Abstract:
The present invention discloses a process for preparing tritylomesartan medoxomil with purity greater than 98% and further converting such an intermediate to olmesartan medoxomil.
Process for Preparing Olmesartan Medoxomil Intermediate

Field of the invention

The present invention is directed to a process for preparing an olmesartan medoxomil intermediate of \( (5\text{-methyl}-2\text{-oxo}-1,3\text{-dioxol}-4\text{-yl})\text{methyl} \ 4\text{-(2-hydroxypropan-2-yl)-2-propyl-l-((2'-}\text{H-tetrazol-5-yl)biphenyl-4-yl)raethyl)-lH-imidazole-5\text{-carboxylate} \) with purity greater than 98% and further converting such an intermediate to olmesartan medoxomil. The process according to the invention are cost and time effective and produce olmesartan and/or pharmaceutically acceptable salts thereof with high yield and quality.

Background of the invention

Olmesartan medoxomil with its chemically name \( (5\text{-methyl}-2\text{-oxo}-1,3\text{-dioxol}-4\text{-yl})\text{methyl} \ l-((2'-\text{H-tetrazol-5-yl)biphenyl-4-yl)methyl)-4\text{-(2-hydroxypropan-2-yl)-2-propyl-lH-imidazol}-e-5\text{-carboxylate} \) and formula I

![formula](image)

formula I

belongs to the class of medicines called angiotensin II receptor antagonists to treat high blood pressure and related diseases and conditions. It can be used alone or in combination with another pharmaceutically active compound, e.g. hydrochlorothiazide, amlodipine and similar.

Olmesartan and pharmaceutically acceptable salts thereof has been first described in EP 0 503 785 Bl. In EP 0 503 785 Bl process for the preparation of olmesartan medoxomil is
disclosed involving inter alia reacting (5-methyl-2-oxo-1,3-dioxolen-4-yl)methyl-4-(1-hydroxy-1-methylethyl)-2-propylimidazo[1e-5-carboxylate and 4-[2-trityltetrazol-5-yl]phenyl]benzyl bromide in N,N-dimethylacetamide in the presence of potassium carbonate, or reacting ethyl-4-(1-hydroxy-1-methylethyl)-2-propylimidazole-5-carboxylate and 4-[2-trityltetrazol-5-yl]phenyl benzyl bromide in N,N-dimethylformamide in the presence of sodium hydride. Common to all the processes disclosed is that the alkylated product is subjected to a column chromatography in order to obtain an acceptable purity. For the preparation of an ester, the product obtained is described to be hydrolyzed by means of an alkali metal hydroxide, the salt is isolated and further esterified. In the last step, the trityl protection group is removed by reacting the tritylommesartan medoxomil ester in acetic acid.

WO 2004085428 discloses the process for preparing olmesartan medoxomil wherein 4,4-dimethyl-2propyl-1-(4-[2-(triphenylmethyltetrazole-5-yl)]phenyl)methyl4,6-dihydrofuran[3,4d]imidazole-6-thione is ring-opened, the resulted 4-(1-hydroxy-1-methylethyl)-2-propyl-1-(4-[2-(triphenylmethyltetrazole-5-yl)]phenyl)methylimidazole-5-carboxylic acid is subsequently condensed with 4-bromo(or chloro)methyl-5-methyl-2-oxo-1,3-dioxo-heterocyclopentene under the action of alkali and after removing the triphenyimethyl protective group olmesartan medoxomil is obtained.

WO 2006/029056 discloses a process for preparing olmesartan medoxomil comprising contacting tritylommesartan medoxomil with an acid in a water miscible organic solvent to obtain a solution of olmesartan medoxomil and a precipitate of triphenyl carbinol; separating the precipitate of triphenylcarbinol from the solution of olmesartan medoxomil; contacting the solution of olmesartan medoxomil with a base to obtain a precipitate of olmesartan medoxomil; and recovering olmesartan medoxomil.

WO 2006/073518 discloses a process for preparing olmesartan medoxomil comprising dissolving tritylommesartan medoxomil in a mixture of an organic solvent and water to form a solution with a pH of at least 2.5 and then heating the solution to obtain olmesartan medoxomil.
WO 2006/073519 provides a process for preparing olmesartan medoxomil containing less than about 0.1% of one or more of impurities 4-(1-methoxy-1-methylpropyl)-2-propyl-1-[2'-(1H-tetrazole-5-yl)biphenyl]-4-ylmethyl]imidazole-5-carboxylic acid 5-methyl-2-oxo-1,3-dioxol-4-ylmethyl ester, 4-(1-hydroxy-l-methylpropyl)-2-propyl-1-[2'-(1H-tetrazole-5-yl)biphenyl]-4-ylmethyl ester and 4-(1-methylpropyl)-2-propyl-1-[2'-(1H-tetrazole-5-yl)biphenyl]-4-ylmethyl]imidazole-5-carboxylic acid 5-chloromethyl-2-oxo-1,3-dioxol-4-ylmethyl ester, wherein the sample of tritylolmesartan medoxomil further used in the synthesis of olmesartan medoxomil is selected from the samples in which the amount of one or more of the measured impurities is less than about 0.1%.

WO 2007/017135 discloses a process for the preparation of olmesartan medoxomil which comprises alkylating ethyl 4-(1-hydroxy-1-methylpropyl)-2-propylimidazole-5-carboxylate with 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide or 4′-bromomethylbiphenyl-2-carbonitrile in an organic solvent and in the presence of a base, wherein acetonitrile is used as the reaction and the crystallization solvent to obtain tritylolmesartan which is further converted to tritylolmesartan medoxomil and olmesartan medoxomil as an one-pot reaction.

WO 2007/048361 disclosing the process of deprotection of tritylolmesartan medoxomil by performing the reaction with water in the presence of a solvent which is partially or completely miscible with water, such as for example acetone, acetonitrile.

