wo 2015/160351 A1 I}] 00O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/160351 A1l

(51

eay)

(22)

(25)
(26)
1

(72

74

31

22 October 2015 (22.10.2015) WIPOIPCT
International Patent Classification:
GO6F 17/00 (2006.01)
International Application Number:
PCT/US2014/034460

International Filing Date:
17 April 2014 (17.04.2014)

English
Publication Language: English

Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; Hewlett-Packard Develop-
ment Company, L.P., 11445 Compaq Center Drive West,
Houston, Texas 77070 (US).

Inventors: LEVI, Elad; Shabazi 19, 56100 Yehud (IL).
MIZRAHI, Avigad; Shabazi 19, 56100 Yehud (IL). BAR
ZIK, Ran; Shabazi 19, 5623024 Yehud (IL).

Agents: MCKINNEY, Jack H. et al.; Hewlett-Packard
Company, Intellectual Property Administration, 3404 East
Harmony Road, Mail Stop 35, Fort Collins, Colorado
80528 (US).

Filing Language:

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: CASCADING STYLE SHEET META LANGUAGE PERFORMANCE

320 2/3
™~ 3214 3212 3913 3214
/ / yi /

3215
/

(57) Abstract: Cascading style sheet
(CSS) meta language performance can

32;1-N include inputting a web application and

/ /- 4 4 4
HOME GUIDELINES |UIELEMENTS | EXPERIENCEKT ~ ICON$ DOCS

CSS meta language files and removing a
redundant CSS selector from the input

3994 A——TYPOGRAPHY

CSS meta language files.

Forms
3999 ———TABLES Text Field
USED TO RECEIVE SHORT INPUT FROM THE USER
3223 - FORMS
EXAMPLE }\-323
3294 A—~—— BUTTONS
TYPE HERE |—\-324
3.5 4————TABS
599.p A———PANES

Text Field Error

DISPLAYS TEXT FIELD WITH NOT VALIDATED (ERROR)

SAMPLE }_325

mymail@mail.com

|’\—326

Fig. 3

WO 2015/160351 A1 WK 00N VT R A

Published:
— with international search report (Art. 21(3))

WO 2015/160351 PCT/US2014/034460

CASCADING STYLE SHEET META LANGUAGE PERFORMANCE

Background
[0001] Cascading style sheets (CSS) can be used to describe the look

and formatting of a document written in a markup language. CSS can enable
the separation of document content from document presentation. CSS meta
languages can be used to enhance CSS, and can be rendered by a browser
executing the markup language.

Brief Description of the Drawings

[0002] Figure 1 illustrates a diagram of an example of a system according
to the present disclosure.

[0003] Figure 2 illustrates a diagram of an example computing device
according to the present disclosure.

[0004] Figure 3 illustrates an environment for a CSS meta language
analyzer according to the present disclosure.

[0005] Figure 4 illustrates a flow chart of a method according to the

present disclosure.

WO 2015/160351 PCT/US2014/034460

Detailed Description

[0006] Recently, cascading style sheet (CSS) meta languages have been
used to make CSS files easier to handle. CSS is a language that can be used
for describing the look and formatting of a document written in a markup
language (e.g., a modern system for annotating a document in a way that is
syntactically distinguishable from the text). Currently, CSS meta languages
such as syntactically awesome style sheets (SASS) and/or leaner CSS (LESS)
have been used to generate CSS files. As used herein, a CSS meta language
refers to a semi-programming language that can be interpreted by CSS. CSS
meta languages can contain a special syntax and preprocessor script that can
compile CSS files that a browser can render (e.g., read). These languages can
include functions, variables, and flow control mechanisms that enable proper
formatting of CSS files. However, current mechanisms do not allow for removal
of obsolete instructions (e.g., code) and/or redundant functions in CSS meta
language files. Furthermore, current mechanisms do not allow for the retrieval
of information regarding ways to change the CSS meta language files in order
to generate more efficient CSS files.

[0007] Some mechanisms to identify and remove obsolete instructions
and/or redundant functions in CSS files include manual checking and
modification of CSS files. Some other mechanisms include removing unused
CSS selectors from CSS files, and removing redundant CSS selectors from
CSS files. Such mechanisms do not analyze CSS meta language files, do not
analyze multiple CSS files, only analyze static CSS files, and do not measure
run time performance improvements of revised CSS files. Lastly, some other
mechanisms include removing unused SASS variables. However, such
mechanisms analyze only variables and do not analyze the output of meta
language files. Further, such mechanisms do not analyze code based on a
given hypertext markup language (HTML), nor do such mechanisms measure
the run time performance improvements of revised CSS files.

