FLEXIBLE PLASTIC GREENERY SIMULATING MATTING ASSEMBLY

Inventor: Wesley Seu Cheng Chin, P.O. 8412
Crenshaw Sta., Los Angeles, Calif. 90008

Filed: Oct. 11, 1972
Appl. No.: 296,663

Related U.S. Application Data
Continuation-in-part of Ser. No. 170,141, Aug. 9, 1971, abandoned, which is a continuation-in-part of Ser. No. 57,509, July 23, 1970, abandoned.

U.S. Cl. 161/21, 24/203, 156/91, 161/114, 161/63
Int. Cl. A41g 1/00
Field of Search 161/21, 54, 63, 114, 19; 24/253; 156/91

References Cited
UNITED STATES PATENTS
2,809,909 10/1957 Chatanay 161/54
3,390,044 6/1968 Malakoff 161/19
3,496,054 2/1970 Baigas 161/63
3,573,142 3/1971 Chidgey et al. 161/21
3,576,698 4/1971 Chidgey et al. 161/21

Primary Examiner—William E. Schulz
Attorney, Agent, or Firm—Smyth, Roston & Pavitt

ABSTRACT
An assembly comprised of a plurality of rectangular molded plastic lattices, the webbing of which receives and supports molded plastic tufts simulating grass or other greeneries at regular spaced distances. The tufts are in the shape of inverted domes formed by molding a plurality of plastic strands to radiate from an annular core which may be centrally orificed. The webbing of the lattice is orificed at spaced intervals so that when the tuft orifices are disposed in registry therewith, the tufts may be secured to the webbing by headed plastic studs, the shanks of which are passed through the registering orifices, and the unheaded end of which is heat-sealed on the bottom side of the webbing. Alternatively, the tuft cores may be unorificed and provided with an axially and downwardly projecting peg which, when passed through the webbing orifices may be heat sealed, or may have interlocking radial projections to secure the pegs against withdrawal from the webbing orifices either with or without heat sealing. The tufted assembly in another form may be adapted to form a golf chipping or driving mat.

23 Claims, 14 Drawing Figures
FLEXIBLE PLASTIC GREENERY SIMULATING MATTING ASSEMBLY

RELATED APPLICATION

This is a continuation-in-part of my prior application, Ser. No. 170,141 filed Aug. 9, 1971 and now abandoned, and which itself was a continuation-in-part of my prior application, Ser. No. 57,509, filed July 23, 1970, which has been abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the art of manufacturing plastic greenery such as simulated grass to provide soft matting to receive flowers, meats, fruits, vegetables and other produce for display in grocery stores and markets.

The invention also relates to such types of simulated grass as may be adapted for use as a mat for a golfer practicing chipping and other types of golf shots.

2. Description of the Prior Art

Plastic grasses of a number of types have been devised and placed in widespread use in recent years, the most popularly known such grass being called ASTROTURF, which has been installed in baseball diamonds and football fields. It is molded in rugged sheets which are laid upon and secured to the ground so that players may run, jump, slide and fall upon it without damaging the sheets. This type of grass, however, is much too short for aesthetically displaying flowers, meats, fruits, vegetables and other produce items in grocery stores and markets. It is also too short properly to support a golf ball in a position simulating a normal "lie" on a fairway from which the ball is to be chipped or driven by an "iron".

