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AN INTEGRATED PROCESSOR AND PROGRAMMABLE DATA PATH
CHIP FOR RECONFIGURABLE COMPUTING
1. Field of the Invention

The present invention relates to reconfigurable computing.

2. State of the Art

As the cost of increasingly complex integrated circuits continues to fall,
systems compantes are increasingly embedding RISC processors into
non-computer systems. As a result, whereas the bulk of development work used
to be in hardware design, now it is in software design. Today, whole
applications, such as modems, digital video decompression, and digital
telephony, can be done 1n software if a sufficiently high-performance processor is
used. Software development offers greater flexibility and faster time-to-market,
helping to offset the decrease 1n life cycle of today’s electronic products.
Unfortunately, software 1s much slower than hardware, and as a result requires
very expensive, high-end processors to meet the computational requirements of
some of these applications. Field Programmable Gate Arrays (FPGAs) are also
being increasingly used because they offer greater flexibility and shorter
development cycles than traditional Application Specific Integrated Circuits
(ASICs), while providing most of the performance advantages of a dedicated
hardware solution. For this reason, companies providing field programmable or
embedded processor solutions have been growing very rapidly.

It has long been known in the software industry that typically most of the
computation time of any application is spent in a small section of code. A general
trend 1n the industry has been to build software applications, standardize the
interfaces to these computationally intensive sections of code, and eventually turn
them into dedicated hardware. This approach is being used by many companies to
provide chips that do everything from video graphics acceleration to MPEG
digital video decompression. The problem with this approach is that dedicated

chips generally take one or more years to create and then are good only for their
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specific tasks. As a result, companies have begun providing complex digital
signal processing chips, or DSPs, which can be programmed to perform some of
these tasks. DSPs are more flexible than hardware but are less flexible than
standard processors for purposes of writing software.

The logical extension of the foregoing trends is to create a chip which 1s a
processor with dedicated hardware that replaces the computationally intensive
sections of the application code. In fact, most complex MPEG chips already
include a dedicated embedded processor, but are nevertheless not very flexible.
Unfortunately, FPGAs, while they provide greater flexibility, are only 5-10% as
dense as gate arrays per usable function. Since there are usually many different
sections of computationally intensive code that must be executed at different
times within any given application, a more efficient way of using the inherently
inefficient FPGA logic is to repeatedly load each specific hardware logic function
as it is needed, and then replace it with the next function. This technique 1s
referred to as reconfigurable computing, and is being pursued by university
researchers as well as FPGA companies such as Xilinx and others. U.S. Patent
5.652,875 describes a “selected instruction set” computer (SISC) CPU
implemented in programmable hardware. A related patent is U.S. Patent
5.603,043. Both of these patents are incorporated herein by reference.

One aspect of reconfigurable computing involves configuration memory
structures that allow for configuration data to be changed rapidly. An example of
a single-bit portion of a conventional configuration memory structure is shown in
Figure 1. The configuration memory structure may be represented by
interconnected tri-state buffers. A data bit is moved within the configuration
memory structure by enabling one or more tri-state buffers. Two separate
memory planes are indicated, Plane O and Plane 1. The contents of Plane 1 may
be applied to FPGA logic by enabling buffers 101 and 103. The contents of Plane
1 and Plane O may be exchanged by enabling buffers 101, 105 and 107. Plane O
and Plane 1 may also be written from an external source by enabling buffers 109

and 111, respectively. The arrangement of Figure 6 limits the planes to serial
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execution and does not allow for sharing of memory planes. In particular, the
FPGA contents cannot be recirculated for storage into the underlying memory
planes.

Another memory arrangement is described in U.S. Patent 5,246,378,
incorporated herein by reference. In accordance with the teachings of this patent,
data defining alternate configurations of reconfigurable logic are stored in stored
in different, logically separate memories. Selection circuitry, such as
multiplexers, selects between outputs of the different memories and causes the
selected outputs to be applied to reconfigurable logic. Time-sliced operation 1s
described.

Another aspect of reconfigurable computing involves “wildcarding,” 1.e.,
writing more than one word of configuration memory simultaneously as a result
of a single write access, described in U.S. Patents 5,500,609 and 5,552,772,

both of which are incorporated herein by reference.