[0008] In contrast, a number of examples of the present disclosure can
provide for improved CSS mega language performance. Examples of the
present disclosure can provide a mechanism to identify functions and variables

WO 2015/160351 PCT/US2014/034460

to be removed from CSS meta language files in order to make the instructions
easier to maintain, can improve network transfer rates by reducing the CSS file
size, and can improve web application loading and handling times by browsers
executing the CSS files.

[0009] Figure 1 illustrates a diagram of an example of a system 100
according to the present disclosure. The system 100 can include a database
101, a subsystem 102, and/or a number of engines (e.g., CSS meta language
analyzer engine 103, redundant CSS selector engine 104, and performance
improvement engine 105). As used herein, “a” or “a number of” something can
refer to one or more such things. For example, “a number of widgets” can refer
to one or more widgets. The subsystem can include the number of engines in
communication with the database 101 via a communication link. The system
100 can include additional or fewer engines than illustrated to perform the
various functions described herein. The system can represent software and/or
hardware of a network controller (e.g., device 208 as referenced in Figure 2,
etc.).

[0010] The number of engines can include a combination of hardware
and programming that is configured to perform a number of functions described
herein (e.g., measure a plurality of base performance metrics for a web
application based on input CSS meta language files, etc.). The programming
can include program instructions (e.g., software, firmware, etc.) stored in a
memory resource (e.g., computer readable medium (CRM), machine readable
medium (MRM), etc.) as well as hard-wired program (e.g., logic).

[0011] The CSS meta language analyzer engine 103 can include a
combination of hardware and programming that is configured to measure a
plurality of base performance metrics for a web application based on input CSS
meta language files. As described herein, CSS is a style sheet language that
describes how a web application written in a markup language will look (e.g.,
color, font style and/or type, etc.). For instance, CSS can be used to define the
style of web pages and/or interfaces written in HTML and/or extensible
hypertext markup language (XHTML). However, examples are not so limited
and CSS can be applied to any kind of extensible markup language (XML)

WO 2015/160351 PCT/US2014/034460

document, including plain XML, scalable vector graphics (SVG) and XML user
interface language (XUL).

[0012] CSS mega language files input into the CSS meta language
analyzer engine 103 can include LESS and/or SASS files. Further, measuring
base performance metrics can include measuring a CSS loading time and/or a
rendering time (e.g., the amount of time required for a computing program to
generate an image from input computing instructions) of the web application
using the CSS input. As discussed further herein, the base performance
metrics can be measured using a CSS profiler (e.g., a model and/or instructions
executable to measure the performance of CSS file execution).

[0013] The redundant CSS selector engine 104 can include a
combination of hardware and programming that is configured to remove
redundant CSS selectors from input CSS meta language files. The redundant
CSS selector 104 can analyze the input CSS meta language files, along with
the markup language of the web application, and obtain information about
redundant CSS selectors. As used herein, a CSS selector refers to a formatting
item that identifies which part of the markup document a style applies to. A
CSS selector can apply to all elements of a specific type (e.g., all second level
headers), to elements specified by attribute (e.g., an identifier unique to the
particular markup document, and/or a class), and/or to elements depending on
how they are placed relative to, or nested within, other elements in a markup
document tree. For example, a CSS selector can apply to the body of a markup
document. To identify redundant CSS files, the redundant CSS file engine 104
can compare elements in the markup document against the CSS selectors
identified in the CSS meta language files. A redundant CSS selector can
include a CSS selector that is not affecting (e.g., is not used by) any element in
the markup document. In some examples, the redundant CSS selector may not
affect any element in the markup document because it was overridden by other
CSS selectors or because the redundant CSS selector does not represent any
element used in the markup document (e.g., the CSS selector identifies all
second level headers, but no second level headers exist in the markup

document).

WO 2015/160351 PCT/US2014/034460

[0014] In some examples, the redundant CSS selector engine 104 can
conduct a static analysis (e.g., analysis that is performed without actually
executing) of the CSS meta language files and can identify inefficient CSS
selectors within the CSS meta language files. For example, the redundant CSS
selector engine 104 can identify CSS selectors in the input CSS meta language
files that cause the CSS loading time and/or rendering time to decrease below a
user defined threshold.