In addition, there have been placed on the market certain plastic mats onto which have been integrally molded about a plurality of cylindrical dies which are brought in perpendicularly to the cavity in which the mats are molded, groups of vertically projecting grass-simulating blades. One type of such plastic mats is illustrated and described in U.S. Pat. No. 3,390,044 issued to Irving Malakoff June 25, 1968. To some extent these plastic mats represent an improvement over the ASTROTURF type of grass in use in markets for displaying items. However, because of the physical limitations necessitated to accommodate the mold parts and dies, these grass-simulating mats do not have an aesthetic appearance when viewed directly from above the mat — particularly whenever these prior art plastic mats are bent over a display surface such as a step or ledge. In this orientation it will be found that the clusters of blades and the blades themselves are separated from each other so much that a person looking at the grass-simulating mat will see very little grass but only the underlying plastic base sheet. This is somewhat disillusioning to the viewer who then realizes that he is not seeing grass at all, but only a plastic base sheet with protruding green blades — there widely spaced apart. Further, they are not aesthetically suitable for presenting flowers, either artificial or natural, since the blades are insufficiently close together to support a flower arrangement. Moreover, mats of this type which have been on the market heretofore have not been produced with a soft feel. As a result, when too much pressure is applied to the fruit or vegetable directly in contact with the plastic blades, undesired penetration of the fruit or vegetable by such blades may occur — particularly if it has ripened to the point where it is soft. The Malkoff type molded simulated grass, moreover, does not appear to have been found suitable for golf practice mats.

Another problem with such prior art mats or sheets is that because of the necessity of providing blade clusters as close together as mold or die limitations will permit, the underlying plastic sheets are sometimes found not to be sufficiently orificed properly to ventilate the displayed items resting on the artificial grass. Additionally, the underlying sheets have been quite solid and required the use of unnecessarily large amounts of polyethylene or other plastic materials, thereby rendering them relatively high cost items.

Lastly, if a prior art mat or sheet should become damaged, as by cutting, overheating or, where used as a golf mat, by undercutting blows of a driver or iron, the entire mat or sheet must be replaced at substantial expense to the owner.

Although the structures and techniques illustrated and described in U.S. Pat. No. 2,908,909 issued to J. Chatanay and U.S. Pat. No. 3,496,054 issued to J. F. Baigas, Jr., appear at first blush from the drawings to relate to plastic grass simulating matting assemblies, upon more careful examination, it may be seen that both of these patents are directed toward providing certain types of fabric structures involving no molding of the covering material since the latter is some type of textile.

SUMMARY OF THE INVENTION

The present invention is directed to obviating the criticisms of the prior art greenery simulating plastic matting in that it avoids the principal problem inherent in attempting to integrally mold both the underlying support and the blade-like elements, namely, the inability to provide a sufficient number of blades to give the grass or other greenery a full and thick appearance. Thus, a supporting lattice is molded separately from tufts or clumps of grass simulating plastic strands. These tufts or clumps may be ejection molded into individually thick groupings and then placed on the lattice where they may be brought together as closely as desired and secured to the lattice by beaded plastic studs, the shanks of which are passed through registering orifices in the tufts and the lattice. The projecting ends of the studs may be heat-sealed against the bottom of the lattice. Alternatively, a stud may be integrally molded into the core of each tuft to extend axially therebelow, and may be further provided with a radiating projection which is unidirectional in the sense that it may be pushed downwardly through a lattice orifice but will resist being withdrawn therefrom. Heat-sealing of the projecting stud ends may or may not also be undertaken.

By molding the tufts individually and so assembling them with the lattice, the blade strands do not have to extend upwardly perpendicularly from the underlying support but may be arcately curved away from the axis of the clump in the manner of a dandelion bud. This axis would normally be disposed perpendicularly to the lattice members upon which the clump is mounted. Both the lattice members and the clump are molded with orifices which, when placed in registry, enable the plastic studs to be passed therethrough for
heat-sealing against the bottom of the lattice members, thereby securing the tufts to the lattice. By so curving the grass-like blades, the entire matting will be found to have a much softer feel so as to better receive fruits and vegetables under pressure without penetrating their skins or otherwise damaging them. Because of the close disposition of the tufts on the lattice, the grass-like matting still looks like grass when viewed from above—even when bent over a step or ledge. Moreover, when flowers are placed in or upon this matting, they will appear to be adequately supported by underlying greenery. Should one or more of the artificial grass tufts or clumps become damaged, they may be individually replaced on the lattice at considerably less expense than would be involved in replacing an entire prior art plastic sheet. Since the underlying base is in the form of a lattice, considerably less plastic material is employed than in prior art matting, thereby substantially reducing its cost of fabrication.

