper on data
output of
BU_WA_ DATA_ SNPO 0xB5 8 WA
[3123]
TABLE C.3.2

Image Formatter Address Generator Keyhole

Keyhole Keyhole

Register Name Address Bits Comments
BU_WADDR__ BUFFERO_ BASE_ MSB 0x85 2 Must be
BU_WADDR__ BUFFERO_ BASE_ MID 0x86 8 Loaded
BU_WADDR__BUFFERO_BASE_LSB 0x87 8
BU_WADDR__BUFFER1_BASE_MSB 0x89 2 Must be
BU_WADDR__ BUFFER1_BASE_MID 0x8a 8 Loaded
BU_WADDR__BUFFER1_BASE_LSB 0x8b 8
BU_WADDR__ BUFFER2_BASE_ MSB 0x8d 2 Must be
BU_WADDR__ BUFFER2_BASE_MID 0x8e 8 Loaded
BU_WADDR__BUFFER2_BASE_LSB 0x8f 8
BU_WADDR__ COMPO_HMBADDR__MSB 0x91 2 Test
BU_WADDR_ COMPO__HMBADDR__MID 0x92 8 only
BU_WADDR__ COMPO_HMBADDR__LSB 0x93 8
BU_WADDR__COMP1__HMBADDR__MSB 0x95 2 Test
BU_WADDR__ COMP1__HMBADDR_MID 0x96 8 only
BU_WADDR__ COMP1_HMBADDR__LSB 0x97 8
BU_WADDR__ COMP2__HMBADDR__MSB 0x99 2 Test
BU_WADDR__ COMP2__HMBADDR__MID 0x%a 8 only
BU_WADDR__ COMP2_HMBADDR__LSB 0x9b 8
BU_WADDR__ COMPO_HMBADDR__MSB 0x9d 2 Test
BU_WADDR__ COMPO_HMBADDR__MID 0x% 8 only

US 2003/0196078 Al Oct. 16, 2003

179
TABLE C.3.2-continued
Image Formatter Address Generator Keyhole

Keyhole Keyhole
Register Name Address Bits Comments
BU_WADDR__COMPO_HMBADDR__LSB 0x9f 8
BU_WADDR__COMP1__HMBADDR_MSB Oxal 2 Test
BU_WADDR__COMP1__HMBADDR_ MID Oxa2 8 only
BU_WADDR__COMP1_HMBADDR_LSB Oxa3 8
BU_WADDR__ COMP2__ HMBADDR_ MSB Oxas 2 Test
BU_WADDR__ COMP2__ HMBADDR_ MID Oxa6 8 only
BU_WADDR__COMP2__ HMBADDR_ LSB Oxa7 8
BU_WADDR__ VBADDR__MSB Oxa9 2 Test
BU_WADDR__ VBADDR_ MID Oxaa 8 only
BU_WADDR__VBADDR_ 1SB Oxab 8
BU_WADDR_COMPO_HALF_WIDTH_IN_ BLOCKS__MSB Oxad 2 Must be
BU_WADDR_COMPO_HALF_WIDTH_IN_ BLOCKS_ MID Oxae 8 Loaded
BU_WADDR_COMPO_HALF_WIDTH_IN_ BLOCKS_ LSB Oxaf 8
BU_WADDR__COMP1_HALF WIDTH_IN_BLOCKS_MSB 0xb1 2 Must be
BU_WADDR_COMP1_HALF_ WIDTH_IN_ BLOCKS_ MID 0xb2 8 Loaded
BU_WADDR_COMP1_HALF_WIDTH_IN_ BLOCKS_ LSB 0xb3 8
BU_WADDR_COMP2_HALF_WIDTH_IN_ BLOCKS__MSB 0xb5 2 Must be
BU_WADDR__COMP2_HALF WIDTH_IN_BLOCKS_MID 0xb6 8 Loaded
BU_WADDR_COMP2_HALF_WIDTH_IN_ BLOCKS_ LSB 0xb7 8
BU_WADDR_HB_ MSB 0xb9 2 Test only
BU_WADDR_HB_ MID Oxba 8
BU_WADDR_HB_1LSB 0xbb 8
BU_WADDR__ COMPO__OFFSET__MSB Oxbd 2 Must be
BU_WADDR__ COMPO__OFFSET__MID Oxbe 8 Loaded
BU_WADDR__COMPO__OFFSET__LSB 0xbf 8
BU_WADDR__COMP1_ OFFSET__MSB Oxcl 2 Must be
BU_WADDR__ COMP1__ OFFSET__MID Oxc2 8 Loaded
BU_WADDR__COMP1__OFFSET__LSB Oxc3 8
BU_WADDR__ COMP2__ OFFSET__MSB 0xcS 2 Must be
BU_WADDR_ COMP2__ OFFSET__MID Oxc6 8 Loaded
BU_WADDR__COMP2__OFFSET__LSB Oxc7 8
BU_WADDR_ SCRATCH__MSB 0xc9 2 Test only
BU_WADDR__ SCRATCH__MID Oxca 8
BU_WADDR_ SCRATCH__LSB 0xcb 8
BU_WADDR_MBS_WIDE_MSB Oxcd 2 Must be
BU_WADDR_MBS_WIDE_MID Oxce 8 Loaded
BU_WADDR_MBS_WIDE_1SB Oxcf 8
BU_WADDR_MBS_HIGH__MSB 0xd1 2 Must be
BU_WADDR_MBS_HIGH_MID 0xd2 8 Loaded
BU_WADDR_MBS_HIGH_LSB 0xd3 8
BU_WADDR__COMPO_LAST MB_IN_ROW__MSB 0xd5 2 Must be
BU_WADDR_COMPO_LAST_MB_IN_ROW_MID 0xd6 8 Loaded
BU_WADDR__COMPO_LAST_ MB_IN_ROW_1SB 0xd7 8
BU_WADDR_COMP1_LAST_ MB_IN_ROW__MSB 0xd9 2 Must be
BU_WADDR__COMP1_1AST MB_IN_ROW_MID Oxda 8 Loaded
BU_WADDR_COMP1_1LAST MB_IN_ROW_L1SB 0xdb 8
BU_WADDR_ COMP2_LAST_ MB_IN_ ROW__MSB Oxdd 2 Must be
BU_WADDR_COMP2_1AST_MB_IN_ROW_MID Oxde 8 Loaded
BU_WADDR_COMP2_1AST MB_IN_ROW_1SB Oxdf 8
BU_WADDR_COMPO_LAST_ MB_IN_HALF ROW__MSB Oxel 2 Must be
BU_WADDR_COMPO_TLAST_MB_IN_HALF ROW_MID Oxe2 8 Loaded
BU_WADDR_COMPO_LAST_MB_IN_HALF ROW_LSB Oxe3 8
BU_WADDR_COMP1_LAST MB_IN_HALF ROW_MSB 0xeS 2 Must be
BU_WADDR_COMP1_1AST MB_IN_HALF ROW_MID Oxe6 8 Loaded
BU_WADDR_COMP1_1LAST_ MB_IN_HALF ROW_LSB Oxe7 8
BU_WADDR_COMP2_LAST_ MB_IN_HALF ROW__MSB Oxe9 2 Must be
BU_WADDR_COMP2_1AST MB_IN_HALF ROW_MID Oxea 8 Loaded
BU_WADDR_COMP2_1AST_ MB_IN_HALF ROW_LSB Oxeb 8
BU_WADDR_ COMPO_LAST_ROW_IN_MB_ MSB Oxed 2 Must be
BU_WADDR__COMPO_LAST ROW_IN_MB_ MID Oxee 8 Loaded
BU_WADDR__COMPO_LAST_ ROW_IN_MB_LSB Oxef 8
BU_WADDR_COMP1__LAST_ ROW_IN_MB_MSB 0xf1 2 Must be
BU_WADDR__COMP1_1AST ROW_IN_MB_MID 0xf2 8 Loaded
BU_WADDR_COMP1_1LAST ROW_IN_MB_1SB 0xf3 8
BU_WADDR_ COMP2_LAST _ROW_IN_MB_MSB 0xfs 2 Must be
BU_WADDR__COMP2__1AST_ROW_IN_MB_ MID 0xf6 8 Loaded
BU_WADDR__ COMP2_1LAST ROW_IN_MB_LSB 0xf7 8
BU_WADDR__COMPO_BLOCKS_ PER_ MB_ ROW__ MSB 0xf9 2 Must be
BU_WADDR__COMPO__BLOCKS_ PER_ MB_ ROW__MID Oxfa 8 Loaded
BU_WADDR__ COMPO__BLOCKS_ PER_ MB_ ROW_LSB 0xfb 8
BU_WADDR__COMP1_BLOCKS_ PER_MB_ ROW__MSB 0xfd 2 Must be

US 2003/0196078 Al

Oct. 16, 2003

180
TABLE C.3.2-continued
Image Formatter Address Generator Keyhole
Keyhole Keyhole
Register Name Address Bits Comments
BU_WADDR__COMP1__BLOCKS_ PER_MB_ ROW__MID Oxfe 8 Loaded
BU_WADDR__ COMP1__BLOCKS_PER_MB_ ROW_LSB Oxff 8
BU_WADDR__COMP2_ BLOCKS_ PER_ MB_ ROW__MSB 0x101 2 Must be
BU_WADDR__COMP2__ BLOCKS_ PER_MB_ ROW__MID 0x102 8 Loaded
BU_WADDR__ COMP2__BLOCKS_PER_ MB_ ROW_LSB 0x103 8
BU_WADDR_ COMPO_LAST_MB__ ROW_MSB 0x105 2 Must be
BU_WADDR__COMPO_LAST_MB_ ROW_MID 0x106 8 Loaded
BU_WADDR_ COMPO_LAST_MB_ ROW_LSB 0x107 8
BU_WADDR_COMP1_LAST_ MB_ROW_MSB 0x109 2 Must be
BU_WADDR__COMP1_1AST MB_ROW_MID 0x10a 8 Loaded
BU_WADDR_COMP1_1AST MB_ROW_LSB 0x10b 8
BU_WADDR_ COMP2__LAST_ MB__ ROW_MSB 0x10d 2 Must be
BU_WADDR_COMP2_1AST_MB_ ROW_MID 0x10e 8 Loaded
BU_WADDR_COMP2_1AST MB_ROW_LSB 0x10f 8
BU_WADDR__ COMPO_HBS_ MSB Ox111 2 Must be
BU_WADDR__COMPO_HBS_ MID 0x112 8 Loaded
BU_WADDR__COMPO_HBS_ LSB 0x113 8
BU_WADDR__COMP1__HBS_ MSB 0x115 2 Must be
BU_WADDR__COMP1_HBS_ MID 0x116 8 Loaded
BU_WADDR__COMP1_HBS_ LSB 0x117 8
BU_WADDR__ COMP2__HBS_ MSB 0x119 2 Must be
BU_WADDR__COMP2__HBS_ MID Ox1la 8 Loaded
BU_WADDR__COMP2_HBS_ LSB 0x11b 8
BU_WADDR__ COMPO__MAX HB 0x11f 2 Must be
BU_WADDR__ COMP1_MAX HB 0x123 2 Loaded
BU_WADDR_ COMP2_ MAX HB 0x127 2
BU_WADDR__ COMPO__MAX VB 0x12b 2 Must be
BU_WADDR_ COMP1_MAX VB 0x12f 2 Loaded
BU_WADDR_ COMP2__MAX VB 0x133 2

[3124] The keyhole registers fall broadly into two catego-
ries. Those which must be loaded with picture size param-
eters prior to any address calculation, and those which
contain running totals of various (horizontal and vertical)
block andmacroblock counts. The picture size parameters
may be loaded in response to any of the interrupts generated
by the write address generator, i.e., when any of the picture
size or sampling tokens appear in the data stream. Alterna-
tively, if the picture size is known prior to receiving the data
stream, they can be written just after reset. Example setups
are given in Sectionr C.13, and the picture size parameter
registers are defined in the next section.

[3125] C.3.4 Programming the Write Address Generator

[3126] The following datapath registers must contain the
correct picture size information before address calculation
can proceed. They are illustrated in FIG. 162.

[3127] 1)WADDR_HALF_WIDTH_IN_BLOCKS:
this defines the half width, in blocks, of the incoming
picture.

[3128] 2)WADDR_MBS_WIDE: this defines the
width, in macroblocks, of the incoming picture.

[3129] 3)WADDR_ ;5 HIGH: this defines the
height, in macroblocks, of the incoming picture.

[3130] 49WADDR_LAST _MB_IN_ROW: this
defines the block number of the top left hand block
of the last macroblock in a single, full-width row of
macroblocks. block numbering starts at zero in the
top left corner of the left-most macroblock, increases

across the frame with each block and subsequently
with each following row of blocks within the mac-
roblock row.

[3131] 5WADDR_LAST MB_IN_HALF_ROW: this is
similar to the previous item, but defines the block number of

the top left block in the last macroblock in a half-width row
of macroblocks.

[3132] 6)WADDR_LAST_ROW_IN_MB: this
defines the block number of the left most block in the
last row of blocks within a row of macroblocks.

[3133] 7YWADDR_BLOCKS_PER_MB_ROW: this
defines the total number of blocks contained in a
single, full-width row of macroblocks.

[3134] 8)WADDR_LAST _MB_ROW: this defines
the top left block address of the left-most macrob-
lock in the last row of macroblocks in the picture.

[3135] 9YWADDR_HBS: this defines the width in
blocks of the incoming picture.

[3136] 10)WADDR_MAXHB: this defines the block
number of the right-most block in a row of blocks in
a single macroblock.

[3137] W)WADDR.;MAXVRB: this defines the height-
1, in blocks, of a single macroblock.

[3138] In addition, the registers defining the organization
of the DRAM must be programmed. These are the three
buffer base registers, and the n component offset registers,
where n is the number of components expected in the data
stream (it can be defined in the data stream; and can be 1
minimum and 3 maximum).

US 2003/0196078 Al

[3139] Note that many of the parameters specify block
numbers or block addresses. This is because the final address
is expected to be a block address, and the calculation is
based on a cumulative algorithm.

[3140] The screen configuration illustrated in FIG. 162
yields the following register values:

[3141] 1)WADDR_HALF_WIDTH_IN_BLOCKS=
0x16

[3142]
[3143]
[3144]

[3145]
0x14

[3146] 6)WADDR_LAST ROW_IN_MB=0x2C

[3147] 7)WADDR_BLOCKS PER_MB_ROW
=0x58

[3148]
[3149]

2)WADDR_MBS_WIDE=0x16
3)WADDR_MBS_HIGH=0x12
4WADDR_LAST MB_IN_ROW=0x2A
S)WADDR_LAST MB_IN HALF_ROW=

8)WADDR_LAST MB_ROW=0x58
9)WADDR_HBS=0x2C

[3150] 10)WADDR_MAXVB=1

[3151] 11)WADDR_MAXIIB=1
[3152] C.3.5 Operation of The State Machine

[3153] There are 19 states in the buffer manager’s state
machine, as detailed in Table C.3.3. These interact as shown
in FIG. 164, and also as described in the behavioral descrip-
tion, bmlogic.M.