[0015] The performance improvement engine 105 can include a
combination of hardware and programming that is configured to measure a
plurality of performance metrics for a web application in response to removing
redundant CSS selector. For instance, the performance improvement engine
105 can measure the loading time and/or rendering time for the web application
executing the CSS files, in response to removing redundant CSS selectors.
Further, the performance improvement engine 105 can output new CSS meta
language files (e.g., the input CSS meta language files having redundant CSS
selectors removed and/or inefficient CSS selectors removed and/or replaced).
As discussed further herein, the performance improvement engine 105 can
analyze the new CSS meta language files (e.g., using a CSS profiler) and
compare the loading time and/or rendering time to the base performance
metrics recorded by the CSS meta language analyzer engine 103. In some
examples, the performance improvement engine 105 can generate a
performance improvement summary report identifying the improvement in
performance (e.g., improvement in loading and/or rendering time) of the web
application executing the CSS files, in response to the new CSS meta language
files.

[0016] Figure 2 illustrates a diagram of an example computing device 208
according to the present disclosure. The computing device 208 can utilize
software, hardware, firmware, and/or logic to perform a number of functions
described herein. The computing device 208 can be any combination of
hardware and program instructions configured to share information. The
hardware, for example, can include a processing resource 209 and/or a memory
resource 211 (e.g., CRM, MRM, database, etc.). A processing resource 209, as

WO 2015/160351 PCT/US2014/034460

used herein, can include any number of processors capable of executing
instructions stored by a memory resource 211. Processing resource 209 may
be implemented in a single device or distributed across multiple devices. The
program instructions (e.g., computer readable instructions (CRI)) can include
instructions stored on the memory resource 211 and executable by the
processing resource 209 to implement a desired function (e.g., remove a
redundant CSS selector from input CSS meta language files).

[0017] The memory resource 211 can be in communication with a
processing resource 209. A memory resource 211, as used herein, can include
any number of memory components capable of storing instructions that can be
executed by processing resource 209. Such memory resource 211 can be a
non-transitory CRM or MRM. Memory resource 211 may be integrated in a
single device or distributed across multiple devices. Further, memory resource
211 may be fully or partially integrated in the same device as processing
resource 209 or it may be separate but accessible to that device and processing
resource 209. Thus, it is noted that the computing device 208 may be
implemented on a participant device, on a server device, on a collection of
server devices, and/or a combination of the user device and the server device.
[0018] The memory resource 211 can be in communication with the
processing resource 209 via a communication link (e.g., a path) 210. The
communication link 210 can be local or remote to a machine (e.g., a computing
device) associated with the processing resource 209. Examples of a local
communication link 210 can include an electronic bus internal to a machine
(e.g., a computing device) where the memory resource 211 is one of volatile,
non-volatile, fixed, and/or removable storage medium in communication with the
processing resource 209 via the electronic bus.

[0019] A number of modules (e.g., CSS meta language analyze module
213, redundant CSS selector module 214, performance improvement module
215) can include CRI that when executed by the processing resource 209 can
perform a number of functions. The number of modules can be sub-modules of
other modules. For example, the CSS meta language analyzer module 213, the
redundant CSS selector module 214, and the performance improvement

WO 2015/160351 PCT/US2014/034460

module 215 can be sub-modules and/or contained within the same computing
device. In another example, the number of modules can comprise individual
modules at separate and distinct locations (e.g., CRM, etc.).

[0020] Each of the number of modules can include instructions that when
executed by the processing resource 209 can function as a corresponding
engine as described herein. For example, the CSS meta language analyzer
module 213 can include instructions that when executed by the processing
resource 209 can function as the CSS meta language analyzer engine 103. In
another example, the redundant CSS selector module 214 can include
instructions that when executed by the processing resource 209 can function as
the redundant CSS selector engine 104. Additionally, the performance
improvement module 215 can include instructions that when executed by the
processing resource 209 can function as the performance improvement engine
105.

[0021] The CSS meta language analyzer module 213 can include
instructions that when executed by the processing resource, can identify a
function and a variable that generate a redundant CSS selector among input
CSS meta language files associated with a web application. As described in
relation to Figure 1, a redundant CSS selector can include a CSS selector that
is not affecting (e.g., is not used by) any element in the markup document. In
response to receiving an input of a web application (e.g., a uniform resource
locator for a particular website and/or source code for the particular web
application), as well as CSS meta language files (e.g., SASS and/or LESS files,
among others) associated with the web application, the CSS meta language
analyzer module 213 can use a CSS profiler to measure base performance
metrics of the web application and CSS meta language files. The CSS meta
language analyzer module 213 can subsequently identify redundant CSS
selectors in the CSS meta language files by mapping each CSS selector used
in the CSS meta language files to an element and/or a plurality of elements in
the web application (e.g., the HTML for the particular web application). By
mapping each CSS selector to the web application, the CSS meta language
analyzer module 213 can identify functions and/or variables (e.g., attributes

WO 2015/160351 PCT/US2014/034460

and/or values) associated with redundant CSS selectors in the CSS meta
language files. As used herein, a function refers to a reusable block of
instructions (e.g., code) that carries out a specific task. To execute the
instructions in a function, a user can “call” the function (e.g., instruct a processor
to perform the instructions).