WO 2007/148344 provides a process for the preparation of olmesartan medoxomil by condensing the ethyl 4-(1-hydroxy-1-methylpropyl)-2-propylimidazole-5-carboxylate with 4-[2-(trityltetrazol-5-yl) phenyl] benzyl bromide to obtain ethyl 4-(1-hydroxy-1-methyl ethyl)-2-piOpyl-l-[4-[2-(trityltetrazol-5-yl)phenyl]phenyl]methylimidazole-5-carboxylate and then hydrolyzing ethyl 4-(1-hydroxy-1-methyl ethyl)-2-propyl-l-[4-[2-(trityltetrazol-5-yl) phenyl]phenyl]methyl imidazole-5-carboxylate to obtain tritylolmesartan dihydrate followed by reacting with 4-chloromethyl-5-methyl-2-oxo-1,3-dioxolene to obtain tritylolmesartan medoxomil and then deprotecting tritylolmesartan medoxomil to obtain olmesartan medoxomil.
According to EP 1916246 olmesartan medoxomil of high purity is prepared by a process wherein ethyl-4-(1-hydroxy-1-methylethyl)-2-propyl-imidazole-5-carboxylate is reacted with N-(triphenylmethyl)-5-[4'- (bromomethyl)biphenyl-2-yl]tetrazole in an organic solvent in the presence of a base and a phase transfer catalyst in a non-aqueous system to give ethyl-4-(1-hydroxy-1-methylethyl)-2-propyl-1-[2'-([2-(triphenylmethyl)-2H-tetrazol-5yl]biphenyl-4-yl)methyl]imidazole-5-carboxylate, which is further crystallized using isopropyl alcohol followed by purification from methyl ethyl ketone to provide substantially pure [HPLC purity 99.3 to 99.7 %] olmesartan medoxomil.

WO 2008/043996 discloses a process for the preparation of trityl olmesartan comprising condensing 4-(1-hydroxy-1-methylethyl)-2-propyl-imidazol-5-carboxylic acid alkyl ester with trityl biphenyl bromide in the presence of a polar aprotic solvent and a base, deesterifying with a base; and reacting the obtained product with 4-halomethyl-5-methyl-2-oxo-1,3-dioxolene to obtain trityl olmesartan medoxomil that may be deprotected to produce olmesartan medoxomil.

In addition to the above-discussed preparation processes of olmesartan and pharmaceutically acceptable salts thereof, there still is a need for a yet further improved synthetic route to olmesartan medoxomil.

Therefore, the object of the present invention is to provide new methods for the production of an olmesartan medoxomil intermediate of (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-([1-trityl-1H-tetrazol-5-yl]biphenyl-4-yl)raethyl)-1H-imidazole-5-carboxylate which methods are suitable for use on an industrial scale and which are economical, i.e. both cost and time effective and allow for the production of intermediates that can be converted into olmesartan medoxomil and/or salts thereof with high quality and high yield.

Summary of the invention

The first aspect of the present invention relates to the process for the preparation of (5-
methyl-2-oxo-l,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-l-(2'(1-trityl-1H-tetrazol-5-yl)biphenyl-3-4-yl)methyl)-lH-imidazole-5-carboxylate (tritylomesartan medoxomil) comprising the steps of:
- esterification of 4-{2-hydroxypropan-2-yl)-2-propyl-l-((2'-(1-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylic acid with a 4-halomethyl-2-oxo-1,3-dioxolene derivative in the presence of an inorganic base and an iodide and optionally in an organic solvent wherein halo means Cl or Br,
- isolating solid tritylomesartan medoxomil from an organic solvent.

The obtained tritylomesartan medoxomil can be optionally converted to olmesartan medoxomil by the subsequent deprotection of the trityl protection group.

The second aspect of the present invention relates to pure solid tritylomesartan medoxomil having purity greater than 98%, preferably greater than 99% obtained by the process according to the present invention.

The third aspect of the present invention relates to tritylomesartan medoxomil specified by an X-ray powder diffraction pattern exhibiting peaks at the following diffraction angles: 10.2 and 21.7 2Θ.

The fourth aspect of the present invention relates to tritylomesartan medoxomil specified by an X-ray powder diffraction pattern exhibiting peaks at the following diffraction angles: 3.0, 10.2, 12.1, 15.6, 18.4, 21.7 and 24.3 2Θ.

Another aspect of the present invention relates to pure solid tritylomesartan medoxomil having purity greater than 98%, preferably greater than 99% and having an X-ray powder diffraction pattern exhibiting peaks at the diffraction angles: 3.0, 10.2, 12.1, 15.6, 18.4, 21.7 and 24.3 2Θ wherein said tritylomesartan medoxomil is prepared by a process comprising the steps of:
- esterification of 4-(2-hydroxypropan-2-yl)-2-propyl-l-(2'(1-trityl-lH-tetrazol-5-
yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid with a 4-halomethyl-2-oxo-1,3-dioxolene derivative in the presence of an inorganic base and an iodide and optionally in an organic solvent wherein halo means Cl or Br,
- isolating pure solid tritylomesartan medoxomil from an organic solvent.

Another aspect of the present invention is a process for preparing (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate wherein an iodide selected from the group consisting of KI, NaI, LiI, preferably KI, is added in the step of esterification of 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid and wherein the isolation of the obtained compound is performed in an organic solvent.

Another aspect of the present invention is the pharmaceutical composition comprising olmesartan medoxomil prepared from tritylomesartan medoxomil prepared by the process according to the present invention.

**Brief description of the figures**

Figure 1: Powder X-ray diffraction pattern of tritylomesartan medoxomil

**Detailed description of the invention**

The object of the present invention is to provide novel time- and cost-effective process for the preparation of an olmesartan intermediate of (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate called tritylomesartan medoxomil with purity greater than 98%.

Therefore, the first aspect of the present invention relates to the process for the preparation
of tritylmesartan medoxomil comprising the steps of:
- esterification of 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid or salt thereof with a 4-halo methyl-2-oxo-1,3-dioxolene derivative in the presence of an inorganic base and an iodide and optionally in an organic solvent wherein halo means Cl or Br,
- isolating solid tritylmesartan medoxomil from an organic solvent that can be selected from, but not limited to, ethers such as for example diethyl ether, tert-butylmethyl ether; esters such as for example ethyl acetate, isopropyl acetate, propyl acetate, butyl acetate, isobutyl acetate, tert-butyl acetate; cyclohexane, hexane, heptane, acetone, acetonitrile, alcohols such as for example ethanol, isopropanol; water and any mixtures thereof. The use of ethyl acetate, acetonitrile or a combination of ethyl acetate and acetonitrile is preferred.

The starting compound 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid can be prepared by any method known from the prior art as for example from WO 2004/085428, WO 2007/017135 and WO 2007148344. The other starting material is either 4-(chloromethyl)-5-methyl-2-oxo-1,3-dioxolene (4-(chloromethyl)-5-methyl-1,3-dioxol-2-one) or 4-(bromomethyl)-5-methyl-2-oxo-1,3-dioxolene (4-(bromomethyl)-5-methyl-1,3-dioxol-2-one), the two compounds being collectively referred to as 4-halomethyl-2-oxo-1,3-dioxolene derivative with halo representing either chloro or bromo. The chloro derivative is preferred.