TABLE C.3.3

Write Address Generator States

State Value
IDLE 0x00
DATA 0x10
CODING__STANDARD 0x0C
HORZ_ MBS0 0x07
HORZ_MBS1 0x06
VERT_MBS0 0x0B
VERT_MBS1 0x0A
OUTPUT_TAIL 0x08
HB 0x11
MBO 0x1D
MB1 0x12
MB2 0x1E
MB3 0x13
MB4 0x0E
MB35 0x14
MB6 0x15
MB4A 0x18
MB4B 0x09
MB4C 0x17
MB4D 0x16
ADDR1 0x19
ADDR2 Ox1A
ADDR3 0x1B
ADDR4 0x1C
ADDRS5 0x03
HSAMP 0x05
VSAMP 0x04
PIC_ST1 0x0f
PIC_ST2 0x01
PIC_ST3 0x02

Oct. 16, 2003

[3154] The major section of the write address generator
state machine is illustrated down the left hand side of FIG.
164. On receipt of a DATA token, the state machine moves
from state IDLE to state ADDR1 and then through to state
ADDRS5, from which an 18-bit block address is output with
two-wire-interface controls. The calculations performed by
the states ADDR1 through to ADDRS are:

[3155] BU_WADDR_SCRATCH=BU_BUFFERn_BASE
[3156] +BU_COMPm_OFFSET;

[3157] BU_WADDR_SCRATCH=BU WADDR_S-
CRATCH

[3158] +BU_WADDR_VMBADDR;

[3159] BU_WADDR_SCRATCH=BU_WADDR-
SCRATCH

[3160] +BU_WADDR_HMBADDR;

[3161] BU_WADDR_SCRATCH=BU+WADDR_S-
CRATCH

[3162] +BU_WADDR_VBADDR;

[3163] out_addr=BU_ WADDR_SCRATCH+BU_WAD-
DR_HB;

[3164] The registers used are defined as follows:

[3165] 1) BU_WADDR_VMBADDR: the block
address (the top left block) of the left-most macrob-
lock of the row of macroblocks in which the block
whose address is being calculated is contained.

[3166] 2) BU_WADDR_HMBADDR: the block
address (top left block) of the top macroblock of the
column of macroblocks in which the block whose
address is being calculated is contained.

[3167] 3) BU_WADDR_VBADDR: the block
address, within the macroblock row, of the left-most
block of the row of blocks in which the block whose
address is being calculated is contained.

[3168] 4) BU_WADDR_HB: the horizontal block
number, within the macroblock, of the block whose
address is being calculated.

[3169] 5) BU_WADDR_SCRATCH: the scratch reg-
ister used for temporary storage of intermediate
results.

[3170] Considering FIG. 163, and taking, for example, the
calculation of the block whose address is 0x62D, the fol-
lowing sequence of calculations will take place;

[3171] SCRATCH=BUFFERn_BASE+COMPm_OFF-
SET; (assume 0)

[3172]
[3173]
[3174]
[3175]

[3176] The contents of the various registers are illustrated
in the Figure.

SCRATCH=0+0x5D8;
SCRATCH=0x5D8+0x2B;
SCRATCH=0x600+0x2C;

block address=0x62C+1=0x62D;

US 2003/0196078 Al

[3177] C.3.5.2 Calculation of New Screen Location
Parameters

[3178] When the address has been output, the state
machine continues to perform calculations in order to update
the various screen location parameters described above. The
states HB and MBO through to MB6 do the calculations,
transferring control at some point to state DATA from which
the reminder of the DATA Token is output.

[3179] These states proceed in pairs, the first of a pair
calculating the difference between the current count and its
terminal value and, hence, generating a zero flag. The
second of the pair either resets the register or adds a fixed
(based on values in the setup registers derived from screen
size) offset. In each case, if the count under consideration
has reached its terminal value (i.e., the zero flag is set),
control continues down the “MB” sequence of states. If not,
all counts are deemed to be correct (ready for the next
address calculation) and control transfers to state DATA.

[3180] Note that all states which involve the use of an
addition or subtraction take two cycles to complete (allow-
ing the use of a standard, ripple-carry adder) , this being
effected by the use of a flag, fc (first cycle) which alternates
between 1 and 0 for adder-based states.

[3181] All of the address calculation and screen location
calculation states allow data to be output assuming favorable
two-wire interface conditions.

C.3.5.2.1 Calculations for Standard
[3182] (MPEG-style) Sequences

[3183] The sequence of operations is as follows (in which
the zero flag is based on the output of the adder): states HB
and MBO:

scratch = hb — maxhb;
if (z)

hb =0;
else

hb =hb + 1
new__state = DATA;

)
states MB1 and MB2:
scratch = vb__addr - last__row__in__mb;
if (z)
vb_addr = 0;
else

vb__addr = vb__addr + width_in_ blocks;
new__state = DATA;

states MB3 and MB4:
scratch = hmb__addr - last_mb__in_ row;
if (z)
hmb_addr = 0;
else

hmb_ addr = hmb__addr + maxhb;
new__state = DATA;

states MBS and MB6:
scratch = vmb__addr - last_mb_ row;
if (! z)
vmb__addr = vmb__addr + blocks__per__mb__row;
(vmb__addr is reset after a PICTURE__START token is
detected, rather than when the end of a picture is inferred
from the calculations).

Oct. 16, 2003

C.3.5.2.2 Calculations for H.261 Sequences

[3184] The sequence for H.261 calculations diverges from
the standard sequence at state MB4: states HB and MBO:-as
above states MB1 and MB2:-as above states MB3 and MB4:

scratch = hmb__addr - last_mb__ in_ row;
if (z & (mod3==2)) /*end of slice on right of screen*/

hmb__addr - 0;
new__state — MBS5;

else if (z) /*end of row on right of screen*/

hmb__addr__half width_in_ blocks;
new__state = MB4A;

)

else

(
scratch = hmb__addr - last_mb__in__half row;
new-state = MB4B;

state MB4A:

vmb__addr = vmb__addr + blocks__per__mb__row;
new_state = DATA;

state (MB4) and MB4B:

(scratch = hmb_addr - last_mb_in _ half row;)

if (z & (mod3==2)) /*end of slice on left of screen*/

hmb__addr = hmb__addr + maxhb;
new__state = MB4C;

else if (z) /*end of row on left of screen*/

hmb__addr = 0;
new_ state = MB4A;

}

else

hmb_ addr = hmb__addr + maxhb;
new__state = DATA;

states MB4C and MB4D:

vmb__addr = vmb__addr - blocks__per_ mb_ row;
vmb__addr = vmb__addr - blocks__per__mb__row;
new__state = DATA;

[3185] states M65and MB6:—as above

C.3.5.3 Operation on PICTURE, ; START Token

[3186] When a PICTURE,; START token is received,
control passes to state PIC_ST1 where the vb, ; addr register
(BU_WADDR,; VBADDR) is reset to 0. Each of states
PIC_ST2 and PIC,; ST3 are then visited. once for each
component, resetting hmb, 5 addr and vmb_addr respectrvey.
Centre then returns. via state OUTPUT _TAIL, to IDLE.

C.3.5.3 Operation on PICTURE_START Token

[3187] When a PICTURE_START token is received, con-
trol passes to state PIC_ST1 where the vb_addr register
(BU_WADDR_VBADDR) is reset to 0. Each of states
PIC_ST2 and PIC,; ST3 are then visited, once for each
component, resetting hmb, 5 addr and vmb, 5 addr, respec-
tively. Control then returns., via state OUTPUT_TAIL, to
IDLE.

C.3.5.4 Operation on DEFINE SAMPLING Token

[3188] When a DEFINE_SAMPLING token is received,
the component register is loaded with the least significant

US 2003/0196078 Al

183

two bits of the input data. In addition, via states HSAMP and
VSAMP, the maxhb and maxvb registers for that component
are loaded. Furthermore, the appropriate define sampling
event bit is triggered (delayed by one cycle to allow the
whole token to be written).

C.3.5.5 Operation on HORIZONTAL,; MBS and
VERTICAL_MS When each of HORIZONTAL , 5
MBS and VERTICAL_MBS arrive, the 14-bit
value contained in the token is written, in two
cycles, to the appropriate register. The relevant
event bit is triggered, delayed by one cycle.

C.3.5.6 Other Tokens

[3189] The CODING,; STANDARD token is detected
and causes the top-level BU,; WADDR,; COD,; STD
register to be written with the input data. This is decoded and
the nh261 flag (not H261) is hardwired to the buffer manager
block. All other tokens cause control to move to state
OUTPUT TAIL, which accepts data until the token fin-
ishes. Note, however, that it does not actually output any
data.

SECTION C.4 Read Address Generator

C.4.1 Overview

[3190] The read address generator of the present invention
consists of four state machine/datapath blocks. The first,
“dline”, generates line addresses-and distributes them to the
other three (one for each component) identical page/block
address generators, “dramctls”. All blocks are linked by two
wire interfaces. The modes of operation include all combi-
nations of interlaced/progressive, first field upper/lower, and
frame start on upper/lower/both. The Table C.3.4 shows the
names, addresses, and reset states of the dispaddr control
registers, and Chapter C.13 gives a programming example
for both address generators.

C.4.2 Line Address Generator (dline)

[3191] This block calculates the line start addresses for
each component. Table C.3.4 shows the 18 bit datapath
registers in dline.

Oct. 16, 2003

[3192] Note the distinction between DISP,; register,
name and ADDR_register_name DISP _name registers are
in dispaddr only and means that the register is specific to the
display area to be read out of the DRAM. ADDR_name
means that the register describes something about the struc-
ture of the external buffers.

[3193] Operation

[3194] The basic operation of dline, ignoring all modes
repeats etc. is:

if (vsync_start) / * first active cycle of vsync* /

(

comp =0

DISP__VB_CNT_COMP [comp]=0 ;

LINE [comp]-BUFFER_ BASE [comp]+0 ;

LINE [comp]=LINE [comp]+DISP__COMP__OFFSET [comp] ;
while (VB_CNT_COMP [comp] <DISP__VBS_ COMP [comp]
(

while (line__count [comp] <8)

(

while (comp<3)

(

-OUTPUT LINE [comp] to dramectl [comp]

line [comp] = LINE [comp]+ADDR_HBS_ COMP [comp] ;
comp =comp +1;

)

line__count [comp]=line_ count [comp]+1;

)

VB_CNT_COMP [Comp] = VB _CNT_COMP [comp]+1;
line_ count [comp]==0;

)

)

[3195]

TABLE C.34

Register Names

Dispaddr Datapath Registers

Keyhole

Bus Address Description Comments

BUFFER__BASEO
BUFFER_BASE1
BUFFER_BASE2
DISP__COMP__OFFSETO
DISP_ COMP__ OFFSET1
DISP__ COMP__OFFSET2

DISP__VBS__ COMPO
DISP__VBS__COMP1
DISP__VBS__ COMP2
ADDR__HBS_ COMPO
ADDR_HBS__ COMP1
ADDR_HBS__ COMP2

LINEO
LINE1

A 0x00,01,02,03 Block address These registers
A 0x04,05,06,07 of the start of must be loaded
A 0x08,09,0a,0b each buffer. by the upi before
B 0x24,25,26,27 Offsets from the operation can
B 0%x28,29,2a,2b buffer base to begin.
B 0x2c,2d,2e,2f where reading

begins.
B 0%x30,31,32,33 Number of
B 0%x34,35,36,37 vertical blocks
B 0%x38,39,32,3b to be read
B 0x3c,3d,3e,3f Number of
B 0x40,41,42,43 horizontal
B 0x44,45,46,4 blocks IN THE

DATA
A 0x0c,0d,0e,0f Current line These registers
A 0c10,11,12,13 address are temporary

US 2003/0196078 Al

TABLE C.3.4-continued

Oct. 16, 2003
184

Dispaddr Datapath Registers

Keyhole
Register Names Bus Address Description

Comments

LINE2

DISP__VB__ CNT_COMPO
DISP_VB_ CNT_COMP1
DISP__VB__ CNT_COMP2

0x14,15,16,17

0x18,19,1a,1b Number of

Ox1c,1d,1e,1f wvertical blocks

0x20,21,22,23 remaining to be
read.

> > >

locations used
by dispaddr.
Note: All
registers are R/
W from the upi

C.4.3 Lline Control Registers

[3196] The above operation is modified by the dispaddr
control registers which are shown in the Table C.4.3. below.

TABLE C4.3

CONTROL REGISTERS

Reset
Register Name Address Bits State Function

LINES_IN_TLAST_ ROWO 0x08 [2:0] 0x07 These three

LINES_IN_LAST ROW1 0x09 [2:0] 0x07 registers

LINES_IN_LAST_ROW2 0x0a [2:0] 0x07 determine the
number of lines

(out of 8)

of the last

row of blocks to

read out
DISPADDR__ACCESS 0x0b [0] 0x00 Access bit for

dispaddr
DISPADDR__CTLO 0x0c [1:0] 0x0O SYNC_MODE
See below for a detailed [2] 0x0 READ_START
description of these [3] 0x1 INTERLACED/
control bits PROG

[4] 0x0 LSB_INVERT
[7:5] 0x0 LINE_RPT
DISPADDR_ CTL1 0x0d [0] Oxl COMPOHOLD

Dispaddr Control Registers

C.4.3.1 LINES,; IN ;5 LAST,; ROWcomponent

[3197] These three registers determine, for each compo-
nent, the number of lines in the last row of blocks that are
to be read. Thus, the height of the read window may be an
arbitrary number of lines. This is a back-up feature since the
top, left and right edges of the window are on block
boundaries, and the output controller can clip (discard)
excess lines.

C. 43.2. DISPADDR,; ACCESS

[3198] This is the access bit for the whole of dispaddr. On
writing a “1” to this location, dispaddr is halted synchro-
nously to the clocks. The value read back from the access bit
will remain “” until dispaddr has safely halted. Having
reached this state, it is safe to perform asynchronous upi
accesses to all the dispaddr registers. Note that the upi is
actively locked out from the datapath registers until the
access bit is “I”. In order for access to dispaddr to be
achieved without disrupting the current display or datapath
operation, access will only given and released under the
following circumstances.