[0022] The redundant CSS selector module 214 can include instructions
that when executed by the processing resource can remove the functions
and/or variables that generate redundant CSS selectors from input CSS meta
language files. In some examples, the redundant CSS selector module 214 can
further scan (e.g., search and/or analyze) the CSS meta language files in order
to identify redundant functions and/or variables that generate redundant CSS
selectors.

[0023] In some examples, the computing device 208 can include a
performance modification module (not illustrated in Figure 2). The performance
modification module can include instructions that when executed by the
processing resource can identify inefficient CSS instructions (e.g., code) in input
CSS meta language files, and replace the inefficient CSS instructions with
efficient CSS instructions that improve performance values above a user
defined threshold. As used herein, inefficient CSS instructions include
instructions in CSS meta language files that result in performance values for a
web application that are below a user defined threshold. For example, a CSS
meta language file can include a symbol, such as an asterisk (e.g., “*”),
associated with a particular CSS selector. The symbol can result in an
increased loading and/or rendering time for the associated CSS file (e.g.,
increased above a user defined threshold of time), and can therefore be
identified as an inefficient CSS instruction. In such an example, the
performance modification module can replace the symbol with efficient CSS
instructions (e.g., simplified and/or explicit CSS instructions that result in a
decreased loading and/or rendering time for the associated CSS file). For
instance, the performance modification module can replace the “*” with an

explicit phrase such as “body” to more clearly identify a particular CSS selector.

WO 2015/160351 PCT/US2014/034460

[0024] The performance improvement module 215 can include
instructions that when executed by the processing resource can generate new
CSS meta language files. As used herein, new CSS meta language files can
refer to the input CSS meta language files (e.g., input to the CSS meta
language analyzer module 213), that have been modified to remove redundant
CSS selectors and/or inefficient CSS instructions, and to include efficient CSS
instructions, when applicable. In some examples, the performance
improvement module 215 can return a performance improvement summary
report to a user of computing device 208 describing the modifications made to
the input CSS meta language files, and the improvement in performance (e.g.,
rendering and/or loading time) as a result of those modifications.

[0025] Figure 3 illustrates an environment 320 for a CSS meta language
analyzer according to the present disclosure. Environment 320 can include a
graphical user interface (GUI) displaying a web application (e.g., a HTML
document). The uniform resource locator (URL) of the web application can be
input to the CSS meta language analyzer engine 103 and/or the CSS meta
language analyzer module 213, as discussed in relation to Figures 1 and 2,
respectively. Also, the corresponding CSS meta language files (e.g., SASS
and/or LESS code) associated with the web application can be input to the CSS
meta language analyzer engine 103 and/or the CSS meta language analyzer
module 213. In the example illustrated in Figure 3, the web application includes
a number of groups 321-1, 321-2, 321-3, ..., 321-N and categories 322-1, 322-
2,322-3, ..., 322-P that can be formatted by CSS files. As illustrated in Figure
3, the group “Ul elements” (e.g., 321-3) can be selected, and the category
‘Forms” (e.g., 322-3) can be designed by CSS files. Within the Forms category,
a number of elements can be formatted. For instance, tabs “Example” (e.g.,
323) and “Sample” (e.g., 325), as well as text fields “type here” (e.g., 324) and
mymail@mail.com 326 are elements within environment 320 that can be
formatted by CSS files and/or CSS meta language files.

