2,823,432
MITERLESS CORNER MOULDING
Casimer George Dloniak, Dunkirk, N. Y., assignor of one-half to Arthur V. Harrison, Dunkirk, N. Y.

Application April 13, 1955, Serial No. 501,025
3 Claims. (Cl. 20—74)

This invention relates to a wooden moulding device, and it particularly relates to a wooden moulding corner piece which is an entirety in itself and which can be used in conjunction with ordinary strips of moulding material. It is the general practice to provide a moulding frame comprising a strip of wood or the like between angled joints as, for example, between a wall baseboard and the floor of a room or around a door or a picture frame or a variety of other similar objects. Heretofore, such moulding has generally consisted of at least one pair of straight strips extending the length of the corresponding surfaces, and these strips are joined at the corner portion of the surfaces by means of a mitered joint. In order to make such a joint, it is necessary to have a high degree of skill in order to measure, fit and join the ends of the strips.

Mouldings which require the use of a mitered joint have numerous disadvantages. One of the more important of these disadvantages consists of the fact that the construction of a really good mitered joint requires the exercise of a high degree of skill and usually requires the services of a carpenter. Furthermore, the mitered joint tends to break down and separate after a period of time because of the drying up of the glue or rusting of the screws or nails used, as well as because the wood itself tends to dry up and warp. The resulting crack often becomes an area for the accumulation of dirt and other particles and, especially in the case of moulding used between baseboards and floors, often becomes the breeding ground of insects and other vermin.

There have been various attempts to solve some of the above difficulties including the construction of mouldings and angled moulding sections from thin or synthetic rubber or from some of the various types of synthetic resins, especially those of the relatively flexible type. Although such flexible mouldings can be bent to fit into a particular corner surface, it has been found that it is very difficult to adequately finish or paint such mouldings so that they match the surrounding surfaces. In addition, such mouldings rarely have sufficient strength and wear-ability such as are extremely necessary in this type of device.

In view of the above, it is one object of the present invention to provide a corner moulding device which can be installed by almost anyone, and without the exercise of any special skill. Another object of the present invention is to provide a miterless wooden corner moulding, constructed of wood, which will not tend to separate with the passage of time.

Another object of the present invention is to provide a miterless wooden corner moulding which is adapted to adjust itself to any irregularities in the corner surfaces with which it is used.

Other objects of the present invention are to provide an improved device, of the character described, that is easily and economically produced, which is sturdy in construction, and which is highly efficient in operation.

With the above and related objects in view, this invention consists in the details of construction and combination of parts, as will be more fully understood from the following description, when read in conjunction with the accompanying drawing in which:

Fig. 1 is a top plan view of a corner moulding embodying the present invention.

Fig. 2 is a cross-sectional view taken on line 2—2 of Fig. 1.

Fig. 3 is a top plan view of a second embodiment of the present invention.

Fig. 4 is a cross-sectional view taken on line 4—4 of Fig. 3.

Fig. 5 is a cross-sectional view taken on line 5—5 of Fig. 3.

Fig. 6 is a fragmentary bottom plan view of the apex portion of the device of Fig. 3.

Referring now in greater detail to the drawing wherein similar reference characters refer to similar parts, there is shown a corner moulding, generally designated 10, which comprises a pair of arm sections 12 extending angularly outward from an externally rounded apex portion 14. The internal edge of the apex 14 is constructed in the shape of a V as shown at 15. Each of the arms 12 is rounded at its outer surface 16 and has a generally flat inner surface 18. The bottom surface 19 is also substantially flat. The inner surface 18 is inclined at an angle of about 89° between the junction of that surface with the curved outer surface 16 and the junction of that surface with the flat bottom surface 19, for a purpose to be hereinafter more fully set forth.

The junction between the surfaces 18 and 19 is rounded, as indicated at 20, also for a purpose hereinafter set forth. A pair of drilled holes 24, spaced from each other along the length of each arm 12, extend from the curved surface 16 to the rounded heel portion 22 at an angle of about 30°. These drilled holes are used to accommodate the ordinary type of finishing nails.

In installing the corner moulding 12, the ordinary types of wooden moulding strips are laid out in the ordinary manner, but instead of joining adjacent strips at the corner by means of mitered joints, the moulding strips are cut short at the corners and the corner moulding of this invention is inserted therebetween with the ends of the arms 12 joined to the ends of the moulding strips. The relative lengths of the arms 12 and the ordinary moulding strips joined thereto may be varied as desired. The result is a neat, unitary corner joint.

The one degree taper from the vertical which is characteristic of the inner surface 18 of each of the arms 12 is important since it helps compensate for any irregularity in the matching surface so that the corner moulding 12 can be somewhat adjusted to correspond with such irregularities. The rounded heel portion 22 is also important in that it permits the moulding to accommodate itself to any dirt or other particles obstructing the close fit of the corner moulding. In addition, the corner moulding 10, being of the same material and dimensions as the rest of the moulding, provides a very smooth, neat and generally pleasing appearance.