Where it is desired to provide a golf practice mat, the particular area upon which the ball is to be placed for chipping or driving, may be underlaid with one or more solid plastic sheets instead of a lattice or lattices. However, provision is made for interlocking such solid sheet or sheets with surrounding lattice rectangles and the solid sheet may be orificed to receive tufts in a pattern which corresponds to that of the lattices. In addition, in order to prevent the cores of the tufts, from which cores the simulated grass blades extend upwardly, from being knocked off the plastic sheets or lattices by the head of a golf club which passes too low during the swing of a club, the orifices in which the tufts are received may be beveled to seat the tuft cores flushly with the plane of the topside of the sheet or lattice. Thereby, only the simulated grass blades extend above the plane of the top of the plastic sheet or lattice and are exposed to "clipping" by the swinging golf club head.

The assembly of the present invention, therefore, represents a considerable improvement over prior art plastic mattings heretofore available on the market.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:

FIG. 1 is a perspective view from the underside of a matting square constructed in accordance with the present invention;

FIG. 2 is an exploded sectional view of a tuft as it would be assembled onto a lattice member;

FIG. 3 is an enlarged sectional view showing the heat-sealed end of the stud as it appears in relation to the core of the tuft and the orificed portion of the lattice member;

FIG. 4 is a plan view of an assembly of matting squares of the type shown in FIG. 1;

FIG. 5 is a detail of the corner interlocking elements showing how they are joined to matting elements of another square;

FIG. 6 is a section taken on a line 6—6 of FIG. 5, but showing how the projection is heat-sealed;

FIG. 7 is a side elevation of a prior art sheet;

FIG. 8 is a plan view of a prior art sheet;

FIG. 9 is a section of an alternative type of tuft with an integrally molded stud inserted through an orifice in the lattice;

FIG. 10 is a side elevation of an inverted assembly showing a manner of heat-sealing the ends of studs of the FIG. 9 embodiment;

FIG. 11 is a prospective view taken from below a plastic sheet which receives embedded tufts;

FIG. 12 is a section taken on the line 12—12 of FIG. 11 showing also a sectional view of a tuft prepared for insertion in the orifice;

FIG. 13 is a view similar to FIG. 12, but showing the tuft fully inserted; and

FIG. 14 is a section of a slightly modified further embodiment of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIGS. 1 and 2, a polygonal lattice 10 is molded in the form of perimeter defining edge members 12 and crossing elements 14. In the particular preferred embodiment the polygon is in the form of a square. Each of the edge members 12 is slotted at 16 to provide better ventilation and to diminish the amount of plastic material required for the lattice. The crossing elements 14 may be thinner than the edge members 12.

In the molding of the lattice, each intersection of a crossing element is orificed at 18 and the inner sides of the edge members 12 are also orificed at 20 in line with the series of orifices 18 at the intersections of the crossing elements. Additional orifices 22 are provided at each corner of the lattice formed by the intersection of the edge members. The number and disposition of the lattice members and the orifices 18, 20 and 22 at the points of intersection will depend upon the size of the tufts which are molded, but, for example, where the flattened diameter of a tuft may be approximately 2½ inches the crossing elements 14 may suitably be spaced from each other at approximately 1¼ inch centers. Each tuft 24 may desirably be molded in the manner best shown in FIG. 2. It will be seen from this figure that the tuft comprises a core 26 and three coaxial groups of plastic blades 28, 30 and 32, which radiate from the axis 34 and are arcuately curved in the manner illustrated somewhat similar in appearance to a dandelion bud.