[0026] In an example, tab “Example” (e.g., 323) can be designed by CSS
meta language files. In such an example, the “Example” tab can be formatted
by the following CSS selector:

WO 2015/160351 PCT/US2014/034460
10

article .example {
background-color: gray;
font-family: arial;
font-color: silver,;

That is, the CSS selector of “article.example” is being defined by three
properties (e.g., attributes): background-color, font-family, and font-color.
Further, the three properties have values assigned to them of: gray, arial, and
silver, respectively.
The selector section of the CSS instructions defines what markup language
document (e.g., HTML) element(s) the property applies to (e.g., the body, the
title, an example box, etc.). The property section of the CSS instructions
defines a property and/or quality of the markup language document element(s).
In the example illustrated in Figure 3, the “Example” tab will then be displayed
with a gray background color, and with silver arial font.
[0027] CSS files can be generated by CSS meta language files. For
example, CSS files can be generated using CSS meta language files such as
SASS and/or LESS, among others. In the example illustrated in Figure 3, the
CSS file formatting the “Example” tab 323 can be generated by a SASS mixin
(e.g., a function used by SASS CSS meta language files). For instance, the
SASS mixin for the above example can be:
@mixin page-title {

background-color: $universal_background;

font-family: arial;

font-color: $universal_color;

Further, the SASS mixin illustrated above can be called by the following
command:
article .example {
@include page-title();

WO 2015/160351 PCT/US2014/034460
11

[0028] In the example illustrated in Figure 3, a user may wish to remove
the “Example” tab (e.g., 323) from the web application (e.g., environment 320).
However, when the user removes the “Example” tab 323, the corresponding
CSS code may need to be removed as well. Using the CSS meta language
analyzer engine 103 and/or the CSS meta language analyzer module 213,
every page of the web application can be scanned and redundant CSS
selectors can be identified. For example, the CSS meta language analyzer
module 213 can identify the following CSS selector as a redundant CSS
selector:
article .example {

background-color: gray;

font-family: arial;

font-color: silver;

The “article .example” CSS selector could be identified as a redundant CSS
selector because after the user removed the “Example” tab 323 from the web
application, the “article .example” CSS selector did not correspond to any
element in the web application. While the foregoing example illustrates a single
redundant CSS selector being identified, examples are not so limited, and a
plurality of redundant CSS selectors can be identified. The redundant CSS
selector engine 104 and/or the redundant CSS selector module 214 can then
remove the identified redundant CSS selectors from the CSS file.
[0029] Further, redundant CSS selector engine 104 and/or the redundant
CSS selector module 214 can scan the input CSS meta language files input
with the web application and identify functions associated with the identified
redundant CSS selectors. For example, the redundant CSS selector engine
104 and/or the redundant CSS selector module 214 can scan the input CSS
meta language files and identify the following call in SASS:

article .example {

@include page-title();

WO 2015/160351 PCT/US2014/034460
12

Similarly, redundant CSS selector engine 104 and/or the redundant CSS
selector module 214 can identify that the function page-title() was declared in
the following SASS mixin:
@mixin page-title {
background-color: $universal_background;
font-family: arial;
font-color: $universal_color;

Because the identified SASS call and SASS mixin were associated with the
redundant CSS selector “article .example”, and they are not used anywhere
else in the web application (e.g., environment 320), the redundant CSS selector
engine 104 and/or the redundant CSS selector module 214 can remove both
the SASS call (e.g., to the page-title function) and the SASS mixin (e.g., the
page-title function itself) illustrated above.
[0030] As discussed in relation to Figure 2, inefficient CSS instructions
(e.g., code) can be identified in some examples. A performance modification
engine and/or performance modification module can static analyze input CSS
meta language files and identify inefficient CSS instructions. For instance, the
performance modification engine and/or performance modification module can
identify the following inefficient CSS instructions:

*. text-header {

font-size: 13px;

}
In the above example, the “*” pattern can be identified as an inefficient CSS
instruction because it results in an increased rendering time for the web
application (e.g., environment 320). In response to being identified as an
inefficient CSS instruction, the performance modification engine and/or the
performance modification module can replace the inefficient CSS instructions
with the following efficient CSS instructions:

body. text-header {

WO 2015/160351 PCT/US2014/034460
13

font-size: 13px;

[0031] As discussed in relation to Figures 1 and 2, the performance
improvement engine 105 and/or the performance improvement module 215 can
output new CSS meta language files (e.g., the input CSS meta language files
having redundant CSS selectors removed and/or inefficient CSS selectors
removed and/or replaced). In the example discussed above, new CSS meta
language files can be output including the “body. text-header” instructions, and
not including the “article .example” CSS selector, the SASS call (e.g., to the
page-title function) and the SASS mixin (e.g., the page-title function itself). The
performance improvement engine 105 and/or the performance improvement
module 215 can also send a performance improvement summary report to a
user of environment 320 outlining the modifications made, as well as the
improvement in performance realized as a result of the modifications.