Alternatively, the starting compound 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid can be prepared without isolation from ethyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate by the following steps:
- suspending of ethyl 4-(2-hydroxypropan-2-yl)-2-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate in an organic solvent that can be selected from, but not limited to, dimethylformamide (DMF), N,N-dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetonitrile and any mixtures thereof, preferably DMF, DMA, more preferably DMA.
- addition of an inorganic base such as for example KOH, NaOH, LiOH,
performing the hydrolysis at room temperature for 1 to 24h, preferably for 1 to 5h.

The starting compound ethyl 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2'-((1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate can be prepared by any method known from the prior art as for example from EP 0 503 785 A1, JP 06087833 and WO 2007/017135.

The term 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-((1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid, as it is used in the context of the present text, may be understood to include carboxylic acid salts thereof (which may for instance be formed by the above-mentioned hydrolysis procedure).

Esterification step of the process for the preparation of tritylomesartan medoxomil according to the present invention comprises the following steps:

- providing the solution of 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2'-((1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid in an organic solvent that can be selected from, but not limited to, dimethyl formamide (DMF), N,N-dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetonitrile and any mixtures thereof, preferably DMF, DMA, more preferably DMA,

- addition of an inorganic base such as for example hydroxides such as for example KOH, NaOH, LiOH, carbonates such as for example Na₂CO₃, K₂CO₃, phosphates such as for example Na₃PO₄, preferably Na₂CO₃, K₂CO₃, more preferably K₂CO₃,

- addition of an iodide selected from the group consisting of KI, NaI, LiI, preferably KI,

- addition of 4-halomethyl-2-oxo-1,3-dioxolene derivative wherein halo means Cl or Br,

- performing esterification at elevated temperature as for example between 20 and 60°C for 1 to 24h, preferably for 1 to 5h.

Whilst it is possible to perform these steps in virtually any relative order including simultaneously effecting two or more of the specified steps (the only limitation being the fact that the esterification cannot be performed unless all reagents are present), the process steps according to one aspect of the invention are carried out in the specified order.

Crystallization step for the preparation of pure tritylomesartan medoxomil according to the present invention comprises the following step:
providing the solution tritylolmesartan medoxornil in organic solvent selected from group of ethyl acetate, isopropyl acetate, propyl acetate, butyl acetate, isobutyl acetate, tert-butyl acetate; toluene, cyclohexane, hexane, heptane, diethyl ether and /ert-butylmethyl ether

- optionally concentrating the solution

- addition of another solvent selected from group of acetone, acetonitrile, isopropanol and ethanol.

Crystals of tritylolmesartan medoxomil precipitate after the addition of the other solvent. Said crystals may then be isolated by means of filtration or centrifugation, optionally be washed with e.g. one of the above solvents, preferably acetonitrile, and then optionally be dried in the usual manner. This crystallization process allows to obtain the specific polymorph of tritylolmesartan medoxomil characterized below.

The tritylolmesartan medoxomil prepared according to the process of the present invention has purity greater than 98%, preferably greater than 99%. The advantage of said pure solid tritylolmesartan medoxomil is that it can be easily converted by already known procedures to olmesartan medoxomil without additional purification neither of the used tritylolmesartan medoxomil neither of the obtained olmesartan medoxomil and without preceding selection of the samples that contain a predefined low amount of impurities.

Therefore, the second aspect of the present invention relates to pure solid tritylolmesartan medoxomil having purity greater than 98%, preferably greater than 99%, the most preferably greater than 99.5 % with impurities less than 0.1%

The third aspect of the present invention relates to tritylolmesartan medoxomil specified by an X-ray powder diffraction pattern exhibiting peaks at the following diffraction angles: 10.2 and 21.7 2Θ.

The fourth aspect of the present invention relates to the tritylolmesartan medoxomil specified by an X-ray powder diffraction pattern exhibiting peaks at the following diffraction angles: 3.0, 10.2, 12.1, 15.6, 18.4, 21.7 and 24.3 2Θ.
According to another aspect the tritylolmesartan medoxomil has an X-ray powder diffraction pattern as shown in Figure 1.

We surprisingly found out that the purity of tritylolmesartan medoxomil, that is an important and key intermediate in the synthesis of olmesartan medoxomil, is substantially influenced by the following key factors:

- addition of an iodide in the step of esterification of 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid wherein an iodide is selected from the group consisting of KI, NaI, LiI, preferably KI,
- isolating of solid tritylolmesartan medoxomil from an organic solvent.

Therefore, another aspect of the present invention is a process for preparing (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-IH-imidazole-5-carboxylate wherein an iodide selected from the group consisting of KI, NaI, LiI, preferably KI, is added in the step of esterification of 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-IH-imidazole-5-carboxylic acid and wherein the isolation of the obtained compound is performed in an organic solvent that can be selected from, but not limited to, ethers such as for example diethyl ether, tert-butylimethyl ether; esters such as for example ethyl acetate, isopropyl acetate, propyl acetate, butyl acetate, isobutyl acetate, tert-butyl acetate; cyclohexane, acetonitrile, acetone, hexane, heptane; alcohols such as for example ethanol, isopropanol; water and any mixtures thereof.
Moreover, the process for the preparation of tritylolmesartan medoxomil from ethyl 4-(2-hydroxypropan-2-yl)-2-propyl]-l-(2'-l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl]-lH-imidazole-5-carboxylate according to the present invention gives high yield, particularly more than 80%, preferably more than 90%.

Another aspect of the present invention is the conversion of pure solid tritylolmesartan medoxomil prepared by the process of the present invention to olmesartan medoxomil by the subsequent deprotection of the trityl protection group. This process can be performed by any method known from the prior art as for example from EP 0 503 785 Al, WO 2004/085428, 2006/029056, WO 2006/073518, WO 2007/017135, WO 2007/048361, WO 2007/148344, WO 2008/043996.

Olmesartan medoxomil particles prepared according to the present invention may be characterised by particle size or by specific surface area.

The mean particle size of Olmesartan medoxomil particles is between 1 and 150 microns, preferably between 5 and 120 microns, more preferably between 10-100 microns as determined by laser light diffraction instrument Malvern Mastersizer 2000 with purified water used as the dispersion medium (A=I).

The specific surface area of olmesartan medoxomil particles is preferably between 0.1 and 7 sq.m/g, more preferably between 0.3 and 4 sq.m/g. Specific surface area was measured on Tristar 3000 instrument using 6-point BET calculation. The samples were measured after 2h of vacuum degassing.