[3199] Stopping: Access will only be granted if the data-
path has finished its current two cycle operation (if it were

doing one), and the “safe” signal from the output controller
is high. This signal represents the area on the screen below
the display window and is programmed in the output con-
troller (not dispaddr). Note: It is, therefore, necessary to
program the output controller before trying to gain access to
dispaddr.

[3200] Starting-Access will only be released when “safe”
is high, or during vsync. This ensures that display will not
start too close to the active window.

[3201] This scheme allows the controlling software to
request access, poll until end of display, modify dispaddr,
and release access. If the software is too slow and doesn’t
release the access bit until after vsync, dispaddr will not start
until the next safe period. Border color will be displayed
during this “lost” picture (rather than rubbish)

C.4.3.3 DISPADDR, ; CTLO[7:0]

[3202] When reading the following descriptions, it is
important to understand the distinction between interlaced
data and an interlaced display.

[3203] Interlaced data can be of two forms. The Top-Level
Registers supports field-pictures (each buffer contains one
field), and frames (each buffer contains an entire frame -
interlaced or not)

[3204] DISPADDR_CTLO[7:0]contains the following
control bits: SYNC_MODE[1:0)

[3205] With an interlaced display, vsyncs referring to top
and bottom fields are differentiated by the field, 5 info pin. In
this context, field, ; info=HIGH meaning the top field. These
two control bits determine which vsyncs dispaddr will
request a new display buffer from the buffer manager and,
thus, synchronize the fields in the buffers (if the data were
interlaced) with the fields on the display:

[3206] 0:New Display Buffer On Top Field
[3207] 1:Bottom Field

[3208] 2:Both Fields

[3209] 3:Both Fields

[3210] At startup, dispaddr will request a buffer from the
buffer manager on every vsync. Until a buffer is ready,
dispaddr will receive a zero (no display) buffer. When it
finally gets a good buffer index, dispaddr has no idea where
it is on the display. It may, therefore, be necessary to
synchronize the display startup with the correct vsync.

US 2003/0196078 Al

[3211] READ,,START

[3212] For interlaced displays at startup, this bit deter-
mines on which vsync display will actually start. Further-
more, having received a display buffer index, dispaddr may
“sit out” the current vsync in order to line up fields on the
display with the fields in the buffer.

[3213] INTERLACED/PROGRESSIVE

Oct. 16, 2003

outputs consist of a page address, a 3 bit line number, a 3 bit
block start, and a 3 bit block stop address. (The line number
is calculated by dline and passed through the dramctls
unmodified). Thus, to read out 48 pixels of line 5 form page
Oxaa starting from the third block from the left (an arbitrary
point along an arbitrary line), the addresses passed to the
DRAM interface would be:

[3225] Page=Oxaa
[3214] 0:Progressive [3226] Linc=5
[3215] 1: Interlaced [3227] Block start=2
[3216] In progressive mode, all lines are read out of the [3228] Block stop=7

display area of the buffer. In interlaced mode, only alternate
lines are read. Whether reading starts on the first or second
line depends on field,; info. Note that with (interlaced)
field-pictures, the system wants to read all lines from each
buffer so the setting of this bit would be progressive. The
mapping between field, 5 info and first/second line start may
be inverted by Isb_invert (so named for historical reasons).

[3217] LSB_INVERT

[3218] When set, this bit inverts the field_info signal seen
by the line counter. Thus, reading may be started on the
correct line of a frame and aligned to the display regardless
of the convention adopted by the encoder, the display or the
Top-Level Registers.

[3219] LINE_RPT[2:0]

[3220] Each bit, when set, causes the lines of the corre-
sponding component to be read twice (bit 0 affects compo-
nent 0 etc.). This forms the first part of the vertical unsam-
pling. It is used in the 8 times chroma upsampling required
for conversion from QFIF to 601.

[3221] COMPOHOLD

[3222] This bit is used to program the ratio of the number
of lines to be read (as opposed to displayed) for component
0 to those of components 1 and 2).

[3223] 0: Same number of lines, ie., 4:4:4 data in the
buffers.

[3224] 1: Twice as many component O lines, i.e., 4:2:0.
Page/Block Address Generators (drametls) When passed a
line address, these blocks generate a series of page/line
addresses and blocks to read along the line. The minimum
page width of 8 blocks is always assumed and the resulting

[3229] Each of these three machines has 5 datapath reg-
isters. These are shown in Table C.3.4. The basic behavior
of each Dramctlis:

[3230] Block start =2
[3231] Block stop =7

[3232] Each of these three machines has 5 datapath reg-
isters. These are shown in able C 3.4

[3233] The basic behaviour of each drametl is: while (true)

CNT_LEFT = 0:
GET_A_NEW__LINE__ADDRESS from dline;
BLOCK_ADDR = input__block__addr + 0;
PAGE_ADDR = input__page__addr + 0;
CNT__LEFT = DISP_HBS + 0;

while (CNT_LEFT > BLOCKS_ LEFT)

BLOCKS__LEFT = 8-BLOCK__ADDR;

— output PAGE__ADDR, start=BLLOCK__ADDR, stop=7.
PAGE_ADDR = PAGE__ADDR + 1;

BLOCK_ADDR = 0;

CNT_LEFT = CNT__LEFT - BLOCKS_ LEFT;

)

/* Last Page of line */

CNT_LEFT = CNT__LEFT + BLOCK__ADDR;

CNT_LEFT = CNT_LEFT - 1;

— output PAGE__ADDR start=BLOCK__ADDRstop=CNT_LEFT

Table C.3.5 Dramctl(,0,1 &2) Datapath Registers
[3234]

TABLE C.35

Register Names

Dramctl(0,1 & 2) Datapath Registers

Keyhole

Bus Address Description Comments

DISP_COMPO__HBS A 0x48,494a,4b The number of This register
DISP_COMP1__HBS A Oxdcdddedf horizontal must be loaded
DISP_COMP2__HBS A 0x50,51,52,53 blocks to be before

read. c.f. operation can

ADDR__HBS begin.
CTN_LEFTO A 0x54,55,56,57 Number of These registers
CTN_LEFT1 A 0x58,59,5a,5b blocks remaining are temporary
CTN_LEFT2 A 0x5c,5d,5¢,5f to be read locations used
PAGE_ADDRO A 0x60,61,62,63 The address of by dispaddr.
PAGE__ADDR1 A 0x64,65,66,67 the current Note: All
PAGE_ADDR2 A 0x68,69,6a,6b page. registers are R/
BLOCK_ADDRO B 0x6c,6d,6e,6f Current block W from the upi

US 2003/0196078 Al

TABLE C.3.5-continued

Oct. 16, 2003

Dramctl(0,1 & 2) Datapath Registers

Keyhole
Register Names Bus Address Description Comments
BLOCK__ADDR1 0x70,71,72,73 address

BLOCK_ADDR2
BLOCKS__LEFTO
BLOCKS__LEFT1
BLOCKS__LEFT2

0x74,75,76,77
0x78,79,7a,Tb
0x7c,7d,7¢e,7f
0x80,81,82,33

Blocks left in
current page

exBiveiierlivelive}

[3235] Programming

[3236] The following 15 dispaddr registers must be pro-
grammed before operation can begin. BUFFER_BASE,0,
1,2 DISP_COMP_OFFSETO0,1,2 DISP_VBS_COMP\,1,2
ADDR_HBS_COMPO,0,1,2 DISP_COMP 0,1,2_HBS

[3237] Using the reset state of the dispaddr control regis-
ters will give a 4:2n interlaced display with no line repeats
synchronized and starting on the top field (field_info=
HIGH). FIG. 159, “Buffer 0 Containing a SIF (22 by 18
macroblocks) picture,” shows a typical buffer setup for a SIF
picture. (This example is covered in more detail in Section
C.13). Note that in this example, DISP_HBS_COMPn is
equal to ADDR_HBS_COMPn and likewise the vertical
registers DISP_VBS_COMPn and the equivalent write
address generator register are equal, i.e., the area to be read
is the entire buffer.

[3238] Windowing with the Read Address Generator

[3239] It is possible to program dispaddr such that it will
read only a portion (window) of the buffer. The size of the
window is programmed for each component by the registers
DISP_HBS, DISP_VBS, COMPONENT OFFSET, and
LINES | IN,; LAST,; ROW. FIG. 160, “SIF Component 0
with a display window,” shows how this is achieved (for
component O only).

n this example, the register setting wou €.
3240] In thi ple, the regi ing would b
[3241] BUFFER_BASEO=0x00
[3242] DISP_COMP_OFFSETO=0x2D

[3243]
[3244]
[3245]
[3246] Notes:

DISP VBS COMPO=0x22
ADDR_HBS_COMPO=0x2C
DISP_HBS _COMO=0x2A

[3247] The window may only start and stop on block
boundaries. In this example we have left LINESIN-
_LAST,; ROW equal to 7 (meaning all eight).

[3248] This example is not practical with anything
other than 4:4:4 data. In order to correspond, the
window edges for the other two components could
not be on block boundaries.

[3249] The color space converter will hang up if the
data it receives is not 4:4:4. This means that these
read windows, in conjunction with the upsamplers
must be programmed to achieve this.

SECTION C.5 Datapaths for Address Generation

[3250] The datapaths used in dispaddr and waddrgen are
identical in structure and width (18 bits), only differing in
the number of registers, some masking, and the flags
returned to the state machine. The circuit of one slice is
shown in FIG. 165, “Slice Of Datapath,”. Registers are
uniquely assigned to drive the A or B bus and their use
(assignment) is optimized in the controller. All registers are
loadable from the C bus, however, not all “load” signals are
driven. All operations involving the adder cover two cycles
allowing the adder to have ordinary ripple carry. FIG. 166,
“Two cycle operation of the datapath,” shows the timing for
the two cycle sum of two registers being loaded back into the
“A” bus register. The various flags are “phO”ed within the
datapath to allow ccode generation. For the same reason, the
structure of the datapath schematics is a little unusual. The
tristates for all the registers (onto the A and B buses) are in
a single block which eliminates the combinatorial path in the
cell, therefore, allowing better ccode generation. To gain upi
access to the datapaths, the access bit must be set, for
without this, the upi is locked out. Upi access is different
from read and write:

[3251] Writing: When the access bit is set, all load
signals are disabled and one of a set of three byte
addressed write strobes driven to the appropriate
byte of one of the registers. The upi data bus passes
vertically down the datapath (replicated, 2-8-8 bits)
and the 11 bit register is written as three separate byte
writes

[3252] Reading: This is achieved using the A and B
buses.

[3253] Once again, the access bit must be set. The
addressed register is driven onto the A or B bus and a upi
byte select picks a byte from the relevant bus and drives it
onto the upi bus.

[3254] As double cycle datapath operations require the A
and B buses to retain their values, and upi accesses disrupt
these, access must only be given by the controlling state
machine before the start of any datapath operation.

[3255] All datapath registers in both address generators
are addressed through a 9 bit wide keyhole at the top level
address Ox28 (msb) and Ox29 (Isb) for the keyhole, and
Ox2A for the data. The keyhole addresses are given in Table
C.11.2.

[3256] Notes:

[3257] 1)All address registers in the address genera-
tors (dispaddr and waddrgen) contain blocked

US 2003/0196078 Al

Oct. 16, 2003

187

addresses. Pixel addresses are never used and the
only registers containing line addresses are the three
LINES_IN_LAST ROW registers.

[3258] 2)Some registers are duplicated between the
address generators, e.g., BUFFER_BASEO occurs in the
address space for dispaddr and waddrgen. These are two
separate registers which BOTH need loading. This allows
display windowing (only reading a portion of the display
store), and eases the display of formats other than 3 com-
ponent video.

SECTION C.6 The DRAMS5Interface
[3259] C.6.1 Overview

[3260] In the present invention, the Spacial Decoder, Tem-
poral Decoder and Video Formatter each contain a DRAM
Interface block for that particular chip. In all three devices,
the function of the DRAM Interface is to transfer data from
the chip to the external DRAM and from the external DRAM
into the chip via block addresses supplied by an address
generator.

[3261] The DRAM Interface typically operates from a
clock which is asynchronous to both the address generator
and to the clocks of the various blocks through which data
is passed. This asynchronism is readily managed, however,
because the clocks are operating at approximately the same
frequency.

[3262] Data is usually transferred between the DRAM
Interface and the rest of the chip in blocks of 64 bytes (the
only exception being prediction data in the Temporal
Decoder). Transfers take place by means of a device known
as a “swing Buffer”. This is essentially a pair of RAMs
operated in a double-buffered configuration, with the
DRAM interface filling or emptying one RAM while
another part of the chip empties or fills the other RAM. A
separate bus which carries an address from an address
generator is associated with each swing buffer.

[3263] Each of the chips has four swing buffers, but the
function of these swing buffers is different in each case.

[3264] In the Spacial Decoder, one swing buffer is used to
transfer coded data to the DRAM, another to read coded data
from the DRAM, the third to transfer tokenized data to the
DRAM and the fourth to read tokenized data from the
DRAM.

[3265] In the Temporal Decoder, one swing buffer is used
to write Intra or Predicted picture data to the DRAM, the
second to read Intra or Predicted data from the DRAM and
the other two to read forward and backward prediction data.
In the Video Formatter, one swing buffer is used to transfer
data to the DRAM and the other three are used to read data
from the DRAM, one for each of Luminance (Y) and the
Red and Blue color difference data (Cr and Cb, respec-
tively).

[3266] The operation of a generic DRAM Interface is
described in the Spacial Decoder document. The following
section describes those features of the DRAM Interface, in
accordance with the present invention, peculiar to the Video
Formatter.

[3267] C.6.2 The Video Formatter DRAM Interface

[3268] In the video formatter, data is written into the
external DRAM in blocks, but read out in raster order.
Writing is exactly the same as already described for the
Spacial Decoder, but reading is a little more complex. The
data in the Video Formatter external DRAM is organized so
that at least 8 blocks of data fit into a single page. These 8
blocks are 8 consecutive horizontal blocks. When rasteriz-
ing, 8 bytes need to be read out of each of 8 consecutive
blocks and written into the swing buffer (i.e., the same row
in each of the 8 blocks).

[3269] Considering the top row (and assuming a byte-wide
interface), the x address (the three LSBs) is set to zero, as is
the y address (3 MSBs). The x address is then incremented
as each of the first 8 bytes are read out. At this point, the top
part of the address (bit 6 and above—ILSB=bit 0) is incre-
mented and the x address (3 LSBs) is reset to zero. This
process is repeated until 64 bytes have been read. With a 16
or 32 bit wide interface to the external DRAM, the x address
is merely incremented by two or four instead of by one.