Despite the foregoing efforts, there remains a need for a low-cost,

high-performance, flexible reconfigurable computing solution. The present

invention addresses this need.

SUMMARY OF THE INVENTION

The present invention, generally speaking, provides a reconfigurable
computing solution that offers the flexibility of software development and the
performance of dedicated hardware solutions. A relatively inexpensive
reconfigurable processor chip includes a standard processor, blocks of
reconfigurable logic, and interfaces between these elements. The chip allows
application code to be recompiled into a combination of software and reloadable
hardware blocks using corresponding software tools. Various features of the
reconfigurable processor chip enable it to achieve a lower-cost,
higher-performance solution than pure processors. A mixture of arithmetic cells

and logic cells allows for higher effective utilization of silicon than a standard

FPGA. Configuration planes may be shared between ALU functions and bus
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interconnect. More efficient use of configuration stack memory results, since
different sections of converted code require different proportions of ALU
functions and bus interconnect. Many different types of interfaces with the

embedded processor are provided, allowing for fast interface between standard

processor code and the configurable “hard-wired” functions.

BRIEF DESCRIPTION OF THE DRAWING

The present invention may be further understood from the following

description in conjunction with the appended drawing. In the drawing:

Figure 1 is a simplified diagram of a conventional configuration memory
structure,

Figure 2 is a simplified block diagram of an Adaptive Compute Engine
(ACE);

Figure 3 is a more detailed floorplan of the Reconfigurable Compute
Engine (RCE) of Figure 2;

Figure 4 is a more detailed block diagram of one possible organization of
the LSM of Figure 2; '

Figure 5 is a block diagram illustrating one possible arrangement in which
data is held in place and operators are reconfigured around the data;

Figure 6 is a more detailed block diagram of one possible organization of
the ACM of Figure 2 and Figure 3;

Figure 7 is a more detailed block diagram of another possibletorganization
of the ACM;

Figure 8 is a block diagram of a further possible organization of the
ACM;

Figure 9 is a diagram of a logic symbol for one possible realization of a
Data Path Unit (DPU);

Figure 10 is an exemplary datapath circuit realized using DPUs of the
type shown in Figure 9;

Figure 11 is a simplified block diagram of the ACM fabric;

4.
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Figure 12a is a block diagram of a portion of a multiple plane LSM
corresponding to a block of the ACM;

Figure 12b is a diagram of a group of corresponding memory cells, one
cell from each plane of the memory stack Figure 12a;

S Figure 12c is a diagram of an alternative embodiment of the memory
stack of Figure 12a in which separate “function” and “wire” stacks are
provided,

Figure 12d is a diagram of separate memory stacks provided for control,
datapath and memory configuration, respectively;

10 Figure 12e is a diagram of a common memory stack provided for control,
datapath and memory configuration;

Figure 13 is a schematic diagram of an alternative embodiment for a
single bit of the memory stack of Figure 12a;

Figure 14 is a diagram representing an addressing portion of the LSM
15 fabric;

Figure 15a through Figure 15f are diagrams showing patterns of memory
cells written simultaneously; |

Figure 16 is a block diagram o'f the ACE showing coupling of the
processor core with the reconfigurable fabric;

20 Figure 17a is a diagram of a first exemplary configuration of ACM blocks
according to various functions;

Figure 17b is a diagram of a second exemplary configuration of ACM
blocks according to various functions;

Figure 18a is a diagram of a function map table used during loading of
25 functions;

Figure 18b is a diagram of block configuration words used during
execution of functions; and

Figure 19 is a pseudocode listing of an exception handling routine.
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DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to Figure 2, a conceptual block diagram of an adaptive
compute engine (ACE) 1n accordance with the present invention is shown. The
ACE includes a reconfigurable compute engine (RCE) core 300, together with
various hardwired blocks that support the RCE. In an exemplary embodiment,
these hardwired blocks include the following: Periphéral Component Interface
(PCI) 201; General Purpose Programmable Input/Output (GPI/O) 203a, 203b;
Configurable Memory Interface (CMI) 205; Timer Bank Module (TBM) 207;
Phase Lock Loop (PLL) 209; Baud Rate Generators (BRG) 211; Interrupt
Control Block (ICB) 213;.Peripheral Device Interface (PDI) 215; Direct Memory
Access (DMA) circuitry 217; Time Slot Assign/Coherency Tags (TSA) 219; and
System Control Module (SCM) 221.