The core 26 of each of these tufts 24 is orificed at 36 in the axis 34. The diameter of the orifice 36 is substantially identical to the diameter of the orifices 18, 20 and 22. The tuft 24 is secured to the element 14 by placing the tuft on the element with the tuft orifice 36 in registry with the element orifice 18 and passing through the registering orifices a headed plastic stud 38, having a shank 39. The protruding end 38a of the plastic stud 38, is then heat-sealed against the underside 14a of the element 14, as shown in FIG. 3. This assembling process is repeated for each of the other tufts shown in the assembly of FIG. 1. Corners 40 formed by the intersections of the edge members 12 are provided with perpendicular male protrusions 42 and latterly extending tabs 44 with orifices 46. These protrusions 42 and latterly extending orificed tabs 44 serve to enable the square assembly to be interlocked with a number of other identical matting lattices in the manner schematically shown in FIG. 4. This interlocking is illustrated in FIGS. 5 and 6, where the upper portion of the protrusion 42 has been heat-sealed as at 42a against the upper face 44a of the tab 44.

Although the lattice in this preferred embodiment has been illustrated in the form of a square polygon, it will be readily apparent that any type of regular polygon could be employed and similarly assembled. In the
actual assembly process, the lattice is preferably turned upside down and the tufts are then applied to the lattice from the underside. The heat-sealing is accomplished from above after the studs have been pushed upwardly through the orifices 36 and 18 in the tufts and lattice members respectively.

In the embodiment of the invention illustrated in FIG. 9, the stud 38 is integrally molded with the core 26 of the tuft 24 and is provided with a pair of arrowhead-shaped protrusions 48, 50. These protrusions permit the tuft stud 38 to be passed through the lattice orifices 18, 20 and 22 in one direction, but inhibit the stud's removal in the opposite direction. This arrangement enables on-the-spot repairs to be made to the matting without heat-sealing, although it is preferred that in the manufacture of the matting, all stud ends be heat-sealed. Such heat-sealing may be accomplished by an arrangement such as is shown in FIG. 10, wherein the matting is turned upside-down and a heated roller 52 is then passed over the matting to contact the stud ends 38a and the protrusion 50. When so contacted by the heated roller 52 and the stud ends 38a and protrusion 50 plasticize and flow down over the lower protrusions 48 and onto the lattice 14a thereby sealing around the peripheries of the protrusion 48 onto the lattice 14a.

In the still further embodiments of the invention illustrated in FIGS. 11–14, and which are especially adapted for use in providing a golf practice mat, instead of employing the polygonal lattice 10 of FIG. 1, a solid plastic sheet 10' may be molded to the same external configuration as the lattice 10 of the FIG. 1 embodiment. Should one desire to effect some saving of plastic material, it would be possible to mold sheet 10' with some small hole pattern or perforations (not shown). However, to avoid having the swing head of a golf club catch and tear out any of the crossing elements 14 in the FIG. 1-type lattice, a solid sheet is to be preferred, or at least one with small enough perforations or orifices that a swung golf club head would not be likely to catch in such orifices and tear at the sheet material.

Since a low and hard swung golf club might also catch the protruding core 26 or 26' of the tufts of the FIGS. 2 and 9 embodiments respectively, and rip it from the shank 38 or 38' respectively, where the invention is to be adapted for use as a golf practice mat, it is desirable to provide a counterbore-like recess 60 about the orifice 18', in which recess 60 the tuft core 26', mattingly beveled as at 62, may be flushly received, as showing in FIG. 13. A somewhat similar counterbore-like recess 64 may be provided about the lower end of the orifice 18'. However, the roof 66 of the recess 64 desirably should be planar for a sufficient radius about orifice 18' to permit the upper surface 47' of the inverted conical protrusion 48' to abut said planar roof surface 66, thereby better to hold the tuft 24' seated in the orifice 18' against possible dislodgment by a golf club head which is swung hard and low enough actually to almost dig into the plastic sheet 10'. If the tuft 24' is molded of a resilient plastic material, it may be easily displaced in the recessed orifice 18' both in the first instance when it is being assembled, and later, if it should become necessary to replace another tuft which may have become damaged.