[3270] The address generator can signal to the DRAM
Interface that less than 64 bytes should be read (this may be
required at the beginning or end of a raster line) although a
multiple of 8 bytes is always read. This is achieved by using
start and stop values. The start value is used for the top part
of the address (bit 6 and above), and the stop value is
compared with this and a signal generated which indicates
when reading should stop.

SECTION C.7 Vertical Upsampling

[3271] C.7.1 Introduction Given a raster scan of pixels of
one color component at its input, the vertical upsampler in
accordance with the present invention, can provide an output
scan of twice the height. Mode selection allows the output
pixel values to be formed in a number of ways.

[3272] C.7.2 Ports

[3273] Input two wire interface:
[3274] invalid
[3275] in_accept
[3276] in_data(7:0)
[3277] in_lastpel
[3278] in lastline
[3279] Output two wire interface:
[3280] out_valid
[3281] out accept
[3282] out data(9:0]
[3283] out_last
[3284] mode[2:0]
[3285] nupdata[7:0], upaddr, upsel(3:0), uprstr, upw-
str ramtest
[3286] tdin, tdout, tpho, tckm, tcks

[3287] phO, phl, notrsto
[3288] C.7.3 Mode
[3289] As selected by the input bus mode(2:0].

US 2003/0196078 Al

[3290] Mode register values I and 7 are not used.

[3291] In each of the above modes, the output pixels are
represented as 10-bit values, not as bytes. No rounding or
truncation takes place in this block. Where necessary, values
are shifted left to use the same range.

[3292] C.7.3.1 Mode O:Fifo

[3293] The block simply acts as a FIFO store. The number
of output pixels is exactly the same as at the input. The
values are shifted left by two.

[3294] C.7.3.2 Mode 2: Repeat

[3295] Every line in the input scan is repeated to produce
an output scan twice as high. Again, the pixel values are
shifted left by two.

[3296] A->ABACBDBCCDD
[3297] C.7.3.3 Mode 4: Lower

[3298] Each input line produces two output lines. In this
“lower” mode, the second of these two lines (the lower on
the display) is the same as the input line. The first of the pair
is the average of the current input line and the previous input
line. In the case of the first input line, where there is no
previous line to use, the input line is repeated.

[3299] This should be selected where chroma samples are
co-sited with the lower luma samples.

[3300] A->ABAC(A+B)/2DB(B+C)/2C(C+D)/2D

[3301] C.7.3.4 Mode 5: Upper

[3302] Similar to the “lower” mode, but in this case the
input line forms the upper of the output pair, and the lower
is the average of adjacent input lines. The last output line is
a repeat of the last input line.

[3303] This should be selected where chroma samples are
co-sited with the upper luma samples.

[3304] A->AB(A+B)/2CBD(B+C)/2C(C+D)/2DD
[3305] C.7.3.5 Mode 6: Central

[3306] This “central” mode corresponds to the situation
where chroma samples lie midway between luma samples.
In order to co-site the output chroma pixels with the luma
pixels, a weighted average is used to form the output lines.

[3307] A->AB(3A+B)/AC.(A+3B)/4D(3B+C)14(B +3 C)
/ 4 (3CD)/4(C+3D)/4D

[3308] C.7.4 How It Works

[3309] There are two linestores, imaginatively designated
“a” and “b”. In “FIFO” and “repeat” modes, only linestore
“all is used. Each store can accommodate a line of up to 512
pixels (vertical upsampling should be performed before any
horizontal upsamplng). There is no restriction on the length
of the line in “FIFO” mode.

[3310] The input signals in_lastpel and in_lastline are used
to indicate the end of the input line and the end of the picture.
In_lastpel, it should be high coincident with the last pixel of
each line. In_lastline, it should be high coincident with the
last pixel of the last line of the picture.

[3311] The output signal out_last is high coincident with
the last pixel of each output line.

Oct. 16, 2003

[3312] In “repeat” mode, each line is written into store
“a”. The line is then read out twice. As it is read out for the
second time, the next line may start to be written. In “lower”,
“upper”and “central” modes, lines are written alternately
into stores “a” and “b”. The first line of a picture is always
written into store “a”. Two tiny state machines, one for each
store, keep track of what is in each store and which output
line is being formed. From these states are generated the
read and write requests to the linestore RAMs, and the
signals that determine when the next line may overwrite the
present data.

[3313] A register (lastaddr) stores the write address when
in lastpel is high, thereby providing the length of the line for
the formation of the output lines.

[3314] C.7.5 UPI

[3315] This block contains two 512x8 bit RAM arrays,
which may be accessed via the microprocessor interface in
the typical way. There are no registers with microprocessor
access.

SECTION C.8 The Horizontal Up-Samplers
[3316] C.8.1 Overview

[3317] In the present invention, top-Level Registers con-
tain three identical Horizontal Up-samplers, one for each
color component. All three are controlled independently and,
therefore, only one need be described here. From the user’s
point of view, the only difference is that each Horizontal
Up-sampler is mapped into a different set of addresses in the
memory map.

[3318] The Horizontal Up-sampler performs a combined
replication and filtering operation. In all, there are four
modes of operation:

TABLE C.7.1

Horizontal Up-sampler Modes

Mode Function
0 Straight-through (no processing). The reset state.
1 No up-sampling, filter using a 3-tap FIR filter.
2 x 2 up-sampling and filtering
3 x 4 up-sampling and filtering

[3319] C.8.2 Using a Horizontal Up-Sampler

[3320] The address map for each Horizontal Up-sampler
consists of 25 locations corresponding to 12 13-bit coeffi-
cient registers and one 2-bit mode register. The number
written to the mode register determines the mode of opera-
tion, as outlined in Table C.7.1. Depending on the mode,
some or all of the coefficient registers may be used. The
equivalent FIR filter is illustrated below. Depending on the
mode of operation, the input, X , is held constant for one,
two or four clock periods. The actual coefficients that are
programmed for each mode are as follows:

US 2003/0196078 Al Oct. 16, 2003
189
TABLE C.7.2 TABLE C.7.5-continued
Coefficients for Mode 1 Sample Coefficients
Coeft All clock periods x 2 up-sample, x 2 up-sample, x 4 up-sample,
ofp pels ofp pels in o/p pels in
k0 c00 Coefficient coincident with i/p between i/p between i/p
k1 c10
9} 20 c13 — — 029F
20 0000 010B 00B6
21 0400 01BD 00E9
22 — — 0290
[3321] 23 — — 045F
TABLE C.7.3
Coefficients for Mode 2 C.8.3 Description of a Horizontal Up-Saupler
Coefl st clock period 2nd clock period [3326] The datapath of the Horizontal Up-sampler is illus-
k0 00 01 trated in FIG. 168.
k1 c10 cll
k2 €20 ezl [3327] The operation is outlined below for the x4
upsample case. In addition, X2 upsampling and x1 filtering
(modes 2 and 1) are degenerate cases of this, and bypass
[3322] : . . .
(mode 0) the entire filter, data passing straight from the input
TABLE C.7.4 latch to the output latch via the final mux, as illustrated.
Coefficients for Mode 3 [3328] 1)When valid data is latched in the input latch
(“L”), it is held for 4 clock periods.
1st clock 2nd clock 3rd clock 4th clock
Coeft period period period period [3329] 2)The coefficient registers (labelled “COEFF”) are
X0 <00 <01 <02 <03 multiplexed onto the multipliers for one clock period, each
k1 cl0 cll cl2 cl3 in turn, at the same time as the two sets of four pipeline
k2 c20 c21 c22 c23

[3323] Coefficients which are not used in a particular
mode need not be programmed when operating in that mode.

[3324] In order to achieve symmetrical filtering, the first
and last pixels of each line are repeated prior to filtering. For
example, when up-sampling by two, the first and last pixels
of each line are replicated four times rather than two.
Because residual data in the filter is discarded at the end of
each line, the number of pixels output is still always exactly
one, two or four times the number in the input stream.

[3325] Depending on the values of the coefficients, output
samples can be placed either coincident with or shifted from
the input samples. Following are some example values for
coefficients in some sample modes. A “-” indicates that the
value of the coefficient is “don’t care.” All values are in
hexadecimal.

TABLE C.7.5

Sample Coefficients

x 2 up-sample,
ofp pels

x 2 up-sample,
o/p pels in

x 4 up-sample,
o/p pels in

Coefficient coincident with i/p between i/p between i/p
c00 0000 01BD 00E9
c01 0000 010B 00B6
c02 — — 012A
c03 — — 0102
c10 0800 0538 0661
cll 0400 0538 0661
cl12 — — 0446

registers (labelled “PIPE”) are clocked. Thus, for input data
X, the first PIPE will fill up with the values cOO.x,, col.x,,
c02.x,, c03.x,.

[3330] 3)Similarly, the second multiplier will multiply F
by of its coefficients, in turn, and the third multiplier by all
its coefficients, in turn.

[3331] It can be seen that the output will be of the form
shown in Table C.7.6

TABLE C.7.6

Qutput Sequence for Mode 3

Clockl Period Output

c.20x, - c10.x,_; + c00.x,_»
c2lx, —cllx, , +c0lx, ,
c.22x, - cl2.x, { +c02.x, »
c.23x, - cl13.x, ; +c03.x, >

WD = O

[3332] From the point of view of the output, each clock
period produces an individual pixel. Since each output pixel
is dependent on the weighted values of 12 input pixels
(although there are only three different values), this can be
thought of as implementing a 12 tap filter on x4 up-sampled
input pixels.

[3333] For x2 upsampling, the operation is essentially the
same, except the input data is only held for two clock
periods. Furthermore, only two coefficients are used and the
“PIPE” blocks are shortened by means of the multiplexers

US 2003/0196078 Al

Oct. 16, 2003

190

illustrated. For x1 filtering, the input is only held for one
clock period. As expected, one coefficient and one “PIPE”
stage are used.

[3334] We now discuss a few notes about some peculiari-
ties of the implementation in the present invention.

[3335] 1)The datapath width and coefficient width (13 bit
2’s complement) were chosen so that the same multiplier
could be used, as was designed for the Color-Space Con-
verter. These widths are more than adequate for the purpose
of the Horizontal Up-sampler.

[3336] 2)The multiplexers which multiplex the coeffi-
cients onto the multipliers are shared with the UPI readback.
This has led to some complications in the structure of the
schematics (primarily because of difficulty in CCODE gen-
eration), but the actual circuit is smaller.

[3337] 3)As in the Color-Space Converter, carry-save
multipliers are used, the result only being resolved at the
end.

[3338] Control for the entire Horizontal Up-sampler can
be regarded as a single two-wire interface stage which may
produce two or four times the amount of data at its output as
there is on its input. The mode which is programmed in via
the UPI determines the length of a programmable shift
register (bob). The selected mode produces an output pulse
every clock period, every two clock periods or every four
clock periods. This, in turn, controls the main state machine,
whose state is also determined by in 4 valid, out, 5 accept (for
the two-wire interface) and the signal “in_last”. This signal
is passed on from the vertical up-sampler and is high for the
last pixel of every line. This allows the first and last pixels
of each line to Fe replicated twice-over and the clearing
down of the pipeline between lines (the pipeline contains

y0 c0l 02 03 x0 c04
vi|=|cll cI2 cI3|x|x]|+]|cl4
y2 cl2 ¢22 23 x2 c24

[3341] Where xO-2 are the input data, yO-2 are the output
data and cnm are the coefficients. The slightly unconven-
tional naming of the matrix coefficients is deliberate, since
the names correspond to signal names in the schematics.

[3342] The CSC is capable of performing conversions
between a number of different color spaces although a
limited set of these conversions are used in Top-Level
Registers. The design color-space conversions are as fol-
lows:

[3343] Eg, Es, Eg—Y, Ci, CgR, G, B =Y, CRGRY,
CrCp—ER, Eg ,ExY,Cr, Cg —R,G,B

[3344] Where R, G and B are in the range (0..511) and all
other quantities are in the range of (32..470). Since the input
to the Top-Level Registers CSC is Y. Cy, Cyy, only the third
and fourth of these equations are of relevance.

[3345]
was chosen so that, for 9 bit data, all output values were
within plus or minus I bit of the values produced by a full

In the CSC design, the precision of the coefficients

floating point simulation of the algorithm (this is the best
accuracy that it is possible to achieve). This gave 13 bit
twos-complement coefficients for cxO-cx3 and 14 bit twos-
complement coefficients for cx4. The coefficients for all the
design conversions are given below in both decimal and hex.

TABLE CS8.1

Coefficients for Various Conversions

Ep—>Y R->Y Y->Eqn Y->R
Coeff Dec Hex Dec Hex Dec Hex Dec -Hex
c01 0.299 0132 0.256 1.0 0400 1.159 C4AD
c02 0.557 0259 0.502 1.402 059C 1.539 C68E
c03 0.114 0075 0.098 0.0 0000 0.0 0000
c04 0.0 0000 16 -179.456 F4C8 -228.473 F158
cll 0.5 0200 0.428 1.0 0400 1.189 CAAD
cl2 -0.419 FE53 -0.358 -0.714 FD25 -0.835 FCA9
cl3 -0.081 FFAD -0.070 -0.344 FEAOQ -0.402 FEB4
cl4 128.0 0800 128 135.5 0878 139.7 C8BA
c21 -0.169 FF53 -0.144 1.0 0400 1.159 04AD
c22 -0.331 FEAD -0.283 0.0 0000 0.0 0000
c23 0.5 0200 0.427 1.772 0717 2.071 C849
c24 128 0800 128 -226.816 F1D2 -283.84 EE42

partially-processed redundant data immediately after a line
has been completed).
SECTION C.9 The Color-Space Converter
[3339] C.9.1 Overview
[3340] The Color-Space Converter in the present inven-

tion (CSC) performs a 3x3 matrix multiplication on the
incoming 9-bit data, followed by an addition:

[3346] All these numbers are calculated from the funda-
mental 15 equation:

Y=0.299E+0.587E 5+0.0114EP
[3347]

Cr=Er-Y

and the following color-difference equations:

Cp=Eg-Y

US 2003/0196078 Al

[3348] The equations in R, G and B are derived from these
after the full-scale ranges of these quantities are considered.

[3349] C.9.2 Using the Color-Space Converter

[3350] Onreset, c01, c12, and ¢23 are set to 1 and all other
coefficients are set to 0. Thus, -y0=x0, yl=x1and y2=x2 and
all data is passed through unaltered. To select a color-space
conversion, simply write the appropriate coefficients (from
Table C.8.1, for example) into the locations specified in the
address map.

[3351] Referring to the schematics, x0..2 correspond to
in_datao. .2 and yO. .2 correspond to out_data0. .2 Users
should remember that input data to the CSC must be
up-sampled to 4:4:4. If this is not the case, not only will the
color-space transforms have no meaning, but the chip will
lock.