[0032] Figure 4 illustrates a flow chart of a method 440 according to the
present disclosure. At 441, the method 440 can include inputting source code
for a web application and CSS meta language files into a CSS meta language
analyzer. For example, an input can be a site URL and/or source code for a
particular web application to be analyzed and its corresponding SASS code.
Examples are not so limited, however, and CSS As described further herein,
CSS meta language files are the instructions (e.g., code) of the given
application’'s CSS). For instance, the meta language files can include LESS
and SASS files, among others CSS meta language file types.

[0033] At 442, the method 440 can include measuring a plurality of base
performance metrics for the web application. Once a browser loads an HTML,
then it loads the CSS files, then after the CSS files are loaded, the page can be
displayed to an end user. The loading time of the CSS may change based on
the size of the CSS file and also the efficiency of the CSS instructions. That is,
the size of the CSS file and the efficiency of the CSS instructions both affect the
speed of the site. The performance can be measured by numerical values (e.g.,
speed as a numerical value). CSS profilers, such as Opera style profiler, can
be used to measure the CSS loading and/or rendering time of the web

WO 2015/160351 PCT/US2014/034460
14

application, based on the input of the web application and the CSS meta
language files. Examples are not so limited, however, and any CSS profiler can
be used.

[0034] At 443, the method 440 can include static analyzing the CSS files
along with the markup language document (e.g., HTML) of the web application
to identify redundant CSS selectors in the CSS meta language files. For
example, identifying redundant CSS selectors can include analyzing input CSS
meta language files (e.g., SASS and/or LESS files) and the associated HTML
associated with the web application, comparing CSS selectors in the CSS meta
language files with elements in a hypertext markup language (HTML) document
associated with the web application and identifying CSS selectors that do not
affect any elements in the HTML.

[0035] At 444, the method 440 can include removing identified redundant
CSS selectors from the CSS meta language files. Redundant CSS selectors
can be removed from the CSS meta language files in response to being
identified as redundant CSS selectors. Additionally, functions and variables in
the CSS meta language files that generate the redundant CSS selectors can
also be removed. For example, the method 440 can include analyzing a CSS
file, removing redundant CSS selectors from the CSS file and/or CSS meta
language files, and subsequently identifying and removing functions and
variables associated with the redundant CSS selector.

[0036] At 445, the method 440 can include performing performance
modifications in the CSS meta language files. Performing performance
modifications can include mimicking (e.g., executing in a test environment)
operation of the CSS meta language files and identifying sections of the CSS
meta language files that can be revised to increase performance of the web
application. For example, a set of user-defined patterns can be specified that
identify inefficient instructions. As described above, a CSS selector of “*” rather
than a CSS selector of “body” is an example of a user-defined pattern that
identifies an inefficient instruction. Further examples of inefficient instructions
can include the following (the nomenclature “some_id” and “someClass” being
generic terms that could refer to any identifier and/or any class, respectively):

WO 2015/160351 PCT/US2014/034460
15

*#some_id
divifsome_id
.someClass .someClass

Performing performance modifications can include searching for the user-
defined patterns in the instructions in the CSS meta language files and
replacing the inefficient instruction(s) with efficient instruction(s). For instance,
the above examples of inefficient instructions can be replaced with the following
efficient instructions:

#some_id

#some_id

.someClass > .someClass
[0037] At 446, the method 440 can include outputting new CSS meta
language files, not including the identified redundant CSS selectors and
including the performance modifications. Further, a performance improvement
summary report can be outputted, listing the redundant CSS selectors removed,
and performance modifications made (e.g., what CSS instructions were
removed and/or changed in order to improve performance). In some examples,
a CSS profiler (e.g., Opera style profiler) can be used to run a second
performance analysis (e.g., subsequent to the base performance
measurements) in order to compare the performance of the web application with
the new CSS meta language files against the performance of the web
application with the original (e.g., input) CSS meta language files. The results
of the second performance analysis can be described in the performance
improvement summary report provided to a user of the web application and/or
CSS meta language analyzer.
[0038] In the present disclosure, reference is made to the accompanying
drawings that form a part hereof, and in which is shown by way of illustration
how a number of examples of the disclosure can be practiced. These examples
are described in sufficient detail to enable those of ordinary skill in the art to
practice the examples of this disclosure, and it is to be understood that other

WO 2015/160351 PCT/US2014/034460
16

examples can be used and that process, electrical, and/or structural changes
can be made without departing from the scope of the present disclosure.