If the tufts 24' are placed close enough together and flushly in the sheet 10', a very fine patch of grass may be simulated to resemble an area of a good fairway in a golf course.

Should it be desired to provide a golf mat for use in driving with a wood from a Tee instead of from grass-simulating a fairway, the tufts 24'' of the FIGS. 11–13 embodiment should be molded short and placed close together to give the appearance of a closely cropped Tee-off green 28' as shown in FIG. 14. In addition, as shown in FIG. 14, a plurality of resilient walled orifices 68 may be provided in the plastic sheet 10'' itself, each such orifice 68 being adapted to receive and support in a vertical position a golf Tee 70—even when carrying a ball 72. Each orifice 68, in order to provide such support, may be molded to receive a cylindrical plug 74, which should be marked topside with a colored circle or other indicator 76, so that the golfer can easily locate it in order to insert the point of his golf Tee. Alternatively, as also illustrated in FIG. 14, the core 26'', the shank 38'' of its integral stud, and the conical protrusion 48'' therefrom may be resiliently orificed to receive and support a golf Tee 70 with a ball 72. For this purpose, the shank 38'' (and, of course, the receiving orifice 18'') must be molded with a sufficiently greater diameter to provide an adequate supporting wall for the inserted shank 80 of the Tee 70.

Desirably, a golf practice mat (not shown) might be comprised of a plurality of lattice type squares of the type shown in FIG. 1 and upon which the golfer might stand, with one, two, four, or, for that matter, any number of square plastic sheets of the type shown in FIG. 11, and from which the ball 72 may be chipped or driven. The squares themselves could be either of the FIGS. 11–13 type for chipping, or iron driving, or of the FIG. 14 type for wood driving from a Tee or even for putting. The entire mat could be assembled of similar types of squares, or for versatility, it would be possible to have the chipping or driving squares only removably secured within lattice or other squares by male and female interlocks which are not heat-sealed as in the FIG. 6 embodiment. The golf mat owner could then substitute in his mat either a FIG. 11–13 chipping square or squares or a FIG. 14 driving square or squares, depending upon whether he wished to practice driving or chipping.

It may thus be seen that a plastic grass matting assembly constructed in accordance with any of the several embodiments herein illustrated and described comprises an excellent simulated greenery bedding for flowers, fruits, vegetables, meats, and other produce. Moreover, it will be found to be sufficiently rugged that it can be laid on the ground as a substitute for natural grass and withstand walking upon it by people. The embodiment of FIGS. 11–14 will even withstand the normal driving and chipping by a golfer engaged in practicing such strokes.