[3352] It should be noted that each output can be formed
from any allowed combination of coefficients and inputs
plus (or minus) a constant. Thus, for any given color-space
conversion, the order of the outputs can be changed by
swapping the rows in the transform matrix (i.e., the
addresses into which the coefficients are written).

[3353] The CSC is guaranteed to work for all the trans-
forms in Table C.8.1. If other transforms are used the user
must remember the following:

[3354] 1)The hardware will not work if any interme-
diate result in the calculation requires greater than 10
bits of precision (excluding the sign bit).

[3355] 2)The output of the CSC is saturated to 0 and
511. That is, any number less than 0 is replaced with
0 and any number more than 511 is replaced with
511. The implementation of the saturation logic
assumes that the results will only be slightly above
511 or slightly below 0. If the CSC is programmed
incorrectly, then a common symptom will be that the
output appears to saturate all (or most of) the time.

[3356] (C.9.3 Description of the CSC

[3357] The structure of the CSC is illustrated in FIG. 169,
where only two of the three “components” have been shown
because of space limitations. In the Figure, “register” or “R”
implies a master-slave register and “latch” or “L” implies a
transparent latch.

[3358] All coefficients are loaded into read-write UPI
registers which are not shown explicitly in the Figure. To
understand the operation, consider the following sequence
with reference to the left-most “component” (that which
produces output out_data0):

[3359] 1)Data arrives at inputs x0-2 (in_data0-2).
This represents a single pixel in the input color-
space. This is latched.

[3360] 2)x0 is multiplied by c¢01 and latched into the
first pipeline register. X1 and x2 move on one
register.

[3361] 3)x1 is multiplied by c02, added to (x1.c01)
and latched into the next pipeline register. X2 moves
on one register.

[3362] 4)x2 is multiplied by c03 and added to the
result of (3), producing (x1.c01+x2.c02 +x3.c03).
The result is latched into the next pipeline register.

Oct. 16, 2003

[3363] 5)The result of (4) is added to c04. Since data
is kept in carry-save format through the multipliers,
this adder is also used to resolve the data from the
multiplier chain. The result is latched in the next
pipeline register.

[3364] ©6)The final operation is to saturate the data.
Partial results are passed from the resolving adder to
the saturate block to achieve this.

[3365] It can be seen that the result is y0, as specified in
the matrix equation at the start of this section. Similarly, y1
and y2 are formed in the same manner.

[3366] Three multipliers are used, with the coefficients as
the multiplicand and the data as the multiplicator. This
allows an efficient layout to be achieved, with partial results
flowing down the datapath and the same input data being
routed across three parallelaand identical datapaths, one for
each output.

[3367] To achieve the reset state described in Section
C.9.2, each of the three “components” must be reset in a
different way. In order to avoid having three sets of sche-
matics and three slightly different layouts, this is achieved
by having inputs to the UPI registers which are tied high or
low at the top level.

[3368] The CSC has almost no control associated with it.
Nevertheless, each pipeline stage is a two-wire interface
stage, so there is a chain of valid and accept latches with
their associated control (in_accept=out_accept r +lin,,
valid_r). The CSC is, therefore, a 5-stage deep two-wire
interface, capable of holding 10 levels of data when stalled.

[3369] The output of the CSC contain re-synchronizing
latches because the next function in the output pipe runs off
a different clock generator.

SECTION C.10 Output Controller
[3370] C.10.1 Introduction

[3371] The output controller, in accordance with the
present invention, handles the following functions:

[3372]
[3373] 24-bit 4:4:4
[3374] 16-bit 4:2:2
[3375] 8-bit 4:2:2

[3376] It aligns the data to the video display window
defined by the vsync and hsync pulses and by
programmed timing registers

It provides data in one of three modes

[3377] 1t adds a border around the video window, if
required
[3378] C.10.2 Ports
[3379] Input two wire interface:
[3380] in_valid
[3381] in accept
[3382] in_data[23:0]

US 2003/0196078 Al

[3383] Output two wire interface:

[3384] out,, valid
[3385] out,; accept
[3386] out,; data(23:0]
[3387] out_active
[3388] out_window

[3389] out_comp[1:0]in_vsync, in_hsync nup-
data(7:0], upaddr(4:0), upsel, rstr, wstr tdin, tdout,
tpho, tckm, tcks chiptest phl, phl, notrstO, notrst1

[3390] C.10.3 Out Modes

[3391] The format of the output is selected by writing to
the opmode register.

[3392] (C.10.3.1 Mode 0

[3393] This mode is 24-bit 4:4:4 RGB or YCrCb. Input
data passes directly to the output.

[3394] C.10.3.2 Modes 1 and 2

[3395] These modes present 4:2:2 YCrCb. Assuming
in_data[23:16, Jis Y, in_data[15:8] is Cr and in_data[7:0] is
Cb.

[3396] C€.10.3.2.1 Mode 1

[3397] 1In 16-bit YCrCb, Y is presented on out_data[15:8].
Cr and Cb are time multiplexed on out_data(7:0), Cb first.

[3398] Out,, data [23:16] is not used.
[3399] C€.10.3.2.2 Mode 2

[3400] In 8-bit YCrCb, Y,Cr and Cb are time multiplexed
on out_data[7:0] in the order Cb, Y, Cr, Y. out_data[23:8] is
not used.

[3401] C.10.3.3 output Timing

[3402] The following registers are used to place the data in
a video display window.

[3403] vdelay—The number of hsync pulses following a
vsync pulse before the first line of video or border.

[3404] hdelay—The number of clock cycles between
hsync and the first pixel of video or border.

[3405] height—The height of the video window, in lines.
[3406] width—The width of the video window, in pixels.

[3407] north, south—The height of the border, respec-
tively, above and below the video window, in lines.

[3408] west, cast—The width of the border, respectively,
to the left and to the right of the video window, in pels.

[3409] The minimum vdelay is zero. The first hsync is the
first active line. The minimum value that can be pro-
grammed into hdelay is 2. Note, however, that the actual
delay from in_hsync to the first active output pixel is
hdelay+1 cycles.

[3410] Any edge of the border can have the value zero.
The color of the border is selected by writing to the registers
border_r, border_g and border_b. The color of the area
outside the border is selected by writing to the registers
blank r, blank_g and blank_b. Note that the multiplexing
performed in output modes 1 and 2 will also affect the border

192

Oct. 16, 2003

and blank.components. That is, the values in these registers
correspond with in, 5 data(23:16), in_data[15:8] and in_data
[7:0].

[3411] C.10.4 Output Flags

[3412] out_active indicates that the output data is part of
the active window, i.e., video data or border.

[3413] out_window indicates that the output data is part of
the video window.

[3414] out_comp(1:0) indicates which color component is
present on out data[7:0] in output modes 1 and 2. In mode
1, 0=Cb, 1=Cr. In mode 2, 0=Y, 1=Cr, 2=Cb.

[3415] C.10.5 Two-Wire Mode

[3416] The two-wire mode of the present invention is
selected by writing 1 to the two wire register. It is not
selected following reset. In two wire mode, the output
timing registers and sync signals are ignored and the flow of
data through the block is controlled by out accept. Note that
in normal operation, out_accept should be tied high.

[3417] C.10.6 snooper

[3418] There is a super-snooper on the output of the block
which includes access to the output flags.

[3419] C.10.7 How It Works

[3420] Two identical down-counters keep track of the
current position in the display. “Vcount” decrements on
hsyncs and loads from the appropriate timing register on
vsync or at its terminal count. “Hcount” decrements on
every pixel and loads on hsync or at its terminal count. Note
that in output mode 2, one pixel corresponds to two clock
cycles.

SECTION C.11 The Clock Dividers
[3421] C.11.1 Overview

[3422] Top-Level Registers in the present invention con-
tain two identical Clock Dividers, one to generate a PIC-
TURE_CLK and one to generate an AUDIO_CLK. The
Clock Dividers are identical and are controlled indepen-
dently. Therefore, only one need be described here. From the
user’s point of view, the only difference is that each Clock
Divider’s divisor register is mapped into a different set of
addresses in the memory map.

[3423] The Clock Divider’s function is to provide a 4X
sysclk divided clock frequency, with no requirement for an
even mark-space ratio.

[3424] The divisor is required to lay in the range ~0 to
16,000,000 and, therefore, it can be represented using 24bits
with the restriction that the minimum divisor be 16. This is
because the Clock Divider will approximate an equal mark-
space ratio (to within one sysclk cycle) by using divisor/2.
As the maximum clock frequency available is sysclk, the
maximum divided frequency available is sysclk/2. Further-
more, because four counters are used in cascade divisor/2
must never be less than 8, else the divided clock output will
be driven to the positive power rail.

[3425] C.11.2 Using a Clock Divider

[3426] The address map for each Clock Divider consists of
4 locations corresponding to three 8-bit divisor registers and

US 2003/0196078 Al

one 1-bit access register. The Clock Divider will power-up
inactive and is activated by the completion of an access to
its divisor register.

[3427] The divisor registers may be written in any order
according to the address map in Table C.10.1. The Clock
Divider is activated by sensing a synchronized O to 1
transition in its access bit. The first time a transition is
sensed, the Clock Divider will come out of reset and
generate a divided clock. Subsequent transitions (assuming
the divisor has also been altered) will merely cause the
Clock Divider to lock to its new frequency ‘on-the-fly.11
Once activated, there is no way of halting the Clock Divider
other than by Chip RESET.

TABLE C.10.1

Clock Divider Registers

Address Register
00b access bit
01b divisor MSB
10b divisor
11b divisor LSB

[3428] Any divisor value in the range 16 to 16,777,216
may be used.

[3429] C.11.3 Description of the Clock Divider

[3430] The Clock Divider is implemented as four 22 bit
counters which are cascaded such that as one counter carries,
it will activate the next counter in turn. A counter will count
down the value of divisor/4 before carrying and, therefore,
each counter will take it, in turn, to generate a pulse of the
divided clock frequency.

[3431] After carrying, the counter will reload with divi-
sor/8 and this is counted down to produce the approximate
equal mark-space ratio divided clock. As each counter
reloads from the divisor register when it is activated by the

Oct. 16, 2003

previous counter, this enables the divided clock frequency to
be changed on the f ly by simply altering the contents of the,
divisor.

[3432] Each counter is clocked by its own independent
clock generator in order to control clock skew between
counters precisely and to allow each counter to be clocked
by a different set of clocks.

[3433] A state machine controls the generation of the
divisor/4 and divisor/8 values and also multiplexes the
correct source clocks from the PLL to the clock generators.
The counters are clocked by different clocks dependent on
the value of the divisor. This is because different divisor
values will produce a divided clock whose edges are placed
using different combinations of the clocks provided from the
PLL.

[3434] C.11.4 Testing the Clock Divider

[3435] The Clock Divider may be tested by powering up
the Chip with CHIPTEST High. This will have the effect of
forcing all of the clocked logic in the Clock Divider to be

clocked by sysclk, as opposed to, the clocks generated by the
PLL.

[3436] The Clock Divider has been designed with full scan
and, thus, may subsequently be tested using standard JTAG
access, as long as the Chip has been powered up as above.

[3437] The functionality of the Clock Divider is NOT
guaranteed if CHIPTEST is held High while the device is
running in normal operation.

SECTION C.12 Address Maps
[3438] C.12.1 Top Level Address Map
[3439] Notes:-

[3440] 1)The register for the Top Level Address Map as
set forth in Table C.11.1 are the names used during the design.
They are not necessarily the names that will appear on the
datasheet.

[3441] 2)Since this is a full address map, many of the
locations listed here include locations for test only.

TABLE C.11.1

REGISTER NAME

Top-Level Registers A Top Level Address Map

Address Bits COMMENT

BU_EVENT 0x0 8 Write 1 to reset
BU_MASK 0x1 8 R/W
BU__EN_INTERRUPTS 0x2 1 RW
BU_WADDR__ COD__STD 0x4 2 R/W
BU_WADDR__ACCESS 0x5 1 R/W-access
BU_WADDR_ CTL1 0x6 3 RW
BU__DISPADDR__LINES_IN_LAST_ROWO0O 0x8 3 RW
BU_DISPADDR_LINES_IN_TLAST ROW1 0x9 3 RW
BU__DISPADDR__LINES_IN_TLAST_ ROW2 0xa 3 RW
BU__DISPADDR__ACCESS 0Oxb 1 R/W-access
BU__DISPADDR_ CTLO Oxc 8 R/W
BU__DISPADDR__ CTL1 0xd 1 RW
BU_BM__ACCESS 0x10 1 R/W-access
BU_BM_ CTLO 0x11 2 R/W
BU_BM_TARGET_IX 0x12 4 R/W
BU_BM__PRES_NUM 0x13 8 R/W-asynchronous
BU_BM_ THIS_ PNUM 0x14 8 R/W
BU_BM__PIC_NUMO 0x15 8 R/W

BU_BM_ PIC_NUM1 0x16 8 R/W

BU_BM_ PIC_NUM2 0x17 8 R/W
BU_BM_TEMP_REF 0x18 5 RO
BU_ADDRGEN_KEYHOLE__ADDR__MSB 0x28 1 R/W-Address generator