Another aspect of the present invention is the pharmaceutical composition comprising olmesartan medoxomil prepared from tritylolmesartan medoxomil prepared by the process according to the present invention. Said pharmaceutical composition may be prepared by any known technological process (as for example direct compression, dry or wet granulation and similar) and may contain any pharmaceutically acceptable ingredients such as for example binders, surfactants, diluents, disintegrants, lubricants and optionally coating layer. Said pharmaceutical composition may further contain one or more other
active substance selected from the group of antihypertensives, diuretics, lipid regulators or antidiabetics. Antihypertensive can be selected from the group of angiotensive converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs) and antidiarenergics. Lipid regulators can for example be HMG CoA reductase inhibitors. Preferably the other active substance is selected from the group consisting of captopril, enalapril, cilazapril, lisinopril, trandolapril, ramipril, fosinopril, perindopril, amlodipine, diltiazem, felodipine, nifedipine, nitrendipine, verapamil, acebutol, atenolol, betaxoloï, bisoprolol, metoprolol, carvedilol, lovastatin, simvastatin, pravastatin, atorvastatin, fluvastatin, rosuvastatin, indapamide, hydrochlorothiazide, sulfonyl urea, metglinides such as nateglinide or repaglinide, thiazolidinediones such as pioglitazone or rosiglitazone, oglucosidase inhibitors, incretin mimetics, biguanides such as metformin hydrochloride and pharmaceutically acceptable salts thereof.

The pharmaceutical composition according to one aspect of the invention, comprising olmesartan medoxomil prepared from tritylolmesartan medoxomil prepared by the process according to the present invention and one or more other active substance such as for example a diuretic, preferably hydrochlorothiazide, may be prepared by any known technological processes such as direct compression, wet granulation (with water or organic solvents, such as for example methanol, or any mixtures thereof), dry granulation or lyophilization. Preferably, direct compression process may be used.

The direct compression process may be performed in the way that
(a) at least one active ingredient is added to the mixture of excipients and compressed,
or
(b) at least one active ingredient is mixed together with excipients and compressed.

Solid dosage form (e.g. tablet cores) can be optionally coated.

The direct compression process is preferably performed if the pharmaceutical composition contains a low percentage of active ingredient in total weight of tablet. The term "by percentage" is meant to indicate % by weight of active ingredient in total weight of tablet. The term "low percentage of active ingredient" is meant to indicate less than 20% by weight of active ingredient in total weight of tablet.
Suitable mixing device in the direct compression or optionally, wet granulation as described above is conventional equipment used for mixing of active ingredients, excipients or combination of active ingredient(s) and excipients. Conventional equipment is motionless (passive) mixers, fluidized beds, diffusion, biconic diffusion, biconic, turbula, cubic, planetary, Y-, V-shaped or high-shear mixer, drum etc. In the case of wet granulation as described below, the equipment is chosen from standard equipment for drying, i.e. fluid-bed dryer, plates, etc.

When hydrochlorothiazide is used as other active substance the mean particle size of its particles is less than 110 microns, preferably less than 90 microns, more preferably between 20 and 80 microns as determined by laser light diffraction instrument Malvern Mastersizer 2000 with vegetable oil used as the dispersion medium (A=I).

Excipients may optionally be processed by wet granulation, using either water or organic solvent or any mixture thereof as granulating liquid. By processing of excipients by wet granulation, it means homogenisation of excipients and addition of granulating liquid to the mixture thereof. Granulating liquid can optionally contain binder or binders, either individual or any mixtures thereof.

Furthermore, when wet granulation is used, olmesartan medoxomil can be included either into the intragranular phase of a granulate and/or into the extragranular phase, i.e. as an additive to the granulate. Furthermore, one or more other active substance diuretic can be included either into the intragranular phase of a granulate and/or into the extragranular phase, i.e. as an additive to the granulate. The granulate may be, for example, a granulate for tablet compression or a granulate for filling capsules. Moreover, one or more other active substance diuretic can be included in coating layer provided on a core. The core may be individual granules of a granulate, or a core obtained by compressing a granulate or powderly material. These modes of inclusion can be used in combination with each other.

In another aspect of the invention, using wet granulation, olmesartan medoxomil and one or more other active substance diuretic may be partially included into intragranular and extragranular phase, i.e. they may be divided between intragranular and extragranular phase in any proportions.
The pharmaceutical composition according to the present invention may be, for example, immediate release dosage form, a fast melt dosage form, controlled release dosage form, lyophilized dosage form, delayed release dosage form, extended release dosage form, pulsatile release dosage form, mixed immediate release and controlled release dosage form, or a combination thereof. The pharmaceutical composition is preferably tablet formulation, which can be optionally coated. The pharmaceutical composition is preferably an immediate release dosage form offering advantages regarding the bioavailability of the active compound.

If an immediate release dosage form is chosen, it will be clear for the skilled person that the amount of release controlling agent or agents, either individual or mixture thereof to be used in forming the outer portion will be determined based on various parameters such as the desired delivery properties, including the amount of active ingredient or substance to be delivered, the active ingredient or substance release rate desired, and the size of the micro matrix particles.

The pharmaceutical composition according to the present invention may consist of:

- 1-99%, preferably 5-50%, more preferably 5-15% by weight of olmesartan medoxomil prepared from tritylolemesartan medoxomil prepared by the process according to the present invention,
- optionally 1-99%, preferably 1-50%, more preferably 1-15% by weight of one or more other active substance, preferably a diuretic,
- 1-99%, preferably 20-99%, more preferably 50-99% by weight of diluent,
- 1-90%, preferably 1-50% by weight of binder,
- 1-50%, preferably 2-40% by weight of disintegrant or superdisintegrant,
- 0.1-10%, preferably 0.1-5% by weight of lubricant, and
- optionally, 0.1-10%, preferably 0.1-5% by weight of surfactant, and
- optionally, 0.1 to 10% film coating layer.

The excipients present in the pharmaceutical composition according to the present invention may comprise diluents such as for example microcrystalline cellulose, powdered cellulose, lactose (anhydrous or monohydrate), compressible sugar, fructose, dextrates, other sugars such as mannitol, sorbitol, maltitol, xylitol, lactitol, isomalt or other sugars
such as saccharose, raffmose, trehalose, fructose, or mixture thereof, siliconised microcrystalline cellulose, calcium hydrogen phosphate, calcium carbonate, calcium lactate or combined diluents. Preferably, the excipients include at least one diluent selected from microcrystalline cellulose and lactose monohydrate.