The RCE core 300 includes a CPU 301 (e.g, a RISC microprocessor), a
local store memory (LLSM) 400, and an adaptive compute module (ACM) 600.
Preferably, the RCE core 300 is part of a single ACE integrated circuit. The
particular topology of the integrated circuit 1s not critical for purposes of the
present invention. However, several important aspects of such an integrated
circuit in accordance with a preferred embodiment of the invention are 1llustrated
Figure 3, showing a floor plan of the RCE core 300 of Figure 2. The RCE core
includes a microprocessor portion 301, an interface portion 310, and an ACM
portion 320. The ACM portion 320 is further subdivided into siices of
reconfigurable logic. In an exemplary embodiment, the slices of reconfigurable
logic include control slices 323a, 323b, ..., and corresponding datapath slices
327a, 327b, .... In the example of Figure 3, data flows in a horizontal direction
and control signals run from respective control slices to respective datapath slices
in the vertical direction. An LSM array (also “sliceable™) 325 may be located
amidst the slices as shown, or may be located beside the slices. The

microprocessor 302 communicates with the slices through bus interfaces 319a,

319D, ... , and communicates with the LSM array through a memory interface
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311. Also provided are a Media Access Controller (MAC) 304 and an external

memory interface 306.

Although not separately illustrated in Figure 3, each of the slices of
reconfigurable logic, as well as the local store memory (LSM), include
configuration memory for that portion. In other words, configuration memory for
the blocks illustrated on the left-hand side of Figure 3 will most likely be merged
together with those blocks in a “fabric,” i.e., a highly regular circuit structure.
Many different types of reconfigurable fabrics are well-known 1n the art.

A block diagram of one possible implementation of the LSM is shown 1n
Figure 4. In this embodiment, the LSM is comprised of a tiled set of storage
cells. The “M” cells are nibble oriented storage structures that allow multi-port
access in two dimensions. The “T” cells are optionally used bit level cells
associated with the M cells for either tag bit or error bit usage. The storage
blocks can be further grouped into larger structures to support larger bit widths.

In conventional ASIC implementations, arithmetic data operators are
constructed sequentially, forming a row or path of operators. The resulting row
of logic operators, multiplexers and registers 1s called a “datapath.” Data travels
down this path undergoing various operations and transformations.

The ACM/LSM adaptive computation fabric, on the other hand, 1s
structured by using configuration data bits. The configuration bits are organized
in multiple planes of storage. Swapping configuration planes swaps the logic in
the ACM. Data can be held in place and the operators reconfigured around the
data as shown, for example in Figure 5. On a first cycle, data passes from a first
register 501 through a “cloud” of reconfigurable logic 503 to a second register
505. The cloud of logic is then reconfigured, and one a subsequent cycle, the
data passes back from the second register 505 through the cloud of logic 503 to
the first register 501. By operating on the data on multiple passes through the
cloud of logic, which may be configured differently during each pass, the

equivaient of an arbitrarily long datapath may be realized in ping-pong fashion.
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Multiplexing different operators onto the same logic fabric saves valuable
silicon area, providing a “virtual density” improvement. As described hereinafter,
the use of multiple device configuration planes allows for virtually instantaneous
reconfiguration. Furthermore, memory bandwidth requirements for loading a
configuration plane are dramatically reduced using compression techniques.

Unlike existing FPGAs, the present ACM is a heterogeneous configurable
fabric of control, datapath and memory partitions, including a fine-grained
control structure that is used to control a coarse-grained datapath structure. The
reconfigurable compute fabric may consist of a number of tiled cells that extend
in the X and Y coordinate system, including DPUs (Data Path Units) and the
associated ICM (InterConnection Module) components. The DPUs provide the
data path functionality for the behavioral mapping and the ICMs define the bus
oriented interconnection between the DPUs. Preferably, the control portion and
the LSM memory fabric are defined in a similar fashion.