I claim:
1. A flexible plastic greenery simulating matting assembly, said matting comprising:
 A. An integrally molded planar lattice, said lattice having peripheral edge members defining a polygon, and a plurality of intersecting webbing elements disposed at regular intervals to extend between pairs of edge members, the intersections of said webbing elements being orificed transversely to the plane of said lattice to provide a pattern of orifices of a preselected diameter, and said edge members being orificed at points in line with the
orifices in the intersections of the webbing elements;
B. An integrally molded plastic tuft for each orifice in said lattice, said tuft comprising a plurality of closely adjacent free-ended plastic strands extending upwardly from a centrally disposed annular core and radiating from the axis of the core in the manner of a dandelion bud, said core having an orifice of substantially the same diameter as the orifices in the lattice and each tuft being disposed on the lattice to place its core orifice in registry with a lattice orifice; and
C. A thermoplastic stud for each said plastic tuft, said stud having a head of a diameter greater than the orifice in the tuft core, and a shank of slightly smaller diameter than the last said orifice;
D. Each tuft being secured to the lattice at one of the lattice orifices by means of one of said studs with the shank of the stud being passed through the tuft orifice, and through the registering orifice in the lattice, and with the protruding end of the shank being secured against withdrawal through the lattice orifice.
2. The plastic matting assembly as described in claim 1, wherein the edge members of the lattice define a rectangle and each webbing element extends between opposed pairs of edge members.
3. The plastic matting assembly as described in claim 1, wherein opposite edge members are alternately provided with male projections extending transversely to the lattice plane and with orifices to receive similar projections on the edge members of another lattice, whereby a plurality of said assemblies may be joined together along their edges by inserting the male projections of the edge of one of the two lattices to be joined together into the orifices of the abutting edge of the other of said two lattices, and securing said projections against withdrawal from their respective orifices.
4. A flexible plastic greenery-simulating matting assembly, said matting comprising:
A. An integrally molded planar lattice, said lattice having peripheral edge members defining a polygon, and a plurality of intersecting webbing elements disposed at regular intervals to extend between pairs of edge members, the intersections of said webbing elements being orificed transversely to the plane of said lattice to provide a pattern of orifices, each of a predetermined diameter, and said edge members being orificed at points in line with the orifices in the intersections of the webbing elements;
B. An integrally molded plastic tuft for each orifice in said lattice, said tuft comprising (i) a plurality of closely adjacent free-ended plastic strands extending upwardly from a centrally disposed core and radiating from the axis of the core in the manner of a dandelion bud; and (ii) an integrally molded plastic stud extending axially downwardly from the tuft, said stud having a shank of slightly smaller diameter than the diameter of the lattice orifice, and the shank of said stud being passed therethrough and secured against withdrawal therefrom.
5. The matting assembly as described in claim 4, wherein each stud shank is provided with at least one radiating protrusion permitting passage of the stud down through the lattice orifice but inhibiting withdrawal therefrom.
6. The matting assembly as described in claim 4, wherein each stud shank is provided near its unbeaded end with at least one arrowhead projection permitting passage of the stud down through the lattice orifice but inhibiting withdrawal therefrom.
7. The matting assembly as described in claim 4, wherein each stud shank is provided with a pair of arrowhead projections one above the other from the free end of said stud to permit passage of the stud down through the lattice orifice but inhibiting withdrawal therefrom, and withdrawal of the stud from the lattice is further inhibited by the free end of the stud having been plasticized after insertion into the lattice orifice to be flattened against the underside of the lattice about the last said orifice.
8. A flexible plastic greenery-simulating matting assembly especially adapted for use as a golf practice mat for practicing chipping and driving, said assembly comprising:
A. A molded, flexible planar plastic sheet, said sheet being in the form of a polygon and being provided with a plurality of orifices, the axes of which orifices are perpendicular to the plane of the sheet, said orifices being spaced from each other by a first predetermined distance, each of said orifices having a counterbore extending from the topside of said sheet thereinto for a second predetermined distance;
B. An integrally molded plastic tuft for each orifice in said sheet, said tuft comprising (i) a core configured to seat in said counterbore, and when so seated to set flushly with the plane of the topside of said sheet; (ii) a plurality of closely adjacent free-ended plastic strands extending upwardly from said core and radiating from the axis of the core in the manner of a dandelion bud; and (iii) an integrally molded plastic stud extending coaxially downwardly from the core, said stud having a shank with a diameter slightly smaller than the diameter of the sheet orifice so as to be adapted to be inserted therethrough, and said shank having means to prevent its withdrawal back upwardly through said orifice after being so inserted through the latter.
9. The assembly as described in claim 8, in which each sheet is in the form of a rectangle.
10. The assembly as described in claim 8, in which at least one edge of the sheet is provided with means whereby said edge may be interlockingly attached edgewise to the edge of another sheet.
11. The assembly as described in claim 8, in which said first predetermined distance is such that the plastic strands of adjacent tufts intermingle to provide an appearance of homogeneity across the entire matting assembly.
12. The assembly as described in claim 8, in which the bottom of the counterbore is rounded.
13. A flexible plastic greenery-simulating matting assembly especially adapted for use as a golf practice mat for practicing chipping and driving, said assembly comprising:
A. A molded, flexible planar plastic sheet, said sheet being in the form of a polygon and being provided with a plurality of orifices, the axes of which orifices are perpendicular to the plane of the sheet, said orifices being spaced from each other by a first predetermined distance, each of said orifices hav-
9