US 2003/0196078 Al

194
TABLE C.11.1-continued

Top-Level Registers A Top Level Address Map
REGISTER NAME Address Bits COMMENT
BU_ADDRGEN_KEYHOLE__ADDR_ LSB 0x29 8 keyhole. See
BU_ADDRGEN_KEYHOLE_ DATA 0x2a Table C.11.2 for contents
BU_IT_PAGE_ START 0x30 5 RW
BU_IT_READ_CYCLE 0x31 4 R/W
BU_WRITE_CYCLE 0x32 4 R/W
BU_IT_REFRESH_CYCLE 0x33 4 R/W
BU_IT_RAS_ FALLING 0x34 4 R/W
BU_IT_CAS_FALLING 0x35 4 R/W
BU_IT__CONFIG 0x36 1 RW
BU_OC__ACCESS 0x40 1 R/W-access
BU_OC_MODE 0x41 2 R/W
BU_OC_2WIRE 0x42 1 RW
BU_OC_BORDER_R 0x49 8 R/W
BU_OC_BORDER_G Ox4a 8 R/W
BU_OC_BORDER_B 0x4b 8 R/W
BU_OC_BLANK_R Ox4d 8 R/W
BU_OC_BLANK_G Oxde 8 R/W
BU_OC_BLANK_B 0xaf 8 R/W
BU_OC_HDELAY_1 0x50 3 RW
BU_OC_HDELAY_0 0x51 8 R/W
BU_OC_WEST_1 0x52 3 RW
BU_OC_WEST_0 0x53 8 R/W
BU_OC_FAST 1 0x54 3 RW
BU_OC_FAST_0 0x55 8 R/W
BU_OC_WIDTH_ 1 0x56 3 RW
BU_OC_WIDTH_0 0x57 8 R/W
BU_OC_VDELAY_1 0x58 3 RW
BU_OC_VDELAY_0 0x59 8 R/W
BU_OC_NORTH__1 0x5a 3 RW
BU_OC_NORTH_0 0x5b 8 R/W
BU_OC_SOUTH_1 0x5c 3 RW
BU_OC_SOUTH_0 0x5d 8 R/W
BU_OC_HEIGHT_ 1 0x5e 3 RW
BU_OC_HEIGHT_0 0x5f 8 R/W
BU_IF_CONFIGURE 0x60 5 RW
BU_UV_MODE 0x61 6 R/W-x000x000
BU__COFFF_KEYADDR 0x62 7 R/W-See Table C.11.3
BU__COEFF_KEYDATA 0x63 8 for contents.
BU_GA__ACCESS 0x68 1 RW
BU_GA_BYPASS 0x69 1 RW
BU_GA_RAMO_ADDR Ox6a 8 R/W
BU_GA_RAMO_DATA 0x6b 8 R/W
BU_GA_RAMI1__ADDR 0x6c 8 R/W
BU_GA_RAMI1_DATA 0x6d 8 R/W
BU_GA_RAM2_ADDR Ox6e 8 R/W
BU_GA_RAM2_ DATA 0x6f 8 R/W
BU_DIVA_3 0x70 1 RW
BU_DIVA_2 0x71 8 R/W
BU_DIVA_1 0x72 8 R/W
BU_DIVA_0 0x73 8 R/W
BU_DIVP_3 0x74 1 RW
BU_DIVP_2 0x75 8 R/W
BU_DIVP_1 0x76 8 R/W
BU_DIVP_0 0x77 8 R/W
BU_PAD_ CONFIG__1 0x78 7 R/W
BU_PAD_ CONFIG_0 0x79 8 R/W
BU_PLL_ RESISTORS 0x7a 8 R/W
BU_REF_INTERVAL 0x7b 8 R/W
BU__REVISION Oxff 8 RO-revision

The following registers are in the “test space”.
They are unlikely to appear on the datasheet.

BU_BM_PRES_FLAG 0x80 1 RW
BU_BM_EXP_TR 0x81 — These registers are
BU_BM_TR_DELTA 0x82 — missing on revA
BU_BM_ARR_IX 0x83 2 R/W
BU_BM_DSP_IX 0x84 2 R/W
BU_BM_RDY_IX 0x85 2 R/W

BU_BM_ BSTATE3 0x86 2 R/W

BU_BM_ BSTATE2 0x87 2 R/W
BU_BM__BSTATE1 0x88 2 R/W
BU_BM_INDEX 0x89 2 R/W
BU_BM__STATE 0x8a 5 R/W

Oct. 16, 2003

US 2003/0196078 Al

TABLE C.11.1-continued

Oct. 16, 2003

Top-Level Registers A Top Level Address Map

REGISTER NAME Address Bits COMMENT

BU_BM_ FROMPS 0x8b 1 RW

BU_BM_ FROMFL 0x8c 1 RW

BU_DA_ COMPO__SNP3 0x90 8 R/W-These are the three
BU_DA__COMPO__SNP2 0x91 8 snoopers on the display
BU_DA__COMPO_SNP1 0x92 8 address generators
BU_DA__COMPO_SNPO 0x93 8 address output
BU_DA_ COMP1_SNP3 0x94 8

BU_DA_ COMP1_SNP2 0x95 8

BU_DA_ COMP1_SNP1 0x96 8

BU_DA_ COMP1_SNPO 0x97 8

BU_DA__COMP2_SNP3 0x98 8

BU_DA_ COMP2__SNP2 0x99 8

BU_DA_ COMP2_SNP1 0x9a 8

BU_DA_ COMP2__SNPO 0x9b 8
BU_UV_RAMI1A_ADDR_1 0xa0 8 R/W-upi test access into
BU_UV_RAMIA_ADDR_0 Oxal 8 the vertical upsamplers
BU_UV_RAMI1A_DATA Oxa2 8 RAMs
BU_UV_RAMIB_ADDR_1 Oxa4 8
BU_UV_RAMIB_ADDR_0 Oxas 8
BU_UV_RAMI1B_DATA 0Oxa6 8
BU_UV_RAM2A_ADDR_ 1 0xa8 8
BU_UV_RAM2A_ADDR_0 0xa9 8
BU_UV_RAM2A_DATA Oxaa 8
BU_UV_RAM?2B_ADDR_ 1 Oxac 8
BU_UV_RAM?2B_ADDR_0 Oxad 8
BU_UV_RAM2B_DATA Oxae 8

BU_WA__ADDR_ SNP2 0xb0 8 R/W-snooper on the write
BU_WA__ADDR__SNP1 0xb1 8 address generator address
BU_WA__ADDR__SNPO 0xb2 8 ofp.

BU_WA_ DATA_ SNP1 Oxb4 8 R/W-snooper on data
BU_WA_ DATA_ SNPO 0xb5 8 output of WA
BU_IF_SNPO_1 0xb8 8 R/W-Three snoopers on
BU_IF_SNPO_0 0xb9 8 the dramif data outputs.
BU_IF_SNP1_1 Oxba 8

BU_IF_SNP1_0 0xbb 8

BU_IF_SNP2_1 Oxbe 8

BU_IF_SNP2_0 Oxbd 8

BU_IFRAM_ADDR_ 1 0xc0 1 R/W-upi access it [F RAM
BU_IFRAM_ADDR_0 0Oxcl 8

BU_IFRAM_ DATA 0xc2 8

BU_OC_SNP_3 Oxc4 8 R/W-snooper on output of
BU_OC_SNP_2 0xc5 8 chip

BU_OC_SNP_1 0xc6 8

BU_CC_SNP_0 0xc7 8

BU_YAPLL__ CONFIG 0xc8 8 R/W

BU_BM_ FRONT__BYPASS Oxca 1 RW

[3442] C.12.1 Address Generator Keyhole Space
[3443] Notes on address generator keyhole table:

[3444] 1) All registers in the address generator key-
hole take up 4 bytes of address space regardless of

their width. The missing addresses (0x00, 0x04 etc.)
will always read back zero.

[3445] 2) The access bit of the relevant block (dis-
paddr or waddrgen) must be set before accessing this
keyhole.

TABLE C.11.2

Top-Level RegistersA Address Generator Keyhole

Keyhole
Keyhole Register Name Address Bits Comments
BU_DISPADDR_ BUFFERO__BASE_MSB 0x01 2 18 bit
BU__DISPADDR_ BUFFER(O_ BASE_ MID 0x02 8 register
BU_DISPADDR_ BUFFERO__BASE_ LSB 0x03 8 Must be
loaded
BU_DISPADDR_BUFFER1_BASE_MSB 0x05 2 Must be

US 2003/0196078 Al

TABLE C.11.2-continued

196

Top-Level RegistersA Address Generator Keyhole

Keyhole
Keyhole Register Name Address Bits Comments
BU_DISPADDR_BUFFER1_BASE_ MID 0x06 8 Loaded
BU_DISPADDR_BUFFER1_BASE_ LSB 0x07 8
BU_DISPADDR_BUFFER2__BASE_MSB 0x09 2 Must be
BU_DISPADDR_ BUFFER2__BASE_ MID 0x0a 8 Loaded
BU_DISPADDR_BUFFER2_BASE_ LSB 0x0b 8
BU_DLDPATH_ LINEO_MSB 0x0d 2 Test only
BU_DLDPATH__ LINEO_ MID 0x0e 8
BU_DLDPATH__LINEO_LSB 0x0f 8
BU_DLDPATH_LINE1_MSB 0x11 2 Test only
BU_DLDPATH__LINE1_MID 0x12 8
BU_DLDPATH_LINE1_LSB 0x13 8
BU_DLDPATH_LINE2_MSB 0x15 2 Test only
BU_DLDPATH__ LINE2_MID 0x16 8
BU_DLDPATH__LINE2_LSB 0x17 8
BU_DLDPATH_ VBCNTO_MSB 0x19 2 Test only
BU_DLDPATH__ VBCNTO_ MID Oxla 8
BU_DLDPATH__ VBCNTO__LSB 0x1b 8
BU_DLDPATH__ VBCNT1_MSB 0x1d 2 Test only
BU_DLDPATH__ VBCNT1_MID Oxle 8
BU_DLDPATH__VBCNT1_LSB 0x1f 8
BU_DLDPATH_ VBCNT2_MSB 0x21 2 Test only
BU_DLDPATH__ VBCNT2_MID 0x22 8
BU_DLDPATH__VBCNT2_LSB 0x23 8
BU_DISPADDR __COMP(O__ OFFSET_MSB 0x25 2 Must be
BU_DISPADDR__COMP(O__ OFFSET_MID 0x26 8 Loaded
BU_DISPADDR__COMPO__OFFSET__LSB 0x27 8
BU_DISPADDR __COMP1_ OFFSET__MSB 0x29 2 Must be
BU_DISPADDR__COMP1_ OFFSET__MID 0x2a 8 Loaded
BU_DISPADDR__COMP1_ OFFSET__LSB 0x2b 8
BU_DISPADDR_COMP2_ OFFSET__MSB 0x2d 2 Must be
BU_DISPADDR__COMP2_ OFFSET__MID 0x2e 8 Loaded
BU_DISPADDR_COMP2_ OFFSET__LSB 0x2f 8
BU_DISPADDR_COMPO__VBS_ MSB 0x31 2 Must be
BU_DISPADDR__COMPO__VBS_ MID 0x32 8 Loaded
BU_DISPADDR__COMPO__VBS_LSB 0x33 8
BU_DISPADDR_COMP1_VBS_MSB 0x35 2 Must be
BU_DISPADDR_COMP1__ VBS_ MID 0x36 8 Loaded
BU_DISPADDR_COMP1_VBS_LSB 0x37 8
BU_DISPADDR_COMP2_ VBS_ MSB 0x39 2 Must be
BU_DISPADDR__COMP2_ VBS_ MID 0x3a 8 Loaded
BU_DISPADDR_COMP2__ VBS_LSB 0x3b 8
BU_ADDR_COMPO_HBS_MSB 0x3d 2 Must be
BU_ADDR__COMPO_HBS_ MID 0x3e 8 Loaded
BU_ADDR_COMPO_HBS_1LSB 0x3f 8
BU_ADDR_COMP1_HBS_MSB 0x41 2 Must be
BU_ADDR_COMP1_HBS_MID 0x42 8 Loaded
BU_ADDR_COMP1_HBS_1SB 0x43 8
BU_ADDR_COMP2_HBS_MSB 0x45 2 Must be
BU_ADDR_COMP2_HBS_ MID 0x46 8 Loaded
BU_ADDR_COMP2_HBS_1SB 0x47 8
BU_DISPADDR_COMPO_HBS_MSB 0x49 2 Must be
BU_DISPADDR__COMPO_HBS_ MID Ox4a 8 Loaded
BU_DISPADDR_COMPO_HBS__LSB 0x4b 8
BU_DISPADDR_COMP1_HBS_MSB 0Ox4d 2 Must be
BU_DISPADDR__COMP1_HBS_ MID Ox4e 8 Loaded
BU_DISPADDR_COMP1_HBS_LSB Ox4f 8
BU_DISPADDR_COMP2_HBS_MSB 0x51 2 Must be
BU_DISPADDR__COMP2_HBS_ MID 0x52 8 Loaded
BU_DISPADDR_COMP2_HBS_LSB 0x53 8
BU_DISPADDR_CNT__LEFT0_MSB 0x55 2 Test only
BU_DISPADDR__CNT__LSFT0_ MID 0x56 8
BU_DISPADDR_CNT__LEFT0_LSB 0x57 8
BU_DISPADDR_CNT__LEFT1_MSB 0x59 2 Test only
BU_DISPADDR_CNT__LEFT1_MID 0x5a 8
BU_DISPADDR_CNT_LEFT1_1SB 0x5b 8
BU_DISPADDR__CNT__LEFT2_MSB 0x5d 2 Test only
BU_DISPADDR__CNT__LEFT2_MID 0x5e 8
BU_DISPADDR_CNT__LEFT2_1SB 0x5f 8
BU_DISPADDR_PAGE_ADDRO_MSB 0x61 2 Test only
BU_DISPADDR_PAGE__ ADDRO_ MID 0x62 8
BU_DISPADDR_PAGE__AADRO_LSB 0x63 8

Oct. 16, 2003

US 2003/0196078 Al

TABLE C.11.2-continued

197

Top-Level RegistersA Address Generator Keyhole

Keyhole Register Name

Comments

BU_DISPADDR_PAGE_ADDR1_MSB
BU_DISPADDR__PAGE__ADDR1_MID
BU_DISPADDR_PAGE__ADDR1_1SB
BU_DISPADDR_PAGE_ADDR2_MSB
BU_DISPADDR_PAGE__ADDR2_ MID
BU_DISPADDR_PAGE_ADDR2_1.SB
BU_DISPADDR_BLOCK__ADDRO_MSB
BU_DISPADDR_BLOCK__ADDRO_MID
BU_DISPADDR__BLOCK__ADDRO_LSB
BU_DISPADDR_BLOCK__ADDR1_MSB
BU_DISPADDR_BLOCK__ADDR1_MID
BU_DISPADDR_BLOCK__ADDR1_1SB
BU_DISPADDR_BLOCK__ADDR2_MSB
BU__DISPADDR_BLOCK__ADDR2_ MID
BU_DISPADDR_BLOCK__ADDR2_1SB
BU_DISPADDR_ BLOCKS__ LEFTO_MSB
BU_DISPADDR_ BLOCKS__ LEFTO_MID
BU_DISPADDR_BLOCKS_ LEFTO_1SB
BU_DISPADDR_ BLOCKS__LEFT1__MSB
BU_DISPADDR_BLOCKS__ LEFT1_MID
BU_DISPADDR_BLOCKS_ LEFT1_1SB
BU_DISPADDR_ BLOCKS_ LEFT2_ MSB
BU_DISPADDR_BLOCKS__ LEFT2_ MID
BU_DISPADDR_BLOCKS_ LEFT2_1SB
BU_WADDR__ BUFFERO_BASE__MSB
BU_WADDR_ BUFFERO__BASE_ MID
BU_WADDR_ BUFFERO_BASE_ 1SB
BU_WADDR__ BUFFER1_BASE_MSB
BU_WADDR_ BUFFER1_BASE_ MID
BU_WADDR_ BUFFER1__BASE_ 1.SB
BU_WADDR__ BUFFER2_BASE_MSB
BU_WADDR_ BUFFER2__BASE_ MID
BU_WADDR_ BUFFER2_BASE_ 1SB
BU_WADDR__ COMPO_HMBADDR__MSB
BU_WADDR__ COMPO_HMBADDR_ MID
BU_WADDR__COMPO_HMBADDR__LSB
BU_WADDR_ COMP1_HMBADDR_MSB
BU_WADDR__ COMP1_HMBADDR_ MID
BU_WADDR__COMP1_HMBADDR__LSB
BU_WADDR__ COMP2__HMBADDR_MSB
BU_WADDR_ COMP2__ HMBADDR_ MID
BU_WADDR__COMP2__HMBADDR__LSB
BU_WADDR__ COMPO_VMBADDR_ MSB
BU_WADDR__ COMPO_VMBADDR_ MID
BU_WADDR_ COMPO__VMBADDR__LSB
BU_WADDR__ COMP1_VMBADDR_ MSB
BU_WADDR__COMP1_VMBADDR_ MID
BU_WADDR__COMP1_VMBADDR__LSB
BU_WADDR_ COMP2_ VMBADDR_ MSB
BU_WADDR__COMP2__ VMBADDR_ MID
BU_WADDR__COMP2__ VMBADDR__LSB
BU_WADDR__VBADDR__MSB
BU_WADDR_ VBADDR__MID
BU_WADDR__VBADDR__LSB