Referring more particularly, to Figure 6, a more detailed block diagram is
shown of the ACM of Figure 2 and Figure 3. Corresponding reference numerals
are used to indicate corresponding elements in Figure 3 and Figure 6. A
fine-grained control structure fabric 610a, 610b consists of tiled Boolean Logic
Units (BLUs) 611a, 611b. The tiled BLU array interfaces to a global signal
control bus and CPU register control interface 609. The global signal bus 609
allows clock gating of registered variables or bidirectional steerage of data
values. The BLUs are bit level oriented cells for orthogonal control of the
ACM’s datapath DPU partition slices 620a, 620b. This control can be in the form
of cones of combinatorial logic or small state machines.

The datapath partition is a sliceable structure comprised of muitiple bit,

coarse-grained configurable datapath cells, DPUs (Datapath Program Units)
621a, ... , 621b ... , that efficiently support typical arithmetic and bit
multiplexing operators. The DPUs operate on data in 4 bit nibbles. This allows

the datapath fabric to be implemented in a denser, coarse-grained silicon

implementation, compared to current FPGA technology, which uses inefficient,

-8-
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bit-oriented logic elements (fine-grained). The coarser-grained aggregation of
data also allows construction of high performance, long bit width arithmetic
function modules such as multipliers and adders. Fewer bits of control for logic
configuration are required, compared to conventional bit-oriented FPGA
5  structures. Interconnection Modules 630a, 630b are used to communicate with
the LSM storage mechanism for high bandwidth data traffic for queuing or loop
processing.
In Figure 6, configuration memory planes underlying each of the various

reconfigurable structures are explicitly shown. This representation is a logical

10  representation of the ACM and not necessarily a physical representation.

Physically, the structures illustrated in three dimensions in Figure 6 may be

mapped to two dimensions.
Referring to Figure 7, in an alternative implementation, the LSM is
realized in distributed fashion, e.g., as 4 x 4 blocks of memory interspersed with
15  the DPUs. Dispersing the LSM relieves a possible memory bottleneck. Instead of
accessing the LSM through the routing/memory interface, external system

memory can be accessed through the routing/memory interface. In Figure 7,

DPUs and LSM blocks alternate in the vertical direction. That is, datapath slices
alternate with LSM slices. Referring to Figure 8, DPUs and LLSM blocks instead
20 alternate in the horizontal (dataflow) direction. This layout models typical
algorithm flow of operator, storage, operator, storage in a pipelined
implementation.
Many different types of DPUs are possible. A logic symbol for one
possible DPU 1s shown in Figure 9. The DPU operates as set forth 1n Table 1.
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Table 1

OPERATION COMMENT

Passes A and B through to the higher
and lower output bits, respectively

May increment as well if Cin = 1

Cin must be 1; increments A and B
together as a four-bit number

Passes B and A through to the higher
and lower output bits, respectively

SHIFT4 Works on all four input bits, not just
two

ROT1 Works on all four input bits, not just
WO

SHIFT1 Works on all four input bits, not just
WO

15 1100 ROT?2 Works on all four input bits, not just
two

1101 SHIFT2 Works on all four input bits, not just
two

OP CODE
0000

-

Lh

001
0010
0011

0100
0101

0110
10 0111
1000

1001

1010

1011

ROT3
SHIFT3

1110
1111

An exemplary datapath circuit realized using such DPUs is shown 1n

20  Figure 10.

-10-
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An important feature of the RCE core is the ability to dynamically
reconfigure the ACM on the fly in a very short amount of time--typically less
than the amount of time required for a memory read operation in a conventional
computer. The structure of the ACM/LSM fabric is specially adapted to enable
this type of operation. More particularly, the ACM/LSM includes multiple
logical memory planes, e.g., four memory plane's, eight memory planés, etc.
Any number of planes may be provided for (including numbers not powers of
two).