ing a first counterbore extending from the topside of said sheet thereinto for a second predetermined distance, and a second counterbore extending upwardly from the bottom of the sheet for a third predetermined distance and having at least a portion of its bottom circular and lying in a plane parallel to the plane of the topside of said plastic sheet.

B. An integrally molded plastic tuft for each orifice in said sheet, said tuft comprising: (i) a core configured to seat in said counterbore and when so seated to set flushly with the plane of the topside of said sheet; (ii) a plurality of closely adjacent free-ended plastic strands extending upwardly from said core and radiating from the axis of the core in the manner of a dandelion bud; and (iii) an integrally molded plastic stud extending coaxially downwardly from the core, said stud having a shank with a diameter slightly smaller than the diameter of the sheet orifice so as to be adapted to be inserted therethrough, and the free end of said shank having an inverted conical tip, the base of which conical tip, when forced downwardly through the orifice and into the second counterbore, seats in the circular planar bottom of the latter, thereby preventing withdrawal of the stud back up through said orifice.

14. The assembly as described in claim 13, in which at least one edge of the sheet is provided with means whereby said edge may be interlockingly attached edgewise to the edge of another sheet.

15. The assembly as described in claim 11, in which the first predetermined distance is such that only slight spacing is provided between adjacent counterbores only slightly greater than the radius of the counterbore of each orifice, so that the counterbored orifices are disposed relatively close together and the strands of each tuft are numerous and close-cropped, thereby to produce an appearance and feel of a golf green.

16. The assembly as described in claim 11, in which the first predetermined distance is only slightly greater than the radius of the counterbore of each orifice, so that the counterbored orifices are disposed relatively close together and the strands of each tuft are numerous and close-cropped, thereby to produce an appearance and feel of a golf green, and the sheet is punctured between at least some adjacent counterbored orifices to permit the insertion into such punctures of golf Tees for supporting balls to be driven thereoff.

17. The assembly as described in claim 11, in which the first predetermined distance is such that only slight spacing is provided between adjacent counterbores only slightly greater than the radius of the counterbore of each orifice, so that the counterbored orifices are disposed relatively close together and the strands of each tuft are numerous and close-cropped, thereby to produce an appearance and feel of a golf green, and the core and shank of at least some of the tufts are axially orificed to receive golf Tees for supporting balls to be driven thereoff.

18. A golf practice mat, said mat comprising a plurality of matting assemblies as described in claim 10, said assemblies being interlocked at their edges to constitute one contiguous simulated grass mat.

19. A golf practice mat, said mat comprising a plurality of matting assemblies as described in claim 14, said assemblies being interlocked at their edges to constitute one contiguous simulated grass mat.

20. A golf practice mat, said mat comprising at least one matting assembly as described in claim 10, and at least one matting assembly as described in claim 14, said assemblies being interlocked at their edges to constitute one contiguous simulated grass mat, but with different facing textures.

21. A golf practice mat, said mat comprising a plurality of matting assemblies as described in claim 10, said assemblies being removably interlocked at their edges to constitute one contiguous simulated grass mat.

22. A golf practice mat, said mat comprising a plurality of matting assemblies as described in claim 14, said assemblies being removably interlocked at their edges to constitute one contiguous simulated grass mat.

23. A golf practice mat, said mat comprising at least one matting assembly as described in claim 10, and at least one matting assembly as described in claim 14, said assemblies being removably interlocked at their edges to constitute one contiguous simulated grass mat, but with different facing textures, and each of said different matting assemblies being removable from the mat and replaceable by either of said different assemblies.

* * * * *