The pharmaceutical composition according to the present invention may also comprise binders, such as for example povidone, microcrystalline cellulose, hydroxyethylcellulose, hydroxypropylcellulose, low-substituted hydroxypropylcellulose (comprising from 5 to 16% by weight of hydroxypropyl groups), hydroxypropylmethylcellulose or other cellulose ethers, starch, pregelatinised starch or polymethacrylate or mixture of binders. It is preferred that excipients include at least one binder selected from microcrystalline cellulose and low-substituted hydroxypropylcellulose.

Further, disintegrants and/or superdisintegrants may also be present such as for example starch (e.g. maize starch, potato starch), modified starches (sodium starch glycolate), modified cellulose (croscarmellose, i.e. cross-linked carboxymethylcellulose sodium), cross-linked polyvinylpyrrolidone (crospovidone), microcrystalline cellulose, carboxymethylcellulose sodium, Amberlite®, alginic acid, sodium alginate, guar gum, gellan gum, and any mixtures thereof., Xanthan SM®. If used as a disintegrant, microcrystalline cellulose is preferably used in an amount of 5 to 15% by weight. It is preferred that excipients include at least one disintegrant or superdisintegrant selected from croscarmellose, crospovidone and microcrystalline cellulose.

Further, lubricants may also be present as excipients, such as stearic acid, magnesium stearate, magnesium palmitate, magnesium oleate, calcium stearate, sodium laurylsulphate, hydrogenated vegetable oil, hydrogenated castor oil, sodium stearyl fumarate, talc, macrogols, and any mixtures thereof. It is preferred that the excipients include at least one lubricant selected from magnesium stearate, talc and macrogols.

Suitable non-ionic surfactants may for example be selected from the group consisting of alkylglucosides, alkylmalto- sides, alkylthioglukosides, lauryl macrogolglycerides, polyoxyethylene alkylphenols, poly- oxyethylene alkylethers, polyethylene glycol fatty acid esters, polyethylene glycol glycerol fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene-polyoxypropylene block copolymers, polyglyceryl fatty acid
esters, polyoxyethylene glycerides, polyoxyethylene vegetable oils, polyoxyethylene hydrogenated vegetable oils, sterols, and mixtures thereof. Preferred non-ionic surfactants are polyoxyethylene sorbitan fatty acid esters, which are sold under the trade names Polysorbate or Tween.

Suitable ionic surfactants may for example be selected from group of fatty acid salts, bile salts, phospholipides, phosphoric acid esters, carboxylates, sulphates, sulphonates and mixture thereof. A preferred ionic surfactant is sodium laurylsulphate.

Excipients may have multiple functions, i.e. one excipient may be diluent and additionally binder, binder and disintegrant etc.

Optionally, the tablet cores may for example be coated with conventional materials used for film coating. Film coating formulations may contain the following components: polymer(s), plasticizer(s), colourant(s)/opacifier(s), vehicle(s). In film coating suspension it is possible to use minor quantities of flavours, surfactants and waxes. The polymers used in film coating are preferably either cellulose derivatives, such as the cellulose ethers, or acrylic polymers and co-polymers. Also suitable are high molecular weight polyethylene glycols, polyvinyl pyrrolidone, polyvinyl alcohol and waxy materials.

Cellulose ethers may for example be selected from the group consisting of hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose. Acrylic polymers comprise a group of synthetic polymers with diverse functionalities. Some of them can be further modified to enhance swelling and permeability by the incorporation of materials such as water soluble cellulose ethers and starches in order to ensure complete disintegration/dissolution of the film.

Some suitably used plasticizers may for example be selected from the group consisting of polyols (glycerol, propylene glycol, macrogols), organic esters (phthalate esters, dibutyl sebacate, citrate esters, triacetin), and oils/glycerides (castor oil, acetylated monoglycerides, fractionated coconut oil).

Colourants/opacifiers may for example be selected from organic dyes and their lakes, inorganic colours, natural colours.
Different materials from each group can be combined in defined ratio. Film coating suspensions can be used as ready-to-make preparations that are available on the market.

Film coating dispersion can be prepared by using solvents such as water, alcohols, ketones, esters, chlorinated hydrocarbons and any mixtures thereof, preferably water.

The following composition of coating suspension (calculated on dry material) comprising:

- 1-99% by weight of polymer, preferably 1-95% of polymer,
- 1-50% by weight of plasticizer, preferably 1-40% of plasticizer,
- 0.1-20% of colourant/opacifier, preferably 0.1-10% of colourant/opacifier

is particularly preferred.

The immediate release dosage form may also include material that improves the processing of the release controlling agents. Such materials are generally referred to as plasticizers. Preferred plasticizers may for example include acetylated monoglycerides, butyl phthalyl butyl glycolate, dibutyl tartrate, diethyl phthalate, dimethyl phthalate, ethyl phthalyl ethyl glycolate, glycine, ethylene glycol, propylene glycol, triethyl citrate, triacetin, tripropinoin, diacetin, dibutyl phthalate, acetyl monoglyceride, polyethylene glycols, castor oil, triethyl citrate, polyhydric alcohols, acetate esters, glycerol triacetate, acetyl triethyl citrate, dibenzyl phthalate, dihexyl phthalate, butyl octyl phthalate, diisononyl phthalate, butyl octyl phthalate, dioctyl azelate, epoxidised tallate, triisocyl trimellitate, diethylhexyl phthalate, di-n-octyl phthalate, dioctyl phthalate, di-i-decyl phthalate, di-n-undecyl phthalate, di-n-tridecyl phthalate, tri-2-ethyl-hexyl trimellitate, di-2-ethylhexyl adipate, di-2-ethylhexyl sebacate, di-2-ethylhexyl azelate, dibutyl sebacate, glyceryl monocaprylate, glycerol distearate, glyceryl monocaprate, and any mixtures thereof.

The present invention is illustrated by the following examples without limiting it thereto.

Melting points were taken on a Koffier melting point apparatus and IR spectra were taken on a Paragon 100 Perkin-Elmer FT-IR spectrometer.

X-ray powder diffraction patterns were obtained by a Phillips PW3040/60 X’Pert PRO diffractometer using CuKα radiation of 1.541874 Å.
HPLC Method:

HPLC area percent method.