Referring to Figure 11, a conceptual block diagram is shown of one block
of the ACM/LSM fabric. The fabric includes control reconfigurable logic (C-RL)
1101, datapath reconfigurable logic (D-RL) 1103, and reconfigurable memory
1105. Associated with each of these structures is multiple planes of configuration
storage, i.e, control configuration storage 1107, datapath configuration storage
1109 and memory configuration storage 1111.

A particular embodiment of a portion of a multiple plane corresponding to
a block of the ACM/LSM fabric is shown in Figure 12a. The multiple memory
planes form in effect a memory plane stack 1200. In the case of a DP-RL bloék,
the top two planes 1206, 1205 of the memory plane stack are configuration
planes. Configuration data stored in these planes is applied to the reconfigurable
logic. In the illustrated embodiment, “function” configuration data and “wire”
configuration data is stored in different planes. The bottom memory plane 1200a
provides external access to the memory stack. Intermediate planes function, for
example, as a configuration stack, storing configurations expected to be used by
not presently active. In an exemplary embodiment, memory plane O 1s single
port, for single-channel read and write between system memory and
configuration storage. The remaining memory planes are dual port, having one
read port and one write port. Dual port supports simultaneous loading and
recirculation of configuration data with the local “stack.” If no data compression

is used, then simultaneous real-time monitoring is possible, e.g., by writing out a

“snapshot” of one or more planes of the stack.

-11-
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A group of corresponding memory cells, one cell from each plane of the
memory stack, is shown in Figure 12b. The ports of all of the cells are
interconnected so as to allow an operation in which the contents of a cell within
any plane may be read and then written to the corresponding cell of any other
plane. For example, by activating the appropriate control signal, the contents of
plane 4 may be read and written into plane 6. Such an operation may be
accomplished, preferably, in a single clock cycle, or at most a few clock cycles.
As described more fully hereinafter, configuration data is loaded from external
main memory into plane 0 of the memory stack in anticipation of its being
transferred into a configuration plane.

Alternatively, separate “function” and “wire” stacks may be provided, as
shown in Figure 12c. Using this arrangement, function and wire configurations
may be changed simultaneously. Similarly, configuration stacks for configuration
of control, datapath and memory may be combined (Figure 12d) or separate
(Figure 12e).

A schematic diagram of an alternative embodiment of a cell stack is
shown in Figure 13, showing a cross section of several configuration planes
1301-1304 and the lockable fabric-definition cell 1305 that produces a
Fabric Define Data bit for a single bit location. These bits are aggregated in
order to form sufficient bit numbers for functional cell type definition. For
instance, a four bit grouping might designate between four to sixteen different
cell type definitions. The other latch sites below the storage cell are for additional
configuration plane data available for swapping as needed by functional
scheduling requirements. These storage locations can be written and read to from
a common configuration data bus structure. The Config_Read_Data and
Config Load Data buses 1307 and 1309, although shown as being separate, can
be combined as a single bi-directional bus for wiring efficiency. This bus
structure allows configuration data to be written as needed. The
Swap Read Plane buffer 1311 allows existing configuration plane data contents

to be swapped among differing configuration planes on a selectable basis. For

-12-
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instance, the current operation plane of data can be loaded from configuration
plane 1 to configuration plane 2 bj the use of the Swap Read Plane buffer 1311.
The structure shown 1n Figure 13 is similar to a conventional SRAM memory
structure which allows a dense VLSI circuitry implementation using standard
memory compiler technology. This structure could also be implemented as a
conventional dual port RAM structure (not shown) which would allow for
concurrent operation of the write and read data operations. Unlike Figure 12b,
the exampie of Figure 13 assumes separate configuration stacks for each
configuration plane as described heretnafter. That is, the bit stack produces only
a single Fabric Define Data bit instead of multiple fabric definition data bits as
in Figure 12b.

If the Data Recirc Read line 1313 is also connected to data storage
locations that are used for normal circuit register operation, then real time
monitoring of device operations can be utilized by the operating system for
applications such as RMON in internetworking application area or for real time
debug capability. The RMON application basically uses counter operation status
from registers in order to determine system data operation flow characteristics.