[0039] The figures herein follow a numbering convention in which the first
digit corresponds to the drawing figure number and the remaining digits identify
an element or component in the drawing. Elements shown in the various
figures herein can be added, exchanged, and/or eliminated so as to provide a
number of additional examples of the present disclosure. In addition, the
proportion and the relative scale of the elements provided in the figures are
intended to illustrate the examples of the present disclosure, and should not be
taken in a limiting sense. As used herein, the designators "N", and "P",
particularly with respect to reference numerals in the drawings, indicate that a
number of the particular feature and/or component so designated can be
included with a number of examples of the present disclosure. The designators
“N” and “P” can refer to a same feature and/or component, or different features
and/or components.

[0040] As used herein, “logic” is an alternative or additional processing
resource to perform a particular action and/or function, etc., described herein,
which includes hardware, e.g., various forms of transistor logic, application
specific integrated circuits (ASICs), etc., as opposed to computer executable
instructions, e.g., software firmware, etc., stored in memory and executable by a
processor. Further, as used herein, “a” or “a number of” something can refer to
one or more such things. For example, “a number of widgets” can refer to one
or more widgets. Also, as used herein, “a plurality of” something can refer to
more than one of such things.

[0041] The above specification, examples and data provide a description
of the method and applications, and use of the system and method of the
present disclosure. Since many examples can be made without departing from
the spirit and scope of the system and method of the present disclosure, this
specification merely sets forth some of the many possible embodiment

configurations and implementations.

WO 2015/160351 PCT/US2014/034460
17

What is claimed is:

1. A system, comprising:

a cascading style sheet (CSS) meta language analyzer engine to
measure a plurality of base performance metrics for a web application based on
input CSS meta language files;

a redundant CSS selector engine to remove a redundant CSS selector
from the input CSS meta language files; and

a performance improvement engine to measure a plurality of
performance metrics for the web application in response to removing the

redundant CSS selector.

2. The system of claim 1, wherein the input CSS meta language files

include syntactically awesome style sheet (SASS) files.

3. The system of claim 1, wherein the input CSS meta language files
include leaner CSS (LESS) files.

4. The system of claim 1, wherein the base performance metrics include a

loading time or a rendering time of the web application.

5. The system of claim 1, the redundant CSS selector engine to conduct a
static analysis of the input CSS meta language files and identify inefficient CSS

selectors within the input CSS meta language files.

6. A non-transitory computer readable medium storing instructions
executable by a processing resource to cause a computer to:

Identify, using a cascading style sheet (CSS) meta language analyzer, a
function and a variable that generate a redundant CSS selector among input
CSS meta language files associated with a web application;

remove the function and variable that generate the redundant CSS

selector from the input CSS meta language files;

WO 2015/160351 PCT/US2014/034460
18

identify inefficient CSS instructions in the input CSS meta language files,
wherein inefficient CSS instructions include instructions in the CSS meta
language files that result in performance values for the web application that are
below a user defined threshold;

replace the inefficient CSS instructions in the input CSS meta language
files with efficient CSS instructions that improve performance values above the
user-defined threshold; and

generate new CSS meta language files, not including the redundant CSS

selector and including the efficient CSS instructions.

7. The non-transitory machine readable medium of claim 6, wherein the
redundant CSS selector includes a CSS selector that does not correlate to any

elements in a markup document associated with the web application.

8. The non-transitory machine readable medium of claim 6, wherein the
input CSS meta language files include syntactically awesome style sheet
(SASS) files and leaner CSS (LESS) files.

9. The non-transitory machine readable medium of claim 8, wherein the
instructions executable to identify a function and a variable that generate a
redundant CSS selector includes instructions to search for the redundant CSS
selector among the SASS files and the LESS files.

10. A method, comprising:

inputting source code for a web application and cascading style sheet
(CSS) meta language files into a CSS meta language analyzer;

measuring a plurality of base performance metrics for the web
application;

static analyzing, using the CSS meta language analyzer, the web
application and the CSS meta language files to identify redundant CSS

selectors in the CSS meta language files;

WO 2015/160351 PCT/US2014/034460
19

removing the identified redundant CSS selectors from the CSS meta
language files;

performing performance modifications in the CSS meta language files;
and

outputting new CSS meta language files, not including the identified
redundant CSS selectors and including the performance modifications.

11. The method of claim 10, wherein the base performance metrics include a

CSS rendering time of the web application.

12. The method of claim 10 wherein identifying redundant code includes
comparing CSS selectors in the CSS meta language files with elements in a
hypertext markup language (HTML) document associated with the web
application and identifying CSS selectors that do not affect any elements in the
HTML.