Column: Zorbax Eclipse XDB C-18, 1.8 \( \mu \)m, 50 x 4.6 mm

Mobile phase: solvent A: 0.01M sodium dihydrogen phosphate, pH 2.8

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>27</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>28</td>
<td>84</td>
<td>15</td>
</tr>
</tbody>
</table>

Gradient: solvent B: acetonitrile

Post time: 3 min

Temperature of column: 25°C

Flow: 1.0 ml/min

Detection: UV \( \lambda \) 225 nm

Injection: 10 \( \mu l \)

Example 1: Tritylomesartan medoxomil; ((5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2'-(l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylate) from ethyl 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2'-(l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylate

130 ml of \( \text{N,N}-\text{dimethylacetamide}, 14.0 \text{ g (20 mmol) of ethyl 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2'-(1-tryl-1H-tetrazol-5-yl)biphenyl)4-yl)methyl)-1H-imidazole-5-carboxylate and 2.2 g (16 mmol) of KOH were charged into reaction vessel at room temperature under inert atmosphere. The mixture was stirred at room temperature for 2 h, and then the sample of reaction mixture was analysed (HPLC; starting material 0.2 \% , hydrolysed starting material 98.11 \%). Then 3.0 g (2.2 mmol) of potassium carbonate powder and 1.4 g (8.4 mmol) of potassium iodide were added. The reaction mixture was cooled to 0°C and 5.0 g (33 mmol) of 4-(chloromethyl)-5-methyl-1,3-dioxol-2-one was added at 0 to 5°C. After
the addition, the reaction mixture was warmed to 40-45 °C within one hour, then the mixture was stirred at this temperature for 2h. The sample of reaction mixture was analysed (HPLC; tritylomesartan medoxomil 97.22 %, 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-IH-tetrazol-5-yl)biphenyl-4-yl)methyl)-IH-imidazole-5-carboxylate 0.09 %). The mixture was cooled to 10 to 20 °C and then 250 ml of ethyl acetate was added. The mixture was cooled again to 5-10 °C and then 200 ml of 10 % NaCl was added slowly. The temperature should not be higher than 25 °C during the addition. The phases were mixed separated and organic phase was washed with 100 ml of 10 % NaCl (2k) and dried over anhydrous sodium sulphate. After the filtration filtrate was evaporated under reduced pressure at temperature under 45° C to oily residue. To the residue 30 ml of acetonitrile was added at temperature not more than 45°C. The mixture was stirred at this temperature for 10 minutes then was cooled to 20 to 25°C and stirred at this temperature for 0.5 h and after that 3h at 0 to 5°C. The suspension was filtered, the cake washed with cold acetonitrile and dried at 40 to 50°C.

Yield: 17.0 g (94 %)

HPLC: 99.72 % of the product, all impurities are under 0.1%.

IR: 3408, 1818, 1805, 1745, 1681, 1529, 1147, 1003, 699

XRD: Figure 1

**Example 2:** Tritylomesartan medoxomil ((5-methyl-2-oxo-1,3-dioxol-4-yl)methyl) 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-IH-tetrazol-5-yl)biphenyl-4-yl)methyl)-IH-imidazole-5-carboxylate from potassium 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-IH-tetrazol-5-yl)biphenyl-4-yl)methyl)-IH-imidazole-5-carboxylate

In 130 ml of A^iv-dimethyl acetamide, 14.5 g (20 mmol) of potassium 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-IH-tetrazol-5-yl)biphenyl-4-yl)methyl)-IH-imidazole-5-carboxylate, 3.0 g (2.2 mmol) of potassium carbonate powder and 1.4 g (8.4 mmol) of potassium iodide were added. The mixture was cooled to 0 °C and 5.0 g (33 mmol) of 4-(chloromethyl)-5-methyl-1,3-dioxol-2-one was added at 0 to 5°C. After the addition, the reaction mixture was warmed to 40-45 °C within one hour, then the mixture was stirred at this temperature for 2h. The sample of reaction mixture was analysed
(HPLC; tritylolmesartan medoxomil, 97.44%, 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2’-l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylate 0.06%). The mixture was cooled to 10 to 20°C and then 250 ml of ethyl acetate was added. The mixture was cooled again to 5-10 °C and then 200 ml of 10% NaCl was added slowly. The temperature should not be higher than 25 °C during the addition. The phases were mixed separated and organic phase was washed with 100 ml of 10% NaCl (2*) and dried over anhydrous sodium sulphate. After the filtration filtrate was evaporated under reduced pressure at temperature under 45°C to oily residue. To the residue 30 ml of acetonitrile was added at temperature not more than 45°C. The mixture was stirred at this temperature for 10 minutes then was cooled to 20 to 25°C and stirred at this temperature for 0.5 h and after that 3b at 0 to 5°C. The suspension was filtered, washed with cold acetonitrile and dried at 40 to 50°C.

Yield: 17.0 g (91%)

HPLC: 99.64 % of the product, all other impurities under 0.1%.
IR: 3408, 1818, 1805, 1741, 1681, 1529, 1148, 1002, 699

OMEK: 4-(2-hydroxypropan-2-yl)-2-propyl-l-((2’-l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)niethyl)-IH-imidazole-5-carboxylate

Example 3: Olmesartan medoxomil (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 1-((2’-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-4-(2-hydroxypropan-2-yl)-2-propyl-lH-imidazole-5-carboxylate

To 12.Og (15 mmol) of tritylolmesartan medoxomil prepared according to examples 1 or 2 69 ml of ethyl acetate was added and after that 12 ml of methanol and 2.67 ml (32 mmol) of cone. HCl were added. The mixture was stirred at room temperature for 2h and then the mixture was cooled to below 2°C. To the cooled mixture 71 ml of 1% NH₃ was slowly added to adjust pH to 4.93. The pliases were separated and water phase was reextracted with 20 ml of ethyl acetate. Collected organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure to approximately 15g of oily residue. To this residue 15 ml of ethyl acetate were added and the mixture was cooled to 20 °C and stirred at this
temperature for 2h, and then cooled under O°C and stirred at this temperature for 1 hour. The product was filtered off and washed with 5 ml of fresh ethyl acetate and dried.

Yield: 7.55 g (90%).

HPLC: 99.81 % of the product, all individual impurities under 0.10%.

Crystallization olmesartan medoxomil from tetrahydrofuran

10 g of olmesartan medoxomil was dissolved in 43 ml of THF at reflux temperature. The solution was filtered and filtrate was cooled to room temperature and stirred at this temperature for 1 h. During this process olmesartan medoxomil was slowly crystallized. The mixture was then cooled to O°C and stirred at this temperature for 2.5 h. The product was collected and dried.