Figure 14 is a system level perspective of an access portion of the
configurable ACM LSM, which provides the functionality necessary to configure
an operable plane of logic. (The logic shown is at a symbolic level of
representation while the actual logic to perform the cell selection and address
decode can vary according to techniques commonly used for address and data for
SRAM structures.) In this embodiment, a set of X and Y decode latches with
associated buffers 1401, 1403 drive decode enable signals into the tiled logic
plane consisting of a replicated structure composed of NAND gates 1405, 1407
and a configuration plane logic cell 1409 of the type described in relation to
Figure 14. The combination X and Y decode structure enables arbitrary
collections of cell sites to be addressed by the corresponding X and Y decode
enables, which are shown NANDed together to provide row/column decode

capability. The address bus 1411 selects a particular configuration plane and is
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globally broadcast into the slice of the larger array to be programmed for either
read or write of configuration data. The configuration data bus in not shown for
simplicity. In the illustrated embodiment, the global address bus 1411 1s decoded
at each cell by the use of local cell decode logic (NAND gates 1405).
Alternatively, the global address bus may be implemented in terms of
straight-line, single-bit word lines. |

The structure of Figure 14 allows programming compression to be
accomplished by running a compression program on the configuration map to
find the commonly repeating structures so that they may be written
simultaneously. This measure will significantly reduce both the size of the data
file and the corresponding load time, since most of the like datapath elements will
be repeating both horizontally and vertically. Configuration patterns such as
those shown in Figure 15a through Figure 15f. The cells that correspond to a
“maximal function” having highest utilization are globally selected by the X/Y
decode latches for maximal coverage, and a configuration plane address is
broadcast, designating a particular configuration plane layer. A global data bus
(not shown) then loads a data value that corresponds to a given logic operator or

wiring configuration. The next most commonly used function may then be loaded

in a like process. The next configuration mapping of commonly used cell types
can in fact over-write cell locations from the previous load cell type operation.
That is, successive cell type load operations can supersede previous cell content
loading. This method of loading allows the maximal functions to be stitched nto
the configuration fabric as needed in arbitrary cell locations. The ordering of cell
types by usage for a given configuration plane allows the compression of
informaiion content such that individual addressing schemes for each cell location
are not necessary.

The foregoing discussion has focused on the reconfigurable ACM/LSM

fabric. The remainder of the discussion will focus on the interface between the

fabric and the microprocessor. The microprocessor follows a standard RISC

architecture and has multiple coprocessor and special instructions that may be
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used to interface with the reconfigurable logic. If the instructions are not used,
then the configuration programming automatically adds default tie-off conditions
(for cells that are not used or to safely configure routing to prevent interference
of operations). In an exemplary embodiment, the microprocessor interfaces with
the reconfigurable logic through some or all of the following mechanisms:

1) Via the system bus (memory mapped) .‘

2) Via a coprocessor bus.

3) Via a special instruction interface (internal execution unit storage bus).

4) Via special registers.

In case (1), the reconfigurable memory or logic planes can be accessed by
writing to or reading from a defined address space via the system bus. This
operation appears as 1f 1t were a regular memory access. In case (2), there exists
within the RISC architecture special instructions for loading coprocessor registers
and turning control over to a coprocessor. The coprocessor (in this case the
ACM/LSM) signals when 1t 1s complete, and the processor can load the contents
of the coprocessor interface registers back into the processor.

In case (3), there exists an interface off of the internal processor bus. One
possible interface 1s shown in Figure 16, illustrating coupling of the processor
core with the reconfigurable fabric. The processor core is realized as a four-stage
pipeline including stages 1610, 1620, 1630 and 1640 (the execution stage).
Within the execution stage 1640, an ALU and the ACM are tightly coupled. In
particular, both the ALU and the ACM receive operational data from a register
file in the stage 1630. A mapping is performed between a smaller number of

registers (e.g., 32) within the register file to a potentially much larger number of

registers within the ACM.
Special register-register or register-memory instructions cause two or
more words to be loaded nto a register at the boundary of the bus. A mechanism

1s provided for stalling loading of results computed in the ACM and LSM fabric

into the CPU register set, if necessary, to preserve sequential program execution

integrity. The stall mechanism may take the form of a flag, a dedicated signal
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line, etc. The results of the operation are placed within a set of special instruction
registers. Any request to read the contents of a special instruction register before
the stall for those registers has been cleared stalls that read instruction. Finally,
in case (4), the coprocessor or special instruction registers may be read or written
by either the processor or the ACM. A clock offset from the processor clock may
be provided to guarantee alternating read-write cycle operation if the ACM can
keep up with the processor.