The device shown in Fig. 3 is similar to that of Fig. 1 except that it is constructed for an interior corner, such as the corner of a room, rather than an exterior corner, such as a ledge, for which the device of Fig. 1 is most suitable. This corner moulding 50, shown in Fig. 3 comprises an apex portion 52 which is V-shaped at the exterior 54 and rounded at the interior 56. The exterior edge 54 is adapted to fit into an interior corner surface in corresponding fashion as the interior edge 15 of the corner moulding 10 fits against the exterior, or outwardly-extended, corner portion of a surface.

The arms 58 of corner moulding 50 are rounded on their inner surface 60 while the outer surfaces 62 are substantially flat. These flat surfaces 62 extend at an 89° angle from their junction with the surfaces 60 to their
junction with the bottom surfaces 63, this junction being rounded, as illustrated at 64 in Fig. 4. A pair of drilled nail holes 65, similar to holes 24 in corner moulding 10, are provided in each of the arms 58. These holes are also drilled at approximately a 30° angle in order to make installation easier and to prevent the wood from splitting.

It has been found that certain types of wood are not as flexible as others. In the case of these less flexible types, a narrow slit of, for example, about one-sixteenth of an inch in width, may be provided at the apex portion 52. Such a slit is shown at 66. This slit extends upwardly from the flat bottom surface 68 of the apex portion 52 and is so inclined upwardly that, when viewed in cross-section, as in Fig. 5, the top end of the slit terminates just below the upper surface 69 of the apex portion, as indicated at 70. Should the mating surface corner be cut of square, if the wood of the corner moulding is not inherently sufficiently flexible to bend into adjustment, the slit 66 would provide sufficient play to make the necessary adjustment. However, in those cases where the mating surface corner is very badly out of square, then the corner moulding can be made to split along the slit 66 and the two resulting parts then can be individually adjusted.

It should, incidentally, be noted that although the slit 66 has been illustrated only in conjunction with the corner moulding 59, it is also present in the corner moulding 10.

Although the invention has been described in considerable detail such description is intended as being illustrative rather than limiting, since the invention may be variously embodied, and the scope of the invention is to be determined as claimed.

Having thus set forth and disclosed the nature of this invention, what is claimed is:

1. A corner moulding device comprising a generally V-shaped wooden frame having a pair of arms extending at an inclined angle from the apex portion thereof, said arms and apex having flat outer and bottom sides, said apex portion being V-shaped at its one end and rounded from its one end toward said other end and terminating in conjunction with said bottom side, said arms being provided with a plurality of spaced, drilled nail holes extending at substantially 30° angles from the curved side surface thereof to the heel portion at the junction of said bottom and upright flat sides, said juncture being slightly arcuate, said apex portion being provided with a slit extending vertically through said heel portion and terminating in an upper wall inclined at an angle of substantially 30° slightly spaced at both ends from the rounded upper surface of said apex portion to present a substantially unbroken upper surface.

2. A corner moulding device comprising a generally V-shaped wooden frame having a pair of arms extending at an inclined angle from the apex portion thereof, said arms and apex having flat inner and bottom sides, said apex portion being V-shaped at its inner end and rounded from its inner end toward said other end and terminating in conjunction with said bottom side, said arms being provided with a plurality of spaced, drilled nail holes extending at substantially 30° angles from the curved side surface thereof to the heel portion at the junction of said inner and bottom flat sides, said juncture being slightly arcuate, said apex portion being provided with a slit extending vertically through said heel portion and terminating in an upper wall inclined at an angle of substantially 30° slightly spaced at both ends from the rounded upper surface.

3. A corner moulding device comprising a generally V-shaped wooden frame having a pair of arms extending at an inclined angle from the apex portion thereof, said arms and apex having flat outer and bottom sides, said apex portion being V-shaped at its outer end and rounded from its outer end toward said inner end and terminating in conjunction with said bottom side, said arms being provided with a plurality of spaced, drilled nail holes extending at substantially 30° angles from the curved side surface thereof to the heel portion at the junction of said outer and bottom flat sides, said juncture being slightly arcuate, said apex portion being provided with a slit extending vertically through said heel portion and terminating in an upper wall inclined at an angle of substantially 30° slightly spaced at both ends from the rounded upper surface of said apex portion to present a substantially unbroken upper surface.

References Cited in the file of this patent

UNITED STATES PATENTS

525,488 Crouch Sept. 4, 1894
709,204 Clark Sept. 16, 1902
1,830,108 Jackson Nov. 3, 1931