Yield. 5.65g
Melting point of the product: 182-184°C
IR: 1831, 1707, 1391, 1300, 1167, 1140, 1003, 7682, 765

Example 4

100 g of olmesartan medoxomil, 62.5 g of hydrochlorothiazide, 260 g of microcrystalline cellulose, 512.5 g of lactose monohydrate and 100 g of low-substituted hydroxypropylcellulose were homogenised. Finally, 15 g of magnesium stearate was admixed to prepare compressing mixture. Loss on drying of the compressing mixture was 1.51% w/w (performed using Mettler Toledo HR73 halogen moisture analyzer at 105°C for 5 minutes). Compressing mixture was compressed to cores with theoretical weight 210 mg. The hardness of the cores was 76-91 N (average hardness of 20 cores was 83 N) and disintegration time was 20 seconds (performed in purified water at 37°C according to Ph.Eur.).

Cores were coated with water-based film coating suspension of a ready-to-make mixture, commercially available as Opadry 85F34353 II pink. The theoretical weight of the coated tablets was 218 mg.
Example S
120 g of olmesartan medoxomil, 75 g of hydrochlorothiazide, 390 g of microcrystalline cellulose, 742.5 g of lactose monohydrate and 150 g of low-substituted hydroxypropylcellulose were homogenised. Finally, 22.5 g of magnesium stearate was admixed to prepare compressing mixture. Loss on drying of the compressing mixture was 1.14% w/w. Compressing mixture was compressed to cores with theoretical weight 250 mg. The hardness of the cores was 72-94 N (average hardness of 20 cores was 82 N) and disintegration time was 15 seconds.

Cores were coated with water-based film coating suspension of a ready-to-make mixture, commercially available as Opadry 85F28751 II white. The theoretical weight of the coated tablets was 260 mg.

Example 6
120 g of olmesartan medoxomil, 75 g of hydrochlorothiazide, 729 g of microcrystalline cellulose and 30 g of povidone were homogenised for 2 minutes at high-shear mixer. 510 g of purified water was sprayed onto the homogenised mixture and kneaded. The obtained granulate was dried in a fluid bed dryer at inlet air temperature 57°C to the final temperature of the granulate 38°C for 30 minutes. The obtained granulate was sieved and loss on drying of the the compressing mixture of the granulate was 1.76% w/w. 75 g of croscarmellose sodium was admixed to the granulate. Finally, 21 g of magnesium stearate was admixed to prepare compressing mixture. Loss on drying of the compressing mixture was 1.67% w/w. Compressing mixture was compressed to cores with theoretical weight 250 mg. The hardness of the cores was 70-90 N (average hardness of 20 cores was 79 N) and disintegration time was 1 minute.

Cores were coated as described in Example 5.

Example 7
120 g of olmesartan medoxomil, 75 g of hydrochlorothiazide, 1134 g of sorbitol and 150 g of low-substituted hydroxypropylcellulose were homogenised. Finally, 21 g of magnesium stearate was admixed to prepare compressing mixture. Loss on drying of the compressing mixture was 0.60% w/w. Compressing mixture was compressed to cores with theoretical
weight 250 mg. The hardness of the cores was 65-90 N (average hardness of 20 cores was 75 N) and disintegration time was 5.5 minutes.

Cores were coated as described in Example 5.

Example 8
120 g of olmesartan medoxomil, 150 g of hydrochlorothiazide, 390 g of microcrystalline cellulose, 667.5 g of lactose monohydrate and 150 g of low-substituted hydroxypropylcellulose were homogenised. Finally, 22.5 g of magnesium stearate was admixed to prepare compressing mixture. Loss on drying of the compressing mixture was 1.16% w/w. Compressing mixture was compressed to cores with theoretical weight 250 mg. The hardness of the cores was 106-128 N (average hardness of 20 cores was 116 N) and disintegration time was 15 seconds.

Cores were coated as described in Example 5.

Example 9
120 g of olmesartan medoxomil, 37.5 g of hydrochlorothiazide, 390 g of microcrystalline cellulose, 780 g of lactose monohydrate and 150 g of low-substituted hydroxypropylcellulose were homogenised. Finally, 22.5 g of magnesium stearate was admixed to prepare compressing mixture. Loss on drying of the compressing mixture was 1.21% w/w. Compressing mixture was compressed to cores with theoretical weight 500 mg. The hardness of the cores was 126-145 N (average hardness of 20 cores was 135 N) and disintegration time was 15 seconds.

Cores were coated with water-based film coating suspension of a ready-to-make mixture, commercially available as Opadry 85F28751 II white. The theoretical weight of the coated tablets was 520 mg.

Example 10
Compressing mixture, prepared as described in Example 2, was compressed to cores with theoretical weight 500 mg. The hardness of the cores was 146-188 N and disintegration time was 15-20 seconds.

Cores were coated as described in Example 9.
Claims

1. A process for the preparation of (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)bi phenyl-4-yl)methyl)-1H-imidazole-5-carboxylate comprising the steps of:

- esterification of 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)bi phenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid with a 4-halomethyl-2-oxo-1,3-dioxolene derivative in the presence of an inorganic base and an iodide and optionally in an organic solvent, wherein halo means Cl or Br,

- isolating solid (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)bi phenyl-4-yl)methyl)-1H-imidazole-5-carboxylate from an organic solvent selected from the group consisting of ethers such as diethyl ether, tert-butylmethyl ether; esters such as ethyl acetate, isopropyl acetate, propyl acetate, butyl acetate, isobutyl acetate, tert-butyl acetate, acetonitrile, acetone, cyclohexane, hexane, heptane, alcohols such as ethanol, isopropanol; water and any mixtures thereof.

2. The process according to claim 1 wherein the esterification comprises:

- providing the solution of 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)bi phenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid in an organic solvent selected from N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, acetonitrile and any mixtures thereof, preferably dimethyl formamide and N,N-dimethylacetamide, more preferably N,N-dimethylacetamide,

- addition of an inorganic base such as hydroxides, in particular alkali or earth alkaline metal hydroxides such as KOH, NaOH, LiOH, carbonates, in particular alkali or earth alkaline metal carbonates such as Na₂CO₃, K₂CO₃, phosphates, in particular alkali or earth alkaline metal phosphates such as Na₃PO₄, preferably Na₂CO₃, K₂CO₃, more preferably K₂CO₃,

- addition of an iodide, in particular alkali or earth alkaline metal iodide that can be selected from the group consisting of KI, NaI, LiI, preferably KI,

- addition of 4-halomethyl-2-oxo-1,3-dioxolene derivative wherein halo means Cl or Br,
- performing esterification at elevated temperature as for example between 20 and 60°C for 1 to 24h, preferably for 1 to 5h.