In an exemplary embodiment, three specific types of special mstructions
are provided:

1) Load instructions which load a plane within a block.

2) Invoke instructions which transfer the contents of a plane to a

configuration plane (wire or function).

3) Execute instructions, which can be 1n any of the four cases above.

Each of these types of instructions will be considered in turn in greater
detail.

Load instructions are used to load a plane within a block. Preferably, the
ability to swap planes is available both to the microprocessor and to the |
reconfigurable logic blocks. More than one function can be mapped onto a plane
within a block, or a single functions can take up more than one block or plane.
Possible configurations are shown in Figure 17a and Figure 17b.

Note that when a function is contained on two or more planes it is actually
multiply interlinked. This is possible because the reconfigurable logic can mvoke
a function, and the register contents of any plane can be preserved when the
routing and function configurations are changed. Preferably, a mechanism 1is also
provided for reading and writing the register contents from the reconfigurable
logic as well. This allows the swapping of the entire operation out and back, thus
allowing one function to be overlayed by another without losing the first

function’s contents.
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Development software 1s provided to optimally place Load and Invoke
instructions within the instruction stream so as to minimize stalls within the
process. Such software is described in U.S. Patent Application Serial No.
08/884,377, incorporated herein by reference. Still, hardware must automatically
trap invalid conditions in order to allow the processor to load and invoke the
proper plane, and prohibit the processor from in\}oking a plane on top of a locked
and executing process, unless the process 1s swappable or 1s expected to
automatically abort 1s another executions 1s 1ssued. These hardware functions
may be performed using the function map table of Figure 18a and the block
configuration table of Figure 18b.

Referring to Figure 18a, the function map table provides the module

address for the function. The module address i1s the address in main memory of
the blocks, in compressed format, to be loaded. The function table also contains
Plane Utilization Bits (PUBs), along with lock and swap bits for the function.
The plane utilization bits are assigned based on execution ordering of functions
that are mapped to modules 1in hardware for sequential program execution.

The Load function issues a soft interrupt which is handled by an on-chip
“mini operating system” in a manner similar to a supervisor call. The old
functions in the table are cleared for the target planes, and the planes are loaded
via move instructions which use DMA transfers, in a manner similar to an
interrupt driven I/O operation. While the DMA transfers are occurring, the
processor returns to execute its normal instruction stream. An interrupt signalling
completion of the transfer of the planes will re-enter the “driver” code which will
update the function map table. If the function i1s already loaded, then the Load
instruction returns without loading. If the module address does not exist then the
operation aborts with an error exception.

The Invoke command copies the contents of one plane to another.

Referring to Figure 18b, block configuration words are maintained for

each block in the ACM, including, for each block, a Routing Plane word and a

Function Plane word. Run, Lock and Swai) bits indicate the status of the current
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effective configurations within each block. A “From Plane” field may be used to
swap a function back to a previous plane.

The information in the block configuration words is used to determined
how to handle the Execute instruction. The Execute mstruction i1s decoded by the

5  control logic interface to the reconfigurable logic. Either the function 1s resident,
in which case it is executed with Run set to 1 on the appropriate planes and
blocks, or it is not, in which case a soft interrupt is executed which branches the
processor into an exception handling routine with the return address at the
Execute command, allowing the instruction to be reissued when the function 1s

10  loaded.

The exception handling routine issues one or more Invoke commands with
the appropriate parameters, after determining if the current functions are locked
or swappable as specified in the appropriate block configuration bits. If the block
are current executing another function, Run is set to 1. If the Swap bit is 1, then

15 functions is swappable. If the Lock bit is set to 1, then the current plane 1s
locked. One suitable exception handling routine is described by the pseudocode
of listing Figure 19. |

The effect of the exception routine is to re-execute the routine after it has

been loaded or swapped in, or to skip the instruction. Note that if the currently

20  executing function is not locked or swappable, 1t may be aborted.