BU_WADDR__ COMPO_HALF_WIDTH__IN_ BLOCKS_ MSB
BU_WADDR__COMPO_HALF_WIDTH__IN_ BLOCKS_ MID
BU_WADDR_ COMPO_HALF_WIDTH__IN_ BLOCKS_ LSB
BU_WADDR_COMP1_HALF_WIDTH__IN_ BLOCKS_ MSB
BU_WADDR__COMP1_HALF_WIDTH__IN_ BLOCKS_ MID
BU_WADDR_ COMP1_HALF_WIDTH_IN_ BLOCKS_ LSB
BU_WADDR_COMP2_HALF_WIDTH__IN_ BLOCKS_ MSB
BU_WADDR__COMP2_HALF_WIDTH__IN_ BLOCKS_ MID
BU_WADDR_COMP2_HALF_WIDTH__IN_ BLOCKS_ LSB

BU_WADDR_ HB_ MSB
BU_WADDR__HB_ MID
BU_WADDR_HB_ LSB
BU_WADDR__COMPO__OFFSET__MSB
BU_WADDR__ COMPO__ OFFSET__MID
BU_WADDR__ COMPO__OFFSET__LSB
BU_WADDR__COMP1__ OFFSET_MSB
BU_WADDR__COMP1__ OFFSET__MID

Keyhole
Address Bits
0x65 2
0x66 8
0x67 8
0x69 2
Ox6a 8
0x6b 8
0x6d 2
0x5e 8
0x6f 8
0x71 2
0x72 8
0x73 8
0x75 2
0x76 8
0x77 8
0x79 2
0x7a 8
0x7b 8
0x7d 2
0x7e 8
0x7f 8
0x81 2
0x82 8
0x83 8
0x85 2
0x86 8
0x87 8
0x89 2
0x8a 8
0x8b 8
0x8d 2
0x8e 8
0x8f 8
0x91 2
0x92 8
0x93 8
0x95 2
0x96 8
0x97 8
0x99 2
0x9%a 8
0x9b 8
0x9d 2
0x%¢ 8
0x9f 8
Oxal 2
Oxa2 8
Oxa3 8
Oxas 2
Oxa6 8
Oxa7 8
0xa9 2
Oxaa 8
Oxab 8
Oxad 2
oxae 8
Oxaf 8
0xb1 2
0xb2 8
0xb3 8
0xb5 2
0xb6 8
0xb7 8
0xb9 2
Oxba 8
0xbb 8
Oxbd 2
Oxbe 8
Oxbf 8
Oxcl 2
Oxc2 8

Test only

Test only

Test only

Test only

Test only

Test only

Test only

Test only

Must be

Loaded

Must be
Loaded

Must be
Loaded

Test only

Test only

Test only

Test only

Test only

Test only

Test only

Must be
Loaded

Must be
Loaded

Must be
Loaded

Test only
Must be
Loaded

Must be
Loaded

Oct. 16, 2003

US 2003/0196078 Al Oct. 16, 2003
198

TABLE C.11.2-continued

Top-Level RegistersA Address Generator Keyhole

Keyhole
Keyhole Register Name Address Bits Comments
BU_WADDR__COMP1_ OFFSET__LSB 0xc3 8
BU_WADDR__COMP2_ OFFSET__MSB 0xc5 2 Must be
BU_WADDR__ COMP2__ OFFSET__MID 0xc6 8 Loaded
BU_WADDR__COMP2_ OFFSET__LSB 0Oxc7 8
BU_WADDR__SCRATCH_ MSB 0xc9 2 Test only
BU_WADDR__ SCRATCH_ MID Oxca 8
BU_WADDR__SCRATCH_ LSB 0Oxcb 8
BU_WADDR_MBS_WIDE_MSB Oxcd 2 Must be
BU_WADDR_MBS_WIDE_ MID Oxce 8 Loaded
BU_WADDR_MBS_WIDE_ LSB Oxcf 8
BU_WADDR_MBS_HIGH_MSB 0Oxd1 2 Must be
BU_WADDR_MBS_HIGH_MID 0xd2 8 Loaded
BU_WADDR_MBS_HIGH_LSB 0xd3 8
BU_WADDR_COMPO_LAST_MB_IN_ROW_MSB 0xd5 2 Must be
BU_WADDR_COMPO_LAST_MB_IN_ROW_MID 0xd6 8 Loaded
BU_WADDR_COMPO_LAST_MB_IN_ROW_LSB 0xd7 8
BU_WADDR_COMP1_T1AST_MB_IN_ROW_MSB 0xd9 2 Must be
BU_WADDR__COMP1_LAST_MB_IN_ROW_MID Oxda 8 Loaded
BU_WADDR_COMP1_LAST_MB_IN_ROW_LSB 0Oxdb 8
BU_WADDR_COMP2_T1AST_MB_IN_ROW_MSB 0Oxdd 2 Must be
BU_WADDR_COMP2_LAST_MB_IN_ROW_MID Oxde 8 Loaded
BU_WADDR_COMP2_LAST_MB_IN_ROW_LSB 0Oxdf 8
BU_WADDR_COMPO_LAST_MB_IN_HALF_ROW_MSB Oxel 2 Must be
BU_WADDR_COMPO_LAST_MB_IN_HALF_ROW_MID 0Oxe2 8 Loaded
BU_WADDR_COMPO_LAST_MB_IN_HALF_ROW_I1SB 0Oxe3 8
BU_WADDR_COMP1_1AST_MB_IN_HALF_ROW_MSB 0Oxe5 2 Must be
BU_WADDR_COMP1_TLAST_MB_IN_HALF_ROW_MID 0xe6 8 Loaded
BU_WADDR_COMP1_IAST_MB_IN_HALF_ROW_I1SB 0Oxe7 8
BU_WADDR_COMP2_T1AST_MB_IN_HALF_ROW_MSB 0xe9 2 Must be
BU_WADDR_COMP2_1AST_MB_IN_HALF_ROW_MID Oxea 8 Loaded
BU_WADDR_COMP2_T1AST_MB_IN_HALF_ROW_1SB Oxeb 8
BU_WADDR_COMPO_LAST_ROW_IN_MB_MSB Oxed 2 Must be
BU_WADDR_COMPO_LAST_ROW_IN_MB_MID Oxee 8 Loaded
BU_WADDR_COMPO_LAST_ROW_IN_MB_LSB Oxef 8
BU_WADDR_COMP1_T1AST_ROW_IN_MB_MSB 0xf1 2 Must be
BU_WADDR_COMP1_LAST_ROW_IN_MB_MID 0xf2 8 Loaded
BU_WADDR_COMP1_LAST_ROW_IN_MB_LSB 0xf3 8
BU_WADDR_COMP2_T1.AST_ROW_IN_MB_MSB 0xf5 2 Must be
BU_WADDR_COMP2_LAST_ROW_IN_MB_MID 0xf6 8 Loaded
BU_WADDR_COMP2_LAST_ROW_IN_MB_LSB 0xf7 8
BU_WADDR_ COMPO__BLOCKS_ PER_MB_ ROW__MSB 0xf9 2 Must be
BU_WADDR_COMPO_BLOCKS_PER_MB_ ROW_ MID Oxfa 8 Loaded
BU_WADDR_COMPO_BLOCKS_PER_MB_ROW_1SB 0xfb 8
BU_WADDR_COMP1_BLOCKS_PER_MB_ROW_MSB Oxfd 2 Must be
BU_WADDR__COMP1_BLOCKS_ PER_MB_ ROW_ MID Oxfe 8 Loaded
BU_WADDR_COMP1_BLOCKS_PER_MB_ROW_1SB Oxff 8
BU_WADDR__COMP2_BLOCKS_PER_MB_ROW_MSB 0x101 2 Must be
BU_WADDR_COMP2_BLOCKS_PER_MB_ ROW_ MID 0x102 8 Loaded
BU_WADDR_ COMP2_BLOCKS_PER_MB_ ROW_1SB 0x103 8
BU_WADDR_COMPO_LAST_MB_ROW_MSB 0x105 2 Must be
BU_WADDR_COMPO_LAST_MB_ROW_MID 0x106 8 Loaded
BU_WADDR_COMPO_LAST_MB_ROW_LSB 0x107 8
BU_WADDR__COMP1_LAST_MB_ROW_MSB 0x109 2 Must be
BU_WADDR_COMP1_LAST_MB_ROW_MID 0x10a 8 Loaded
BU_WADDR_COMP1_LAST_MB_ROW_LSB 0x10b 8
BU_WADDR_COMP2_LAST_MB_ROW_MSB 0x10d 2 Must be
BU_WADDR_ COMP2_LAST_MB_ROW_MID 0x10e 8 Loaded
BU_WADDR_COMP2_1LAST_MB_ROW_LSB 0x10f 8
BU_WADDR__COMPO_HBS_ MSB 0x111 2 Must be
BU_WADDR_ COMPO__HBS_ MID 0x112 8 Loaded
BU_WADDR_COMPO_HBS_ 1SB 0x113 8
BU_WADDR_COMP1_HBS_MSB 0x115 2 Must be
BU_WADDR_COMP1_HBS_MID 0x116 8 Loaded
BU_WADDR_COMP1_HBS_1LSB 0x117 8
BU_WADDR_COMP2_HBS_MSB 0x119 2 Must be
BU_WADDR__COMP2_HBS_ MID Ox11a 8 Laded
BU_WADDR_COMP2_HBS_1SB 0x11b 8
BU_WADDR_ COMPO__MAXHB 0x11f 2 Must be
BU_WADDR__COMP1_MAXHB 0x123 2 Loaded
BU_WADDR__ COMP2_ MAXHB 0x127 2
BU_WADDR__ COMP0O_MAXVB 0x12b 2 Must be

US 2003/0196078 Al Oct. 16, 2003
199

TABLE C.11.2-continued

Top-Level RegistersA Address Generator Keyhole

Keyhole
Keyhole Register Name Address Bits Comments
BU_WADDR_COMP1_MAXVB 0x12f 2 Loaded
BU_WADDR_COMP2_MAXVB 0x133 2
C.12.3 Horizontal Upsampler and Color Space Converter Keyhole.
[3446]
TABLE C.11.3-continued
TABLE C.11.3
H-Upsamplers and Cspace Keyhole Address Map
H-Upsamplers and Cspace Kevhole Address Map Keyhole Register Keghole
Keyhole Register Keyhole Name Address Bits Comment
Name Address Bits Comment
BU_UH2_A02_0 Ox45 8
BU_UHO_A00_1 Ox0 5 R/W-Coeff 0.0 BU_UH2_A03_1 Ox46 5 R/W-Coeff 0.0
BU_UHO_A00_0 Oxl 8 BU_UH2_A03_0 0Ox47 8
BU_UHO_A01_1 0x2 5 R/W-Coeff 0.1 BU_UH2_A10_1 0x48 5 R/W-Coeff 1.0
BU_UHO_A01_0 0x3 8 BU_UH2_A10_0 0x49 8
BU_UHO_A02_1 0x4 5 R/W-Coeff 0.2 BU_UH2_A11_1 Ox4a 5 R/2-Coeff 1.1
BU_UHO_A02_0 0x5 8 BU_UH2_A11_0 Ox4b 8
BU_UHO_A03_1 0x5 5 R/W-Coeff 0.0 BU_UH2_A12_1 Oxdc 5 R/W-Coeff 1.2
BU_UHO_A03 0 0x7 8 BU_UH2_A12_0 Ox4d 8
BU_UHO_A10_1 0x8 5 R/W-Coeff 1.0 BU_UH2_A13_1 Oxde 5 R/W-Coeff 1.3
BU_UHO_A10_0 0x9 8 BU_UH2_A13_0 Ox4f 8
BU_UHO_A1l_1 Oxa 5 R/W-Coeff 1.1 BU_UH2_A20_1 0x50 5 R/W-Coeff 2.3
BU_UHO_A11 0 Oxb 8 BU_UH2_A20_0 0x51 8
BU_UHO_A12 1 Oxc 5 R/W-Coeff 1.2 BU_UH2_A21 1 0x52 5 R/W-Coeff 2.1
BU_UHO_A12_0 0xd 8 BU_UH2_A21_0 0x53 8
BU_UHO_A13 1 Oxe 5 R/W-Coeff 1.3 BU_UH2_A22_1 0x54 5 R/W-Coeff 2.2
BU_UHO_A13_ 0 Oxf 8 BU_UH2_A22_0 0x55 8
BU_UHO_A20_ 1 0x10 5 R/W-Coeff 2.0 BU_UH2_A23_1 0x56 5 R/W-Coeff 2.3
BU_UHO_A20_0 Oxl1 8 BU_UH2_A23 0 0x57 8
BU_UHO_A21_1 0x12 5 R/W-Coeff 2.1 BU_UH2_MODE 0x58 2 R/W
BU_UHO_A21_0 0x13 8 BU_CS_A00_1 0x60 5 R/W
BU_UHO_A22 1 0x14 5 R/W-Coeff 2.2 BU_CS_A00_0 0x61 8
BU_UHO_A22_0 0x15 8 BU_CS_A10_1 0x62 5 R/W
BU_UHO_A23_1 0x16 5 R/W-Coeff 2.3 BU_CS_A10_0 0x63 8
BU_UHO_A23 0 0x17 8 BU_Cs_A20_1 0x64 5 R/W
BU_UHO_MODE 0x18 2 R/W BU_CS_A20_0 0x65 8
BU_UHI_A00_1 0x20 5 R/W-Coeff 0.0 BU_Cs_B0_1 0x66 8 R/W
BU_UHI_A00_ 0 Ox21 8 BU_CS_B0_0 0x67 8
BU_UHI_A01_1 0x22 5 R/W-Coeff 0.1 BU_CS_A01 1 0x68 5 R/W
BU_UHI_A01_0 0x23 8 BU_CS_A01_0 0x69 8
BU_UH1_A02_1 0x24 5 R/W-Coeff 0.2 BU_CS_All 1 Ox6a 5 R/W
BU_UH1_A02_0 0x25 8 BU_CS_AIl_1 0x6b 8
BU_UHI_A03_1 0x26 5 R/W-Coeff 0.0 BU_CS_A21 1 0x6c 5 R/W
BU_UHI_A03_0 0x27 8 BU_CS_A21_0 0x6d 8
BU_UHI_A10_1 0x28 5 R/W-Coeff 1.0 BU_Cs_Bl1 1 0x6e 6 R/W
BU_UHI_A10_ 0 0x29 8 BU_CS_B1_0 0x6f 8
BU_UHI_Al11_1 Ox2a 5 R/W-Coeff 1.1 BU_CS_A02 1 0x70 5 R/W
BU_UH1_A11_0 0x2b 8 BU_CS_A02_0 0x71 8
BU _UHI_A12 1 0x2c 5 R/W-Coeff 1.2 BU_Cs_A12 1 0x72 5 R/W
BU_UH1_A12_0 0x2d 8 BU_CS_A12_ 0 0x73 8
BU_UHI_A13_1 Ox2e 5 R/W-Coeff 1.3 BU_CS_A22 1 0x74 5 R/W
BU_UH1_A13_0 ox2f 8 BU_CS_A22_0 0x75 8
BU_UHI_A20_1 0x30 5 R/W-Coeff 2.0 BU_Cs_B2 1 0x76 6 R/W
BU_UH1_A20_0 0x31 8 BU_CS_B2_0 0x77 8
BU_UHI_A21_1 0x32 5 R/W-Coeff 2.1
BU_UHI_A21_0 0x33 8
BU_UHI_A22 1 0x34 5 R/W-Coeff 2.2 . .
BU_UH1_A22_0 0x35 3 SECTION C.13 Picture Size Parameters
BU_UHI_A23_1 0x36 5 R/W-Coeff 2.3 .
BU_UHL_A23. 0 0x37 3 [3447] C.13.1 Introduction
BU_UHI_MODE 0x38 2 R/W [3448] The following stylized code fragments illustrate
ngggifiggfé giig 2 R/W-Coeff 0.0 the processing necessary to respond to picture size interrupts
BU_UH2_AO1 1 0x42 5 R/W-Coeff 0.1 from the write address generator. Note that the picture size
BU_UH2 _A01 0 0x43 8 parameters can be changed “on-the-fly” by sending combi-
BU_UH2 _A02 1 Ox44 5 R/W-Coeff 0.2 nations of HORIZONTAL MBS, VERTICAL_MBS, and