3. The process according to any one of claims 1 to 2 wherein 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2’-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid is prepared by the steps of:
- suspending of ethyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2’-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate in an organic solvent selected from N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, acetonitrile and any mixtures thereof, preferably dimethyl formamide and N,N-dimethylacetamide, more preferably N,N-dimethylacetamide,
- addition of an inorganic base such as KOH, NaOH, LiOH₅
- performing the hydrolysis at room temperature for 1 to 24h, preferably for 1 to 5h.

4. A process for preparing (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 1-((2’-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-4-(2-hydroxypropan-2-yl)-2-propyl-1H-imidazole-5-carboxylate, which comprises a step of preparing (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2’-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate according to any one of claims 1 to 3, followed by conversion of (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2’-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate to (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 1-((2’-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-4-(2-hydroxypropan-2-yl)-2-propyl-1H-imidazole-5-carboxylate.

5. The process according to claim 4 wherein the purity of (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 1-(t2’-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-4-(2-hydroxypropan-2-yl)-2-propyl-1H-imidazole-5-carboxylate determined by HPLC is greater than 99.5, preferably greater than 99.8%.

6. Pure solid (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2’-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate obtained by the process according to any one of claims 1 to 3 and having purity greater than 98%, preferably greater than 99%, the most preferably greater than 99.5% with
impurities less than 0.1% and wherein purity is preferably determined by HPLC.

7. (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylate specified by an X-ray powder diffraction pattern exhibiting peaks at the following diffraction angles: 10.2 and 21.7 2Θ.

8. (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylate according to claim 7, specified by an X-ray powder diffraction pattern exhibiting peaks at the following diffraction angles: 3.0, 10.2, 12.1, 15.6, 18.4, 21.7 and 24.3 2Θ.

9. (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylate having an X-ray powder diffraction pattern substantially as shown in Figure 1.

10. Pure solid (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylate having purity greater than 98%, preferably greater than 99%, the most preferably greater than 99.5% with impurities less than 0.1% and having an X-ray powder diffraction pattern exhibiting peaks at the diffraction angles: 3.0, 10.2, 12.1, 15.6, 18.4, 21.7 and 24.3 2Θ wherein said (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylate is prepared by a process comprising the steps of:

- esterification of 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylic acid with a 4-halomethyl-2-oxo-1,3-dioxolene derivative in the presence of an inorganic base and an iodide and optionally in an organic solvent, wherein halo means Cl or Br,

- isolating pure solid (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(l-trityl-lH-tetrazol-5-yl)biphenyl-4-yl)methyl)-lH-imidazole-5-carboxylate from an organic solvent selected from the group consisting of ethers such as diethyl ether, tert-butylmethyl ether; esters such as ethyl acetate, isopropyl acetate,
propyl acetate, butyl acetate, isobutyl acetate, tert-butyl acetate; acetonitrile, toluene, cyclohexane, hexane, heptane, alcohols such as ethanol, isopropanol; water and any mixtures thereof.

11. A process for preparing (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate wherein an iodide selected from the group consisting of KI, NaI, LiI, preferably KI, is added in the step of esterification of 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylic acid with a 4-halomethyl-2-oxo-1,3-dioxolene derivative, wherein halo means Cl or Br and wherein the isolation of the obtained compound is performed in an organic solvent selected from ethers such as diethyl ether, diisopropyl ether, tert-butylmethyl ether; esters such as ethyl acetate, isopropyl acetate, propyl acetate, butyl acetate, isobutyl acetate, tert-butyl acetate; acetonitrile, toluene, cyclohexane, hexane, heptane, alcohols such as methanol, ethanol, isopropanol; water and any mixtures thereof.

12. A pharmaceutical composition comprising (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 1-((2'-(1H-tetrazol-1-yl)biphenyl-4-yl)methyl)-4-(2-hydroxypropan-2-yl)-2-propyl-1H-imidazole-5-carboxylate obtained from (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2'-(1H-tetrazol-1-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate obtained by the process according to any one of the present process claims.

13. The pharmaceutical composition according to claim 12 further comprising one or more other active substance and at least one pharmaceutically acceptable ingredient selected from the group consisting of binders, surfactants, diluents, disintegrants, lubricants and optionally coating layer.

14. The pharmaceutical composition according to claim 13 wherein the active substances are (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 1-((2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-4-(2-hydroxypropan-2-yl)-2-propyl-1H-imidazole-5-carboxylate and hydrochlorothiazide.
15. A process for purifying tritylomesartan medoxomil ((5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-((2-trityl-1H-tetrazol-5-yl)biphenyl-4-yl)methyl)-1H-imidazole-5-carboxylate), which comprises the following steps:

- providing a solution tritylomesartan medoxomil in organic solvent selected from the group consisting of ethyl acetate, isopropyl acetate, propyl acetate, butyl acetate, isobutyl acetate, \textit{tert-buty]m} acetate; toluene, cyclohexane, hexane, heptane, diethyl ether, \textit{tert-buty]m} ethyl ether and mixtures thereof,
- optionally concentrating the solution, and
- addition of another solvent selected from group consisting of acetone, acetonitrile, isopropanol and ethanol.
A. CLASSIFICATION OF SUBJECT MATTER
INV. C07D405/14 A61K31/41 A61P9/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2007/047838 A2 (REDDYS LAB LTD DR [IN]; REDDYS LAB INC DR [US]; SEBASTIAN SONNY [IN]); 26 April 2007 (2007-04-26) examples 8-10</td>
<td>6-10, 12-14</td>
</tr>
<tr>
<td>X</td>
<td>US 5 616 599 A (YANAGISAWA HIROAKI [JP] ET AL) 1 April 1997 (1997-04-01) example 61</td>
<td>6-10, 12-14</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 916 246 A2 (CADILA PHARMACEUTICALS LTD [IN]) 30 April 2008 (2008-04-30) examples 4-71</td>
<td>6-10, 12-15</td>
</tr>
</tbody>
</table>

D Further documents are listed in the continuation of Box C

X See patent family annex

See patent family annex

Date of the actual completion of the international search
26 November 2009

Date of mailing of the international search report
03/12/2009

Name and mailing address of the ISA/European Patent Office
P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040
Fax (+31-70) 340-3016

Authorized officer
Diederen, Jeroen
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WU 2007048361 A1</td>
<td>03-05-2007</td>
<td>CZ 299902 B6</td>
<td>29-12-2008</td>
</tr>
<tr>
<td>WO 2007047838 A2</td>
<td>26-04-2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5616599 A</td>
<td>01-04-1997</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>EP 1916246 A2</td>
<td>30-04-2008</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>