Upon completion of the Execute instruction, when the results are returned
to the processor by a mechanism such as those described above, the run bits are
cleared.

The result of the foregoing approach is to allow the software to improve

25  the run time by early loading and invoking of the functions, while always
executing the functions, if at all possible, whether they have been previously
loaded or not.

It will be appreciated by those of ordinary skill in the art that the
invention can be embodied in other specific forms without departing from the

30  spirit or essential character thereof. The presently disclosed embodiments are
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therefore considered in all respects to be illustrative and not restrictive. The

scope of the invention is indicated by the appended claims rather than the

foregoing description, and all changes which come within the meaning and range

of equivalents thereof are intended to be embraced therein.
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What is claimed is:
1. An integrated circuit, comprising:
fine-grain reconfigurable control logic;
coarse-grain reconfigurable datapath logic; and

5 memory means coupled to the reconfigurable control logic and the

reconfigurable datapath logic for defining multiple configurations of the
reconfigurable control logic and the reconfigurable datapath logic.

2. The apparatus of Claim 1, further comprising reconfigurable
memory, wherein said memory means is coupled to the reconfigurable memory

10 for defining multiple configurations of the reconfigurable memory.

3. The apparatus of Claim 2, further comprising a microprocessor
coupled to at least one of said reconfigurable control logic, said reconfigurable

datapath logic, and said reconfigurable memory.

4. The apparatus of Claim 3, wherein the microprocessor is coupled
15 to multiple ones of said reconfigurable control logic, said reconfigurable datapath

logic, and said reconfigurable memory.

5. The apparatus of any of the preceding claims, further comprising
interconnection between the reconfigurable control logic and the reconfigurable

datapath logic.

20 6. The apparatus of any of the preceding claims, wherein said

memory means comprises multiple logical memory planes.

7. The apparatus of Claim 6, further comprising means for

performing hardware-controlled transfer of data between logical memory planes.

20-
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8. The apparatus of Claim 7, wherein said transfer of data 1s direct

plane-to-plane transfer.

9. The apparatus of Claim 8, wherein the direct plane-to-plane

transfer is completed within a single cycle of the microprocessor.

10.  The apparatus of Claim 1, wherein said memory means comprises
means for simultaneously addressing multiple memory locations located in
different memory rows and different memory columns to write identical data into
the multiple memory locations, whereby an amount of data needed to completely
configure at least one of said reconfigurable control logic and said reconfigurable
datapath logic is substantially reduced.

11.  The apparatus of Claim 10, wherein at least one of the

reconfigurable control logic and the reconfigurable datapath logic comprises

multiple cells, each cell requiring a predetermined number of bits of
configuration information to configure the cell, wherein at least a portion of said

memory means 1s organized into data words having a word length equal to the

predetermined number of bits.

12.  The apparatus of Claim 3, further comprising a bus coupled to the
microprocessor and, coupled to the bus, at least one of a bus controller for

controlling an external bus and a memory controller for controlling an external

memory.

13. A reconfigurable computing method using an adaptive compute
engine including a microprocessor, a memory, and an array of reconfigurable

logic elements, the method comprising the steps of:

executing instructions on a miCroprocessor;
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In response to one or more instructions, loading multiple sets of

configuration data into the memory.

14.  The method of Claim 13, wherein the multiple sets of
configuration data comprises at least one set of effective configuration data
applied to the reconfigurable logic elements and at least one set of other
configuration data not applied to the reconfigurable logic elements, the method
comprising the further step of, in response to a predetermined instruction,

physically swapping the effective configuration data and the other configuration

data.

15. The method of Claim 13, comprising the further step of, in
response to one or more Instructions, passing data and control information

between the microprocessor and the array of reconfigurable logic elements.

16.  The apparatus of Claim 15, comprising the further steps of, in
response to one or more Instructions:

performing at least one of loading a set of configuration data from
external memory to become the effective configuration data and physically

swapping a set of configuration data to cause it to become the effective

configuration data; and

causing the array of reconfigurable logic element to perform data

processing 1n accordance with the effective configuration data.

29
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