DEFINE_SAMPLING (for each component) tokens, result-

US 2003/0196078 Al

200

ing in write address generator interrupts. These tokens may
arrive in any order and, in general, any one should neces-
sitate the re-calculation of all of the picture size parameters.
At setup time, however, it would be more efficient to detect
the arrival of all of the events before performing any
calculations.

[3449] 1t is possible to write specific values into the
picture size parameter registers at setup and, therefore, to not
rely on interrupt processing in response to tokens. For this
reason, the appropriate register values for SIF pictures are
also given.

[3450] C.13.2 Interrupt Processing for Picture Size Param-
eters

[3451] There are five picture size events, and the primary
response of each is given below:

if (hmbs__event)
load(mbs__wide);

else if (vmbs__event)
load(mbs__high):

else if (def__sampO_ event)

load (maxhb[0]).
load (maxvb[0]):

else if (def_sampl_event)

load (maxhb[1]):
load (maxvb[1]):

else if (def_samp2_ event)

load (maxhb[2])
load (maxvb[2])

}

[3452] In addition, the following calculations are neces-
sary to retain consistent picture size parameters:

if (hmbs__event|vmbs__event]||
def__sampO__event ||def_sampl__event|def samp2_ event;

for (1=0; i<max_ component; i++)

hbs[i] = addr__hbs[i] = (maxhb[i]+1) + mbs_ wide;

half_ width_in_ blocks[i] = ((maxhb[i]+1) + mbs_ wide1/2;

last_mb_in row[i] = hbs[i] - (maxhb[i]+1);

last_mb__in_ half row[i] = half_width_in_ blocks[i] -
maxhb[i]+1);

last__row__in_ mb[i] = hbs[i] + maxvb[i];

blocks per mb_ row[i] = last__row_in mbl[i] = hbs[i];

last_mb_ row|[i] = blocks_ per__mb_ row|[i] + (mbs__high-1)

[3453] Although it is not strictly necessary to modify the
dispaddr register values (such as the display window size) in
response to picture size interrupts, this may be desirable
depending on the application requirements.

[3454] C.13.3 Register Values for SIF Pictures

[3455] The values contained in all the picture size registers
after the above interrupt processing for an SIF, 4:2:0 stream
will be as follows:

Oct. 16, 2003

[3456] C.13.3.1 Primary Values
[3457]
[3458]
[3459]
[3460]
[3461]
[3462]
[3463]
[3464]

[3465] C.13.3.2 Secondary Values After Calculation
[3466]
[3467]
[3468]
[3469]
[3470]
[3471]
[3472] BU_WADDR_COMPO_HALF_WIDTH_IN__

BLOCKS=Cx15

BU_WAODR_MBS_WIDE=0x16
BU_WADR_MMBS, , HIGH=0x12
BU_WACOR_COMPO0,; MAXHB=0x01
BU_WADDR_COMP1_MAXHB=0x00
BU_WADOR_COMP2_MAXVB0x00
BU_WADDR_COMP0_MAXVB =0x01
BU_WADDR_COMP1_MAXVB=0x00
BU_WADOR_COMP2 ,, MAXVB=0x00

BU_WADDR_COMP0_HBS=0x2C
BU_WAODR_COMP1_HBS=0x16
BU_WADDR_COMP2_HBS=0x16
BU_ADDR_COMP0_HBS=0x2C
BU_ADDR_COMP1_HBS=0x16
BU_ADDR_COMP2_HBS=0x16

[3473] BU_WADDR_COMP1_HALF,,
_BLOCKS=0x0B

WITHIN-

[3474] BU_WADDR_COMP2_HALF_WIDTH_IN_
BLOCKS=0x0B

[3475] BU_WADDR_COMPO_LAST MB_IN_ROW
=0x2A

[3476] BU_WADDR_COMP1_LAST MB_IN ROW
=0x15

[3477] BU_WADDR_COMP2_LAST MB_IN ROW
=0x15

[3478] BU_WADOR_COMPO_LAST MB_IN_HALF
_ROW=0x14

[3479] BU_WADDR_COMP1_LAST MB_IN_HALF
_ROW=0x0A

[3480] BU_WADDR_COMP2_LAST MB_IN_HALF
_ROW=0x0A

[3481] BU_WADDR_COMPO_LAST ROW_IN_MB
=0x2C

[3482] BU_WADDR_COMP1_ILAST ROW_IN_MB
=0x0

[3483] BU_WADDR_COMP2_IAST ROW_IN_MB
=0x0

[3484] BU_WADDR_COMPO_BLOCKS_PER MB_
ROW=0x58

[3485] BU_WADDR_COMP1_BLOCKS_PER MB_
ROW=0x16

US 2003/0196078 Al

201

[3486] BU_WADOR_COMP2_BLOCKS PER_MB_
ROW=0x16

[3487] BU_WADDR_COMPO_LAST MB_ROW=0x
5D8

[3488] BU_WADDR_COMP1_LAST MB_ROW=0x
176

[3489] BU_WADDR_COMP2_LAST MB_ROW=0x
176

[3490] Note that if these values are to be written explicitly
at setup, account must be taken of the multi-byte nature of
most of the locations.

[3491] Note that additional Figures, which are self
explanatory to those of ordinary skill in the art, are included
with this application for providing further insight into the
detailed structure and operation of the environment in which
the present invention is intended to function.

[3492] The aforedescribed pipeline system of the present
invention satisfies a long existing need for an improved
system having an input, an output and a plurality of pro-
cessing stages between the input and the output, the plurality
of processing stages being interconnected by a two-wire
interface for conveyance of tokens along the pipeline, and
control and/or DATA tokens in the form of universal adap-
tation units for interfacing with all of the processing stages
in the pipeline and interacting with selected stages in the
pipeline for control data and/or combined control-data func-
tions among the processing stages, so that the processing
stages in the pipeline are afforded enhanced flexibility in
configuration and processing. In accordance with the inven-
tion, the processing stages may be configurable in response
to recognition of at least one token. One of the processing
stages may be a Start Code Detector which receives the input
and generates and/or converts the tokens.

[3493] The present invention also relates to an improved
pipeline system having a spatial decoder system for video
data including a Huffman decoder, an index to data and an
arithmetic logic unit, and a microcode ROM having separate
stored programs for each of a plurality of different picture
compression/decompression standards, such programs being
selectable by a token, whereby processing for a plurality of
different picture standards is facilitated. The present inven-
tion may also include tokens in the form of a PICTUR-
E_START code token for indicating that the start of a picture
will follow in the subsequent DATA token, a PICTU-
RE_END token for indicating the end of an individual
picture, a FLUSH token for clearing buffers and resetting the
system, and a CODING_STANDARD token for condition-
ing the system for processing in a selected one of a plurality
of picture compression/decompression standards. The
present invention also relates to an improved pipeline sys-
tem for decoding video data and having a Huffman decoder,
an index to data (ITOD) stage, an arithmetic logic unit
(ALU), and a data buffering means immediately following
the system, whereby time spread for video pictures of
varying data size can be controlled. Also in accordance with
the invention, a processing stage receives the input data
stream, the stage including means for recognizing specified
bit stream patterns, whereby the processing stage facilitates
random access and error recovery. The invention may also
include a means for performing a stop-after-picture opera-

Oct. 16, 2003

tion for achieving a clear end to picture data decoding, for
indicating the end of a picture, and for clearing the pipeline.

[3494] The improved pipeline system may also include a
fixed size, fixed width buffer, and means for padding the
buffer to pass an arbitrary number of bits through the buffer.
The present invention also relates to a data stream including
run length code, and an inverse modeller means active upon
the data stream from a token for expanding out the run level
code to a run of zero data followed by a level, whereby each
token is expressed with a specified number of values. The
invention also includes an inverse modeller stage, an inverse
discrete cosine transform stage, and a processing stage,
positioned between the inverse modeller stage and the
inverse discrete cosine transform stage, responsive to a
token table for processing data.

[3495] In addition, the present invention relates to an
improved pipeline system having a Huffman decoder for
decoding data words encoded according to the Huffman
coding provisions of either H.261, JPEG or MPEG stan-
dards, the data words including an identifier that identifies
the Huffman code standard under which the data words were
coded, means for receiving the Huffman coded data words,
means for reading the identifier to determine which standard
governed the Huffman coding of the received data words, if
necessary, in response to reading the identifier that identifies
the Huffman coded data words as H.261 or MPEG Huffman
coded, means operably connected to the Huffman coded data
words receiving means for generating an index number
associated with each JPEG Huffman coded data word
received from the Huffman coded data words receiving
means, means for operating a lookup table containing a
Huffman code table having the format used under the JPEG
standard to transmit JPEG Huffman table information,
including an input for receiving an index number from the
index number generating means, and including an output
that is a decoded data word corresponding to the index
number.

[3496] The improved system includes a multi-standard
video decompression apparatus having a plurality of stages
interconnected by a two-wire interface arranged as a pipe-
line processing machine. Control tokens and DATA Tokens
pass over the single two-wire interface for carrying both
control and data in token format. A token decode circuit is
positioned in certain of the stages for recognizing certain of
the tokens as control tokens pertinent to that stage and for
passing unrecognized control tokens along the pipeline.
Reconfiguration processing circuits are positioned in
selected stages and are responsive to a recognized control
token for reconfiguring such stage to handle an identified
DATA Token. A wide variety of unique supporting sub-
system circuitry and processing techniques are disclosed for
implementing the system.

[3497] 1t will be apparent from the foregoing that, while
particular forms of the invention have been illustrated and
described, various modification can be made without depart-
ing from the spirit and scope of the invention. Accordingly,
it is not intended that the invention be limited, except as by
the appended claims.

1. A decoder interface comprising:

an input circuit that has a port for receiving encoded data;
and

US 2003/0196078 Al

Oct. 16, 2003

202

control circuitry that is coupled to and controls the input
circuit to operate selectively in a first mode to receive
raw byte data at the port and in a second mode to
receive tokens at the port.

2. The decoder interface of claim 1, wherein the port
comprises a coded data port.

3. The decoder interface of claim 1, wherein the port
comprises a microprocessor interface.

4. The decoder interface of claim 2, wherein the port
further includes a microprocessor interface.

5. The decoder interface of claim 1, wherein the control
circuitry includes a byte mode signal for selecting the first or
the second mode.

6. The decoder interface of claim 5, wherein the mode
selection is dynamically changeable.

7. The decoder interface of claim 1, wherein the received
raw byte data is placed into tokens.

8. The decoder interface of claim 7, wherein a first byte
of the raw byte data causes a token header to be generated.

9. The decoder interface of claim 8, wherein subsequent
bytes of the raw byte data are appended to the token header
to form tokens.

10. A method of operating an input circuit to receive
encoded data for decoding purposes comprising:

operating the input circuit in a first mode to receive raw
byte data at a port of the input circuit; and

operating the input circuit in a second mode to receive
tokens at the port of the input circuit.

11. The method of claim 10, wherein the port is a coded
data port.

12. The method of claim 10, wherein the port is a
microprocessor interface.

13. The method of claim 10, wherein a byte mode selects
one of the first and the second modes.

14. The method of claim 13, wherein the mode selection
is dynamically changeable.

15. The method of claim 10, wherein operating the input
circuit in the first mode comprises:

forming tokens from the received raw byte data.

16. The method of claim 15, wherein forming tokens
comprises:

generating a token header in response to receiving a first
byte of the raw byte data.

17. The method of claim 16, further comprising:

appending subsequent bytes of the raw byte data to the
generated token header.