13. The method of claim 10, wherein removing the identified redundant code
includes Identifying and removing functions and variables in the CSS Meta
language files that generate the redundant CSS selectors.

14. The method of claim 10, wherein performing performance modifications
includes analyzing the CSS Meta language files and replacing inefficient code
with corresponding efficient code.

15. The method of claim 10, including analyzing the performance of the new
CSS meta language files and comparing the results of the analysis against the

base performance metrics.

WO 2015/160351 PCT/US2014/034460
1/3

102
100
N /

CSSMETA
—| LANGUAGE
ANALYZER ENGINE

]

~103

101

|| REDUNDANT €SS ||
SELECTOR ENGINE[T—104

DATA STGRS

PERFORMANCE
| IMPROVEMENT H_ 105
ENGINE

Hig. 1

~ 209
/

PROCESSING RESQURCE

~210 211
/

MEMORY RESOURCE

CSS META LANGUAGE | |
ANALYZER MODULE -213

REDUNDANT CSS
SELECTOR MODULE [TTet4

PERFORMANCE
IMPROVEMENT MODULE 1219

PCT/US2014/034460

WO 2015/160351

2/3

I 8 |

gt —— wos pewewiu
~
mmm).m TIdNYS
Y,
(MOMMI) CILVAINYA LON HUM 0T34 LXEL SAYdSIA
Joug piei4 1xa] S 4 28
78~ IHIH 3dAL
N SNOLING ———F it
mmm).ﬁ TNV
\ SWHOS —~ £-72¢
HISN IHL NOYL 1NdN! LHOHS JAIFOTY OL gI8N
pIal4 X8 1 STyl 00
SWw.Io4
AHYHO0dA LT bt
SO00 SNOOI IDPIONIMING [SINGWITRIN| SANEQIND IWOH
/ / / 7 / /
/ J4 / T4 / I
NbZE §iEg p-L28 eiee YA 1128 L

14

WO 2015/160351 PCT/US2014/034460
3/3

44@\
INPUTTING A WEB APPLICATION AND CSS |
META LANGUAGE FILES
I
MEASURING A PLURALITY OF BASE | 1o
PERFORMANCE METRICS
STATIC ANALYZING THE WEB APPLICATION
AND CSS META LANGUAGE FILES 443
REMOVING THE IDENTIFIED REDUNDANT
CODE ~—444
PEREORMING PERFORMANGE
MODIFICATIONS 445
OUTPUTTING NEW CSS META LANGUAGE
FILES (446

Fig. 4

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/034460

A. CLASSIFICATION OF SUBJECT MATTER
GOO6F 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 17/00; GO6F 15/16; GO6F 17/24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: CSS, SASS, LESS, meta language, redundant, selector, remove, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2013-0159839 Al (JOFFRAY, FLYNN et al.) 20 June 2013 1-15
See paragraphs [0003]-[0004], [0006], [0017]-[0019], and [0021]-[0022]; and
figures 1 and 3.

Y US 8,615,708 Bl (HIDAYAT, ARIYA et al.) 24 December 2013 1-15
See column 2, lines 3-15; column 4, line 51 — column 5, line 23; and figure 1.
A US 7,836,396 B2 (BECKER, DANIEL 0.) 16 November 2010 1-15
See column 1, lines 27-37; column 7, line 40 — column 8, line 43; and
figure 3.
A US 8,176,205 B2 (SZE, DAVID et al.) 08 May 2012 1-15

See column 13, lines 53-61; and figure 4.

A US 2012-0278700 A1 (SULLIVAN, BLAKE et al.) 01 November 2012 1-15
See paragraphs [0073]-[0074]; and figures 4-5.

|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
17 December 2014 (17.12.2014) 17 December 2014 (17.12.2014)
Name and mailing address of the I[SA/KR Authorized officer EREN

International Application Division

+ Korean Intellectual Property Office NH :

g

189 Cheongsa-to, Seo-gu, Dagjeon Metropolitan City, 302-701, 0.4 Myong
Republic of Korea

Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8528
Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2014/034460

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2013-0159839 Al 20/06/2013 None

US 8615708 Bl 24/12/2013 None

US 7836396 B2 16/11/2010 EP 2115632 Al 11/11/2009
KR 10-2009-0088901 A 20/08/2009
US 2008-0168345 Al 10/07/2008
WO 2008-080741 Al 10/07/2008
WO 2008-080741 Bl 14/08/2008

US 8176205 B2 08/05/2012 US 2009-210498 Al 20/08/2009

US 2012-0278700 Al 01/11/2012 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report

